Proceedings of the Cognitive Robotics Seminar
Dagstuhl, Germany
Feb. 22-26, 2010

Gerhard Lakemeyer, Hector Levesque, Fiora Pirri

Contents
Introduction, Lakemeyer, Levesque, Pirri 2
Cognitive robotics, Lakemeyercoiiiiiiiiiiiiiiinn... 3
Mapping and meaning, Little i 22
Collaborative activity and human-robot interaction, Kruijff 23
Learning functional object categories and event classes, Cohn 24
Acquiring models through human-robot interaction, Wachsmuth 25
Attending to motion: an object-based approach, Belardinelli 27
Plan recognition in the situation calculus, Lespérance 38
Coming up with good excuses, Nebel 39
On first-order definability, Liu i i 47
Towards a non-Prolog implementation of Golog, Ferrein 54
Challenges for domestic service robots, Behnke 69
Robust and efficient visual SLAM, Calwayccooiiiiin... 70
Constraint-based plan management, Pecora 71
Detecting human activities in video and still images, Hlavac 79
Context and place categorization for assistive robotics, Little 80
Modeling robot behavior through machine learning, Ghallab 81
Combining modelling and learning for skill acquisition, Sammut 83
Attentive monitoring and adaptive control, Finzi 84
Combining planning and motion planning, Amir 92
Fast replanning, Koeningo i 100
Spatial computing, Freksa 101
Embodied cognition and human-robot interaction, Trafton 102
The GLAIR cognitive architecture, Shapiro 103
Collaborative unmanned aircraft systems, Doherty 115
Plan execution of hybrid under-actuated systems, Williams 129
Stream-based reasoning in DyKnow, Heintz 137
Self-maintenance for autonomous robots, Schiffer 153
Improving performance of plans though learning, Leonetti 161

Dagstuhl Seminar Proceedings 10081
Cognitive Robotics
http://drops.dagstuhl.de/portals/10081

The Dagstuhl 2010 Cognitive Robotics Workshop

Gerhard Lakemeyer Hector J. Levesque Fiora Pirri
RWTH Aachen University of Toronto Sapienza Universita di Roma

Research in robotics has traditionally emphasized low-level sensing and con-
trol tasks including sensory processing, path planning, and manipulator design
and control. Research in Cognitive Robotics, on the other hand, emphasizes
those cognitive functions that enable robots and software agents to reason, act
and perceive in changing, incompletely known, and unpredictable environments.
Such robots must, for example, be able to reason about goals, to choose actions
and to focus on patterns, objects and events according to the task execution and
the cognitive states of other agents, by taking into account time, resources, and
the consequences of their decisions. In short, cognitive robotics is concerned
with integrating reasoning, perception, and action within a uniform theoretical
and implementation framework.

The term cognitive robotics and the vision that knowledge representation and
reasoning plays a fundamental role in the design of cognitive robots was first laid
out by the late Ray Reiter in his lecture on receiving the Research Excellence
Award by the International Joint Conference on Artificial Intelligence (IJCAI)
in 1993. Since 1998, biannual Cognitive Robotics workshop with Dagstuhl being
the seventh in this series.

While the earlier workshops were largely a forum for presenting state-of-the-art
research results, the purpose of the Dagstuhl event was to broaden the view and
bring together people from various disciplines to shed new light on the issues in
cognitive robotics. In this respect we were very fortunate to have participants
from areas such as robotics, machine learning, cognitive vision, computational
neuroscience, and knowledge representation and reasoning.

Given the diversity of the group, we spent the first day with tutorial-style pre-
sentation, starting out with an overview of Cognitive Robotics in the sense of
Ray Reiter’s vision by Gerhard Lakemeyer. This was followed by presentations
on Computational Neuroscience by Laurent Itti, Planning and Execution Mon-
itoring by Brian Williams, Probabilistic Reasoning by Eyal Amir, Cognitive
Vision by Jim Little, and Human-Robot Interaction by Geert-Jan Kruijff. The
rest of the Workshop consisted of research presentations, a panel, and three
breakout discussion groups on the following topics: the nature of perception,
symbolic and numerical uncertainty, and the role of automated reasoning.

The Proceedings collected here represent submissions from all but 2 of the par-
ticipants at the Workshop in the order they were given. In some cases we have
short abstracts of the talks, and in others, full research papers. We thank the
participants and the copyright holders for permission to use these papers.

Cognitive Robotics*

Hector J. Levesque Gerhard Lakemeyer
Dept. of Computer Science Dept. of Computer Science
University of Toronto RWTH Aachen
Toronto, Ontario 52056 Aachen
Canada M5S 3A6 Germany
hector@cs.toronto.edu gerhard @cs.rwth-aachen.de

This chapter is dedicated to the memory of Ray Reiter. It is also an overview of cogni-
tive robotics, as we understand it to have been envisaged by him.! Of course, nobody can
control the use of a term or the direction of research. We apologize in advance to those
who feel that other approaches to cognitive robotics and related problems are inadequately
represented here.

1 Introduction

In its most general form, we take cognitive robotics to be the study of the knowledge rep-
resentation and reasoning problems faced by an autonomous robot (or agent) in a dynamic
and incompletely known world. To quote from a manifesto by Levesque and Reiter [42]:

“Central to this effort is to develop an understanding of the relationship between
the knowledge, the perception, and the action of such a robot. The sorts of
questions we want to be able to answer are

e to execute a program, what information does a robot need to have at
the outset vs. the information that it can acquire en route by perceptual
means?

e what does the robot need to know about its environment vs. what need
only be known by the designer?

e when should a robot use perception to find out if something is true as
opposed to reasoning about what it knows was true in the past?

e when should the inner workings of an action be available to the robot for
reasoning and when should the action be considered primitive or atomic?

OReprinted from: Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge
Representation, Chapter 23, pp. 869-886, Copyright (2007), with permission from Elsevier.

ITo the best of our knowledge, the term was first used publicly by Reiter at his lecture on receiving the IJCAI
Award for Research Excellence in 1993.

and so on. With respect to robotics, our goal (like that of many in Al) is high-
level robotic control: develop a system that is capable of generating actions in
the world that are appropriate as a function of some current set of beliefs and
desires. What we do not want to do is to simply engineer robot controllers that
solve a class of problems or that work in a class of application domains. For
example, if it turns out that online reasoning is unnecessary for some task, we
would want to know what it is about the task that makes it so.”

We take this idea of knowledge representation and reasoning for the purpose of high-level
robotic control to be central to cognitive robotics [75]. This connects cognitive robotics not
only to (traditional, less cognitive) robotics but also, as discussed later, to other areas of Al
such as planning and agent-oriented programming.

To illustrate the knowledge representation and reasoning issues relevant to high-level
robotic control, we will use Reiter’s variant of the situation calculus. There are several
reasons for this: we, the authors, have worked with the situation calculus and hence feel
most comfortable with it; the situation calculus is a very expressive formalism which can be
used to model many of the features relevant to cognitive robotics; it was already introduced
at length in a chapter of this volume (which we assume as a prerequisite), so that we do
not need to present it from scratch; and last but not least, it is a tribute to Ray Reiter. For a
book length treatment of cognitive robotics not based on the situation calculus, see [85].

The structure of the this chapter is as follows. In Section 2, we discuss some of the
knowledge representation issues that arise in the context of cognitive robotics. In Section 3,
we turn to problems in automated reasoning in the same setting. In Section 4, we examine
how knowledge representation and reasoning come to bear on the issue of high-level agent
control. Finally, in Section 5, we briefly draw conclusions and suggest a direction for future
research.

2 Knowledge representation for cognitive robots

As a special sort of knowledge-based system, cognitive robots need to represent knowledge
about relevant parts of the world they inhabit. What makes them special is the emphasis
on knowledge about the dynamics of the world, including, the robot’s own actions. In
currently implemented systems, knowledge about objects in the world can be very simple,
as in robotic soccer [21], where little is known beyond their position on a soccer field,
to the very complex, involving knowledge about the actual shape of the objects [60, 71].
Likewise, knowledge about actions can be as simple as taking an action to be a discrete
change of position from A to B, or fairly involved with probabilistic models of success and
failure [23, 22].

But whatever the application, the key feature of cognitive robotics is the focus on a
changing world. A suitable knowledge representation language must at the very least pro-
vide fluents, that is, predicate or function symbols able to change their values as a result
of changes in the world. For our purposes, we will use the situation calculus; but there are
many other possible choices, modal vs. non-modal, state-based vs. history-based, time-
based vs. action-based, and so on.2 Each of these will need to address similar sorts of

2While planning languages like STRIPS [28] or PDDL [57] also qualify and have been used to control

issues such as the frame, qualification, and ramification problems, discussed in the Situa-
tion Calculus chapter, and in [70].

2.1 Varieties of actions

In its simplest setting, the situation calculus is used to model actions that change the world
in a discrete fashion and instantaneously. For robotic applications, this is usually far too
limited and we need much richer varieties. Let us begin with actions which are continuous
and have a duration. A simple idea to accommodate both is due to Pinto [58], who proposed
to split, say, a pickup action into two (instantaneous) startPickup and endPickup actions
with an additional time argument and a new fluent Pickingup with the following successor
state axiom:

Pickingup(z,t,do(a, s)) = 3t'(a = startPickup(z,t') Nt' < t)
V' Pickingup(z,t,s) A =3t (a = endPickup(z,t') Nt < t).

While this works fine for some applications,® having to explicitly specify time points when
an action starts and ends is often cumbersome if not impossible. An alternative approach,
first introduced by Pinto [58] and later adapted by Grosskreutz and Lakemeyer [30] is
to define fluents as continuous functions of time. For example, a robot’s location while
moving may be approximated by a linear function taking as arguments the starting time of
the moving action and the robot’s velocity. Using the special action called waitFor(¢) time
advances until the condition ¢ becomes true. The use of waitFor was actually inspired by
robot programming languages like RPL [53]. For an approach to continuous change in the
event calculus see [72].

The situation calculus also deals with actions whose effects are deterministic, that is,
where there is no doubt as to which fluents change and which do not. In practice, however,
the world is often not that clear cut. For example, the robot’s gripper may be slippery
and the pickup action may sometimes fail, that is, sometimes it holds the object in its
gripper afterwards and sometimes it does not. There have been a number of proposals to
model nondeterministic effects such as [82, 27, 4]. On a more fine-grained level, which
is often more appropriate in robotics applications, one also attaches probabilities to the
various outcomes. Reiter’s stochastic situation calculus [66], for example, achieves this
by appealing to nature choosing among various deterministic actions according to some
probability distribution. For example, imagine that when the robot executes a pickup action,
nature actually chooses one of two deterministic actions pickupS and pickupF,which stand
for a successful and failed attempt and which occur, say, with probabilities .95 and .05,
respectively. A nice feature of this approach is that successor state axioms can be defined
as usual because they only appeal to nature’s choices, which are then deterministic.

robots [55, 61, 20], they are more limited in that they only specify planning problems, but do not lend them-
selves to a general representation and reasoning framework for cognitive robots as advocated by Reiter.

3Thinking of all actions as instantaneous in this way also has the advantage of reducing the need for true action
parallelism, allowing us to use the much simpler variant of interleaved concurrency [17].

2.2 Sensing

In the situation calculus, actions are typically thought of as changes to the world, in partic-
ular, those which are due to a robot’s actuators. Sensing actions, which provide the robot
with information about what the world is like but leave the world unchanged otherwise,
are of equal importance from a robot’s perspective. Various ways to model sensing in the
situation calculus have been proposed. One is to introduce a special fluent SF(a, s) (for
sensed fluent value) and axioms describing how the truth value of SF becomes correlated
with those aspects of a situation which are being sensed by action a [41]. For example, sup-
pose we have a sensing action senseRed(z), which registers whether the colour of object x
is red. This can be captured by the following axiom:

SF(senseRed(x),s) = Colour(z,red,s).

The idea is that, when the robot executes senseRed, its sensors or perhaps more concretely,
its image processing system, returns a truth value, which then tells the robot whether the
object in question is red. We can use this predicate to define what the robot learns by doing
actions aq, asg, . . ., a, in situation s and obtaining binary sensing results 11,73, ..., 75"

Sensed((), (), s) = True;

Sensed(d- A, 7+ 1 £ SF(A,do(d,s)) A Sensed(a@, 7, s);
Sensed(d- A, 70, s

)

) = SF(A,do(d@,s)) A Sensed(d@, 7, s).

In general, of course, sensing results are not binary. For example, reading the temperature
could mean returning an integer or real number. See [79] on how these can be represented.
Noisy sensors can be dealt with as well, as shown in [3, 73]. For the distinction between
sensing and perception, see [59].

Sensing the colour of an object is usually deliberate, that is, the robot chooses to actively
execute an appropriate sensing action. There are, however, cases where sensing results are
provided in a more passive fashion. Consider, for example, a robot’s need to localize itself
in its environment. In practice, this is often achieved using probabilistic techniques such
as [86], which continuously output estimates of a robot’s pose relative to a map of the
environment. Grosskreutz and Lakemeyer [32] show how to deal with this issue using so-
called exogenous actions. These behave like ordinary non-sensing actions, which change
the value of fluents like the robot’s location. The only difference is that they are not issued
by the robot “at will,” but are provided by some external means. See also [15, 68] for how
passive sensors can be represented by other means. Exogenous actions are not limited to
account for passive sensing. In general, they can be used to model actions which are not
under the control of the robot, including those performed by other agents.

2.3 Knowledge

When a robot has a model of its environment in the form of, say, a basic action theory,
this represents what the agent knows or believes about the world. Yet so far there is no
explicit notion of knowledge as part of the theory, and this may not be necessary, if we
are interested only in the logical consequences of that theory. However, this changes when
we need to refer to what the robot does not know, which is useful, for example, when

deciding whether or not to sense. We need an explicit account of knowledge also when it
comes to knowledge about the mental life (including knowledge) of other agents. In the
situation calculus, knowledge is modeled possible-world style* by introducing a special
fluent K (s’, s), which is read as “situation s’ is (epistemically) accessible from s.” Let ¢[s]
be a formula that is uniform in s. Then knowing ¢ at a situation s, written as Knows(¢, s),
means that ¢ is true in all accessible situations:

Knows(¢,s) = Vs .K(s',s) D ¢[s'].
This idea of reifying possible worlds was first introduced by Moore [54]. Later, Scherl and
Levesque [79] showed that the way an agent’s knowledge changes as a result of actions can
be captured by a successor state axiom for the fluent K:

K(s",do(a,s)) = 3s'.s" =do(a,s') N K(s',s) N [SF(a,s") = SF(a, 5)].

In words: a situation s’ is accessible after action a is performed in s just in case it is the
result of doing a in some other situation s’ which is accessible from s and which agrees
with s on the value of SF. The effect of this axiom is, roughly, that it eliminates from further
consideration all those situations which disagree with the result of sensing. For example,
if a senseRed(A) action returns the value true, only those situations remain accessible
after performing the action where A is red. Note that this notion of epistemic alternatives
generalizes the situation calculus discussed in the chapter of this volume in that we now
assume that there are initial situations other than Sp.> One nice feature of the successor
state axiom for K is that general properties of the accessibility relationship like reflexivity
or transitivity only need to be stipulated for initial situations, as they are guaranteed to hold
ever after [79]. For a treatment of knowledge and sensing in the fluent calculus, see [83].
For approach to knowledge in the situation calculus that avoids using additional situations,
see [19].

Besides knowledge, there are many other mental attitudes that a cognitive robot may
find useful to model. Proposals exist, for example, to model goal or ability, also using
a possible-world semantics [78, 39, 50, 36]. The issue of belief change after receiving
information that conflicts with what is currently known about the world has also been ad-
dressed [76, 77]. Here a preference relation over situations plays an essential role.

3 Reasoning for cognitive robots

The research problems in cognitive robotics are not limited to problems in representation
seen in the previous section. We are fundamentally concerned with how these representa-
tions are to be reasoned with, and furthermore, as we will see in the next section, how this
reasoning can be used to control the behaviour of the robots.

3.1 Projection via progression and regression

There are two related reasoning tasks that play a special role in cognitive robotics. The main
one is called the (temporal) projection task: determining whether or not some condition

4Modeling knowledge using possible worlds is due to Hintikka [35].
SInstead of a single tree rooted at Sp, we now have a forest of trees each with their own initial situation.

will hold after a sequence of actions has been performed starting in some initial state. The
second one is called the legality task: determining whether a sequence of actions can be
performed starting in some initial state. Assuming we have access to the preconditions of
actions, legality reduces to projection, since we can determine legality by verifying that
the preconditions of each action in the sequence are satisfied in the state just before the
action is executed. Projection is a very basic task since it is necessary for a number of other
larger tasks, including planning and high-level program execution, as we will see in the
next section.

We can summarize the definition of projection from the Situation Calculus chapter as
follows: given an action theory D, a sequence of ground action terms, ay,...,a,, and a
formula ¢[s] that is uniform in s, the task is to determine whether or not

D |= ¢ldo(d, So)].

As explained in that chapter, one of the main results proved by Reiter in his initial paper on
the frame problem [65] is that the projection problem can be solved by regression: when D
is a basic action theory (as defined in the earlier chapter), there is a regression operator R,
such that for any ¢ uniform in s,

D = ¢[do(d, So)] iff Duna UDs, k= ¢'[So],

where Dg, is the part of D that characterizes Sy, and ¢’ = R(¢,a@). So to solve the
projection problem, it is sufficient, to regress the formula using the given actions, and then
to determine whether result holds in the initial situation, a much simpler entailment.

Regression has proven to be a powerful method for reasoning about a dynamic world,
reducing it to reasoning about a static initial situation. However, it does have a serious
drawback. Imagine a long-lived robot that has performed thousands or even millions of
actions in its lifetime, and which at some point, needs to determine whether some con-
dition currently holds. Regression involves transforming this condition back through the
thousands or millions of actions, and then determining whether the transformed condition
held initially. This is not an ideal way of staying up to date.

The alternative to regression is progression. In this case, we look for a progression
operator P that can transform an initial database Dg, into the database that results after
performing an action. More precisely, we want to have that

D = ¢ldo(d, Sp)] iff Duna UDy E @[So],

where Dg, is the part of D that characterizes Sy, and D, = P(Dg,,a@). The idea is that
as actions are performed, a robot would change its database about the initial situation, so
that to determine if ¢ held after doing actions @, it would be sufficient to determine if ¢
held in the progressed situation (with no further actions), again a much simpler entailment.
Moreover, unlike the case with regression, a robot can use its mental idle time (for example,
while it is performing physical actions) to keep its database up to date. If it is unable to
keep up, it is easy to imagine using regression until the database is fully progressed.

There are, however, drawbacks with progression as well. For one thing, it is geared to
answering questions about the current situation only. In progressing a database forward, we
effectively lose the historical information about what held in the past. It is, in other words,

a form of forgetting [48, 38]. While questions about a current situation can reasonably
expected to be the most common, they are not the only meaningful ones.

A more serious concern with progression is that it is not always possible. As Lin and
Reiter show [49], there are simple cases of basic action theories where there is no operator
P with the properties we want. (More precisely, the desired D} would not be first-order
definable.) To have a well-defined projection operator, it is necessary to impose further
restrictions on the sorts of action theories we will use.

3.2 Reasoning in closed and open worlds

So far, we have assumed like Reiter, that Dg, is any collection of formulas uniform in
So. Regression reduces the projection problem to that of calculating logical consequences
of Dg,. In practice, however, we would like to reduce it to a much more tractable prob-
lem than ordinary first-order logical entailment. It it is quite common for applications to
assume that Dg, satisfies additional constraints: domain closure, unique names, and the
closed-word assumption [64]. With these, for all practical purposes, Dg, does behave like
a database, and the entailment problem becomes one of database query evaluation. Fur-
thermore, progression is well defined, and behaves like an ordinary database transaction.

Even without using (relational) database technology, the advantage of having a Dg,
constrained in this way is significant. For example, it allows us to use Prolog technology
directly to perform projection. For example, to find out if (¢ V %) holds, it is sufficient to
determine if ¢ holds or if v holds; to find out if —¢ holds, it is sufficient to determine if
¢ does not hold (using negation as failure), and so on. None of these are possible with an
unconstrained Dg,, .

This comes at a price, however. The unique name, domain closure and closed-world
assumptions amount to assuming that we have complete knowledge about Sy: anytime we
cannot infer that ¢ holds, it will be because we are inferring that —¢ holds. We will never
have the status of ¢ undecided.

This is obviously a very strong assumption in a cognitive robotic setting, where it is
quite natural to assume that a robot will not know everything there is to know about its
world. Indeed we would expect that a cognitive robot might start with incomplete knowl-
edge, and only acquire the information it needs by actively sensing its environment as
necessary.

A proposal for modifying Reiter’s proposal for the projection problem along these lines
was made by de Giacomo et al [15]. They show that a modified version of regression can
be made to work with sensing information. They also consider how closed-world reasoning
can be used in an open world using what they call just-in-time queries. In a nutshell, they
require that queries be evaluated only in situations where enough sensing has taken place
to give complete information about the query. Overall, the knowledge can be incomplete,
but it will be locally complete, and allow us to use closed-world techniques.

Another independent proposal for dealing effectively with open-world reasoning is that
of Liu and Levesque [51]. (A related proposal is made by Son and Baral [80] and by
Amir and Russell [1].) They show that what they call proper knowledge bases represent
open-world knowledge. They define a form of progression for these knowledge bases that
provides an efficient solution to the projection problem that is always logically sound, and
under certain circumstances, also logically complete. The restrictions involve the type of

successor-state axioms that appear in the action theory D: they require action theories that
are local-effect (actions only change the properties of the objects that are parameters of
the action) and context-complete (either the actions are context-free or there is complete
knowledge about the context of the context-dependent ones).

4 High-level control for cognitive robots

As noted earlier, one distinguishing characteristic of the area of cognitive robotics is that
the knowledge representation and reasoning are for a particular purpose: the control of
robots or agents. We reason about a world that is changing as the result of actions taken by
agents because we are attempting to decide what to do, what actions to take towards some
goal. This is in contrast, for example, to reasoning for the purposes of answering questions
or generating explanations.

4.1 Classical planning

Perhaps the clearest case of this application of knowledge representation and reasoning is
in classical planning [29]. As discussed in the Situation Calculus chapter, we are given an
action theory D of the sort discussed above and a goal formula, ¢[s] that is uniform in some
situation variable s. The task is to find a sequence of ground actions terms @ such that

D |= ¢ldo(d, So)] A Executable(do(d, Sp)).

Thus, we are looking for a sequence of actions which, according to what we know in D,
can be legally executed starting in Sy and result in a state where ¢ holds.

Think of having a robot, and wanting it to achieve some goal ¢. Instead of simply
programming it directly, we get the robot to use what is known about the initial state of
the world and the actions available to figure out what to do to achieve the goal. This has
the very desirable effect that if information about the world changes, that is, if we learn
something new, or discover that something old was incorrect, it will not be necessary to
reprogram the robot. All we need do is revise its beliefs. Using the terminology of Zenon
Pylyshyn [62], we have an architecture that is cognitively penetrable in that the behaviour
of the robot can be altered by simply changing its beliefs about the world.

In practice, very little of the actual research in classical planning is formulated using
the situation calculus in this way. Rather, it is expressed in the more restrictive notation
of STRIPS [28]. Instead of an action theory, we have an the initial database formulated as
a set of atomic formulas (with an implicit closed-world assumption), and a collection of
actions formulated as operators on databases, with preconditions and effects characterized
by the additions and deletions they would make to a current database. Although STRIPS
has a very operational flavour, it is possible to reconstruct its logical basis in the situation
calculus [44, 49].

Despite the restrictions imposed by STRIPS, the classical planning task remains ex-
tremely difficult. Even in the propositional case (and with complete knowledge about the
initial world state), the problem is NP-hard [10]. While many optimizations exist for many
special cases, nobody would consider planning as a practical way of generating the millions

10

of action that might be required of a long-lived robot to achieve long-term goals starting
from some initial state.

But this is an unreasonable picture anyway. Nobody would expect people to deal with
their long-term goals by first closing their eyes and computing a sequence of millions of
action, and then blindly carrying out the sequence to achieve the goal, even assuming such
a sequence were to exist. This is an offline view of how to decide what to do. We need to
consider a much more online view of high-level control, where as actions are taken, new
information that is acquired gets to contribute to the decision-making. Instead of planning
in advance for all possible long-term contingencies, we need to be able to get a robot to
achieve some part of a goal, assess its current situation, and plan for the rest with the new
information taken into account.

4.2 High-level offline robot programming

In an attempt to come up with a more flexible sort of control, one of the directions that
has proven to be quite fruitful is the high-level programming [42] found in languages such
as those in the Golog family [43, 17, 16, 66] and variants like FLUX [84]. Virtually all of
the high-level control currently considered in cognitive robotics is of this sort. This brings
cognitive robotics closer to the area of agent-oriented programming or AOP (see [33, 63],
for example).®

By a high-level program, we mean a program that contains the usual programming
features (like sequence, conditional, iteration, recursive procedures, concurrency) and some
novel ones:

o the primitive statements of the program are the actions that are characterized by an
action theory;

o the fests in the program are conditions about the world formulated in the underlying
knowledge representation language;

e programs may contain nondeterministic operations, where a reasoned choice must
be made among alternatives.’

Instead of planning given a goal, we now consider program execution given a high-level
program. In the situation calculus, Levesque et al [43] make this precise as follows: they
define an operator Do(d, s, s’) that maps any high-level program ¢ into a formula of the
situation calculus with two free variables s and s’. Intuitively Do(d, s, ') is intended to say
that if program § starts in situation s, one of the situations it may legally terminate in (since
the program need not be deterministic) is s’. This is defined inductively on the structure of
the program:

Primitive action: Do(A,s,s') = Poss(A,s) A s’ =do(A,s);
Test: Do(¢?,s,s') = o[s] A s =s;

SThis is perhaps a difference of emphasis: cognitive robotics tends to emphasize the robotic interaction with
the world, whereas AOP tends to emphasize the mental state of the agent executing the program.

7In many applications, we can preserve the effectiveness of an essentially deterministic situation calculus by
pushing the nondeterminism into the programming.

11

def

Sequence: Do(d1;09, s, s') 3s”.Do(d1, s, s") A Do(d2, ", s);

def

Nondeterministic branch: Do(d1|d2, s, ') = Do(d1, s, 8') V Do(da, s, 8');

Nondeterministic value: Do(7z. d, s, ') = 3z.Do(é,s,5');

Nondeterministic iteration: Do(6*, s, ') =

VP[Vs1P(s1,81) A Vs18283(P(s1,82) A Do(6,s2,83) D P(s1,53))
D P(s,s)].

Other programming common constructs can be defined in terms of these:

if o then d; else 6, = (¢7:61) | (=p?;02);
while pdod = (¢7;6)*;~¢?.

The offline high-level program execution task then is the following: given a high-level
program J find a sequence of actions a such that

D ': D0(5, S(), dO(C_i, So))

As with planning, we solve this task and then give the resulting action sequence to the robot
for execution.

While this is still completely offline like planning, it does allow for far more flexibility
in the specification of behaviour. Consider, for example, a high-level program like the
following

Ay Ags Az oo Ay @7

where each A; is a primitive action and ¢ is some condition. This program can only be
executed in one way, that is, by performing the A; in sequence and then confirming that
¢ holds in the final state (or fail otherwise). We would naturally expect that solving the
execution task for this program would be trivial, even if n were large, since the program
already contains the answer. At the other extreme, consider a program like the following:

while —¢ do 7a. a

This is a very nondeterministic program. It says: while ¢ is false, pick an action a and do
it. A correct execution of this program is a sequence of actions that can be legally executed
and such that ¢ holds in the final state. But finding such a sequence is precisely the planning
task for ¢. So the execution task for this program is no different than the general planning
task. However, it is between these two extremes that we can see advantages over planning.
Consider this variant:

while —¢ do 7a. Acceptable(a)? ; a

In this case, we have modified the previous program to include a test that the nondetermin-
istically selected action a must satisfy. Assuming we have appropriate domain-dependent
knowledge (represented in D) about this Acceptable predicate, we can constrain the plan-
ning choices at each stage anyway we like, such as in the forward filtering of [2]. Similarly,
we can generalize the first example as in the following:

Ay Ag; As; [while wpdoma.a]; Ay; (As | Bs); ¢7.

12

In this case, we begin the same way, but then we must solve a (presumably easier) subplan-
ning problem to achieve 1, then perform Ay, followed by either A; or Bs as appropriate.
In nutshell, what we see here is that the high-level program can provide as much or as little
procedural guidance as deemed necessary for high-level robot control.

This strategy has proven to be very effective. Among some of the applications built
in this way, we mention an automated banking agent that involved a 40-page Golog pro-
gram [67]. This is an example of high-level specification that would have been completely
infeasible formulated as a planning problem.

When a program contains nondeterministic actions, all that matters about the actual
choices is that they lead to a successful execution of the entire program. There is no rea-
son to prefer one execution over another. However, real decision making often involves
determining which choices are better than others. One way to address this issue is to attach
numerical rewards to situations. Consider, for example, a robot whose only job is to collect
objects, but with a preference for red ones. We might use the following successor state
axiom for reward:

reward(do(a,s)) =r =
Jz(a = pickup(x) N Colour(z,red,s) A r = reward(s) +10) V
Jz(a = pickup(xz) N ~Colour(z,red,s) N\ r = reward(s) +5) V
—3z(a = pickup(x) A r = reward(s)).

The operator Do(J, s, s’) introduced above is then replaced by BestDo(J, s, s”) which se-
lects sequences of actions that maximize accumulated reward. Note that, in the above
example, this does not necessarily mean that the robot will always pick up a red object
if one is available, as even higher rewards may be unattainable if a red object is picked
up now. When combining the idea of maximizing rewards with probabilistic actions, we
obtain a decision-theoretic version of Golog, which was first proposed in [8].

4.3 High-level online robot programming

The version of high-level programming we have considered so far has been offline. A more
online version is considered by de Giacomo et al [16, 69]. Instead of using Do to define
the complete execution of a program, they consider the single-step method first-used to
define the offline execution of ConGolog [17]. This is done in terms of two predicates,
Final(6, s), and Trans(4, s,d’,). Intuitively, Final(§, s) holds when program § can legally
terminate in situation s, and Trans(d, s,¢’, s’) holds when program ¢ can legally take one
step resulting in situation s’, with §’ remaining to be executed. It is then possible to redefine
the Do in terms of these two predicates:
Do(d,s,5') = 36 (Trans*(5,S0,0',s') A Final(§',s')),

where Trans* is defined as the reflexive transitive closure of Trans.®?

Now imagine that we started with some program g in Sy, and that at some later point
we have executed certain actions aq, ...ay, and that we have obtained sensing results
r1,...7, from them, with program ¢ remaining to be executed. The online high-level
program execution task then is to find out what to do next, defined by:

8Much of the work with Trans and Final requires quantifying over and therefore reifying programs. Some care
is required here to ensure consistency since programs may contain formulas in them. See [17] for details.

13

e stop, if DU Sensed(d,,So) = Final(d,do(d, Sp));
e return the remaining program ¢’, if
D U Sensed(d, 7, So) | Trans(6,do(a, Sy), ¢, do(d, So)),
and no action is required in this step;
e return action b and &', if
D U Sensed(a, ,Sy) | Trans(d, do(d, Sp), 0", do(b, do(d, Sp))).

So the online version of program execution uses the sensing information that has been
accumulated so far to decide if it should terminate, take a step of the program with no
action required, or take a step with a single action required. In the case that an action is
required, the robot can be instructed to perform the action, gather any sensing information
this provides, and the online execution process iterates.

The online execution of a high-level program has the advantage of not requiring a rea-
soner to determine a lengthy course of action, requiring perhaps millions of actions, before
executing the first step in the world. It also gets to use the sensing information provided
by the first n actions performed so far in deciding what the (n + 1) action should be. On
the other hand, once an action has been executed in the world, there may be no way of
backtracking if it is later found out that a nondeterministic choice was resolved incorrectly.
In other words, an online execution of a program may fail where an offline execution would
succeed.

To deal with this issue, de Giacomo et al propose a new programming construct, a
search operator. The idea is that given any program ¢ the program X(§) executes online
just like § does offline. In other words, before taking any action, it first ensures using offline
reasoning that this step can be followed successfully by the rest of §. More precisely, we
have that

Trans(%(6), s,%(8),s') = Trans(6,s,8',s") A Is*.Do(d', s, s*).

If 0 is the entire program under consideration, 3(4) emulates complete offline execution.
But consider [07 ; d2]. The execution of X([d1 ; J2]) would make any choice in ¢; depend
on the ability to successfully complete d5. But [X(d1); 2] would allow the execution
of the two pieces to be done separately: it would be necessary to ensure the successful
completion of §; before taking any steps, but consideration of Js is deferred. If we imagine,
for example, that d5 is a large high-level program, with hundreds of pages of code, perhaps
containing X operators of its own, this can make the difference between a scheme that is
practical and one that is only of theoretical interest.

The idea of interleaving execution and search has also been applied to decision-theoretic
Golog [81, 21]. Here, instead of just searching for a successful execution of a sub-program,
an optimal sub-plan is generated which maximizes the expected accumulated reward.

Being able to search still raises the question of how much offline reasoning should be
performed in an online system. The more offline reasoning we do, the safer the execution
will be, as we get to look further into the future in deciding what choices to make now. On
the other hand, in spending time doing this reasoning, we are detached from the world and
will not be as responsive. This issue is very clearly evident in time-critical applications such

14

as robot soccer [21] where there is very little time between action choices to contemplate
the future. Sardina has cast this problem as the choice between deliberation and reactivity
[68], and see also [6].

Another issue arises in this setting is the form of the offline reasoning. Since an online
system allows for a robot to acquire information during execution (via sensing actions, or
passive sensors, or exogenous events), how should the robot deal with this during offline
deliberation [12]. The simplest possibility is to say that it ignores any such information in
the plan for the future that it is constructing. A more sophisticated approach would have
it construct a plan that would prescribe different behaviour depending on the information
acquired during executing. This is conditional planning (see, for example, [7, 56]) and
one form of this has been incorporated in high-level execution by Lakemeyer [37]. An-
other possibility is to attempt to simulate what will happen external to the robot, and use
this information during the deliberation [40]. In [31], this idea is taken even further: at
deliberation time a robot uses, for example, a model of its navigation system by comput-
ing, say, piece-wise linear approximations of its trajectory; at execution time, this model is
then replaced by the real navigation system, which provides position updates as exogenous
actions.

Another issues arises whenever a robot performs at least some amount of lookahead
in deciding what to do. What should the robot do when the world (as determined by its
sensors) does not conform to its predictions (as determined by its action theory)? First steps
in logically formalizing this possibility were taken by de Giacomo ef al [18] in what they
call execution monitoring. In [21], a simple form of execution monitoring is implemented
for soccer-playing robots. Here, the assumptions made by the decision-theoretic planner
are explicitly encoded in the generated plan. During execution, these assumptions are
re-evaluated against the current world model and, in case of a disagreement, the plan is
discarded and a new one generated. See also [26, 34, 22, 23, 24] for related approaches.

5 Conclusion

Cognitive robotics is a reply to the criticism that knowledge representation and reasoning
has been overly concerned with reasoning in the abstract and not concerned enough with
the dynamic world of an embodied agent. It attempts to address the sort of representation
and reasoning problems an autonomous robot would face in trying to decide what to do. In
many ways, it has only scratched the surface of the issues that need to be dealt with.

A number of cognitive robotic systems have been implemented on a variety of robotic
platforms, using the sort of ideas discussed in this chapter, based either on the situation
calculus or on one of the other related knowledge representation formalisms. For a sam-
pling of these systems, see [14, 13, 5, 74, 21, 21, 11, 25]. Perhaps the most impressive
demonstration to date was that of the museum tour-guide robot reported in [9].

A fundamental question in the area of cognitive robotics (that Reiter had begun to
examine) is the relationship between pure logical representations of incomplete knowledge
and the more numerical measures of uncertainty. A start in this direction is the work on
the stochastic situation calculus [66] as well as that on noisy sensors and effectors and
decision-theoretic Golog, noted above.

On an even broader scale, a much tighter coupling of the high-level control program and

15

other parts of a robot’s software, like mapping and localization, or even vision, is called for.
For example, when localization fails and a robot gets lost, it should be possible to use high-
level control to do a reasoned failure recovery. Making progress along these lines requires
a deep understanding of both cognitive and more traditional robotics, and should help to
reduce the gap that currently exists between the two research communities.

References

[1] E. Amir and S. Russell, Logical filtering. Proc. of the IJCAI-03 Conference, pages
75-82, Acapulco, 2003.

[2] F. Bacchus and F. Kabanza, Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence, 116(1-2):123-191, 2000.

[3] F., Bacchus, J. Halpern, and H. Levesque, Reasoning about noisy sensors and effec-
tors in the situation calculus. Artificial Intelligence, 111, 1999, 171-208.

[4] C. Baral, Reasoning about actions: non-deterministic effects, constraints, and qualifi-
cation. Proc. of the IJCAI-95 Conference, 2017-2026, Montreal, 1995.

[5] C. Baral, L. Floriano, A. Hardesty, D. Morales, M. Nogueira, T. C. Son, From theory
to practice: the UTEP robot in the AAAI 96 and AAAI 97 robot contests. Proc. of the
Agents-98 Conference, 32-38, 1998.

[6] C. Baral and T. Son, Relating theories of actions and reactive control. Electronic
Transactions of Artificial Intelligence, 2(3-4):211-271, 1998.

[7] P. Bertoli, A. Cimatti, M. Roveri, P. Traverso, Planning in nondeterministic domains
under partial observability via symbolic model checking. Proc. of the IICAI-01 Con-
ference, 473-478, Seattle, 2001.

[8] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun, Decision-theoretic, high-level
agent programming in the situation calculus. Proc. of the AAAI-00 Conference, pages
355-362, 2000.

[9] W. Burgard, A. B. Cremers, D. Fox, D Hihnel, G. Lakemeyer, D. Schulz, W. Steiner,
S. Thrun, Experiences with an interactive museum tour-guide robot. Artificial Intel-
lelligence 114(1-2):3-55, 1999.

[10] T. Bylander, The computational complexity of propositional STRIPS planning. Artifi-
cial Intelligence, 69:165-204, 1994.

[11] A. Carbone, A. Finzi, A. Orlandini, F. Pirri, and G. Ugazio, Augmenting situation
awareness via model-based control in rescue robots. Proc. of IROS-2005 Conference
Edmonton, Canada, 2005.

[12] M. Dastani, F. de Boer, F. Dignum, W. van der Hoek, M. Kroese, J.-J. Meyer, Pro-
gramming the deliberation cycle of cognitive robots. Proc. of the 3rd International
Cognitive Robotics Workshop, Edmonton, 2002.

16

[13] G. de Giacomo, L. Iocchi, D. Nardi, R. Rosati, Moving a robot: the KR & R approach
at work. Proc. of the KR-96 Conference, 198-209, 1996.

[14] G. de Giacomo, L. Iocchi, D. Nardi, R. Rosati, Planning with sensing for a mobile
robot. Proc. of the ECP-97 Conference,Toulouse, France. 1997.

[15] G. de Giacomo, and H. Levesque, Projection using regression and sensors. Proc. of
the 1JCAI-99 Conference, Stockholm, Sweden, August 1999, 160-165.

[16] G. de Giacomo, Y. Lespérance, H. Levesque, and S. Sardifia, On the semantics of
deliberation in Indigolog. Annals of Mathematics and Artificial Intelligence, 41, 24,
2004, 259-299.

[17] G. de Giacomo, Y. Lespérance, and H. Levesque, ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence, 121, 2000, 109—
169.

[18] G. de Giacomo, R. Reiter, M. Soutchanski, Execution Monitoring of High-Level
Robot Programs. Proc. of the KR-98 Conference, Trento Italy, 1998.

[19] R. Demolombe, R. and M Pozos Parra, A simple and tractable extension of situation
calculus to epistemic logic. Proc. of the ISMIS-2000 Conference, 515524, 2000.

[20] P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, and
K. Wiklund, The WITAS Unmanned Aerial Vehicle Project. Proc. ECAI-00, Berlin,
747-755, 2000.

[21] A. Ferrein, C. Fritz, and G. Lakemeyer. On-line decision-theoretic Golog for unpre-
dictable domains. Proc. of 27th German Conference on Al, 322-336, 2004.

[22] A. Finzi and F. Pirri, Diagnosing failures and predicting safe runs in robot control.
Proc. of the Commonsense 2001 Conference, 105-113. New York, 2001.

[23] A. Finzi and F. Pirri, Combining probabilities, failures and safety in robot control.
Proc. of the IJCAI-01 Conference, Seattle, August 2001.

[24] A. Finzi and F. Pirri, Representing flexible temporal behaviors in the situation calcu-
lus. Proc. of the IJCAI-05 Conference, 436-441, 2005.

[25] A. Finzi, F. Pirri, M. Pirrone, and M. Romano, Autonomous mobile manipulators
managing perception and failures. Proc. of the Agents-01 Conference, 196201, Mon-
treal 2001.

[26] M. Fichtner, A. GroBmann, M. Thielscher, Intelligent execution monitoring in dy-
namic environments. Fundamenta Informaticae, 57, 371-392, 2003.

[27] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain and H. Turner, Nonmonotonic causal
theories, Artificial Intelligence, 153:49-104, 2004.

[28] R. Fikes and N. Nilsson, STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

17

[29] M. Ghallab, D, Nau, and P. Traverso, Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.

[30] H. Grosskreutz and G. Lakemeyer. Turning high-level plans into robot programs in
uncertain domains. In Werner Horn, editor, Proc. of the ECAI-2000 Conference, pages
548-552, 2000.

[31] H. Grosskreutz and G. Lakemeyer, ccGolog: An action language with continuous
change. Logic Journal of the IGPL, Oxford University Press, 2003.

[32] H. Grosskreutz and G. Lakemeyer, On-line execution of cc-Golog plans. Proc. of the
IJCAI-01 Conference, 12—18, 2001.

[33] K. Hindriks, F. de Boer, W. van der Hoek, J.-J. Ch. Meyer, A formal semantics for an
abstract agent programming language. Proc. of the ATAL-97 Conference, June 1998.

[34] K. Hindriks, F. de Boer, W. van der Hoek, J.-J. Ch. Meyer, Failure, monitoring and
recovery in the agent language 3APL. Proc. of the AAAI-98 Fall Symp. on Cognitive
Robotics, 68-75, 1998.

[35] J. Hintikka,, Knowledge and Belief. Cornell University Press, Ithaca, 1962.

[36] W. van der Hoek, J.J. Meyer, B. Linder, On agents that have the ability to choose.
Studia logica, 66(1), 79-119, 2000.

[37] G. Lakemeyer, On sensing and off-line interpreting in GOLOG. In Logical Founda-
tions for Cognitive Agents, Contributions in Honor of Ray Reiter, Springer, Berlin,
173-187, 1999.

[38] G.Lakemeyer, Relevance from an epistemic perspective, Artificial Intelligence, 97(1-
2):137-167, 1997.

[39] Y. Lespérance, H. Levesque, F. Lin, R. Scherl, Ability and knowing how in the situa-
tion calculus. Studia Logica, 66, 165-186, October 2000.

[40] Y. Lespérance and H.-K. Ng, Integrating planning into reactive high-level robot pro-
grams. Proc. of the Second International Cognitive Robotics Workshop, Berlin, Ger-
many, 49-54, 2000.

[41] H. Levesque, What is planning in the presence of sensing? Proc. of AAAI-96 Confer-
ence, Portland, OR, Aug. 1996, 1139-1146.

[42] H. Levesque and R. Reiter, Beyond planning. AAAI Spring Symposium on Integrating
Robotics Research, Working notes, Palo Alto, CA, March 1998.

[43] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl, GOLOG: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming, 31:59—-84,
1997.

[44] V. Lifschitz, On the semantics of STRIPS. Proc. of the 1986 Workshop Reasoning
about Actions and Plans, pages 1-9. Morgan Kaufmann, 1987.

18

[45] F. Lin, Embracing causality in specifying the indirect effects of actions. Proc. of the
1IJCAI-95 Conference, pages 1985-1991. Montreal, 1995.

[46] F. Lin and R. Reiter. How to progress a database II: The STRIPS connection. Proc.
the IJCAI-95 Conference, 2001-2007, 1995.

[47] F. Lin and R. Reiter, State constraints revisited. Journal of Logic and Computation,
4(5):655-678, 1994.

[48] F. Lin and R. Reiter. Forget it! Proc. of the AAAI Fall Symposium on Relevance, New
Orleans, USA, November 1994.

[49] F. Lin, R. Reiter, How to progress a database. Artificial Intelligence, 92(1-2):131-
167, 1997.

[50] B. Linder, W. van der Hoek, J.J. Meyer, Formalizing motivational attitudes of agents:
On preferences, goals and commitments. Proc. of the ATAL-96 Conference, 17-32,
Berlin, 1996.

[51] Y. Liu, H. Levesque, Tractable reasoning with incomplete first-order knowledge in
dynamic systems with context-dependent actions. Proc. of the IJCAI-05 Conference,
Edinburgh, August 2005.

[52] J. McCarthy and P. Hayes, Some philosophical problems from the standpoint of ar-
tificial intelligence. Machine Intelligence 4, pages 463—-502. University of Edinburgh
Press, 1969.

[53] D. McDermott, Robot planning. Al Magazine 13(2):55-79, 1992.

[54] R. Moore, A formal theory of knowledge and action. Formal Theories of the Com-
monsense World, Ablex, Norwood, NJ, 319-358, 1985.

[55] N. Nilsson, Shakey the robot. SRI Technical report, 1984.

[56] F. Bacchus and R. Petrick, Modeling an agent’s incomplete knowledge during plan-
ning and execution. Proc. of the KR-98 Conference, Trento, Italy, 1998.

[57] M. Fox and D. Long, PDDL2.1: An extension of PDDL for expressing temporal
planning domains. Journal of Al Research, 20:61-124, 2003.

[58] J. Pinto, Integrating discrete and continuous change in a logical framework. Compu-
tational Intelligence, 14(1), 1997.

[59] F. Pirri and A. Finzi, An approach to perception in theory of actions: Part I. Electronic
Transaction on Artificial Intelligence, 3(41):19-61, 1999.

[60] F. Pirri and M. Romano, A situation-Bayes view of object recognition based on sym-
geons. Proc. of the Third International Cognitive Robotics Workshop, Edmonton,
2002.

19

[61] F. F. Ingrand, R. Chatila, R. Alami and F. Robert, PRS: A high level supervision
and control language for autonomous mobile robots. Proc. Int. Conf. on Robotics and
Automation, 1996.

[62] Z. Pylyshyn, Computation and Cognition: Toward a Foundation for Cognitive Sci-
ence. MIT Press, Cambridge, Massachusetts, 1984.

[63] A. Rao, AgentSpeak(L): BDI agents speak out in a logical computable language.
Agents Breaking Away, Springer-Verlag, 1996.

[64] R. Reiter, On closed world data bases. Logic and Databases, pages 55-76. Plenum
Press, New York, 1987.

[65] R. Reiter, The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. Artificial Intelligence and Mathemat-
ical Theory of Computation: Papers in Honor of John McCarthy, pages 359-380.
Academic Press, New York, 1991.

[66] R. Reiter, Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. MIT Press, Cambridge, Massachusetts, 2001.

[67] S. Ruman, GOLOG as an Agent-Programming Language: Experiments in Develop-
ing Banking Applications. M. Sc., Dept. of Computer Science, University of Toronto,
January 1996.

[68] S. Sardina, Deliberation in agent programming languages. Ph. D. thesis, Dept. of
Computer Science, University of Toronto, June 2005.

[69] S. Sardifia, Indigolog: Execution of guarded action theories. M. Sc. Thesis, Dept. of
Computer Science, University of Toronto, April 2000.

[70] M. P. Shanahan, Solving the Frame Problem, MIT Press, 1997.

[71] M. P. Shanahan, A logical account of perception incorporating feedback and expecta-
tion. Proc. of the KR-02 Conference, 3—13, 2002

[72] M. P. Shanahan, Representing continuous change in the event calculus. Proc. of the
ECAI-90 Conference, 1990.

[73] M. P. Shanahan, Noise and the Common Sense Informatic Situation for a Mobile
Robot, Proc. of the AAAI-96 Conference, 1098—1103, 1996.

[74] M.P.Shanahan, Reinventing Shakey. In Logic-Based Artificial Intelligence, Jack
Minker (Ed.), Kluwer Academic, 233-253, 2000.

[75] M. P. Shanahan, M. Witkowski, High-Level Robot Control Through Logic. Proc. of
the ATAL-2000 Conference, 104—121, 2001.

[76] S. Shapiro, M. Pagnucco, Y. Lespérance, H. Levesque, Iterated belief change in the
situation calculus. Proc. of the KR-2000 Conference, Breckenridge CO, April 2000,
527-538.

20

[77] S. Shapiro and M. Pagnucco, Iterated belief change and exogenous actions in the
situation calculus. Proc. of the ECAI-04 Conference, 878-882, 2004.

[78] S. Shapiro, Y. Lesperance, H. Levesque, Goal change. Proc. of the IJCAI-05 Confer-
ence, Edinburgh, August 2005.

[79] R. Scherl, H. Levesque, Knowledge, action, and the frame problem. Artificial Intelli-
gence, 144, 2003, 1-39.

[80] T. Son and C. Baral, Formalizing sensing actions — A transition function based ap-
proach. Artificial Intelligence, 125(1-2):19-91, 2001.

[81] M. Soutchanski, An on-line decision-theoretic golog interpreter. Proc. of the IJCAI-01
Conference, Seattle, Washington, 2001.

[82] M. Thielscher, Modeling actions with ramifications in nondeterministic, concurrent,
and continuous domains - and a case study. Proc. of the AAAI-00 Conference 497-502,
2000.

[83] M. Thielscher, Representing the knowledge of a robot. Proc. of the KR-2000 Confer-
ence, Breckenridge, 109-120, 2000.

[84] M. Thielscher, FLUX: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming, 5(4-5):533-565, 2005.

[85] M. Thielscher, Reasoning Robots: The Art and Science of Programming Robotic
Agents. Springer, 2005.

[86] S. Thrun, Robotic mapping: A survey. In G. Lakemeyer and B. Nebel (Eds.) Explor-
ing Artificial Intelligence in the New Millennium. Morgan Kaufmann, 2002.

21

Mapping and meaning

Jim Little
Computer Science
University of British Columbia

I propose to discuss the state of the art in mapping and robot localization, both
of which are sufficient to enable robots to understand where they are. Many
tasks such as manipulation and search simply require relative localization.

The next challenge is to situate the activities and tasks of mobile robots in
maps labeled with semantic information. The labels can be learned from anno-
tated image databases. Spatial relations among objects provide clues towards
identifying the kinds of activities that associate with sites in living and working
spaces. Visual recognition is becoming more capable of recognizing generic ob-
jects so a robot can determine that it is in, for example, a kitchen and therefore
will expect food preparation and cooking activities in that locale.

Places supply prior information about the events and actions that occur there. 1
will discuss how place categorization proceeds from object recognition and how
it enables robots to act in cooperation with people at home and at work.

22

Collaborative activity and human-robot interaction

Kruijff, Geert-Jan M.
DFKI Saarbrucken

The tutorial will highlight issues in processing situated dialogue in human-robot
interaction. We see such interaction as part of a larger collaborative activity.
The human and the robot are engaged in a form of joint activity, and dialogue
as (inter)action is part of that. This makes utterance meaning more than ”just
content.” A robot needs to figure out what the utterance refers to, what new
information it provides — but also, why somebody said it, and how the robot
is supposed to act upon it. Processing and managing dialogue therefore needs
to be integrated with modeling multi-agent beliefs and -intentions. We dis-
cuss the implications of environment uncertainty and -dynamics on how such
multi-agent models need to be modeled and maintained. This leads to more
general implications for cognitive architecture design. Particularly, we focus on
the grounding of multi-agent models in various types of short- and long-term
memories, and how that grounding can make it possible to use these models as
interface between different types of deliberative cognitive processes like plan-
ning, dialogue, and reasoning. The tutorial illustrates the discussed approaches
on several robot systems.

23

Learning functional object categories and event classes from video

Cohn, Anthony G.
University of Leeds

In this talk I present ongoing work at Leeds, in collaboration with Krishna Srid-
har and David Hogg on inducing functional object categories from (qualitative)
spatio-temporal descriptions of the participating objects. First we mine event
classes from activity descriptions expressed using qualitative spatio-temporal
graphs. We presume that events may overlap temporally, and have shared
participants. I present two techniques for doing this: a bottup up level-wise
technique, and a top down technique which presupposes an event generation
model, and where the learning task consist of finding the best explanation of
the observed activity under various assumptions. Good explanations are charac-
terised by having few event classes, where each event class is compact (in terms
of how similar its instance are) and by a notion we call ”interactivity”, which
measures the extent to which an event consists of highly interacting objects,
without ”bystanders”. Having formed these event classes, object categories can
be formed by clustering those objects which take the same roles in a partic-
ular event. We have experimented with these techniques in two domains: a
kitchen scenario, and aircraft turnovers. I also briefly mention a techniuque for
robustly obtaining qualitative spatial relations from noisy video data using a
trained HMM.

24

Acquiring scene models through human-robot interaction

Sven Wachsmuth
with Agnes Swadzba, Ingo Ltkebohle, Julia Peltason, Robert Haschke
University of Bielefeld, Germany

The success of human-robot interaction critically depends on aligned represen-
tations of the mutual intentions as well as the surrounding scene. This cannot
be computed from purely bottom-up processing. Even if the general goal is
clear for a human interaction partner, the variation of utterances how they
would instruct a robot is extremely large. In terms of the visual perception of
the environment we have to deal with previously unknown objects, places and
complex scene structures including tables, chairs, shelfs, etc.

Thus, the goal of a cognitive robot is to learn as much as possible from the direct
interaction with humans in a structured way. Most work in this field concen-
trates on the speech interpretation and gesture recognition side assuming that
a propositional scene representation is available. Less work has been dedicated
to the extraction of relevant scene structures that underlies these propositions.
Psycholinguistic studies have shown that people mostly use clear hierarchical
structures in the verbalization of spatial scene description. Objects are typically
put in spatial relation if they have a common supporting structure or are in a
direct supporting relation. This information can be exploited to hypothesize
the underlying scene structure from verbal descriptions. We generate 3D plane
hypotheses from scene objects referenced by the speaker. These define group-
ing relations between 3D planar patches that are extracted from depth images
recorded by a Time-of-Flight camera (Swadzba et al. 2009). Using this scheme
scene structures can be acquired through human-robot interaction on a seman-
tic and functionally defined level. Without assuming any pre-known model of
the specific room, we show that the system aligns its sensor-based room rep-
resentation to a semantically meaningful representation typically used by the
human descriptor.

Another aspect of such teaching scenarios is that untrained users have an in-
sufficient expectation about successful human-robot interactions. Having the
task to teach the robot, there is a large variability in verbalization behavior of
laypersons. Thus, human-robot interaction is significantly improved if the sys-
tem provides dialog structure and engages the human in an explanatory teaching
scenario. We specifically target untrained users, who are supported by mixed-
initiative interaction using verbal and non-verbal modalities. The principles of
dialog structuring are based on a novelty detection and curiousity behavior of
the robot on the one side and user clarification dialogs on the other side. In
the scenario a person needs to teach object names and manipulation grips to
the robot. System development is followed and interleaved with an interactive
evaluation approach. The system is based on an extensible, event-based inter-
action architecture. It was shown in a video study that users benefit from the
provided dialog structure resulting in a predictable and successful human-robot

25

interaction (Ltkebohle et al. 2009).
References

Ltkebohle, I., Peltason, J., Schillingmann, L., Elbrechter, C., Wrede, B., Wachsmuth,
S., Haschke, R. , “The Curious Robot - Structuring Interactive Robot Learning”,
International Conference on Robotics and Automation, Kobe, Japan, IEEE,
14/05/2009.

Swadzba, A., Vorwerg, C., Wachsmuth, S., Rickheit, G. , “A Computational
Model for the Alignment of Hierarchical Scene Representations in Human-Robot
Interaction”, International Joint Conference on Artificial Intelligence, Pasadena,
CA, USA, AAAI Press, pp. 1857-1863, 14/07/2009.

26

Attending to Motion: an object-based approach

Anna Belardinelli

Abstract Visual attention is the biological mechanism allowing to turn mere sens-
ing into conscious perception. In this process, object-based modulation of attention
provides a further layer between low-level space/feature-based region selection and
full object recognition. In this context, motion is a very powerful feature, naturally
attracting our gaze and yielding rapid and effective shape distinction.

Moving from a pixel-based account of attention to the definition of proto-objects as
perceptual units labelled with a single saliency value, we present a framework for
the selection of moving objects within cluttered scenes. Through segmentation of
motion energy features, the system extracts coherently moving proto-objects defin-
ing them as consistently moving blobs and produces an object saliency map, by
evaluating bottom-up distinctiveness of each object candidate with respect to its
surroundings, in a center-surround fashion.

1 Introduction

Cognitive architecture for autonomous robotics often rely on the capability to deal
with objects, act upon them, recognize scenes and partners and hence behave prop-
erly in a given situation. These higher level cognitive functions can take place only
if the flow of the huge and multimodal information stream coming from the sensory
system is firstly processed and filtered by an attention mechanism, which extracts
relevant patterns and conveniently codes and prioritizes what has to be further pro-
cessed.

Although most computational models of attention are location-based, there is
growing evidence for an object-based account of attention [21]. In his Theory of
Visual Attention [3], Bundesen defines matematically how our visual system could

Anna Belardinelli
Cognitive Interaction Technology Center of Excellence (CITEC), Bielefeld University, Univer-
sitétsstrasse 25, Bielefeld, Germany e-mail: anna.belardinelli @cit-ec.uni-bielefeld.de

27

2 Anna Belardinelli

assess top-down relevance of each object in the stimulus. That is, proto-objects (or
perceptual files, which consist of selected regions) are the basic units of attention,
upon which a priority value is computed. Objects are then fed into a WTA network,
providing access to working memory for those winning the race. Such proto-objects
can be defined in a flexible way and upon different features.

Research on visual attention, and modelling thereof, has concentrated in the past
decades mostly on static stimuli, characterized through a wealth of features, ac-
counting for bottom-up attentional capture and accordance with task-related require-
ments. Yet, we live in a highly dynamic world, populated with moving things, which
call for a selective mechanism much more compellingly than static objects do. Early
detection and selection of the most salient kind of motion can sometimes make the
difference in the struggle for survival. Even simple insects do have some form of
motion perception [8], but usually quite limited color vision. In a very cluttered
scene, moving objects are supposed to attract our gaze very effectively, as shown
by [4], where motion contrast accounts for most of the fixations. On a neurophysi-
ological level, motion information is indeed processed even along a different, more
direct pathway, the dorsal pathway, as opposed to other features needed for object
recognition [12]. If attending to static objects is the prerequisite of perception for
action (like searching for a cup and grasp for it), attending to motion fosters percep-
tion for reaction and interaction, being tied to events evolving in time and triggering
our response (such as an approaching danger or person). Embedding motion in a
visual attention model would then move into the direction suggested by [23] of con-
sidering gaze orienting in real-world environments instead of end up with a model
of picture viewing.

Without disregarding the importance of the deployment of attention to static fea-
tures, our model builds upon a novel approach for extracting and prioritizing mov-
ing objects in a scene. In a previous work [2], we introduced a basic framework for
producing motion saliency maps from spatiotemporal filtering. That model was not
broadly tuned in the frequency domain and produced a pixel-based saliency map.
Motion is a quite distinctive property which naturally induces segmentation of the
scene within foreground and background (see [16] for an application to background
subtraction), hence provides a more straightforward extraction of object units than
color [22] or edge features [17], or spreading of activation around a salient location
[24].

As usual when designing an attention architecture, in the case of attending to
motion the problem is to identify and prioritize salient regions, namely, not just de-
tecting moving objects but defining which one requires to be first attended. Saliency
is not intrinsic in the location nor in the object but it is defined relatively to its sur-
round, in a contrast based way, and according to relevance to the task. In this paper,
we try to bring all these ideas together and extend our model to account for mul-
tiscale motion, proto-object extraction and object saliency evaluation. Saliency is
given by means of center-surround computations both on a location-based and an
object-based level. Relevance is given by tuning the model according to the given
task. Proto-objects (in the following termed objects) are defined as blobs of consis-
tent motion energy and coherent direction. Objects standing out from the surround-

28

Attending to Motion: an object-based approach 3

ing with respect to amount of energy or direction are hence given larger saliency.
In the next sections, we describe the components of our system and present some
results. Section 2 explains our implementation of the energy model [1] for motion
perception, Section 3 proposes the definition and characterization of moving proto-
objects and how to compute their saliency. Finally, Section 4 shows some experi-
mental simulations and results.

2 Motion feature extraction and prioritization

We extend the implementation of the energy model for coherent motion sensing by
[1] introduced in [2]. The basic idea is that coherent motion can be selected inside
an intensity frame buffer by filtering in the oriented edges and bars, left by objects
moving in the spatiotemporal volume. Instead of just one couple of Gabor filters in
quadrature for extracting right/left-ward and up/down-ward motion from x —¢ and
y—t planes respectively, we designed a Gabor filter bank to extract motion informa-
tion at different spatio-temporal scales (frequency bands) and velocities (filter ori-
entations), trying to sample most of the spatiotemporal frequency domain included
in the window u,v € [0,0.5], to comply with the sampling theorem. That is, we code
each voxel in a Gabor space, according to its oriented energy response, analogously
to the coding suggested for modeling our visual system [10]. Gabor filters have been
long known to resemble orientation sensitive receptive fields present in our visual
cortex and to represent band-pass functions conveniently localized both in the space
and in the frequency domain [6]. This is still valid in the spatiotemporal domain,
as measured by [7] in the receptive fields of simple cells in V1 and as obtained via
ICA (Independent Component Analysis) computation on video sequences by [13].
In both studies, resulting receptive fields resemble 3D Gabor filters (whose central
slices are 2D Gabor filters as well) at different orientations and frequencies.
Basically, given a frame buffer 2, we filter any vertical (column-temporal dimen-
sions) or horizontal (row-temporal dimensions) plane /(s,7) in % with every filter
G,y in the bank, in its odd (superscript 0) and even (superscript ¢) component:

Eq f(s,t) = (Gg_’f(s,t)*l(s,t))2 +(ee:f*l(s,t))z 1)

where s = {x,y}, f = {0.0938,0.1875,0.3750} (the max spanned frequency is 0.5
cyc/pixel, the frequency bandwidth is 1 octave), 8 = {r/6,7/3,2/37,5/67}. That
is, we designed a filter bank with 4 orientations (6 = 0,7/2 were left out, as corre-
sponding to static or flickering edges) and 3 frequency bands.

From combination of opponent filter pairs (i.e filters with same slope but op-
posite orientation, 6 and (7 — 0)) we can extract a measure of direction-selective
energy at a specific velocity. For instance, in our case right-sensitive filters have
0, = {m/6,m/3}, while left-sensitive filters have 6, = {(x — n/6),(m — n/3)}. A

29

4 Anna Belardinelli

measure of the total rightward (leftward) energy at a specific frequency can hence
be obtained by summing rightward (leftward) energy accross velocities:

Eq,.r—Ee,.r

Eg,.r —Eeq,.f
Re=Y| 5 5 BT 2
I Z Eg, .r+Eg, fl> Z Eq, .r+Ee,.r @

where the |-| operator selects points greater/less than zero, corresponding to right-
ward/leftward motion. The same can be done for upwards (downwards) energy com-
putation, by taking s =y, 6, = 6, and 6; = 6,.
In this way we obtain 4 feature volumes R, L, U, D at different frequencies.

Subsequently, we operate a first attentional processing by applying normalization
and center-surround operators to the frames of each feature buffer. Due to receptive
field center-surround interactions, indeed, ganglion cells are usually described as
firing more strongly whenever a central location is more contrasted with respect to
its surroundings. Again, this holds in the motion domain as well, as shown by [19]:
locations displaying different motion in terms of energy module or direction pop out
from the surroundings and are enhanced in the saliency map. Center-surround inhi-
bition is usually obtained via accross-scale differences [15] or center-neighborhood
differences at the same scale [11]. We chose the second way, as faster due to the
use of integral images. At the same time, feature maps need to be normalized to the
same range and weighted according to the number of occurring local maxima, so
that a feature map with many activation peaks is given less weight than one with
few peaks. This can be realized in a biological plausible manner by iteratively fil-
tering the feature frames with a DoG (Difference of Gaussians) filter and taking
each time just the non negative values [14]. We then compose horizontal and verti-
cal features to obtain a measure of horizontal and vertical energy and sum accross
frequencies:

E, = ;(JV(CS(Rf)) +A(CS(Ly))) Ev= ;(JV(CS(Uf)) +A4(CS(Dy))) 3)

Here /() and CS(-) denote the normalization and center-surround operator, re-
spectively, which are applied to each x — y frame of the feature buffers.

To illustrate the effectiveness of our procedure we use a purely bottom up syn-
thetic stimulus, depicted in Fig.la. The sequence (256 x 256 x 5) displays nine
squares at random positions moving downwards at 1 pixel/frame velocity and
just one square moving rightwards at the same velocity, representing the oddball
(marked by a red circle). In the horizontal feature map (Fig. 1b) correctly just the
oddball is shown, while in the vertical feature map (Fig. 1c) just the vertical moving
dots are shown. Due to normalization these latter have less energy (see colorbar),
albeit moving at the same velocity as the horizontally moving one.

Ej, and E, can be regarded as the projection on the x and y axes of the salient
motion energy present in the frame buffer. Hence from these components we can
achieve, for every voxel, magnitude and phase of the salient energy:

30

Attending to Motion: an object-based approach 5

©)

Fig. 1: Application of the salient energy extraction framework to a synthetic display
(a) containing a pop-out object, represented by the red-circled square, moving hori-
zontally, while the other squares move vertically. (b), the horizontal motion feature
map and (c) the vertical motion feature map are shown, both at f=0.3750. (d), the
temporal average of the module of salient energy, achieved by merging horizontal
and vertical energy at different frequencies.

E(x.y.0)| = \/En(e,30)2 + Ey(x.y.1)? @
ZE(x,y,t) = arctan(E, (x,y,1) /Ex(x,,1)))

A saliency map derived from magnitude map be seen in Fig.1d, obtained by
averaging the |E| frame buffer along time. Top-down modulation at this level can
be implemented by selecting the filter parameters (number of orientations, number
of frequency bands, orientation and frequency bandwidths) according to the current
task. In this way, one can decide to attend just to a particular direction of movement,
to a particular scale of objects or to a particular velocity range.

31

6 Anna Belardinelli

3 Proto-object formation and saliency evaluation

In the previous section, we have shown how to obtain a saliency map enhancing rel-
evant motion zones. Such a map is yet pixel-based and, as said in the introduction,
an object-based map would best help subsequent processing for object recognition
and action selection. We need to evaluate the saliency of an object with respect to
its entirety and with respect to the surrounding background, not just by considering
each single pixel it is composed of. Indeed, even if motion processing attains to the
dorsal, or "where”-, pathway, nevertheless attentional processes can modulate seg-
regation and grouping of the visual input into ”object tokens” across both pathways
[20].

To this end, we extracted proto-object patches defined as blobs of consistent mo-
tion in terms of module and direction. As the Gestalt law of common fate states,
points moving with similar velocity and direction are perceptually grouped together
in a single object. A simple segmentation on the module map would not be sufficient,
since adjacent objects moving in different directions would be merged. Hence, we
threshold the temporally averaged magnitude map |E(x,y)| to discard points with
too low energy and apply the mean shift algorithm to the phase of the remaining
points in the average phase map ZE(x,y). The mean shift algorithm is a kernel-
based mode-seeking technique, broadly used for data clustering and segmentation
[5]. Being non-parametric, it has the advantage that it does not need the number
of clusters to be specified previously. We cluster in this way objects with a certain
amount of energy according to their direction. Application of this procedure to the
synthetic stimuli presented above gave the results presented in Fig.2a. The verti-
cally moving squares are assigned to a class while the horizontally moving square
belongs to a different class.

Once we have labelled regions we can extract the object convex hulls by means of
morphological operations and can compute their saliency. Again, we define object
saliency as proportional to motion contrast in terms of module and orientation, in a
center-surround fashion. Given an object o, defined by its bounding box, and given
its surround N (o) of size proportional to the area of o, similarly to [17], we have:

Smflg(o) = <|E(xvy)‘>(x,y)6(a) - <|E(xvy)‘>(x7y)6N((a)) (6)

where the (-) operator computes the mean of the points in the subscript set.

For orientation saliency, since some non rigid objects can display more than one
direction but still a dominating general direction, we compute the histograms of the
orientations of the object 0, weighted according to the energy module, as:

h(i)= Y, |E(xy)| @)

32

Attending to Motion: an object-based approach 7

(b)

Fig. 2: Object segmentation and prioritization. (a), the result of the mean shift seg-
mentation on directions relative to salient energy is displayed. Each cluster is de-
noted by a different color. (b), convex hull patches corresponding to segmented ob-
jects are superimposed to the original frame: color is determined by saliency, with
the least salient object having RGB=(0, 1, 0) and the most salient being displayed
in pure red with RGB=(1, 0, 0).

where i represents the i-th bin. In so doing, the more likely orientations are the
ones relative to high energy points. Orientation saliency is hence given by the sim-
ilarity between the orientation distributions of the object and of its surround. Simi-
larity is evaluated through the Bhattacharyya distance:

Sor(0) = 1=} (1 /ho(i) hy (o) (1) ®)

i

Hence, the more the orientation distribution of the object differs from that of the
surrounding, the greater the orientation saliency.

Finally, the overall saliency of the object is calculated as linear combination of
the two components:

S(0) = ASnag(0) + BSor(0) 9)

Both S,,4 and S,, are normalized to the interval [0, 1]. ¢ and f3 are taken equal
to 0.5 in the case of pure bottum-up selection, but can be top-down biased for task-
driven selection.

In Fig.2b, the segmented patches with color intensity proportional to the overall
saliency are superimposed on the original frame. The oddball is correctly shown as
the object with the highest saliency, the most reddish.

33

8 Anna Belardinelli

4 Experiments and discussion

Having tested the effectiveness of our framework on synthetic stimuli, where the
pop-out target can be easily and univocally identified by every subject, we made
some experiments with real world sequences. In particular, we took some sequences
from the Getty Image footage !, those taken with fixed camera and displaying mul-
tiple moving objects. In a crowded scene, indeed, such as a station or a crossroad
(see Fig. 3 and 4), there is a wealth of moving objects competing for attention cap-
ture and therefore a prioritization and selection mechanism is extremely useful. In
the experiments depicted in Fig. 3 and 4, it can be noticed how differently moving
objects even very close to each other can be discriminated according to their dis-
tinctiveness from other motion patterns in the surroundings. Since the final saliency
is evaluated on the whole object region, it is not said that the object containing the
most salient pixel is the most salient object too.

The presented framework can be tuned and refined in a number of ways to make
it more or less selective and task-oriented. A major limitation, at the moment, is the
constraint of stationary camera. This limits its current biological plausibility, since
humans are able to discriminate scene motion from ego-motion when moving the
head or the body, due to the Vestibular-Ocular Reflex (VOR) present in our visual
system. Similarly, this limit can be overcome by applying stabilization techniques
to the buffer frame, or modelling the motion distribution of the background and
applying background subtraction as in [16].

The main novelty of our system is the definition of moving proto-objects which is
related to the their amount of motion and direction distinctiveness. We have shown
how this approach can successfully select and prioritize relevant motion within a
crowded scene. This is based on low-level processing and relies on the extraction
of coherent motion in different directions. Further higher-level processing will have
to be combined with specific task descriptions and a more elaborated description
of motion patterns in terms of frequency and spatiotemporal signatures. Interesting
issues still to be investigated are the temporal scale and resolution that are needed
to recognize these patterns (we arbitrarily took a 5 frames temporal span for com-
putational needs) and how far such a system can get without object continuity and
indexing [18].

References

1. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J.
Opt. Soc. Am. A 2(2), 284-299 (1985)

2. Belardinelli, A., Pirri, F., Carbone, A.: Motion saliency maps from spatiotemporal filtering.
Attention in Cognitive Systems pp. 112-123 (2009)

3. Bundesen, C.: A theory of visual attention. Psychological review 97(4), 523-547 (1990)

1 http://www.gettyimages.com/

34

Attending to Motion: an object-based approach 9

sfw20110024

sfw20110024

(© (d

Fig. 3: Object-based saliency selection applied to a real world sequence. (a), an
original frame. (b) the temporal average of the energy module. (c), the segmented
phase map and (d) objects with their saliency are shown.

10.

11.

Carmi, R, Itti, L.: Visual causes versus correlates of attentional selection in dynamic scenes.
Vision Research 46(26), 4333-4345 (2006)

Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 24(5), 603—-619 (2002)

Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation
optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A 2(7), 1160-1169
(1985)

DeAngelis, G.C., Ohzawa, 1., Freeman, R.D.: Spatiotemporal organization of simple-cell re-
ceptive fields in the cat’s striate cortex. i. general characteristics and postnatal development.
Journal of neurophysiology 69(4), 1091-1117 (1993)

Egelhaaf, M., Borst, A., Reichardt, W.: Computational structure of a biological motion-
detection system as revealed by local detector analysis in the fly’s nervous system. J. Opt.
Soc. Am. A 6(7), 1070-1087 (1989)

Field, D.J.: Relations between the statistics of natural images and the response properties of
cortical cells. J Opt Soc Am A 4(12), 2379-2394 (1987)

Frintrop, S., Klodt, M., Rome, E.: A real-time visual attention system using integral images.
In: Proceedings of the 5th International Conference on Computer Vision Systems (2007)
Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends in
neurosciences 15(1), 20-25 (1992). URL http://view.ncbi.nlm.nih.gov/pubmed/1374953

35

10 Anna Belardinelli

(© (@

Fig. 4: Object-based saliency selection applied to a second real world sequence. (a),
an original frame. (b) the temporal average of the energy module. (c), the segmented
phase map and (d) objects with their saliency are shown.

12. van Hateren, J.H., Ruderman, D.L.: Independent component analysis of natural image se-
quences yields spatio-temporal filters similar to simple cells in primary visual cortex. Pro-
ceedings: Biological Sciences 265(1412), 2315-2320 (1998)

13. Itti, L., Koch, C.: Feature combination strategies for saliency-based visual attention systems.
Journal of Electronic Imaging 10(1), 161-169 (2001)

14. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254-1259
(1998)

15. Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in dynamic scenes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 32, 171-177 (2009)

16. Orabona, F., Metta, G., Sandini, G.: A proto-object based visual attention model. In: Attention
in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint, pp. 198-215
(2008)

17. Pylyshyn, Z.W.: Visual indexes, preconceptual objects, and situated vision. Cognition 80(1-2),
127-158 (2001)

18. Rosenholtz, R.: A simple saliency model predicts a number of motion popout phenomena.
Vision Research 39(19), 3157 — 3163 (1999)

19. Schneider, W.X.: VAM: A neuro-cognitive model for visual attention control of segmentation,
object recognition, and space-based motor action. Visual Cognition 2(2-3), 331-376 (1995)

36

Attending to Motion: an object-based approach 11

20. Scholl, B.J.: Objects and attention: the state of the art. Cognition 80(1-2), 1-46 (2001)

21. Sun, Y., Fisher, R., Wang, F., Gomes, H.M.: A computer vision model for visual-object-based
attention and eye movements. Computer Vision and Image Understanding 112(2), 126-142
(2008)

22. Tatler, B.: Current understanding of eye guidance. Visual Cognition pp. 777-789 (2009)

23. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19(9),
1395 — 1407 (2006)

37

Plan recognition in a situation calculus-based agent programming
framework

Yves Lesperance, Alexandra Goultiaeva, and Joshua McClymont
Dept. of Computer Science and Engineering, York University
and Dept. of Computer Science, University of Toronto

Plan recognition is capability that can be useful in many contexts, such as
producing helpful computer interfaces, monitoring and assisting cognitively im-
paired people, and detecting suspicious behavior. In this talk, I will present a
formal model of plan recognition for inclusion in a cognitive agent programming
framework. The model is based on the Situation Calculus and the ConGolog
agent programming language. This provides a very rich plan specification lan-
guage. Our account supports incremental recognition, where the set of hypothe-
ses about matching plans is progressively filtered as more actions are observed.
This is specified using a transition system account. The model also supports hi-
erarchically structured plans and recognizes subplan relationships. We will also
discuss work in progress on developing a version of the framework that uses a
Bayesian approach to compute the probability of matching plan hypotheses. We
will present an application of this to building ”smarter” non-player characters
in video games.

38

Coming up With Good Excuses:
What to do When no Plan Can be Found

Moritz Gobelbecker and Thomas Keller
and Patrick Eyerich and Michael Brenner and Bernhard Nebel
University of Freiburg, Germany
{goebelbe, tkeller, eyerich, brenner, nebel } @informatik.uni-freiburg.de

Abstract

When using a planner-based agent architecture, many things
can go wrong. First and foremost, an agent might fail to exe-
cute one of the planned actions for some reasons. Even more
annoying, however, is a situation where the agent is incom-
petent, i.e., unable to come up with a plan. This might be
due to the fact that there are principal reasons that prohibit a
successful plan or simply because the task’s description is in-
complete or incorrect. In either case, an explanation for such
a failure would be very helpful. We will address this problem
and provide a formalization of coming up with excuses for
not being able to find a plan. Based on that, we will present
an algorithm that is able to find excuses and demonstrate that
such excuses can be found in practical settings in reasonable
time.

Introduction

Using a planner-based agent architecture has the advantage
that the agent can cope with many different situations and
goals in flexible ways. However, there is always the pos-
sibility that something goes wrong. For instance, the agent
might fail to execute a planned action. This may happen be-
cause the environment has changed or because the agent is
not perfect. In any case, recovering from such a situation
by recognizing the failure followed by replanning is usually
possible (Brenner and Nebel 2009).

Much more annoying than an execution failure is a fail-
ure to find a plan. Imagine a household robot located in the
living room with a locked door to the kitchen that receives
the order to tidy up the kitchen table but is unable to come
up with a plan. Better than merely admitting it is incompe-
tent would be if the robot could provide a good excuse — an
explanation of why it was not able to find a plan. For exam-
ple, the robot might recognize that if the kitchen door were
unlocked it could achieve its goals.

In general, we will adopt the view that an excuse is a
counterfactual statement (Lewis 1973) of the form that a
small change of the planning task would permit the agent
to find a plan. Such a statement is useful when debugging a
domain description because it points to possible culprits that
prevent finding a plan. Also in a regular setting a counter-
factual explanation is useful because it provides a hint for

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

39

where to start when trying to resolve the problem, e.g., by
asking for help from a human or exploring the space of pos-
sible repair actions.

There are many ways to change a planning task so that it
becomes possible to generate a plan. One may change

e the goal description,
o the initial state, or
o the set of planning operators.

Obviously, some changes are more reasonable than oth-
ers. For example, weakening the goal formula is, of course,
a possible way to go. We would then reduce the search for
excuses to over-subscription planning (Smith 2004). How-
ever, simply ignoring goals would usually not be considered
as an excuse or explanation.

On the other hand, changing the initial state appears to be
reasonable, provided we do not make the trivial change of
making goal atoms true. In the household robot example,
changing the state of the door would lead to a solvable task
and thus give the robot the possibility to actually realize the
reasons of its inability to find a plan.

In some cases, it also makes sense to add new objects
to the planning task, e.g., while the robot is still missing
sensory information about part of its environment. Thus,
we will consider changes to the object domain as potential
changes of the task, too. Note that there are also situations
in which removing objects is the only change to the initial
state that may make the problem solvable. However, since
these situations can almost always be captured by changing
those objects’ properties, we ignore this special case in the
following.

Finally, changing the set of planning operators may in-
deed be a “better” way, e.g., if an operator to unlock the
door is missing. However, because the number of poten-
tial changes to the set of operators exceeds the number of
changes to the initial state by far, we will concentrate on the
latter in the remainder of the paper, which also seems like
the most intuitive type of explanation.

The rest of the paper is structured as follows. In the
next section, we introduce the formalization of the planning
framework we employ. After that we sketch a small moti-
vating example. Based on that, we will formalize the notion
of excuses and determine the computational complexity of
finding excuses. On the practical side, we present a method

that is able to find good excuses, followed by a section that
shows our method’s feasibility by presenting empirical data
on some IPC planning domains and on domains we have
used in a robotic context. Finally, we discuss related work
and conclude.

The Planning Framework

The planning framework we use in this paper is the
ADL fragment of PDDL2.2 (Edelkamp and Hoffmann 2004)
extended by multi-valued fluents as in the SAS™ formalism
(Backstrom and Nebel 1995) or functional STRIPS (Geffner
2000).! One reason for this extension is that modeling us-
ing multi-valued fluents is more intuitive. More importantly,
changing fluent values when looking for excuses leads to
more intuitive results than changing truth values of Boolean
state variables, since we avoid states that violate implicit
domain constraints. For example, if we represent the loca-
tion of an object using a binary predicate a#(-, -), changing
the truth value of a ground atom would often lead to hav-
ing an object at two locations simultaneously or nowhere
at all. The domain description does not tell us that, if we
make a ground atom with the at predicate true, we have to
make another ground atom with the identical first parameter
false. By using multi-valued fluents instead, such implicit
constraints are satisfied automatically.

Of course, our framework can be applied to any reason-
able planning formalism, since it is simply a matter of conve-
nience to have multi-valued fluents in the language. This be-
ing said, a planning domain is a tuple A = (7,Ca, S, O),
where

T are the types,

Ca is the set of domain constant symbols,

S is the set of fluent and predicate symbols with associ-
ated arities and typing schemata, and

O is the set of planning operators consisting of precon-
ditions and effects.

A planning task is then a tuple II = (A, Cr, so, s*),
where

e A is a planning domain as defined above,

e (Cy is a set of task-dependent constant symbols disjoint
from Ca,

50 is the description of the initial state, and
e s* is the goal specification.

The initial state is specified by providing a set sg of
ground atoms, e.g., (holding blockl) and ground flu-
ent assignments, e.g., (= (loc objl) loc2). As usual,
the description of the initial state is interpreted under the
closed world assumption, i.e., any logical ground atom not
mentioned in sg is assumed to be false and any fluent not
mentioned is assumed to have an undefined value. In the
following sections we assume that S contains only fluents

"Multi-valued fluents have been introduced to PDDL in version
3.1 under the name of “object fluents”.

40

and no predicates at all. More precisely, we will treat predi-
cates as fluents with a domain of { L, T} and a default value
of L instead of unknown.

The goal specification is a closed first-order formula over
logical atoms and fluent equalities. We say that a planning
task is solvable iff there is a plan W that transforms the state
described by s into a state that satisfies the goal specifica-
tion s*.

Sometimes we want to turn an initial state description into
a (sub-)goal specification. Assuming that plan ¥ solves the
task IT = (A, Cry, so, ™), by nec(sg, ¥, s*) we mean the
formula that describes the setting of the fluents necessary for
the correct execution of W started in initial state sg leading to
a state satisfying s*. Note that sy = nec(sg, ¥, s*) always
holds.

Motivating Examples

The motivation for the work described in this paper mostly
originated from the DESIRE project (Ploger et al. 2008), in
which a household robot was developed that uses a domain-
independent planning system. More often than not a sen-
sor did not work the way it was supposed to, e.g., the vi-
sion component failed to detect an object on a table. If the
user-given goal is only reachable by utilizing the missing ob-
ject, the planning system naturally cannot find a plan. Obvi-
ously, thinking ahead of everything that might go wrong in a
real-life environment is almost impossible, and if a domain-
independent planning system is used, it is desirable to also
realize flaws in a planning task with domain-independent
methods. Furthermore, we wanted the robot to not only re-
alize that something went wrong (which is not very hard to
do after all), but it should also be able to tell the user what
went wrong and why it couldn’t execute a given command.

However, not only missing objects may cause problems
for a planning system. Consider a simple planning task on
the KEYS-domain, where a robot navigates between rooms
through doors that can be unlocked by the robot if it has the
respective key (see Fig. 1). The goal of such a task is to
have the robot reach a certain room, which in this example
is room.

(:objects
roomi r00M 9 room0 rooml room2 - room
doorl door2 - door
k keyl key2 - key)
2
@q (:init
kl = (robot_pos) room0)

@q = (key_pos keyl) room2)

= (key_pos key2) rooml)
| o, connects room0 rooml doorl
rooml roomO doorl

room2 door2
room2 room0O door2
(key_opens keyl) doorl)
(key_opens key2) door2)
locked doorl)
locked door2))

)
)
connects room0)
connects)

i
(
(
(
(
(connects
(
(
(
(
(
(

T00M(

(:goal (= (robot_pos) rooml))

Figure 1: Unsolvable task in the Keys domain with corresponding
PDDL code.

Obviously there exists no plan for making the robot reach
its goal. What, however, are the reasons for this task being

unsolvable? As we argued in the introduction, the answer to
this question can be expressed as a counterfactual statement
concerning the planning task. Of course, there are numerous
ways to change the given problem such that a solution exists,
the easiest one certainly being to already have the goal ful-
filled in the initial state. An only slightly more complicated
change would be to have the door to room; state) in which
case the robot could directly move to its destination, or have
the robot already carry the key to that door (changing the
value of (key_pos keyl) from room2 to robot) or even
a new one (adding an object of type key with the required
properties), or simply have one of the keys in roomg (e.g.
(= (key_pos keyl) room0)).

Having multiple possible excuses is, as in this case, rather
the rule than the exception, and some of them are more rea-
sonable than others. So, the following sections will answer
two important questions. Given an unsolvable planning task,
What is a good excuse? and How to find a good excuse?

Excuses

As spelled out above, for us an excuse is a change in the ini-
tial state (including the set of objects) with some important
restrictions: We disallow the deletion of objects and changes
to any fluents that could contribute to the goal. For example,
we may not change the location of the robot if having the
robot at a certain place is part of the goal.

A ground fluent f contributes to the goal if adding or
deleting an assignment f = z from a planning state can
make the goal true. Formally, f contributes to s* iff there
exists a state s with s £ s* such that sU {f = a} |= s* for
some value x.

Given an unsolvable planning task IT = (A, Cyy, s, $*),
an excuse is a tuple xy = (Cy, s,) that implies the solvable
excuse task I1X = (A, C,, sy, s*) such that Cp C Cy and
if (f =) € sp A s, (where A denotes the symmetric set
difference) then f must not contribute to s*.

The changed initial state s, is also called excuse state.

It should be noted that it is possible that no excuse ex-
ists, e.g., if there is no initial state such that a goal state is
reachable. More precisely, there is no excuse iff the task
is solvable or all changes to the initial state that respect the
above mentioned restrictions do not lead to a solvable task.

Acceptable Excuses

If we have two excuses and one changes more initial facts
than the other, it would not be an acceptable excuse, e.g., in
our example above moving both keys to the room where the
robot is would be an excuse. Relocating any one of them to
that room would already suffice, though.

So, given two excuses x = (Cy, sy) and x’' = (Cy/, 5y/),
we say that y is at least as acceptable as x’, written xy < x/,
iff C, € Cy and sg A s, C 59 A s,s. A minimal element
under the ordering < is called an acceptable excuse.

Good Excuses

Given two acceptable excuses, it might nevertheless be the
case that one of them subsumes the other if the changes in
one excuse can be explained by the other one.

41

In the example from Fig. 1, one obvious excuse x would
lead to a task in which door; was unlocked so that the robot
could enter roomy. This excuse, however, is unsatisfactory
since the robot itself could unlock door; if its key was lo-
cated in roomg or if doors was unlocked. So any excuse '’
that contains one of these changes should subsume .

We can formalize this subsumption as follows: Let x =
(Cy, sy) be an acceptable excuse to a planning task IT =
(A, Cr1, S0, $*) with the plan ¥ solving ITX. Another accept-
able excuse X' = (Cy/, 5,) to IL is called at least as good
as x, in symbols X’ C ¥, if x’ is an acceptable excuse also
to (A, Crr, so, nec(sy, ¥, s*)). We call x’ better than x, in
symbols x’ C x, iff X' C x and x [Z X'

In general, good excuses would be expected to consist
of changes to so-called static facts, facts that cannot be
changed by the planner and thus cannot be further regressed
from, as captured by the above definition. In our example
this could be a new key — with certain properties — and per-
haps some additional unlocked doors between rooms.

However, there is also the possibility that there are cyclic
dependencies as in the children’s song There’s a Hole in the
Bucket. In our example, one excuse would be , where the
door to rooms is unlocked. In a second one, x’, the robot
carries key ko. Obviously, ¥ E ¥’ and X’ C x hold and thus
x and x’ form a cycle in which all excuses are equally good.

In cases with cyclic dependencies, it is still possible to
find even “better” excuses by introducing additional objects,
e.g., a new door or a new key in our example. However,
cyclic excuses as above, consisting of x and X/, appear to
be at least as intuitive as excuses with additional objects.
For these reasons, we define a good excuse x as one such
that there either is no better excuse or there exists a different
excuse X’ such that Y C x’ and ' C .

Perfect Excuses

Of course, there can be many good excuses for a task, and
one may want to distinguish between them. A natural way
to do so is to introduce a cost function that describes the cost
to transform one state into another. Of course, such a cost
function is just an estimate because the planner has no way
to transform the initial state into the excuse state.

Here, we will use a cost function ¢(-), which should re-
spect the above mentioned acceptability ordering < as a
minimal requirement. So, if X’ < x , we require that
e(x') < e(x). As a simplifying assumption, we will only
consider additive cost functions. So, all ground fluents have
predefined costs, and the cost of an excuse is simply the sum
over the costs of all facts in the symmetric difference be-
tween initial and excuse state. Good excuses with minimal
costs are called perfect excuses.

Computational Complexity

In the following, we consider ordinary propositional and
DATALOG planning, for which the problem of deciding
plan existence — the PLANEX problem — is PSPACE- and
EXPSPACE-complete, respectively (Erol, Nau, and Subrah-
manian 1995). In the context of finding excuses, we will
mainly consider the following problem for acceptable, good,
and perfect excuses:

o EXCUSE-EXIST: Does there exist any excuse at all?

In its unrestricted form, this problems is undecidable for
DATALOG planning.

Theorem 1 EXCUSE-EXIST is undecidable for DATALOG
planning.

Proof Sketch. The main idea is to allow an excuse to in-
troduce an unlimited number of new objects, which are ar-
ranged as tape cells of a Turing machine. That these tape
cells are empty and have the right structure could be veri-
fied by an operator that must be executed in the beginning.
After that a Turing machine could be simulated using ideas
as in Bylander’s proof (Bylander 1994). This implies that
the Halting problem on the empty tape can be reduced to
EXCUSE-EXIST, which means that the latter is undecid-
able. u

However, an excuse with an unlimited number of new ob-
jects is, of course, also not very intuitive. For these reasons,
we will only consider BOUNDED-EXCUSE-EXIST, where
only a polynomial number of new objects is permitted. As
it turns out, this version of the problem is not more difficult
than planning.

Lemma 2 There is a polynomial Turing reduction from
PLANEX to BOUNDED-EXCUSE-EXIST for acceptable,
good, or perfect excuses.

Proof Sketch. Given a planning task II = (A, Cyy, sg, s*)
with planning domain A = (7,Ca,S, 0), construct two
new tasks by extending the set of predicates in S by a fresh
ground atom a leading to S’. In addition, this atom is added
to all preconditions in the set of operators resulting in O,
Now we generate:

Hl <<Tv CA7S/7 O/>7CH7 S0, S*>
" = ((T,Ca,S',0"),Cu,s0U{a},s")

Obviously, IT is solvable iff there exists an excuse for IT" and
there is no excuse for IT”. =

It is also possible to reduce the problems the other way
around, provided the planning problems are in a determinis-
tic space class.

Lemma 3 The BOUNDED-EXCUSE-EXIST problem can
be Turing reduced to the PLANEX problem — provided
PLANEX is complete for a space class that includes
PSPACE.

Proof Sketch. By Savitch’s theorem (1980), we know that
NSPACE(f(n)) € DSPACE((f(n))?), i.e., that all deter-
ministic space classes including PSPACE are equivalent to
their non-deterministic counterparts. This is the main rea-
son why finding excuses is not harder than planning.

Let us assume that the plan existence problem for our
formalism is XSPACE-complete. Given a planning task
IT = (A, Cr, so, s*), the following algorithm will determine
whether there is an excuse:

1. If II is solvable, return “no”.
2. Guess a x = (Cy, sy) and verify the following:
a) CH - CX’

42

b) 11X = (A, Cy, sy, s*) is solvable;

This non-deterministic algorithm obviously needs only
XSPACE using an XSPACE-oracle for the PLANEX prob-
lem. Since the existence of an excuse implies that there is
a perfect excuse (there are only finitely many different pos-
sible initial states), the algorithm works for all types of ex-
cuses. n

From the two lemmas, it follows immediately that the
EXCUSE-EXIST problem and the PLANEX problem have
the same computational complexity.

Theorem 4 The BOUNDED-EXCUSE-EXIST problem is
complete for the same complexity class as the PLANEX
problem for all planning formalisms having a PLANEX
problem that is complete for a space class containing
PSPACE.

Using similar arguments, it can be shown that we can
compute which literals in the initial state can be relevant
or are necessary for an excuse. By guessing and verifying
using PLANEX-oracles, these problems can be solved and
are therefore in the same space class as the PLANEX prob-
lems, provided they are complete for a space class including
PSPACE.

Candidates for Good Excuses

The range of changes that may occur in acceptable excuses
is quite broad: The only excuses forbidden are those that
immediately contribute to the goal. We could try to find
acceptable excuses and apply goal regression until we find a
good excuse, but this would be highly suboptimal, because
it might require a lot of goal regression steps. Therefore, we
first want to explore if there are any constraints (on fluent
or predicate symbols, source or target values) that must be
satisfied in any good excuse.

In order to analyze the relations between fluent symbols,
we apply the notion of causal graphs and domain transition
graphs (Helmert 2006) to the abstract domain description.

The causal graph CGa of a planning domain A =
(T,Ca,S,O) is adirected graph (S, A) with an arc (u,v) €
A if there exists an operator o € O so that u € pre(o) and
v € eff(0) or both w and v occur in eff (0). If u = v then
(u,v) is in A iff the fluents in the precondition and effect
can refer to distinct instances of the fluent.

The causal graph captures the dependencies of fluents on
each other; to analyze the ways the values of one fluent can
change, we build its domain transition graph. In contrast
to the usual definition of domain transition graphs (which is
based on grounded planning tasks), the domain of a fluent
f can consist of constants as well as free variables. This
fact needs to be taken into account when making statements
about the domain transition graph (e.g., the reachability of
a variable of type ¢ implies the reachability of all variables
of subtypes of ¢). For the sake of clarity, we will largely
gloss over this distinction here and treat the graph like its
grounded counterpart.

If dom(f) is the domain of a fluent symbol f € S, its
domain transition graph G; is a labeled directed graph

(dom(f),E) with an arc (u,v) € FE iff there is an op-
erator o € O so that f = w is contained in pre(o) and
f = v € eff(0). The label consists of the preconditions of
o minus the precondition f = u. An arc from the unknown
symbol, (L, v), exists if f does not occur in the precondi-
tion. We also call such an arc (u,v) € Gy a transition of f
from u to v and the label of (u, v) its precondition.

For example, the domain transition graph of the
robot_pos fluent has one vertex consisting of a variable
of type room and one edge (room, room) with the label of
connected(roomy, roomg, door) A open(door).

In order to constrain the set of possible excuses, we re-
strict candidates to those fluents and values that are relevant
for achieving the goal. The relevant domain, dom..;(f),
of a fluent f is defined by the following two conditions and
can be calculated using a fixpoint iteration: If f = v con-
tributes to the goal, then v € dom;(f). Furthermore, for
each fluent f’ on which f depends, dom.;(f’) contains the
subset of dom(f’) which is (potentially) required to reach
any element of dom;(f).

A static change is a change for which there is no path
in the domain-transition graph even if all labels are ignored.
Obviously all changes to static variables are static, but the
converse is not always true. For example, in most planning
domains, if in a planning task a non-static fluent f is unde-
fined, setting f to some value x would be a static change.

In the following, we show that in some cases it is suf-
ficient to consider static changes as candidates for excuses
in order to find all good excuses. To describe these cases,
we define two criteria, mutex-freeness and strong connect-
edness, that must hold for static and non-static fluents, re-
spectively.

We call a fluent f mutex-free iff changing the value of
an instance of f in order to enable a particular transition of a
fluent f’ that depends on f does not prevent any other transi-
tion. Roughly speaking, excuses involving f’ are not good,
because they can always be regressed to the dependencies f
without breaking anything else. Two special cases of mutex-
free fluents are noteworthy, as they occur frequently and can
easily be found by analyzing the domain description: If a flu-
ent f is single-valued, i.e. there are no two operators which
depend on different values for f, it is obviously mutex-free.
A less obvious case is free variables. Let o be an opera-
tor that changes the fluent f(p1,...p,) from p, to p,. A
precondition f'(q1,...q,) = ¢y of o has free variables iff
there is at least one variable in ¢, . . . , ¢, that doesn’t occur
in {p1,...pn,pv,p, }. Here the mutex-freeness is provided
because we can freely add new objects to the planning task
and thus get new grounded fluents that cannot interfere with
any existing fluents.

For example, consider the unlock operator in the
KEYS-domain. Its precondition includes key_pos(key) =
robot A key_opens(key) = door. Here key is a free vari-
able, so it is always possible to satisfy this part of the pre-
condition by introducing a new key object and setting its
position to the robot and its key_opens property to the door
we want to open. As we do not have to modify an existing
key, all actions that were previously applicable remain so.

The second criterion is the connectedness of the domain

43

transition graph. We call a fluent f strongly connected iff
the subgraph of G induced by the relevant domain of f is
strongly connected. This means that once f has a value in
dom.(f) any value that may be relevant for achieving the
goal can be reached in principle. In practice, most fluents
have this property because any operator that changes a fluent
from one free variable to another connects all elements of
that variable’s type.

Theorem 5 Let A be a domain with an acyclic causal graph
where all non-static fluents are strongly connected and all
static fluents are mutex-free.

Then any good excuse will only contain static changes.

Proof. First note that a cycle free causal graph implies that
there are no co-occurring effects, as those would cause a
cycle between their fluents.

If an excuse x = (Cy, sy) for II = (A, Cr, s9,5*) is an
excuse that contains non-static changes, then we will con-
struct an excuse Y’ = (Cy/, $,v) C X containing only static
facts which can explain y. As all static fluents are mutex-
free, no changes made to the initial state s, to fulfill static
preconditions can conflict with changes already made to s,,
so we can choose the static changes in X’ to be those that
make all (relevant) static preconditions true.

Let f,v,v’ be a non-static change, i.e., f = v € sg and
[=" € sy. This means that there exists a path from v to v’
in Gy. If all preconditions along this path are static, we are
done as all static preconditions are satisfied in s,. If there
are non-static preconditions along the path from v to v’, we
can apply this concept recursively to the fluents of those pre-
conditions. As there are no co-occurring effects and the rel-
evant part of each non-static fluent’s domain transition graph
is strongly connected, we can achieve all preconditions for
each action and restore the original state later. =

We can easily extend this result to domains with a cyclic
causal graph:

Theorem 6 Let A be a domain where all non-static fluents
are strongly connected, all static fluents are mutex-free and
each cycle in the domain’s causal graph contains at least
one mutex-free fluent.

Then any good excuse will only contain static changes or
changes that involve a fluent on a cycle.

Proof. We can reduce this case to the non-cyclic case, by
removing all effects that change the fluents f fulfilling the
mutex-free condition, thus making them static. Let us call
this modified domain A’.

Let x be an excuse with non-static changes. Because
A’ contains only a subset of operators of A, any non-static
change that can further be explained in A’ can also be ex-
plained in A. So there exists an X’ , which means that
cannot be a good excuse unless the changed fluent lies on a
cycle so that x C x’ may hold, too. =

While these conditions may not apply to all common
planning domains as a whole, they usually apply to a large
enough set of the fluents so that limiting the search to static
and cyclic excuses speeds up the search for excuses signifi-
cantly without a big trade-off in optimality.

Finding Excuses Using
a Cost-Optimal Planner

We use the results from the previous section to transform
the problem of finding excuses into a planning problem by
adding operators that change those fluents that are candi-
dates for good excuses. If we make sure that those change
operators can only occur at the start of a plan, we get an
excuse state s, by applying them to so.

Given an (unsolvable) planning task I = (A, Cyy, s, $*),
we create a transformed task with action costs II’
(A, Cry 80’y s*) as follows.

We recursively generate the relevant domain for each flu-
ent symbol f € S by traversing the causal graph, starting
with the goal symbols. During this process, we also iden-
tify cyclic dependencies. Then we check G for reachabil-
ity, adding all elements of dom(f) from which dom ¢ (f)
is not reachable to changes(f). If f is involved in a cyclic
dependency we also add dom ;(f) to changes(f).

To prevent further changes to the planning state after the
first execution of a regular action, we add the predicate
started to S8’ and as a positive literal to the effects of all
operators o € O.

For every fluent f (with arity n) and v € changes(f) we
introduce a new operator set/ as follows:

n
pre(set!) = —started A f(py...pp) =v /\ —unused(p;)
i=1

eff (set]) = {f(p1-- - Pn) = Pns1}

To add a new object of type t to the initial state, we
add a number? of spare objects sp! ...sp!, to Cr. For
each of these objects spl, the initial state sy’ contains the
facts unused(spt). We then add the operator add®(p) with
pre(add') = wunused(p) A —started and eff (add') =
{—unused(p)}.

To prevent the use of objects that have not been activated
yet we add —~unused(p;) to each operator o € O for each
parameter p; to pre(o) if pre(o) does not contain a fluent or
positive literal with p; as parameter.

Due to the use of the started predicate, any plan ¥ can be
partitioned into the actions before started was set (those that
change the initial state) and those after. We call the subplans
U, and ¥y, respectively.

As a final step we need to set the costs of the change ac-
tions. In this implementation we assume an additive cost
function that assigns non-zero costs to each change and does
not distinguish between different instances of a fluent, so
c(f) are the costs associated with changing the fluent f
and c¢(t) the costs of adding an object of type t. We set
c(set!) = ac(f) and c(add') = ac(t) with a being a scal-
ing constant. We need to make sure that the costs of the
change actions always dominate the total plan’s costs as oth-
erwise worse excuses might be found if they cause Wy to be

2As shown in the complexity discussion, the number of new
objects might be unreasonably high. In some cases this number can
be restricted further but this has been left out for space reasons. In
practice we cap the number of spares per type with a small constant.

44

shorter. We can achieve this by setting « to an appropriate
upper bound of the plan length in the original problem II.
From the resulting plan ¥ we can easily construct an ex-
cuse X = {Cy,sy) with Cy = Crp U {c : add(c) € ¥}
and sy being the state resulting from the execution of ¥y,
restricted to the fluents defined in the original Problem II.

Theorem 7 Let I1 be a planning task, U an optimal solution
to the transformed task 1, and x = (Cy, sy) the excuse
constructed from V. Then x is an acceptable excuse to I1.

Proof. ¥y only contains operators in A and constants from
Cy. Obviously Wy also reaches the goal from sg. So IIX is
solvable and y thus an excuse. To show that y is acceptable,
we need to show that no excuse with a subset of changes
exists. If such an excuse x’ existed it could be reached by
applying change operators (as the changes in ' are a subset
of those in x). Then a plan ¥’ would exist with ¢(¥),) <
c(¥s,) and, as the cost of ¥, always dominates the cost of
U, ¢(P’) < ¢(¥). This contradicts that ¥ is optimal, so x
must be acceptable. u

Theorem 8 Let 11 be a planning task, U an optimal solution
to the transformed task 1, and x = (Cy, sy) the excuse
constructed from V. If x changes only static facts, it is a
perfect excuse.

Proof. As y contains only static facts, it must be a good
excuse. From the definition of the cost function it follows
that ¢(x) = ac(¥s,), so existence of an excuse X’ with
e(x') < ¢(x) would imply, as in the previous proof, the
existence of a plan ¥ with ¢(¥’) < ¢(¥), contradicting the
assumption that ¥ is optimal. u

Cyclic Excuses

Solving the optimal planning problem will not necessarily
give us a good excuse (unless the problem’s causal graph is
non-cyclic, of course). So if we get an excuse that changes
a non-static fact, we perform a goal regression as described
earlier. We terminate this regression when all new excuses
have already been encountered in previous iterations or no
excuse can be found anymore. In the former case we select
the excuse with the lowest cost from the cycle, in the latter
case we need to choose the last found excuse.

Note though, that this procedure will not necessarily find
excuses with globally optimal costs: As there is no guaran-
tee that ' C x also implies ¢(x’) < ¢(x) the goal regression
might find excuses that have higher costs than a good excuse
that might be found from the initial task II.

Experiments

To test our implementation’s quality we converted selected
planning tasks of the IPC domains LOGISTICS (IPC’00),
ROVERS and STORAGE (both IPC’06) to use object fluents,
so that our algorithm could work directly on each problem’s
SAS™ representation. In order to give our program a rea-
son to actually search for excuses, it was necessary to create
flaws in each problem’s description that made it unsolvable.
For each problem file, we modified the initial state by ran-
domly deleting any number of valid fluents and predicates,

sat 0 opt 0 sat | opt 1 sat 2 opt 2 sat 3 opt 3 sat 4 opt 4
logistics-04 0.78s 1.43s 0.69s (0.5) 0.94s (0.5) 0.71s (1.5) 1.02s (1.5) 0.53s (1.0) 0.57s (1.0) 0.525 (2.5) 1.295 (2.5)
logistics-06 0.75s 9.81s 0.74s (1.5) 28.125 (1.5) 0.65s (2.5) 101.47s (2.5) 0.65s (3.0) 55.05s (2.5) 0.62s (3.5) 43.57s (3.5)
logistics-08 1.27s 76.80s 1.275 (1.0) 276.99s (1.0) 1.17s (1.0) 46.47s (1.0) 1.08s (5.5) 1176.49s (3.5) 0.96s (5.5) 1759.87s (4.5)
logistics-10 2.62s — 2.245 (2.0) — 2.365 (5.5) — 2.255 (4.0) — 1.29s5 (5.5) —
logistics-12 2.58s — 2.66s (2.0) — 2.66s (4.5) — 2.28s (5.0) — 1.89s (6.5) —
logistics-14 4.73s — 4.78s (2.5) — 4.24s (6.0) — 3.70s (7.5) — 2.71s (6.0) —
rovers-01 3.04s 3.61s 3.09s (0.5) 5.72s (0.5) 3.17s (1.5) 8.17s (1.5) 2.79s (5.5) — 2.90s (7.5) —
rovers-02 3.25s 3.79s 3.245 (0.5) 4.455 (0.5) 3.31s5(2.5) 21.48s (2.5) 3.235 (3.0 62.36s (3.0) 2.87s (6.5) —
rovers-03 4.15s 5.53s 4.115(0.5) 7.90s (0.5) 3.555(2.5) 112.43s (2.5) 4.04s (5.5) — 3.67s (6.5) —
rovers-04 5.01s 6.53s 4.94s (1.0) 8.975 (0.5) 68.60s (5.0) 22.01s (2.0) 3.215 (6.0) — 9.45s (12.0) —
rovers-05 5.29s — 6.235 (2.0) 925.61s (2.0) 7.255 (4.0) — 5.825 (5.0) 790.57s (5.0) 6.32s (8.0) —
storage-01 1.77s 1.83s 2.015(0.5) 2.315(0.5) 1.71s (3.0) 2.11s (2.0) 1.84s (5.0) 24.81s (4.0) 1.82s (4.5) 11.125 (3.5)
storage-05 11.14s 15.66s 10.85s (0.5) 37.09s (0.5) 8.255 (4.0) 53.38s (4.0) 10.25s (6.0) — 31.70s (6.0) —
storage-08 30.46s 101.32s 35.59s (1.5) — 774.17s (5.5) — 765.32s (1.5) — 110.31s (8.5) —
storage-10 88.07s 214.10s 62.93s (1.0) — 64.56s (2.0) — 423.71s (3.0) — 257.10s (4.0) —
storage-12 131.36s — — — — — — — — —
storage-15 1383.65s — — — — — — — — —

Table 1: Results for finding excuses on some IPC domains. All experiments were conducted on a 2.66 GHz Intel Xeon processor with a
30 minutes timeout and a 2 GB memory limit. We used two setting for the underlying Fast Downward Planner: sat is Weighted A* with
the enhanced-additive heuristic and a weight of 5, opt is A* with the admissible LM Cut Heuristic. For each problem instance there are five
versions: the original (solvable) version is referred to as 0 while versions 1 to 4 are generated according to the deletions described in the
Experiments section. We used an uniform cost measure with the exception that assigning a value to a previously undefined fluent costs 0.5.
Runtime results are in seconds; the excuses costs are shown in parentheses.

or by completely deleting one or more objects necessary to
reach the goal in every possible plan (the latter includes the
deletion of all fluents and predicates containing the deleted
object as a parameter). For instance, in the LOGISTICS do-
main, we either deleted one or more city-of fluents, or all
trucks located in the same city, or all airplanes present in the
problem.

In order to not only test on problems that vary in the diffi-
culty to find a plan, but also the difficulty to find excuses, we
repeated this process four times, each repetition taking the
problem gained in the iteration before as the starting point.
This lead to four versions of each planning task, each one
missing more initial facts compared to the original task than
the one before.

Our implementation is based on the Fast Downward plan-
ning system (Helmert 2006), using a Weighted A* search
with an extended context-enhanced additive heuristic that
takes action costs into account. Depicted are runtimes and
the cost of the excuse found. Because this heuristic is not
admissible, the results are not guaranteed to be optimal, so
we additionally ran tests using A* and the (admissible) land-
mark cut heuristics (Helmert and Domshlak 2009).

To judge the quality of the excuses produced we used a
uniform cost measure, with one exception: The cost of the
assignment of a concrete value to a previously undefined flu-
ent is set to be 0.5. This kind of definition captures our defi-
nition of acceptable excuses via the symmetric set difference
and also appears to be natural: Assigning a value to an un-
defined fluent should be of lower cost than changing a value
that was given in the original task. Note that switching a
fluent’s value actually has a cost of 1.0.

As the results in Table 1 show, the time for finding ex-
cuses increases significantly in the larger problems. The
principal reason for that is that previously static predicates
like connected in the STORAGE domain have become non-
static due to the introduction of change operators. This leads
both to a much larger planning state (as they cannot be com-
piled away anymore), as well as a much larger amount of
applicable ground actions. This effect can be seen in the

45

first two columns which show the planning times on the un-
modified problems (but with the added change operators).

As expected, optimal search was able to find excuses for
fewer problems than satisficing search. Satisficing search
came up with excuses for most problems in a few seconds
with the exception of the storage domain, due to the many
static predicates. The costs of the excuses found were some-
times worse than those found by optimal search, but usu-
ally not by a huge amount. If better excuses are desired,
additional tests showed that using smaller weights for the
Weighted A* are a reasonable compromise.

It is interesting to note that for the satisficing planner the
number of changes needed to get a solvable task has little
impact on the planning time. The optimal search, on the
other hand, usually takes much longer for the more flawed
problems. A possible explanation for this behavior is that
the number of possible acceptable excuses grows drastically
the more facts we remove from the problem. This makes
finding some excuse little harder, but greatly increases the
difficulty of finding an optimal excuse.

While most of the excuses described in this paper can be
found in the problems we created this way, it is very un-
likely that a problem is contained that is unsolvable due to
a cyclic excuse®. The aforementioned KEYS-domain on the
other hand is predestined to easily create problems that are
unsolvable because of some cyclic excuse. So for our second
experiment, we designed problems on that domain with an
increasing number of rooms n connected so that they form a
cycle: for each room k, k # n, there is a locked door k lead-
ing to room k + 1, and an additional, unlocked one between
rooms n and 0 (each connection being valid only in the de-
scribed direction). For each door k there is a key k which
is placed in room k, with the exception of key 0 which is
placed in room n and the key to the already unlocked door
n which doesn’t exist. Obviously a good excuse for every n
remains the same: If the robot held the key to door 0 in the

3This is only possible if that cyclic excuse was already part of
the task, but didn’t cause a problem because there existed another,
after the deletion nonexistent way to the goal.

rooms sat opt rooms sat opt
3 0.91s (1) 0.97s (1) 10 19.20s (2) 368.09s (1)
4 1.2s (1) 1.72s (1) 11 57.39s (2) 849.69s (1)
5 1.75s (1) 4.23s (1) 12 72.65s(2) 1175.23s(1)
6 2.19s (2) 10.69s (1) 13 84.45s (2) —
7 4245 (2) 27.01s (1) 14 215.05s (2) —
8 6.03s (2) 65.15s (1) 15 260.39s (2) —
9 14225 (2) 158.28s (1) 16 821.825 (2) —
Table 2: Results for finding excuses on the KEYS domain. We

used the same settings as in the experiments for Table 1, except
that the weight in the satisficing run was 1. The rows labeled rooms
give the number of rooms or the size of the cycle minus 1.

initial state, or if that door was unlocked, the task would eas-
ily be solvable. The number of necessary regression steps to
find that excuse grows with n, though, which is why KEYS is
very well suited to test the performance of the finding cyclic
excuses part of our implementation.

As can be seen in the results in Table 2, the planning time
both scales well with the size of the cycle and is reasonable
for practical purposes.

Related Work

We are not aware of any work in the area of Al planning that
addresses the problem of explaining why a goal cannot be
reached. However, as mentioned already, there is some over-
lap with abduction (a term introduced by the philosopher
Peirce), counterfactual reasoning (Lewis 1973), belief re-
vision (Gérdenfors 1986), and consistency-based diagnosis
(Reiter 1987). All these frameworks deal with identifying a
set of propositions or beliefs that either lead to inconsisten-
cies or permit to deduce an observation. There are parallels
to our notions of acceptable, good and perfect approaches
in these fields (Eiter and Gottlob 1995) — for non-cyclic ex-
cuses. The main difference to the logic-based frameworks is
that in our case there is no propositional or first-order back-
ground theory. Instead, we have a set of operators that al-
lows us to transform states. This difference might be an ex-
planation why cyclic excuses are something that appear to
be relevant in our context, but have not been considered as
interesting in a purely logic-based context.

Conclusion

In this paper we have investigated situations in which a
planner-based agent is incompetent to find a solution for a
given planning task. We have defined what an excuse in such
a situation might look like, and what characteristics such an
excuse must fulfill to be accounted as acceptable, good or
even perfect. Our main theoretical contribution is a thorough
formal analysis of the resulting problem along with the de-
scription of a concrete method for finding excuses utilizing
existing classical planning systems. On the practical side,
we have implemented this method resulting in a system that
is capable of finding even complicated excuses in reasonable
time which is very helpful both for debugging purposes and
in a regular setting like planner-based robot control.

As future work, we intend to extend our implementation

46

to more expressive planning formalisms dealing with time
and resources.

Acknowledgements

This research was partially supported by DFG as part of
the collaborative research center SFB/TR-8 Spatial Cogni-
tion Project R7, the German Federal Ministry of Education
and Research (BMBF) under grant no. 01IMEO1-ALU (DE-
SIRE) and by the EU as part of the Integrated Project CogX
(FP7-ICT-2x015181-CogX).

References

Béckstrom, C., and Nebel, B. 1995. Complexity results for
SAS™ planning. Comp. Intell. 11(4):625-655.

Brenner, M., and Nebel, B. 2009. Continual planning
and acting in dynamic multiagent environments. JAAMAS
19(3):297-331.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. AIJ 69(1-2):165-204.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, Univ. Freiburg, Institut
fiir Informatik, Freiburg, Germany.

Eiter, T., and Gottlob, G. 1995. The complexity of logic-
based abduction. Jour. ACM 42(1):3-42.

Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. AlJ 76(1-2):75-88.

Girdenfors, P. 1986. Belief revision and the Ramsey test
for conditionals. The Philosophical Review XCV(1):81—
93.

Geffner, H. 2000. Functional STRIPS: a more flexible
language for planning and problem solving. In Minker,
J., ed., Logic-Based Artificial Intelligence. Dordrecht, Hol-
land: Kluwer.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
ICAPS 2009, 162—-169.

Helmert, M. 2006. The fast downward planning system.
JAIR 26:191-246.

Lewis, D. K. 1973. Counterfactuals. Cambridge, MA:
Harvard Univ. Press.

Ploger, P.-G.; Pervolz, K.; Mies, C.; Eyerich, P.; Brenner,
M.; and Nebel, B. 2008. The DESIRE service robotics
initiative. K7 4:29-32.

Reiter, R. 1987. A theory of diagnosis from first principles.
AlJ 32(1):57-95.

Savitch, W. J. 1980. Relations between nondeterministic
and deterministic tape complexity. Journal of Computer
and System Sciences 4:177-192.

Smith, D. E. 2004. Choosing objectives in over-
subscription planning. In ICAPS 2004, 393—-401.

On First-Order Definability and Computability of Progression
for Local-Effect Actions and Beyond

Yongmei Liu
Dept. of Computer Science
Sun Yat-sen University
Guangzhou 510275, China
ymliu@mail.sysu.edu.cn

Abstract

In a seminal paper, Lin and Reiter introduced the
notion of progression for basic action theories in
the situation calculus. Unfortunately, progression is
not first-order definable in general. Recently, Vas-
sos, Lakemeyer, and Levesque showed that in case
actions have only local effects, progression is first-
order representable. However, they could show
computability of the first-order representation only
for a restricted class. Also, their proofs were quite
involved. In this paper, we present a result stronger
than theirs that for local-effect actions, progression
is always first-order definable and computable. We
give a very simple proof for this via the concept
of forgetting. We also show first-order definability
and computability results for a class of knowledge
bases and actions with non-local effects. More-
over, for a certain class of local-effect actions and
knowledge bases for representing disjunctive infor-
mation, we show that progression is not only first-
order definable but also efficiently computable.

1 Introduction

A fundamental problem in reasoning about action is projec-
tion, which is concerned with determining whether or not a
formula holds after a number of actions have occurred, given
a description of the preconditions and effects of the actions
and what the world is like initially. Projection plays an impor-
tant role in planning and in action languages such as Golog
[Levesque et al., 1997] or A [Gelfond and Lifschitz, 1993].
Two powerful methods to solve the projection problem are
regression and progression. Roughly, regression reduces a
query about the future to a query about the initial knowledge
base (KB). Progression, on the other hand, changes the initial
KB according to the effects of each action and then checks
whether the formula holds in the resulting KB. One advantage
of progression compared to regression is that after a KB has
been progressed, many queries about the resulting state can
be processed without any extra overhead. Moreover, when the
action sequence becomes very long, as in the case of a robot
operating for an extended period of time, regression simply
becomes unmanageable. However, projection via progres-
sion has three main computational requirements which are

47

Gerhard Lakemeyer
Dept. of Computer Science
RWTH Aachen
52056 Aachen, Germany
gerhard @cs.rwth-aachen.de

not easy to satisfy: the new KB must be efficiently computed,
its size should be at most linear in the size of the initial KB
(to allow for iterated progression), and it must be possible to
answer the query efficiently from the new KB.

As Lin and Reiter [1997] showed in the framework of Re-
iter’s version of the situation calculus [Reiter, 2001], pro-
gression is second order in general. And even if it is first-
order (FO) definable, the size of the progressed KB may
be unmanageable and even infinite. Recently, Vassos and
Levesque [2008] also showed that the second-order nature of
progression is in general inescapable, as a restriction to FO
theories (even infinite ones) is strictly weaker in the sense
that inferences about the future may be lost compared to the
second-order version.

Nevertheless, for restricted action theories, progression can
be FO definable and very effective. The classical example is
STRIPS, where the initial KB is a set of literals and progres-
sion can be described via the usual add and delete lists. Since
STRIPS is quite limited in expressiveness, it seems worth-
while to investigate more powerful action descriptions which
still lend themselves to FO definable progression. Lin and
Reiter [1997] already identified two such cases, and recently
Vassos er al. [2008] were able to show that for so-called
local-effect actions, which only change the truth values of flu-
ent atoms with arguments mentioned by the actions, progres-
sion is always FO definable. However, they showed the com-
putability of the FO representation only for a special case.

In this paper, we substantially improve and extend the re-
sults of Vassos et al.. By appealing to the notion of forget-
ting [Lin and Reiter, 1994], we show that progression for ar-
bitrary local-effect actions is always FO definable and com-
putable. We extend this result to certain actions with non-
local effects like the briefcase domain, where moving a brief-
case implicitly moves all the objects contained in it. For
the special case of so-called propert KBs [Lakemeyer and
Levesque, 2002] and a restricted class of local-effect actions
we show that progression is not only first-order definable but
also efficiently computable.

The rest of the paper is organized as follows. In the next
section we introduce background material, including the no-
tion of forgetting, Reiter’s basic action theories, and progres-
sion. In Section 3 we present our result concerning local-
effect actions. Section 4 deals with non-local effects and Sec-
tion 5 with proper™ KBs. Then we conclude.

2 Preliminaries

We start with a first-order language £ with equality. The set
of formulas of £ is the least set which contains the atomic for-
mulas, and if ¢ and 1 are in the set and z is a variable, then
=, (¢ A1) and V¢ are in the set. The connectives V, D, =,
and d are understood as the usual abbreviations. To improve
readability, sometimes we put parentheses around quantifiers.
We use the “dot” notation to indicate that the quantifier pre-
ceding the dot has maximum scope, e.g., Va.P(z) D Q(x)
stands for Va[P(x) D Q(z)]. We often omit leading univer-
sal quantifiers in writing sentences. We use ¢ < 1) to mean
that ¢ and v are logically equivalent. Let ¢ be a formula, and
let 1 and 1’ be two expressions. We denote by ¢(u/p’) the
result of replacing every occurrence of p in ¢ with ',

2.1 Forgetting

Lin and Reiter [1994] defined the concept of forgetting a
ground atom or predicate in a theory. Intuitively, the resulting
theory should be weaker than the original one, but entail the
same set of sentences that are “irrelevant” to the ground atom
or predicate.

Definition 2.1 Let 1. be either a ground atom P (%) or a pred-
icate symbol P. Let M7 and M be two structures. We write
My ~, M, if M, and M, agree on everything except possi-
bly on the interpretation of .

Definition 2.2 Let 7" be a theory, and x4 a ground atom or
predicate. A theory 7" is a result of forgetting 1 in T, denoted
by forget(T', u) < T, if for any structure M, M = T iff
there is a model M’ of T such that M ~, M.

Clearly, if both 77 and T" are results of forgetting x in T,
then they are logically equivalent. Similarly, we can define
the concept of forgetting a set of atoms or predicates. In this
paper, we are only concerned with finite theories. So hence-
forth we only deal with forgetting for sentences.

Lin and Reiter [1994] showed that for any sentence ¢ and
atom p, forgetting p in ¢ is FO definable and can be obtained
from ¢ and p by simple syntactic manipulations. Here we
reformulate their result in the context of forgetting a finite
number of atoms. We first introduce some notation.

Let I" be a finite set of ground atoms. We call a truth as-
signment 0 of atoms from I" a I"-model. Clearly, a I"-model 6
can be represented by a conjunction of literals. We use M (T")
to denote the set of all I"-models. Let ¢ be a formula, and 6 a
I’-model. We use ¢[f] to denote the result of replacing every
occurrence of P (%) in ¢ by the following formula:

3

(F=1; Auj) v (
i=1 i

££1) AP,
1

where for j = 1,...,m, the truth value of P (f}) is specified
by 6, and v, is the truth value.

Proposition 2.3 Let ¢ be a formula, M ~p M’, § € M(T),
and M |= 0. Then for any variable assignment o, M,0 |= ¢
iff M',o = o[0].

Theorem 2.4 forget(¢,T') < \/ g py(ry 910]-

48

Proof: Let M be a structure. We show that M |=
Ve @10] iff there is a model M’ of ¢ s.t. M ~p M’
Suppose the latter. Let § € M(T') s.t. M’ = 0. By Propo-
sition 2.3, M | ¢[0]. Now suppose M = ¢[f], where

0 € M(T). Let M’ be the structure s.t. M ~p M’ and
M’ |= 6. By Proposition 2.3, M’ |= ¢. |
Corollary 2.5

Jorget(,T) & veeM(F) and ¢ N 0 is consistent [0].
Proof: By Proposition 2.3, ¢ A 6 entails ¢[6].

Thus if ¢ A 6 is inconsistent, so is ¢[6)].]

Example 2.1 Let ¢ = Vz.clear(z),
andI' = {clear(A), clear(B)}. Then
¢lclear(A) A clear(B)|=Vz.x=A A trueVe=B A true
Vx # ANz # B A clear(x), which is equivalent to
Ve.x = AVe=BVz# ANz # BAclear(x). Similarly,
¢[clear(A) A —clear(B)] <
Ve.x = AVa # ANz # BAclear(x),
¢[-clear(A) A clear(B)] <
Voo = BVa# ANz # BAclear(x), and
¢[-clear(A) A —clear(B)] &
Voo # ANz # B A clear(x).
Thus forget(¢, ') <
Voo = AVe=BVa#ANz# BAcdear(z),
which is equivalent to Vz.x # A A x # B D clear(x).

We now assume £2, the second-order extension of L.

Theorem 2.6 forget(¢, P) < 3R.¢(P/R), where R is a
second-order predicate variable.

Example 2.2 Let ¢1 = Vz.clear(xz) V Jy.on(y,z). Then
forget(¢1, clear) < IRVz.R(x) V Jy.on(y,x), which is
equivalent to true. Let ¢po = Fz.clear(z) A y.on(z,y).
Then forget(¢s, clear) < IR3z.R(z) A Jy.on(z,y), which
is equivalent to JxJy.on(z,y).

In general, forgetting a predicate is not FO definable. Nat-
urally, by Theorem 2.6, second-order quantifier elimination
techniques can be used for obtaining FO definability results
for forgetting a predicate. In fact, Doherty et al. [2001] used
such techniques for computing strongest necessary and weak-
est sufficient conditions of FO formulas, which are concepts
closely related to forgetting. As surveyed in [Nonnengart et
al., 1999], the following is a classical result on second-order
quantifier elimination due to Ackermann (1935). A formula
¢ is positive (resp. negative) wrt a predicate P if —P (resp.
P) does not occur in the negation normal form of ¢.

Theorem 2.7 Let P be a predicate variable, and let ¢ and
Y(P) be FO formulas such that 1(P) is positive wrt P and
¢ contains no occurrence of P at all. Then

IPVZ(~P(Z) V ¢(Z)) A (P)

—

is logically equivalent to V(P(Z) «— ¢(Z)), denoting the re-
sult of replacing each occurrence of P (f) in v with ¢(f), and
similarly if the sign of P is switched and 1 is negative wrt P.

2.2 Basic action theories

The language L. of the situation calculus [Reiter, 2001] is
a many-sorted first-order language suitable for describing dy-
namic worlds. There are three disjoint sorts: action for ac-
tions, situation for situations, and object for everything else.
L s has the following components: a constant Sy denoting the
initial situation; a binary function do(a, s) denoting the suc-
cessor situation to s resulting from performing action a; a bi-
nary predicate Poss(a, s) meaning that action a is possible in
situation s; action functions, e.g., move(x, y); a finite number
of relational fluents, i.e., predicates taking a situation term as
their last argument, e.g., ontable(z, s); and a finite number
of situation-independent predicates and functions. For sim-
plicity of presentation, we do not consider functional fluents
in this paper.

Often, we need to restrict our attention to formulas that
refer to a particular situation. For this purpose, we say that
a formula ¢ is uniform in a situation term 7, if ¢ does not
mention any other situation terms except 7, does not quantify
over situation variables, and does not mention Poss.

A particular domain of application will be specified by a
basic action theory of the following form:

D =X UDgpUDss UDypg UDsg,, where

1. X is the set of the foundational axioms for situations.
2. Dy is a set of action precondition axioms.

3. Dy, is a set of successor state axioms (SSAs), one for
each fluent, of the form

F(%,do(a,s)) = vf(Z,a,s)V(F(Z,8) A7 (7, a,s)),

where 7} (%, a, s) and 75 (¥, a, s) are uniform in s.

Duna is the set of unique names axioms for actions:
A(Z) # A'(Y), and A(Z) = A(Y) D ¥ = ¢, where A
and A’ are distinct action functions.

Ds,, usually called the initial database, is a finite set of
sentences uniform in Sy. We call Dg, the initial KB.

2.3 Progression

Lin and Reiter [1997] formalized the notion of progression.
Let D be a basic action theory, and « a ground action. We
denote by S, the situation term do(«, Sp).

Definition 2.8 Let M/ and M’ be structures with the same
domains for sorts action and object. We write M ~g_ M’
if the following two conditions hold: (1) M and M’ inter-
pret all situation-independent predicate and function symbols
identically. (2) M and M’ agree on all fluents at S,: For
every relational fluent F', and every variable assignment o,
M,o = F(Z,8,)iff M',0 = F(Z,S,).

We denote by EQC the second-order extension of Lg.. The

S

notion of uniform formulas carries over to £2,.

Definition 2.9 Let Dg_ be a set of sentences in £2,, uniform
in S,. Dg,_ is a progression of the initial KB Dg, wrt « if for
any structure M, M is a model of Dg,_ iff there is a model
M’ of D such that M ~g_ M.

49

Lin and Reiter [1997] proved that progression is always
second-order definable. They used an old version of SSAs
in their formulation of the result; here we reformulate their
result using the current form of SSAs.

We let D[, So| denote the instantiation of Dy wrt v and
So, i.e., the set of sentences F'(Z, do(a, Sp)) = ®r(Z, a, Sp).
Let Fy,..., F, be all the fluents. We introduce n new predi-
cate symbols Py, ..., P,. We use ¢ T Sy to denote the result
of replacing every occurrence of Fj(t, Sp) in ¢ by P;(f). We
call P; the lifting predicate for F;. When X is a finite set of
formulas, we denote by AX the conjunction of its elements.

Theorem 2.10 The following is a progression of Dgs, wrt a:
IBA \(Puna UDs, UDuslor, So)) 1 So}(P/),

where R, ..., R, are second-order predicate variables.

Therefore, by Theorem 2.6, if ¢ is uniform in S, and ¢

is a result of forgetting the lifting predicates P in ADuna U
Ds, UDss|a, So]) T So, then it is a progression of Dg, wrt a.

3 Progression for local-effect actions

In this section, we show that for local-effect actions, progres-
sion is always FO-definable and computable.

We first show an intuitive result concerning forgetting a
predicate: if a sentence ¢ entails that the truth values of two
predicates P and @ are different at only a finite number of
certain instances, then forgetting the predicate () in ¢ can be
obtained from forgetting the () atoms of these instances in ¢
and then replacing () by P in the result.

Let Z be a variable vector, and let A = {5'1, . 77?;,,} be
a set of vectors of ground terms, where all the vectors have
the same length. We use & € A to denote the formula & =
iV ...V & =1, Let Pand Q be two predicates. We let
Q(A) denote the set {Q(f) | t € A}, and we let P ~x Q
denote the sentence VZ.Z ¢ A D P(Z) = Q(Z).

Proposition 3.1 Let ¢ be a formula, M = P ~a Q, and
0 € M(Q(A)). Then for any variable assignment o, M, o |=
P01(Q/P) iff M, o |= [6].
Theorem 3.2 Let P and Q) be two predicates, and A a finite
set of vectors of ground terms. If forget(¢p, Q(A)) < 1), then
forget(¢ A (P ~a Q),Q) & »(Q/P).
Proof: Let I' = Q(A). By Theorem 2.4, forget(¢,I') <
Ve @10]. Let M be a structure. We show that M =
Voermm) ¢[0](Q/ P) iff there is a model M’ of A (P=a Q)
st. M ~q M’. Suppose the latter. Let 6 € M(T) s.t.
M’ = 6. Since M’ = 0 and M’ |= ¢, by Proposition 2.3,
M’ = ¢[f]. Since M’ E P ~a Q, by Proposition 3.1,
M £ 9[6)(Q/ P). Since M ~q M', M E 6[9(Q/P).
Now suppose M = ¢[0](Q/P), where § € M(T"). Let
M’ be the structure s.t. M ~g M', M' | P =a Q,
and M' = 6. Since M ~¢g M’ and M = ¢[0](Q/P),
M’ E¢[0](Q/P). Since M’ = P ~a @, by Proposition 3.1,
M’ = ¢[0)]. Since M’ |= 6, by Proposition 2.3, M’ = ¢. ®

Actions in many dynamic domains have only local effects
in the sense that if an action A(¢) changes the truth value

of an atom F(d, s), then d is contained in . This contrasts
with actions having non-local effects such as moving a brief-
case, which will also move all the objects inside the briefcase
without having mentioned them.

Definition 3.3 An SSA is local-effect if both v} (7, a, s) and
vr (%, a, s) are disjunctions of formulas of the form 3% [a =
A(@) A ¢(1, s)], where A is an action function, @ contains Z,
Z is the remaining variables of i, and ¢ is called a context
formula. An action theory is local-effect if each SSA is local-
effect.

Example 3.1 Consider a simple blocks world. We use a sin-
gle action, move(z,y, z), moving a block x from block y
to block z. We use two fluents: clear(zx,s), block z has
no blocks on top of it; on(z,y, s), block x is on block y;
eh(z, s), the height of block « is even. Clearly, the following
SSAs are local-effect:
clear(z,do(a, s)) = (Jy, z)a = move(y, x, z) V

clear(z, s) A =(Jy, z)a = move(y, z, x),
on(z,y,do(a, s)) = (Iz)a = move(z, z,y) V

on(z,y,s) A ~(3z)a = move(x, y, z),
eh(x,do(a, s)) = (Jy, z)[a = move(z,y, z) A —eh(z,s)] V

eh(z,s) A =(3y, z)[a = move(z,y, z) A eh(z, s)].

By using the unique names axioms, the instantiation of a
local-effect SSA on a ground action can be simplified. Sup-
pose the SSA for F is local-effect. Let o = A(%) be a ground
action. Then each of v} (%, o, s) and 75 (7, a, s) is equiva-
lent to a formula of the following form:

T=t AY1(s)V...VZ =1, Ahn(s),

where £; is a vector of ground terms contained in Z, and v);(s)
is a formula whose only free variable is s. Without loss of
generality, we assume that for a local-effect SSA, w; (%, s)
and v (&, @, s) have the above simplified form. In the case
of our blocks world, we have:

clear(z,do(move(cy, c2,¢3),8)) = x
clear(z, s) N —(x = c3),

on(z,y,do(move(cy, ca,c3),8)) =x=c1 ANy =rc3V
on(z,y,s) N=(x =c1 ANy = ca),

eh(x, do(move(cy, ca,c3),8)) = x = ¢1 A —eh(cs, s) V
eh(z,s) N =(z = c1 Aeh(cs,s)).

CQ\/

~

Following Vassos et al. [2008], we define the concepts of
argument set and characteristic set:

Definition 3.4 Let D be local-effect, and « a ground action.
The argument set of fluent F' wrt « is the following set:

Ap ={{|

The characteristic set of « is the following set of atoms:
Q(s) ={F(t,s) | Fisafluentandt € Ap}.

We let Dys[Q] denote the instantiation of Dgs wrt €,
ie., the set of sentences F'(¢,S,) Op(t,a,Sp), where
F(t,s) € Q. We let Dy,[Q] denote the set of sentences
Z& Ap D F(Z,S5,) = F(Z,S5). Then we have
Proposition 3.5 Let D be local-effect, and o a ground ac-

tion. Then Dyna = Dss|a, So] = Dss[Q] U Dss (€.

—

= T appears in v (Z, , s) or Y (&, v, 5) }.

50

Theorem 3.6 Let D be local-effect, and o a ground action.
Let Q)(s) be the characteristic set of o. Then the following is
a progression of Dg, wrt o:

A Duna A VOeM(Q(SO))(DSu U D [Q))[6](So/Sa)-

Proof: By Proposition 3.5, Theorems 2.4,2.10and 3.2. ®

The size of the progression is O(2™n), where m is the size
of the characteristic set, and n is the size of the action theory.
When we do iterative progression wrt a sequence ¢ of actions,
the size of the resulting KB is O(2!™n), where [is the length
of ¢, and m is the maximum size of the characteristic sets.

Corollary 3.7 Progression for local-effect actions is always
FO definable and computable.

We remark that this result is strictly more general than the
one obtained by Vassos et al. [2008], who only showed that
progression for local-effect actions is FO definable in a non-
constructive way, i.e., they left open the question whether the
FO representation is computable or even finite. Moreover,
while their proof is quite involved, having to appeal to Com-
pactness of FO logic, ours is actually fairly simple.

Example 3.1 continued. Let o = move(A, B, C). Then
Q = {clear(B, s),clear(C, s),on(A, B, s),on(A,C, s),
eh(A, s)}. Ds,[] is simplified to {clear(B, Sy), ~clear(C,
Sa), mon(A,B,S,),on(A,C,S,), eh(A,Sy)=—eh(C, So)}.
Let Dg, be the following set of sentences:
A+# B,A#C,B+# C,clear(A, Sy),
on(A4, B, Sy), clear(C, Sy), clear(x, So) D eh(x, Sp),
on(x,y,So) D —clear(y, So).
Then Dg, entails ¥, denoting —clear(B, Sy) Aclear(C, Sp) A
on(A4, B, Sy) N —on(A, C,Sy). Thus there are only two 0 €
M(£2(Sp)) which are consistent with Dg,:
91 =9A eh(A, So) and 02 =UA ﬁeh(A, So)
For example, let ¢ = clear(z, Sp) D eh(z, So).
Then ¢[01] < clear(x, So)[¥] D x = AVa # ANeh(x, Sp),
and ¢[0;] < clear(z, So)[¥] D x # A A eh(z, Sp).
Thus ¢[01] V ¢[02] is equivalent to
x=CVuaz#BAz+#CAclear(z,Sp)
Dx=AVzx#AANeh(zx,Sy).
By Theorem 3.6 and Corollary 2.5, the following is a pro-
gression of Dg, wrt a:
move(x1, Y1, 21) = move(La, Ya, 22)

Dxy =2 ANYy1 = Y2 N\ 21 = 22,
A#B,A#C,B#C,clear(A, Sy),
x=CVz#BAz#CAclear(z,5,) D

r=AVazx#ANeh(z,S,),
r=ANy=BV
(x#AVy#B)A(x#AVy#C)Non(z,y,S5) D
~(y=CVy#BANy#C Aclear(y, Sa)),
clear(B, Sy), ~clear(C, Sy), ~on(A, B, Sa),
on(A,C, Sy),eh(A, Sy) = —eh(C,Sy).

4 Progression for normal actions

In the last section, we showed that for local-effect actions,
progression is FO definable and computable. An interesting
observation about non-local-effect actions is that their effects
often do not depend on the fluents on which they have non-
local effects, that is, they normally have local effects on the

fluents that appear in every *y; and . For example, mov-
ing a briefcase will move all the objects in it as well without
affecting the fluent in. We will call such an action a normal
action. In this section, we show that for a normal action c«,
if the initial KB has the property that for each fluent F' on
which « has non-local effects, the only appearance of F' is
in the form of ¢(Z) D F(&, So) or ¢(&F) D —~F (&, Sp), then
progression is FO definable and computable.

Our result is inspired by a result by Lin and Reiter [1997]
that for context-free action theories, that is, action theo-
ries where every predicate appearing in every fy;E and v is
situation-independent, if the initial KB has the property that
for each fluent F', the only appearance of F' is in the form of
d(Z) D F(Z,So) or ¢(Z) D —~F(Z, Sp), then progression is
FO definable and computable. Incidentally, their result can be
considered as an application of a simple case of the classical
result by Ackermann (see Theorem 2.7). To prove our result,
we combine the application of this simple case and the proof
idea behind our result for local-effect actions.

We first present this simple case of Ackermann’s result:

Definition 4.1 We say that a finite theory 7' is semi-
definitional wrt a predicate P if the only appearance of P in
T is in the form of P(Z) D ¢(&), where we call ¢(Z) a nec-
essary condition of P, or ¢(Z) D P(Z), where we call ¢(Z)
a sufficient condition of P. We use WSCp (meaning weakest
sufficient condition) to denote the disjunction of ¢(Z) such
that ¢(£) D P(Z) is in T, and we use SNCp (meaning
strongest necessary condition) to denote the conjunction of
(&) such that P(Z) D ¢(Z) isin T.

Theorem 4.2 Let T be finite and semi-definitional wrt P. Let
T’ be the set of sentences in T that contains no occurrence of
P. Then forget(T, P) < T' AVZ.WSCp(Z) D SNCp(Z).
Proof: Clearly, 3R.T(P/R) = T' A VZWSCp(Z) D
SNCp(Z). To prove the opposite entailment, simply use the
definition VZ. P(Z) = WSCp(Z). |

The following proposition shows that the SSA for a fluent
F is semi-definitional wrt the predicate F(Z,Sy) provided
that F' does not appear in ’y} or Yp.

Proposition 4.3 The sentence F(7,S,) = v} (%, a, So) V
F(Z,80) N g (%, a, So) is equivalent to the following sen-
tences: —v} N F(Z,S,) D F(Z,S0), F(Z,5) D 75 V
F(%,84), vf D F(&,S4), and ~vf Nvp D —=F(Z, Sa).

We now formalize our constraints on the actions and the
initial KBs.

Definition 4.4 We say that a ground action « has local ef-
fects on a fluent F, if by using Dy, each of v/ (7, a, s) and
vr (%, o, s) can be simplified to a disjunction of formulas of
the form & = A1) (s), where £ is a vector of ground terms, and
1(s) is a formula whose only free variable is s. We denote by
LE(«) the set of all fluents on which « has local effects.

Definition 4.5 We say that « is normal if for each fluent F,
all the fluents that appear in ;> and v} are in LE(a).

Clearly, both context-free and local-effect actions are nor-
mal actions.

o1

Definition 4.6 We say that Dg, is normal wrt « if for each
fluent F' & LE(«), Dg, is semi-definitional wrt F.

Thus any fluent F' € LE(«) can appear in Dg, in an arbi-
trary way. We now have the main result of this section:

Theorem 4.7 Let Dg, be normal wrt a normal action .
Then progression of Dg, wrt c is FO definable and com-
putable.

Proof: By Theorem 2.10, we need to forget the lifting pred-
icates in A\(Dyna U Dg, U Dss[ar, Sp]) T So. Since « is nor-
mal, for each fluent F', all the fluents that appear in 7}' and
~r are in LE(a). By Proposition 4.3, for each F' ¢ LE(«),
Dss|av, Sol is semi-definitional wrt F(Z, Sp). Since Dg, is
normal wrt «, for each fluent ' ¢ LE(a), Dg, is semi-
definitional wrt F'. By applying Theorem 4.2, we forget the
lifting predicate for F' ¢ LE(«). Now by applying Theorem
3.6, we forget the lifting predicate for F' € LE(«). [|

Example 4.1 The following is D, for the briefcase domain:
at(z,l,do(a, s)) = (Ib)[a = move(b,l) A (x = bVin(z,b,s))|V

at(z,l,s) A =(3b,m)[a = move(b,m) A (x = bV in(z,b,s))],
in(z,b,do(a, s)) = a = putin(z,b) V

in(z,b,s) A —a = getout(z,b).
For a ground action & = move(cy, ca), by using Dypas
Dss |, So] can be simplified as follows:
at(x,l,do(a, Sp)) =l =ca A (x =c1 Vin(x,c1,S0)) V
at(z,l,S0) N =(z = c1 Vin(z,c1,S)),
in(x,b, do(a, Sp)) = in(z, b, So).
Clearly, « has local effects on in, and it is a normal action.
Now let Dg, be as follows:

JxVy—in(z,y, So), in(A1, B, So),
in(Az, B27 So) \Y in(Az, B37 SO),
at(b,1, So) ANin(z,b, So) D at(x,1,S0),
at(z,l',So) N1 #£ U D —at(x,1,S),
b=BiANl=Li1Vb=ByANl= Lo Dat(m,l,So),
b=B3A(l=L1VI= L) D —at(x,l,Sp).
Then Dg, is normal wrt o« = move(By, Ly). To progress it
wrt o, we first apply Theorem 4.2 to forget the lifting predi-
cate for at(z,, s), and obtain a set X of sentences as follows:

1. If ¢ € Dg, does not mention fluent at, then ¢ € 3.

2. Add to X the following sentences:

=Ly A (x= DBy Vin(x,B1,5)) D at(x,,S.),

l# Ly A (x = By Vin(x,B1,S)) D —at(x,1,S,).

If ¢ D at(x,l,Sp) is in Dg,, then add to ¥ the sentence
¢ A —=(x = By Vin(x, B1,5)) D at(z,l,Sq).

If ¢ D —at(z,1, Sp) is in Dg,, add to X the sentence
oAl # LoV # ByA—in(z, B1,S50)) D —at(z,l, Sa).
Now since we have in(x,b,S,) = in(z,b,Sy), we simply
replace each occurrence of Sy in X with S, ; the result to-
gether with D, is a progression of Dg, wrt cv.

5 Progression of proper™ KBs

In Sections 3 and 4, we showed that for local-effect and nor-
mal actions, progression is FO definable and computable.
However, the progression may not be efficiently computable.

In this section, we show that for local-effect and normal ac-
tions, progression is not only FO definable but also efficiently
computable under the two constraints that the initial KB is in
the form of the so-called proper™ KBs, which represent first-
order disjunctive information, and the successor state axioms
are essentially quantifier-free.

Propert KBs were proposed by Lakemeyer and Levesque
[2002] as a generalization of proper KBs, which were pro-
posed by Levesque [1998] as an extension of databases. In-
tuitively, a proper™ KB is equivalent to a (possibly infinite)
set of ground clauses. A tractable limited reasoning ser-
vice has been developed for propert KBs [Liu et al., 2004;
Liu and Levesque, 2005]. What is particularly interesting
about our results here is that progression of proper™ KBs is
definable as propert KBs, so that we can make use of the
available tractable reasoning service.

To formally define proper™ KBs, we use a FO language
L. with equality, a countably infinite set of constants, which
are intended to be unique names, and no other function sym-
bols. We let e range over ewfts, i.e., quantifier-free formulas
whose only predicate is equality. We denote by & the axioms
of equality and the set of formulas {(c # ¢’) | cand ¢’ are dis-
tinct constants }. We let V¢ denote the universal closure of ¢.

Definition 5.1 Let e be an ewff and d a clause. Then a for-
mula of the form V(e D d) is called a V-clause. A KB is
called proper™ if it is a finite non-empty set of V-clauses.

Example 5.1 Consider our blocks world. The following is a
initial KB Dg, which is proper™:

on(z,y, So) D —clear(y, So),

on(z,y,So) A eh(y, So) D —eh(x,Sy),
x=AVz=CDclear(z,So),
x=DVae=EVxz=FD-eh(z,S)
r=AANy=BVax=BAy=FDon(z,y,So),

on(C, D, Sy) Von(C,E,Sy).

We begin with forgetting in proper™ KBs. We first intro-
duce some definitions and propositions.

Definition 5.2 Let ¢ be a sentence, and p a ground atom. We
say that p is irrelevant to ¢ if forget(¢, p) < ¢.

Proposition 5.3 Let p be a ground atom. Let ¢1,ps, @3
be sentences such that p is irrelevant to them. Then

forget((¢1 D p) A (p D ¢2) A ¢3,p) & (91 D ¢2) A ¢

Proposition 5.4 Let ¢ = V(e D d) be a V-clause, and P(c)
a ground atom. Suppose that for any P(f) appearing in d,
e At = Cis unsatisfiable. Then P () is irrelevant to ¢.

Definition 5.5 Let X be a proper™ KB, and P(¢) a ground
atom. We say that ¥ is in normal form wrt P(¢), if for any
Y(e D d) € %, and for any P(f) appearing in d, either # is &
or e At = is unsatisfiable.

Proposition 5.6 Let P(¢) be a ground atom. Then every
proper™ KB can be converted into an equivalent one which
is in normal form wrt P(¢). This can be done in O(n+ 2¥m)
time, where n is the size of ¥, m is the size of sentences in
where P appears, and w is the maximum number of appear-
ances of P in a sentence of X..

92

Proof: Let ¢ = V(e D d) be aV-clause. Let P(f1), ..., P({})
be all the appearances of P in ¢, and let © = {/\i;l tio; €|
o; € {=,#}}. Let § € ©. We let d[f] denote d with each
P(t_;) 1 < i < K, replaced by P(¢) if 6 contains i, = @
We use ¢[6] to denote V(e A @ D d[f]). Obviously, ¢ is
equivalent to the theory {4[f] | # € O}, which we denote
by NF(¢, P(¢)). For a proper™ KB X, we convert it into the
union of NF(¢, P(¢)) where ¢ € X. |

In the above proof, we can remove those generated V-
clauses V(e D d) where d contains complemental literals
or e is unsatisfiable wrt £. For example, the ewff x
y ANx = A ANy = B is unsatisfiable wrt £. Also, a V-clause
V(e At = ¢ D d) can be simplified to V(e D d)(t/c). Finally,
an ewff can be simplified by use of &£.

Definition 5.7 Let ¢; = V(e; D diVP(f)) and ¢p = V(e D
da V= P(t)) be two V-clauses, where £ is a vector of constants
or a vector of distinct variables. Without loss of generality, we
assume that ¢; and ¢o do not share variables other than those
contained in 7. We call the V-clause V(e1 Aeg D dy Vdz) the
V-resolvent of the two input clauses wrt P(#).

Theorem 5.8 Let . be a propert KB, and P(C) a ground
atom. Then the result of forgetting P(C) in X is definable as
a propert KB and can be computed in O(n + 4Ym?) time,
where n, w, and m are as above.

Proof: We first convert ¥ into normal form wrt P(¢). Then
we compute all V-resolvents wrt P(¢) and remove all clauses
with P(¢). This results in a propert KB, which, by Proposi-
tions 5.3 and 5.4, is a result of forgetting P(¢) in X. [|

Theorem 5.9 Let ¥ be a proper™ KB which is semi-
definitional wrt predicate P. Then the result of forgetting P
in ¥ is definable as a proper™ KB and can be computed in
O(n + m?) time, where n is the size of ., and m. is the size
of sentences in 3. where P appears.

Proof: We compute all V-resolvents wrt P(Z) and remove
all clauses containing P(Z). This results in a proper™ KB,
which, by Theorem 4.2, is a result of forgetting Pin¥. ®

In the above theorems (Theorems 5.8 and 5.9), it is reason-
able to assume that w = O(1) and m? = O(n). Under this
assumption, both forgetting can be computed in O(n) time.

Based on the above theorems, we have the following results
concerning progression of proper™ KBs. We first introduce a
constraint on successor state axioms.

Definition 5.10 An SSA is essentially quantifier-free if for
each ground action «, by using D, 4, €ach of 'y; (%, v, s) and
~vr (%, a, s) can be simplified to a quantifier-free formula.

For example, the SSAs for our blocks world and briefcase
examples are essentially quantifier-free. For a local-effect
SSA, if each context-formula is quantifier-free, then it is es-
sentially quantifier-free. In general, if both 7}'(3&', a,s) and
~vr (%, a, s) are disjunctions of formulas of the form 32'[a =
A(@) A ¢(Z,Z, s)], where @ contains Z, and ¢ is quantifier-
free, then the SSA is essentially quantifier-free.

Proposition 5.11 Suppose Dy is essentially quantifier-free.
Then Dgs|a, So] is definable as a proper™ KB.

Theorem 5.12 Suppose that D is local-effect, D is essen-
tially quantifier-free, and D, is proper™. Then progression
of Ds, wrt any ground action « is definable as a proper™ KB
and can be efficiently computed.

Theorem 5.13 Suppose that Dss is essentially quantifier-
free, ais a normal action, and Dg, is a proper™ KB which is
normal wrt .. Then progression of Dg, wrt o is definable as
a proper™ KB and can be efficiently computed.

Example 5.1 continued. @ We now progress Dg, wrt
a = move(A,B,C). For simplicity, we remove the
second sentence from Dg,. The characteristic set of « is
Q = {clear(B,s),clear(C,s),on(A, B, s),on(A,C, s),
eh(A, s)}. Ds,[Q] is simplified to the following proper™ KB:
{clear(B, S,), ~clear(C,S,), "on(A, B,Sy),on(A,C,Ss),
eh(A, So) V eh(C,Sp), ~eh(A, Sa) V —eh(C, So)}.

We convert Dg, into normal form wrt £(.Sy), and obtain
after simplification:
y#BANy#CN(@#AVy#BAy#C)D

(071({E7 Y, SO) D ~clear Y, SO))?
x # A D (on(z, B, Sy) D —~clear(B, Sy)),
x# AD (on(z,C,Sy) D —clear(C, Sp)),
on(4, B, Sy) D —clear(B, So),
OTL(A, C, S()) D) —clear(C, S()),
r=DVax=FEVz=F D-eh(x,S),
clear(A, Sy), clear(C, Sy), on(A, B, Sy),on(B, F, Sy),
on(C, D, Sy) Von(C,E,Sy).

We now do resolution on Dg, UD;, [€2] wrt atoms in ©2(Sp),
delete all clauses with some atom from €2(Sp), and obtain the
following set X::
clear(B, Sy), ~clear(C, Sy), ~on(A, B, S,),on(A,C, S,),
eh(A, Sy) Veh(C,Sy),~eh(A,Sy,) V —eh(C,Sy),
y#BANy#CN(@#AVy#BAy#C)D

(on(z,y,So) D —clear(y, So)),
x # A D -on(z,C,S),
x=DVax=FEVz=FD-eh(z,S),
clear(A, Sy),on(B, F,Sy),on(C, D, Sy) V on(C, E, Sp).

We replace every occurrence of Sy in X2 with S, ; the result
together with D, is a progression of Dg, wrt cv.

6 Conclusions

In this paper, we have presented the following results. First,
we showed that for local-effect actions, progression is FO de-
finable and computable. This result is stronger than the one
obtained by Vassos et al. [2008], and our proof is a very sim-
ple one via the concept of forgetting. Next, we went beyond
local-effect actions, and showed that for normal actions, i.e.,
actions whose effects do not depend on the fluents on which
the actions have non-local effects, if the initial KB is semi-
definitional wrt these fluents, progression is FO definable and
computable. Third, we showed that for local-effect actions
whose successor state axioms are essentially quantifier-free,
progression of propert KBs is definable as proper™ KBs and
can be efficiently computed. Thus we can utilize the avail-
able tractable limited reasoning service for proper™ KBs. As
an extension of our first result, we have shown that for finite-
effect actions, which change the truth values of fluents at only
a finite number of instances, progression is FO definable. We
have also shown that in the presence of functional fluents, our

93

first and second results still hold. For lack of space, these re-
sults will be presented in a longer version of the paper. For the
future, we would like to implement a Golog interpreter based
on progression of proper™ KBs, which we expect will lead
to a more efficient version of Golog compared to the current
implementation based on regression.

Acknowledgments

We thank the anonymous reviewers for very helpful com-
ments. This work was supported in part by the European
Union Erasmus Mundus programme.

References

[Doherty ef al., 2001] P. Doherty, W. Lukaszewicz, and
A. Szalas. Computing strongest necessary and weak-
est sufficient conditions of first-order formulas. In Proc.
1JCAI-01, 2001.

[Gelfond and Lifschitz, 1993] M. Gelfond and V. Lifschitz.
Representing actions and change by logic programs. Jour-
nal of Logic Programming, 17(2-4):301-323, 1993.

[Lakemeyer and Levesque, 2002] G. Lakemeyer and H. J.
Levesque. Evaluation-based reasoning with disjunctive in-

formation in first-order knowledge bases. In Proc. KR,
2002.

[Levesque et al., 1997] H. J. Levesque, R. Reiter,
Y. Lespérance, F. Lin, and R. Scherl. = Golog: A
logic programming language for dynamic domains. J. of
Logic Programming, 31:59-84, 1997.

[Levesque, 1998] H. J. Levesque. A completeness result for
reasoning with incomplete first-order knowledge bases. In
Proc. KR-98, 1998.

[Lin and Reiter, 1994] F. Lin and R. Reiter. Forget it! In
Working Notes of AAAI Fall Symposium on Relevance,
1994.

[Lin and Reiter, 1997] F. Lin and R. Reiter. How to progress
a database. Artificial Intelligence, 92(1-2):131-167, 1997.

[Liu and Levesque, 2005] Y. Liu and H. J. Levesque.
Tractable reasoning in first-order knowledge bases with
disjunctive information. In Proc. AAAI-05, 2005.

[Liu et al., 2004] Y. Liu, G. Lakemeyer, and H. J. Levesque.
A logic of limited belief for reasoning with disjunctive in-
formation. In Proc. KR-04, 2004.

[Nonnengart er al., 1999] A. Nonnengart, H. J. Ohlbach, and
A. Szalas. Elimination of predicate quantifiers. In Logic,
Language and Reasoning, Part I, pages 159-181. 1999.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems. 2001.

[Vassos and Levesque, 2008] S. Vassos and H. J. Levesque.
On the progression of situation calculus basic action theo-
ries: Resolving a 10-year-old conjecture. In Proc. AAAI-
08, 2008.

[Vassos et al., 2008] S. Vassos, G. Lakemeyer, and H. J.
Levesque. First-order strong progression for local-effect
basic action theories. In Proc. KR-08, 2008.

golog.lua: Towards a Non-Prolog
Implementation of Golog for Embedded Systems

Alexander Ferrein

Robotics and Agents Research Lab
University of Cape Town
Rondebosch 7005
South Africa

alexander.ferrein@uct.ac.za

Abstract. Among many approaches to address the high-level decision
making problem for autonomous robots and agents, the robot program-
ming and plan language Golog follows a logic-based deliberative ap-
proach, and its successors were successfully deployed in a number of
robotics applications over the past ten years. Usually, Golog interpreter
are implemented in Prolog, which is not available for our target plat-
form, the bi-ped robot platform Nao. In this paper we sketch our first
approach towards a prototype implementation of a Golog interpreter in
the scripting language Lua. With the example of the elevator domain we
discuss how the basic action theory is specified and how we implemented
fluent regression in Lua. One possible advantage of the availability of a
Non-Prolog implementation of Golog could be that Golog becomes avail-
able on a larger number of platforms, and also becomes more attractive
for roboticists outside the Cognitive Robotics community.

1 Introduction

To address the problem of high-level decision making for autonomous robots or
agents, a number of different robot programming languages have been devel-
oped. Each of these follow a particular paradigm or technique how the problem
of decision making could be solved. Among them are for instance the Procedural
Reasoning System (PRS) [1], the Saphira architecture [2], Reactive Action Pack-
ages (RAP) [3], or the Reactive Plan Language (RPL) [4] and Structured Reac-
tive Controller (SRC) [5]. These approaches mostly follow a reactive paradigm
or deploy hierarchical task networks.

The robot programming and plan language Golog, on the other hand, fol-
lows a logic-based deliberative approach [6], and its successors were successfully
deployed in a number robotics applications over the past ten years. The appli-
cations range from service robotics to even robotic soccer applications. Golog
was used as the high-level decision-making component on a number of different
robot platforms, ranging from the RWI B14/B21 over the Sony Aibo to Lego
Mindstorms, and many more tailor-made platforms. During the course of the

94

last decade it was extended with useful features like integrating sensing and ex-
ogenous actions [7], continuous change [8], or decision-theoretic planning [9] to
name just a few. It emerged into an expressive robot programming and plan
language and is used in the Cognitive Robotics community.

Golog interpreter are in general implemented in Prolog. This is straight-
forward as the semantic of the language constructs is described in the situation
calculus [10], a first order action logic which allows for reasoning about actions
and change. The implementation, or better the specification of Golog in Prolog
is just a page long, and it was shown that the implementation is correct, having
a proper Prolog interpreter [11].

Until now, we did not face any problems to run Golog on our robots [12],
though one has to note that it always took some extra computational resources
to do the action selection with Golog. However, for our current robot project, it
seems that no Prolog interpreter is available. We want to use Golog on the bi-ped
robot Nao from French Aldebaran, which is running Open Embedded Linux, for
which, to the best of our knowledge, no Prolog system is currently available.

This motivated to start with a re-implementation of Golog in a language
different from Prolog. We came up with using the the scripting language Lua
[13], which we also used for the Behaviour Engine that we are running on the
robot [14]. In this paper, we present our first approach towards a prototype
implementation of a Vanilla Golog interpreter in Lua. We first briefly introduce
the hardware platform and the software system which we are running on the
Nao, as this motivates our decisions to try a re-implementation of Golog, and
to use Lua for this purpose. Then, we introduce Golog and Lua, and show in
some detail the Prolog implementation of Golog, before we give details of our
Lua re-implementation. In particular, we show how the basic action theory is
specified or how regression is implemented in our interpreter. As a proof-of-
concept we implemented the elevator domain [6, 11]. We conclude with discussing
the preliminary state of this work and give an outlook to some future work.

2 Our Embedded System: The Nao Robot

2.1 Hardware Platform

In the past, we used and extended Golog for several robotics applications ranging
from service robotics to robotic soccer applications [12]. We learnt to value the
flexibility in modelling the application domain and expressing control knowledge
in an elegant way. Our Golog implementation was always based on Prolog, and
we could run a Prolog engine on our robots so far. It is worth noting that running
Golog on a mobile robot platform requires some extra computational resources.
For our latest robotics project, however, no Prolog system, to the best of our
knowledge, seems to be available. Moreover are the computational resources of
our new mobile robot platform quite restricted.

Currently, we are developing robotic soccer applications for the bi-ped hu-
manoid robot Nao built by French Aldebaran [15]. The platform is the successor

99

of the Sony Aibo in Robocup’s Standard Platform League. It is a 21 degree-
of-freedom humanoid robot about 58 cm tall and is equipped with two VGA
resolution cameras, ultrasonic sensors as well as infrared sensors, an inertial
measurement unit, tactile sensors and force resistance sensors in the feet. The
robot has microphones, loudspeakers, and it has a number of LEDs with which it
can display status information. It is powered by an AMD Geode 500 MHz CPU
and equipped with 256 MB of memory. Furthermore, it has 1 GB flash memory
for hard disk space.

2.2 Software Framework

The programming framework we are using on the Nao is the Fawkes framework.
The Fawkes robot software framework [16] provides the infrastructure to run
a number of plug-ins which fulfil specific tasks. Each plug-in consists of one
or more threads. The application runs a main loop which is sub-divided into
certain stages. Threads can be executed either concurrently or synchronised with
a central main loop to operate in one of the stages. All threads registered for
the same stage are woken up and run concurrently. The software architecture
of Fawkes follows a component-based approach. A component is defined as a
binary unit of deployment that implements one or more well-defined interfaces
to provide access to an inter-related set of functionality configurable without
access to the source code. Components are implemented in Fawkes as a plug-in.
For communication between the components we use a blackboard infrastructure
which serves well-defined communication interfaces.

Another building block of Fawkes is the use of a Lua-based Behaviour Engine
[14]. The idea of this behaviour engine is to provide a behaviour middle-ware
between the low-level robot system and high-level decision-making modules. The
behaviour engine deploys extended hybrid state machines for monitoring the
execution of action patterns or primitive actions. We decided to deploy Lua
for the Behaviour Engine, as this scripting language is lightweight with a small
memory footprint, though expressive enough for the task. Moreover, Lua showed
its potential in a number of successful Al applications so far.! The behaviour
middle-ware was designed with a high-level decision-making module such as a
Golog-based deliberative component in mind. The good experiences with Lua
influenced our decision for developing a Lua-based Golog interpreter.

3 Situation Calculus and Golog

3.1 Situation Calculus

The situation calculus is a first order language with equality which allows for
reasoning about actions and their effects. The world evolves from an initial
situation due to primitive actions. Possible world histories are represented by
sequences of actions. The situation calculus distinguishes three sorts: actions,

! See http://lua.org for a list of applications.

96

situations, and domain dependent objects. A special binary function symbol
do : action X situation — situation exists, with do(a,s) denoting the situa-
tion which arises after performing action a in the situation s. The constant Sy
denotes the initial situation, i.e. the situation where no actions have yet occurred.
The state the world is in is characterised by functions and relations with a sit-
uation as their last argument. They are called functional and relational fluents,
respectively.

For each action one has to specify a precondition axiom stating under which
conditions it is possible to perform the respective action and an effect aziom
formulating how the action changes the world in terms of the specified fluents.
An action precondition axiom has the form Poss(a(z),s) = @(x, s) where the
binary predicate Poss C action X situation specifies when an action can be
executed, and « stands for the arguments of action a. In the situation calculus
the effects of actions are formalised by so-called successor state axioms of the
form F(z,do(a,s)) = ¢f(x,a,8) V F(z,s) A ~¢p(z,a,s), where F denotes a
fluent, ¢} and ¢ are formulae describing under which conditions F is true, or
false resp. This axiom simply states that F' is true after performing action a if
go; holds, or the fluent keeps its former value if it was not made false. Successor
state axioms describe Reiter’s solution to the frame problem [11], the problem
that all the non-effects of an action have to be formalised as well. Note that
free variables in the occurring formulae are meant to be implicitly universally
quantified. The background theory (also called basic action theory, or BAT for
short) is a set of sentences D consisting of D = X' U Dysq U Dgp U Dype U Ds,,
where D,,, contains sentences about the successor state axioms, D,;, contains
the action precondition axioms, D, states sentences about unique names for
actions, and Dg, consists of axioms stating what holds in the initial situation.
Additionally, X' contains a number of foundational axioms defining situations.
For details we refer to [17, 11].

3.2 Golog

The high-level programming language Golog [6] is based on the situation cal-
culus. As planning is known to be computationally very demanding in general,
which makes it impractical for deriving complex behaviours with hundreds of
actions, Golog finds a compromise between planning and programming. The
robot or agent is equipped with a situation calculus background theory. The
programmer can specify the behaviour just like in ordinary imperative program-
ming languages but also has the possibility to project actions into the future.
The amount of planning (projection) used is in the hand of the programmer.
With this, one has a powerful language for specifying the behaviours of a cog-
nitive robot or agent. While the original Golog is well-suited to reason about
actions and their effects, it has the drawback that a program has to be evalu-
ated up to the end before the first action can be performed. It might be that the
world changed between plan generation and plan execution so that the plan is
not appropriate or is invalid. The original Golog was extended over recent years
and has become an expressive robot programming language. Dialects of Golog

o7

feature online execution, sensing facilities [7], continuous change [8], or decision-
theoretic planning [9], to name just a few. Golog and it’s derivatives were used
in a number of successful cognitive robotics applications such as [18-20, 12, 21].

Golog interpreter are usually based on Prolog, as it is straight-forward to
implement the logical situation calculus specification of the language in a logic
programming framework. In the following, we present the implementation of
Vanilla Golog.?

1. Sequence: each sequence of actions or program statements are evaluated from
left to right;
do(E1l : E2,S,S81) :- do(El,S,S2), do(E2,S2,S1).
2. Test action: a test actions evaluates the truth value of a logical formula;
do(?(P),S,S) :— holds(P,S).

3. Pick: a variable V is non-deterministically chosen and each occurrence of v
is substituted in program E resulting in E1;

do (pi(V,E),S,S1l) :— sub(v,_,E,El), do(E1l,S,S1).
4. Star: implements the non-deterministic repetition of a program;
do(star(E),S,S1) :-= S1 =S ; do(E : star(E),S,S1).

5. Conditional: if the test on the condition holds, the then-branch is evaluated,
otherwise, the else-branch is taken into account;

do(if (P,E1,E2),S,S1) :— do((?(P) : El1) # (2(-P) : E2),S,S1l).
6. Loop: the star operator is conditioned on P;
do (while (P,E),S,S1):- do(star(?(P) : E) : ?2(-P),S,S1).
7. Non-deterministic choice of actions: either program E1 or E2 is evaluated;
do(El # E2,S,S1) :- do(El,S,S1l) ; do(E2,S,S1).

8. Procedure: for a procedure, it is simply checked if a declaration of a proce-
dure in Prolog’s database with the same name exists, if so, the body of the
procedure is further evaluated;

do(E,S,S1) :- proc(E,El), do(ELl,S,S1).

9. Primitive Action: similar to procedures, it is checked whether the action is
declared. Furthermore, it is checked if the precondition axiom poss in the
current situation holds.

do(E,S,do(E,S)) :— primitive_action(E), poss(E,S).

2 Tt is based on a version, which was adopted by S. Sardifia to run under SWI-Prolog
and is available at http://www.cs.toronto.edu/cogrobo/main/systems/index.html.

98

The Elevator Example In the following we restate the elevator example from
[6]. First, we need to define the actions in our basic action theory:

primitive_action (turnoff (N)) .
primitive_action (up (N)) .
poss (up(N),S) :— currentFloor(M,S), M < N.

Other primitive actions which are required for the elevator application are actions
for going one storey down, opening, and closing the elevator doors, and can also
be found in [11]. As an example for a control procedure we give the goFloor(n)
procedure and the main control procedure control.

proc (goFloor (N), ?(currentFloor(N)) # up(N) # down(N)).
proc (control, while(some(n, on(n)), serveAfloor) : park).

goFloor tests the actual floor, and either chooses the up or down action. Note
that Golog here depends on Prolog’s backtracking mechanism to choose either
to go up or down. The control procedure simply calls the procedure serveA Floor
(which we omit here) until there is no more clause instance of the fluent on(n) in
the clauses database. The fluent on(n) becomes true, if an elevator call button
on storey n was pressed. Initially, the call buttons on storey 3 and 5 are pressed,
meaning that the facts on(3,S5y) and on(5,Sy) are added to the database as
being valid in Sj.

As a final example we want to show the successor state axiom for the fluent
currentFloor:

currentFloor (M,do(A,S)) :—= A = up(M) ; A = down(M) ;
not A = up(N), not A = down(N), currentFloor(M,S).

currentFloor(m, do(a, s)) is true if either the action performed in situation s
was up(m) or down(m), otherwise the fluent value of currentFloor remains un-
changed. A successful execution of this program leads to the situation, where all
buttons are turned off and the elevator is in its parking position, i.e.

s* = ([down(3), turnoff (3), open, close,
up(5), turnoff (5), open, close, down(0), open], Sp).

4 Lua

Lua [13] is a scripting language designed to be fast, lightweight, and embeddable
into other applications. These features make it particularly interesting for the
Nao platform. The whole binary package takes less then 200 KB of storage.
When loaded, it takes only a very small amount of RAM. This is particularly
important on the constrained Nao platform and the reason Lua was chosen for
our Behaviour Engine over other scripting languages that are usually more than
an order of magnitude larger [22]. In an independent comparison Lua has turned
out to be one of the fastest interpreted programming languages [22, 23]. Besides
that Lua is an elegant, easy-to-learn language [24] that should allow newcomers
to start developing behaviours quickly. Another advantage of Lua is that it can

99

interact easily with C/C++. As most robot software is written in C/C++, there
exists an easy way to make Lua available for a particular control software.

Lua is a dynamically typed language, attaching types to variable values. Fight
different types are distinguished: nil, boolean, number, string, table, function,
userdata, and thread. For each variable value, its type can be queried.

The central data structure in Lua are tables. Table entries can be addressed
by either indices, thus implementing ordinary arrays, or by string names, imple-
menting associative arrays. Table entries can refer to other tables allowing for
implementing recursive data types. For example t ["name"] = valuel stores
the key-value pair (name, valuel) in table t, while t [9] = value?2 stores the
value2 at position 9 in array t. Special iterators allow access to associative tables
and arrays. Note that both index methods can be used for the same table.

Function are first-class types in Lua and can be created at run-time, assigned
to a variable, or passed as an argument, or be destroyed. Lua provides proper
tail calls and closures to decrease the needed stack size for function calls. Fur-
thermore, Lua offers a special method to modify code at run-time. With the
loadstring () statement chunks of code (one or more instruction of Lua code
is called chunk) can be executed at run-time. This comes in handy to modify
code while you are running it.

Lua deploys a register-based virtual machine to run its code. Although it is an
interpreted language, a program will be pre-compiled. For code chunks that are
created at run-time, the above mentioned loadstring function pre-compiles
the chunk at run-time. As the virtual machine is register-based the code size is
decreased. Furthermore, Lua uses an efficient mark-and-sweep garbage collection
which, for example, frees unused values in associative arrays efficiently. Finally,
we want to mention the explicit support for threads and co-routines in the Lua
specification, which can be particularly useful for robotics applications.

5 Implementing golog.lua: A First Approach

In the following we show some details of our prototypical implementation of
Golog in Lua. One of the very pleasant features of Prolog is that it is very easy
to work with terms and formulae. Creating instances of terms or atoms even
at run-time of a program to modify the code is very helpful for dealing with
dynamic domains. For example, the initial value of the fluent on in our elevator
example above was kept by adding the instances on(3,Sy) and on(5,Sy) to the
internal clauses data base as atomic formulae. Unification is built in, substituting
variable values comes for free and using list structures is comfortable.

In Lua, these concepts are not directly available. As opposed to terms and
lists, Lua has its associative table structures and is good in dealing with string
values. In our first implementation of Golog in Lua, we mainly use tables and
strings to implement a function Do which interprets Golog programs. On a tech-
nical side, note that our implementation resembles more the transition semantics
as proposed in ConGolog [25], as each interpreted statement is consumed from
the input program, leaving the rest program to be interpreted. This is however

60

not a problem as it has been shown that the transition semantics is equivalent
to the evaluation semantics that is used by Vanilla Golog, but it requires some
special treatment when features such as backtracking are needed. Also, the way
we encode action effects is slightly different. We address these topics in the next
section.

5.1 Programs and Situation Terms as Nested Tables

In golog. lua, a program is a table which is defined in a Lua environment, and
the program is run by calling a function Do (p, s)

prog = {{a_1l, {}}, {a_2, {x_1, x_2}},
{if, {fluent}, {a_3, {}}, {a_4, {}}}}
local s_2, failure = Do (prog, {})

The program above consists of an 0-ary action a; in sequence with as (21, x2)
and a conditional which, depending on the truth value of fluent, chooses agz or
ay, resp. The program is executed with calling the interpreter function Do which
takes a program and a situation term, and returns the resulting situation after
executing the program, or, if the program trace lead to a failure, i.e. the failure
variable is true, so contains the last possible action. Assuming that fluent holds,
the resulting execution trace of the prog will be

s_2 = {{"a_1",{}}, {"a_2", {"x_1", "x_2"},{"a_3,{}}}}°

We use the empty table or nil to represent Sy. Therefore, the above situation
term has to be interpreted as do(as, do(az(z1,x2),do(a1,Sp))). Similarly, we rep-
resent logical formulae as tables, with the connectives in prefix notation, i.e.
{and, ¢, {or, 1), 0}} represents the formula ¢ A (¢ V 6).

5.2 Axioms as Tables and Functions

The domain specification and the basic action theory are defined using special
associative arrays. Each fluent name in the domain description has to be inserted
into the special table D_fluents, which, for the elevator example, means:

D_fluents=Set{on, currentFloor}

Set is one of our auxiliary functions to store the values on and currentFloor
in the associative array D_fluents. Similarly, we need to keep track of our
primitive actions and procedures:

D_act = Set{turnoff, open, close, up, down}
D_proc = Set{proc_goFloor, proc_serve,
proc_park,proc_control}

3 Note that all program statements, actions, and fluent names must be given as strings.
For reasons of readability, we omit the quotation marks throughout this paper. Note
also that Lua supports to return multiple value, the situation term and the failure
condition in this case.

61

We need these sets to be able to distinguish user-defined actions, procedures,
and fluents from Golog keywords when interpreting a program. Next, we show
the definition of fluent on.

on = {["name"]=on, ["arity"] =1 }

function on.initially (N)
return {{ll3"}, {ll5"}}
5 end

For the fluent on from our elevator domain, we define a table called on. To refer
to it in the Golog program, the field ["name"] needs to be filled, as well as
the arity of the fluent. Next, we specify the initial value, i.e. the value in Sp.
We here use Lua’s facility to define unnamed tables. The function returns an
associative array with the fields table["3"]=true and table["5"]=true.
The intended meaning is that in the initial situation on(3,Sy) = on(5,50) = T.
For 0-ary fluents, we would simply return the value true.

For defining the effects of an action, the user of the Prolog implementation of
Vanilla Golog needs to specify successor state axioms. In our Lua implementa-
tion, we use effect axioms similar to the way they were implemented in Indigolog

[7):

function on.turnoff (N, prev_val)
local list = Retract (tostring(N),
prev_vall[l])
return prev_val
5 end

Note that Retract (value, array) isone of our helper functions that deletes
value from array. This means, to evaluate the value of fluent f in a partic-
ular situation s we apply the effect axioms of those actions that are mentioned
in the situation term and that change f’s value. For example, consider the
elevator domain with s' = ([down(3),turnoff (3), open,close, up(5), turnoff (5),
open, close], Sp). To evaluate the value of fluent on we have to apply the follow-
ing effect axioms:

on.turnoff (5,on.turnoff (3,on.initially(n)))

as the actions up, down, open, close do not change the value of the fluent on.
The above string is generated at run-time by the interpreter and Lua’s facility
to apply code at run-time using the loadstring () command and is executed
to evaluate the effects of an action. Similarly, we use loadstring to check
whether precondition axioms or effects axioms are defined. For example, the
code fragment

local action = "turnoff"
if loadstring("return type ("
action .. ".Poss)") () == "function" then

5 else error ("Precondition axiom for action
%s undefined\\n", action) end

62

checks at run-time whether the precondition axiom for action turnoff is de-
fined.* In the above example our evaluation routine for checking the effects of
action turnoff returns the value mil, meaning that no instances of on are
currently valid. To be able to evaluate fluent values this way, we follow the con-
vention that the last argument of an effect axiom always takes the value from
a successor situation. Another requirement is that all action effects changing a
fluent value are defined per action and that the closed world assumption holds.
We therefore require that effect axioms are defined as part of the fluent defini-
tion. (on.turnoff means that the function turnoff is defined in the namespace
of on and can only be used in this namespace.) An example for a precondition
axiom is:

function turnoff.Poss (N, s)
return has_fval ({on, {N}}, s)
end

The action turnoff (n) is only possible, if the call button on the respective
storey is pressed, i.e iff (on(n), s) = true. To access the fluent value the
user can apply the function holds or has_fval, which we address below.

5.3 Holds, Pick, and Some

To evaluate logical formulae, we provide a function holds (£, s), which eval-
uates if £ holds in situation s. As stated above, we use an prefix notation for
logical connectives. We evaluate sub-formulae recursively, just as Golog’s Prolog
implementation does.

function holds (f, s)
if type(f) == "table" then
if Member (f[1], binop) --binary op
then return holds_binop(f, s)

end

function holds_binop (£, s)
local op = table.remove(f, 1)
local result
—-— traverse formula and evaluate each element
if op == "and" then result = true
while f[1] do
local eval=holds (table.remove(f,1),s)
result = result and eval end

return result
end

4 In our current naive and not optimised proof-of-concept implementation, we check for

the axiom each time the action is called. A more clever way would be to check these
things once before executing the program. Note that “..” is the string concatenation
operator in Lua.

63

We call the respective evaluation function depending on the operator type. The
example above shows the evaluation for the operator and. More complicated is
the implementation of quantifiers. The current reasoning engine in our prototype
implementation is somewhat restricted. Existential quantifiers are only allowed
in fluent formulae. To this end, we introduce a function has_fval, to query
fluent formulae.

has_fval ({"on", {"3"}}, {}) — true
has_fval ({"on", {nil}}, {}) — {{"3", "5"}}

With the help of has_fval it is straight-forward to the operator some(n, fluent(n)),
which refers to the logical formula Jz.fluent(z). In the Prolog implementation,
the evaluation via the predicate holds is successful, if fluent(n,s) follows from
subsequently applying the fluent’s successor state axiom on s given its initial
value. Similarly, we check with has_fval (f, s) if there is an instantiation
of f in s by subsequently applying the effect axioms on f. Vanilla Golog also
offers the pi operator, which binds the variable in the formula Jz.fluent(z):
pi(n, ?(fluent(n)). We omitted the pi operator in our current prototype imple-
mentation. We achieve the variable binding with applying some to a fluent,
whose arguments are void, i.e. the arguments of the fluent contain nil values
(second case of has_fval (f,s) above). A more general reasoning engine is
subject to future work. One possibility might be to use the constraint system
CLIPS [26], for which also a Lua interface is available.

Finally we need to address argument substitution to implement call-by-value
functionality. This is needed for procedure arguments, but also for the afore-
mentioned case of substitutions for quantifiers. The substitution algorithm for
procedures is quite simple, for each argument value, we get the variable name
from the procedure prototype, and substitute each occurrence of the variable
reference in the procedure body with the value as given in the procedure call.
To allow nested procedure calls, we hold the substitutions on each call level on a
stack. Similarly, we substitute each occurrence of a variable in a some statement
in the subsequent program.

5.4 Executing Actions

As primitive actions need to be declared first, it is easy to distinguish them from
other constructs. As we have mentioned above follows our implementation the
transition semantics idea of ConGolog. The current program statement is con-
sumed while being interpreted. Hence, it is particularly easy to execute actions
immediately by using the loadstring () functionality.®

One complication of Lua comes with how Lua handles variables. Lua supports
in general call-by-reference, meaning that you alter the original data object given
as an argument, and not a local copy of it. If you need a local copy of a Golog sub-
program such as a procedure, you have to iterate through the table representing

5 With adding sensing and exogenous actions to the Lua specifications of the inter-
preter together with guarded action theories [7], it should be quite straight-forward
to extend our current implementation to an on-line interpreter.

64

the sub-program and copy each sub-table to a new table. Although, the programs

are not large and Lua is fast with accessing tables, it seems to be overhead. Here,

we might need to find a different way to deal with this. This means also that for

backtracking as needed for Golog’s “#” operator, we need to copy not only the

different branches of the non-deterministic choice, but also the situation terms,

so that we can determine the correct situation term for the successful branch.
Finally, we sketch the implementation of our function Do:

function Do (program, sl)
local s2, failure, instr
repeat
instr = table.remove (program, 1)
5 —— process next instruction
if type(instr) == "table" then
-— pop first statement from program
local statement=table.remove (instr, 1)
—— process the first instruction

10 if statement == nil then return
sl, true
—-— non-det. choice
elseif statement == "#" then
local ndet_l=table.remove (instr, 1)
15 local ndet_2=table.remove (instr, 1)

s2, failure=Do_ndet (ndet_1,ndet_2,s1)
. —-— other statements
else —-— unknown action
error ("Unknown statemet\n"))
20 failure = true
end
else
error ("Program invalid\n")
s2 = {}; failure = true
25 end
sl = s2
if failure then break end
until not program[1l]
return s2, failure
30 end

The main loop iterates over the program, popping the first statement from the
program and processing it. If there are no more statements in the input pro-
gram, and no failure occurred, the execution of the program was successful, if at
any point during the interpretation of the program a failure occurs, the further
execution is immediately terminated.

5.5 The Elevator in Lua

The main control loop for the elevator in Lua looks like:

proc_control={["name"]=control, {},

65

5

10

{{while, {some, {n}, {on, {n}}},
{{proc_serve, {n}}}}, {proc_park}}}

proc_serve ={["name"]=proc_serve, {N},
{{proc_goFloor, {N}}, {turnoff, {N}},
{open, {}}, {close,{}}}}

proc_goFloor={["name"]=proc_goFloor, {N},
{{#, {#,{?, {{currentFloor, {N}}}},
{up, {N}}}, {down, {N}}}}}

As long as there are still instances of the fluent on, the procedure proc_serve
is executed. As we discussed above note that we get a value for the argument n
of some(n). The argument for the procedure proc_serve(n) is also substituted by
this value as the procedure is the body of the while instruction. The execution
trace of the elevator program in Lua is

**x% SUCCESS! No (more) solution (lol):
s2={{down, {3}}, {turnoff, {3}}, {open, {}}, {close,{}},{up,{5}},
{turnoff, {5}}, {open,{}},{close,{}},{down,{0}}, {open,{}}}

leading to the same solution as the Prolog implementation of Vanilla Golog.

6 Discussion

Why do we believe this work is useful? Our motivation to begin with this work
was the unavailability of a Prolog system on our target platform. The Open
Embedded Linux system, to the best of our knowledge, does not offer a Prolog
system so far. As we still want to make use of Golog for the high-level deci-
sion making of the robot, we need to provide an interpreter by other means.
However, as mentioned several times throughout this paper and also the title
suggests is the state of this work preliminary. We yet have to show, for the
general applicability of this work, that our implementation is competitive with
known implementations in Prolog. As for our application on the Nao, we seem
to have no other choice than to re-implement Golog. Besides our first results and
the fact that the elevator examples works with our interpreter, we have to show
that our implementation is correct. Also note that this implementation is naive,
and a first quick approach to develop a Golog interpreter in Lua. In particu-
lar, we did not yet consider to use meta tables or Lua’s closure mechanism for
defining the BAT. In future implementations, these features may be taken into
account as well as the possibility of integrating Golog language features directly
into the Lua specification using Metalua [27], a meta language based on Lua.
As already mentioned, for our future work we need to enhance the reasoning
engine and develop an interpreter for online Golog, incorporating features that
have proved useful (e.g. cf. [12]). Furthermore, we have to show that our imple-
mentation is competitive with the Prolog implementation. Another important
issue for the usability of Golog is an easy and neat syntax. The syntax presented
here is contributed to the syntax of the associative arrays as provided by Lua.

66

We think that this representation resembles rather an abstracted syntax tree,
and should become the representation for the back-end of our new interpreter.
The front-end should make use of a regular programming syntax without “lots of
silly curly brackets”. Here we aim at using the LPEG library which is available
for Lua [28]. This package provides interpreting parsing expression grammars
(PEGS), which could be used to generate the intermediate code, which we pre-
sented in this paper. Also, in this step several optimisations can be undertaken
to speed up the execution time of a Golog program such as pre-processing loop
invariants, or generating tables for often used fluent values, to speed up regres-
sion. Another advantage of Lua is the availability of a fast C/C++ interface. It is
rather easy to connect Lua with the rest of your robot system. Finally, we aim at
using Golog as the standard high-level control language in the Fawkes framework
which was recently released (www. fawkesrobotics.org). The idea with that
is to find a larger robotics community that might be using Golog for encoding
control programs.

References

1. Ingrand, F., Chatila, R., Alami, R., Rober, F.: PRS: A high level supervision and
control language for autonomous mobile robots. In: Proc. ICRA-96. (1996)

2. Konolige, K., Myers, K., Ruspini, E., Saffiotti, A.: The Saphira architecture: A
design for autonomy. JETAI 9(1) (1997) 215-235

3. Bonasso, R., Firby, R., Gat, E., Kortenkamp, D., Miller, D., Slack, M.: Experiences
with an architecture for intelligent, reactive agents. Journal of Experimental and
Theoretical Artifical Intelligence 9(2-3) (1997) 237-256

4. McDermott, D.: A reactive plan language. Technical Report YALEU/DCS-RR-
864, Yale University, Department of Computer Science (1991)

5. Beetz, M.: Structured reactive controllers. Journal of Autonomous Agents and
Multi-Agent Systems 2(4) (2001) 25-55

6. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A Logic
Programming Language for Dynamic Domains. J. of Logic Programming 31 (1997)
59-84

7. De Giacomo, G., Levesque, H., Sardina, S.: Incremental execution of guarded
theories. Computational Logic 2(4) (2001) 495-525

8. Grosskreutz, H., Lakemeyer, G.: ccgolog — A logical language dealing with contin-
uous change. Logic Journal of the IGPL 11(2) (2003) 179-221

9. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-level
agent programming in the situation calculus. In: Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-00) and Twelfth Conference
on Innovative Applications of Artificial Intelligence (IAAI-00), AAAT Press (2000)
355-362

10. McCarthy, J.: Situations, Actions and Causal Laws. Technical report, Stanford
University (1963)

11. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

12. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic do-
mains. Robotics and Autonomous Systems, Special Issue on Semantic Knowledge
in Robotics 56(11) (2008) 980-991

67

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Terusalimschy, R., de Figueiredo, L.H., Filho, W.C.: Lua - An Extensible Extension
Language. Software: Practice and Experience 26(6) (Jan 1999) 635 — 652
Niemiiller, T., Ferrein, A., Lakemeyer, G.: A lua-based behavior engine for con-
trolling the humanoid robot nao. In: 2009 RoboCup Symposium. (2009)
Aldebaran Robotics: Website. http://www.aldebaran-robotics.com/ (2008)
Niemiiller, T.: Developing A Behavior Engine for the Fawkes Robot-Control
Software and its Adaptation to the Humanoid Platform Nao. Master’s thesis,
Knowledge-Based Systems Group, RWTH Aachen University (2009)

Pirri, F., Reiter, R.: Some contributions to the metatheory of the situation calculus.
Journal of the ACM 46(3) (1999) 325-361

Hahnel, D., Burgard, W., Lakemeyer, G.: GOLEX - bridging the gap between
logic Golog and a real robot. In Herzog, O., Giinter, A., eds.: KI-98: Advances
in Artificial Intelligence. Volume 1504 of Lecture Notes in Computer Science.,
Springer (1998) 165-176

Levesque, H.J., Pagnucco, M.: Legolog: Inexpensive experiments in cognitive
robotics. In: Proceedings of CogRob-00. (2000)

Soutchanski, M., Pham, H., Mylopoulos, J.: Decision making in uncertain real-
world domains using dt-golog. In: Proc. AAAI-06. (2006)

Eyerich, P., Nebel, B., Lakemeyer, G., Claflen, J.: Golog and pddl: what is the
relative expressiveness? In: PCAR ’06: Proceedings of the 2006 international sym-
posium on Practical cognitive agents and robots, ACM (2006)

Terusalimschy, R., de Figueiredo, L.H., Filho, W.C.: The Evolution of Lua. In:
Proceedings of History of Programming Languages III, ACM (2007) 2-1 — 2-26
The Debian Project: The Computer Language Benchmarks Game.
http://shootout.alioth.debian.org/ retrieved Jan 30th 2009.

Hirschi, A.: Traveling Light, the Lua Way. IEEE Software 24(5) (2007) 31-38
De Giacomo, G., Lesperance, Y., Levesque, H.J.: Congolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121(1-2)
(2000) 109-169

Giarratano, J., Riley, G.: Expert Systems: Principles and Programming. fourth
edition edn. Course Technology (2004)

Fleutot, F., Tratt, L.: Contrasting compile-time meta-programming in metalua
and converge. In: Workshop on Dynamic Languages and Applications. (July 2007)
Medeiro, S., Ierusalimschy, R.: A parsing machine for PEGs. In: Proceedings of
the 2008 Symposium on Dynamic Languages, ACM (2008) 1-12

68

Challenges for domestic service robots

Sven Behnke
University of Bonn, Germany

Benchmarking robotic systems is difficult. Robot competitions, such as RoboCup
and the DARPA Grand and Urban Challenges provide a standardized test envi-
ronment and allow for the direct comparison of different systems. For domestic
service robots, in recent years, the RoboCup@Home league has been established.
Domestic service tasks require three main skills from autonomous robots: ro-
bust navigation, mobile manipulation, and intuitive communication with the
users. My team NimbRo developed the robot Dynamaid for these competitions.
For robust navigation, Dynamaid has a base with four individually steerable
differential wheel pairs, which allow omnidirectional motion. For mobile ma-
nipulation, Dynamaid is additionally equipped with two anthropomorphic arms
that include a gripper, and with a trunk that can be lifted as well as twisted.
For intuitive multimodal communication, the robot has a microphone, stereo
cameras, and a movable head. Dynamaid can perceive persons and objects in
its environment, recognize and synthesize speech. Together with our communi-
cation robot Robotinho, it won the Innovation award at RoboCup 2009.

69

Robust and efficient visual SLAM for spatial cognition

Calway, Andrew
University of Bristol

It has long been understood that autonomous exploration of previously unseen
environments to gain spatial awareness and understanding will be a fundamen-
tal capability of future robotic systems. The development of techniques for
simultaneous localisation and mapping (SLAM) - determining world structure
and topology whilst simultaneously estimating position - has therefore been at
the centre of robotics research for many years. This has been based on a variety
of different sensors, including lasers, vision, GPS, odometry and ultrasonics. Of
these, vision based techniques have perhaps the greatest potential given the low
cost and small form factor of the sensor and the richness of the data. Recent
years have seen significant advances in visual SLAM, driven in the main by the
possibility of a highly portable position sensing device, especially in applications
such as wearable computing. Several systems now exist which are capable of
highly robust and efficient localisation and mapping, operating at rates in excess
of standard video frame rates, giving genuine real-time capability. As such, they
provide huge potential for advancing sensing capability in robotic systems and
further as a catalyst for advancing spatial cognition, especially when coupled
with other advances in computer vision, such as object and activity recognition.
In this talk I will summarise some of these advances in visual SLAM, focusing
on work carried out at Bristol on robustness to erratic motion, relocalisation in
previously built maps, extracting higher order map structure and mechanisms
for efficient map representation.

70

A Constraint-Based Approach for Plan Management in Intelligent Environments*

Federico Pecora and Marcello Cirillo
Center for Applied Autonomous Sensor Systems
Orebro University, SE-70182 Sweden
<name>.<surname> @oru .se

Abstract

In this paper we address the problem of realizing
a service-providing reasoning infrastructure for pro-
active human assistance in intelligent environments. We
propose SAM, an architecture which leverages tempo-
ral knowledge represented as relations in Allen’s in-
terval algebra and constraint-based temporal planning
techniques. SAM seamlessly combines two key ca-
pabilities for contextualized service provision, namely
human activity recognition and planning for controlling
pervasive actuation devices.

Introduction

The problem we tackle in this paper is that of realizing a
service-providing reasoning infrastructure for proactive hu-
man assistance in intelligent environments. Two key capa-
bilities that are often desirable in a service-providing intel-
ligent environment are (1) the ability to recognize activities
performed by the human user, and (2) the ability to plan and
execute the behavior of pervasive service-providing devices
according to the indications of activity recognition.

Activity recognition has received much attention in the
literature and the term has been employed to indicate a va-
riety of capabilities. In this paper we take activity recogni-
tion to mean the ability of the intelligent system to deduce
temporally contextualized knowledge regarding the state of
the user on the basis of a set of heterogeneous sensor read-
ings. Equipped with such a capability, an intelligent environ-
ment could be capable of proactively planning for and exe-
cuting services that provide contextualized assistance. This
requires a way to model the temporal and causal dependen-
cies that exist between these tasks and the state of the human
user. For instance, if a smart home could recognize that the
human user is cooking, it could instruct a cleaning robot to
avoid navigating to the the dining room until the subsequent
dining activity is over.

This paper presents SAM, an Activity Management ar-
chitecture! for service providing intelligent environments

*This paper appears in the Proceedings of the Scheduling and
Planning Applications Workshop (SPARK), held in conjunction
with the 19th International Conference on Planning and Schedul-
ing, 2009.

'SAM stands for “SAM the Activity Manager”.

71

which achieves the two key capabilities mentioned above.
SAM is built on top of the Multi-component Planning and
Scheduling framework (OMPS) (Fratini, Pecora, and Cesta
2008). Specifically, in conjunction with an intelligent en-
vironment equipped with pervasive sensors and actuators,
SAM provides the means to monitor the daily activities of a
human being and to proactively assist the human through the
environment’s actuators. The architecture realizes an on-line
abductive reasoning process on patterns of sensor observa-
tions provided by the intelligent environment, and is capable
of synthesizing action plans for the environment’s actuators
in reaction to recognized human activities. As a direct re-
sult of the underlying framework, SAM retains three impor-
tant properties: (1) the component-based domain descrip-
tion language provides a common formalism for expressing
the activity recognition and proactive controller functionali-
ties of the domain; (2) the constraint-based nature of the ar-
chitecture allows to perform concurrent activity recognition,
planning and execution; (3) the component-based nature of
the framework allows to implement modular interfaces to
the intelligent environment, thus supporting the incremental
integration of new sensory/actuation elements.

Related Work

Current approaches to the problem of recognizing human
activities can be roughly categorized as data-driven or
knowledge-driven. In data-driven approaches, models of hu-
man behavior are learned from large volumes of data over
time. Notable examples of this approach employ Hidden
Markov Models (HMMs) for learning sequences of sensor
observations with given transition probabilities, e.g., (Wu
et al. 2007). Knowledge-driven approaches follow a com-
plementary approach in which patterns of observations are
modeled from first principles rather than learned. Such ap-
proaches typically employ an abductive processes, whereby
sensor data is explained by hypothesizing the occurrence
of specific human activities. Examples include reasoning
approaches in which rich temporal representations are em-
ployed to model the conditions under which patterns of hu-
man activities occur (Jakkula, Cook, and Crandall 2007).
Data- and Knowledge-driven approaches have comple-
mentary strengths: the former provide an effective way to
recognize elementary activities from large amounts of con-
tinuous data; conversely, knowledge-driven approaches are

useful when the criteria for recognizing human activities are
given by crisp rules that are clearly identifiable. In SAM,
we follow the latter approach.

Also relevant to our work are various uses of schedule
execution monitoring techniques for domestic activity mon-
itoring presented in the literature, e.g., (Cesta et al. 2007,
Pollack et al. 2003). An important difference with the above
works lies in the fact that they employ pre-compiled (albeit
highly flexible) schedules as models for human behavior. In
the present work, we employ a planning process to actually
instantiate such candidate schedules on-line.

SAM leverages the capability of OMPS to plan for state
variables, a feature typical of several continuous planning
approaches (Knight et al. 2001). In addition, SAM lever-
ages the ability of OMPS to employ custom variable types.
This has allowed us to build the sensing and actuation ca-
pabilities directly into new variable types which extend the
state variable. In SAM, variables are not only used to rep-
resent elements of the domain, but also to implement active
processes which operate concurrently with the continuous
planning process, providing it with real world data obtained
form the intelligent environment.

Lastly, SAM is related to the situation recognition ap-
proach described in (Dousson, Gaborit, and Ghallab 1993),
which also employs temporal reasoning techniques to per-
form on-line recognition of temporal patterns of sensory
events. Like SAM, the requirements for recognition are
modeled as temporal relations in Allen’s interval algebra,
and both recognition and actuation are modeled within the
same formalism. However, in SAM these two types of rea-
soning are integrated at the reasoning level in addition to
being described by the same formalism. Also, while the for-
mer approach is limited to “triggering” events as a result of
recognized situations, SAM allows to trigger the generation
of a contingent plan whose elements are flexibly constrained
to sensory events or recognized activities as they evolve in
time.

Domain Representation

SAM is implemented within the OMPS temporal reasoning
framework (Fratini, Pecora, and Cesta 2008). OMPS is a
constraint-based planning and scheduling software API for
developing temporal planning and scheduling applications,
and has been used to develop a variety of decision support
tools, ranging from highly-specialized space mission plan-
ning software to classical planning frameworks.

SAM leverages the domain description language pro-
vided by OMPS to model the dependencies that exist be-
tween sensor readings, the state of the human user, and tasks
to be performed in the environment. In this section we de-
scribe how domains expressed in this formalism can be used
to represent both requirements on sensor readings and on
actuation devices. The following section will describe the
actual implementation of SAM, i.e., how such domain de-
scriptions are employed to infer the state of the user and to
contextually synthesize action plans for actuators in the in-
telligent environment.

OMPS’s domain description language is grounded on the
notion of component. A component is an element of a do-

72

main theory which represents a logical or physical entity.
Components model parts of the real world that are relevant
for a specific decisional process, such as complex physical
systems or their parts. Components can be used to represent,
for example, a robot which can navigate the environment
and grasp objects, or an autonomous refrigerator which can
autonomously open and close its door.

An automated reasoning functionality developed in
OMPS consists in a procedure for taking decisions on com-
ponents. Decisions describe an assertion on the possible
evolutions in time of a component. For instance, a deci-
sion on the fridge component described above could be to
open its door no earlier than time instant 30 and no later
than time instant 40. More precisely, a decision is an asser-
tion on the value of a component in a given flexible time
interval, i.e., a pair (v, (I, I.]), where the nature of the
value v depends on the specific component and I, I. rep-
resent, respectively, an interval of admissibility of the start
and end times of the decision. In the fridge example, assum-
ing the door takes five seconds to open, the flexible interval
is [Is = [30,40], I, = [34, 44]].

OMPS provides a number of built-in component types,
among which consumable and re-usable multi-capacity re-
sources, and state variables. The built-in state variable type
of component instead models elements whose state in time
is represented by a symbol. OMPS supports disjunctive
values for state variables, e.g., a decision on a state vari-
able that models a mobile robot could be (navigate V
grasp, [I, I.]), representing that the robot should be in the
process of either navigating or grasping an object during the
flexible interval [I5, I..]. For the purposes of this work, we
focus on state variable type components and two custom
components that have been developed in SAM to accom-
modate the needs of the physically instantiated nature of our
application domain.

The core intuition behind OMPS is the fact that decisions
on certain components may entail the need to assert deci-
sions on other components. For instance, the decision to
dock the robot to the fridge may require that the fridge door
has already been opened. Such dependencies among compo-
nent decisions are captured in a domain theory through what
are called synchronizations. A synchronization is a set of
requirements expressed in the form of temporal constraints.
Such constraints in OMPS are bounded variants of the rela-
tions in the restricted Allen’s Interval Algebra (Allen 1984;
Vilain, Kautz, and van Beek 1989). Specifically, temporal
constraints in OMPS enrich Allen’s relations with bounds
through which it is possible to fine-tune the relative tem-
poral placement of constrained decisions. For instance, the
constraint A DURING |3, 5][0, co) B states that A should be
temporally contained in B, that the start time of A must oc-
cur between 3 and 5 units of time after the beginning of B,
and that the end time of A should occur some time before
the end of B.

Figure 1(a) shows an example of how temporal con-
straints can be used to model requirements among actua-
tors in an intelligent environment. The three synchroniza-
tions involve two components: a robotic table and an in-
telligent fridge (represented, respectively, by state variables

MovingTable : DockFridge
MET-BY Fridge : open

MovingTable : UndockFridge
BEFORE [0, co) Fridge : close

MovingTable : DeliverDrink
AFTER [0, co) Fridge : PlaceDrink

(a)

Human : Cooking
EQUALS Stove : ON
DURING Location : KITCHEN

Human : Eating
AFTER Human : Cooking
DURING Location : KITCHENTABLE

@

UndockFridge DeliverDrink

! ‘ close ‘
i i
]]
T T

KITCHENTABLE

OFF

time

®

Figure 1: Top row: three synchronizations in a possible domestic robot planning domain (a), the corresponding real components available in
our intelligent environment (b), and a possible timeline for the two components (c). Bottom row: two synchronizations in a possible domestic
activity recognition domain (d), the corresponding situations as enacted by a test subject in a test environment (e), and a possible timeline for

the three components (f).

MovingTable and Fridge). The MovingTable can dock and
undock the Fridge, and navigate to the human user to deliver
a drink. The Fridge component can open and close its door,
as well as grasp a drink inside it and place it on a docked
table. The above three synchronizations model three simple
requirements of this domain, namely: (1) since the Fridge’s
door cannot open if it is obstructed by the MovingTable (see
figure 1(b)), and we would like the door to be kept open only
when necessary, docking the fridge must occur directly af-
ter the fridge door is opened (MET-BY constraint); (2) for
the same reasons, the fridge door should close only after the
MovingTable has completed the undocking procedure (BE-
FORE constraint); and (3) delivering a drink to the human
is possible only after the drink has been placed on the table
(AFTER constraint).

While temporal constraints express requirements on the
temporal intervals of decisions, value constraints express re-
quirements on the value of decisions. OMPS provides the
VALUE-EQUALS constraint to model that two decisions
should have equal value. For instance, asserting d; VALUE-
EQUALS dsy where the two decisions’ values are, respec-
tively, vi = AV B and vo = B V C, will constrain the
value of both decisions to be B (the intersection of possi-
ble values). As for temporal constraints, OMPS provides
built-in propagation for value constraints.

Decisions and temporal constraints asserted on compo-
nents are maintained in a decision network (DN), that is
at all times kept consistent through temporal propagation.
This ensures that the temporal intervals underlying the de-
cisions are kept consistent with respect to the temporal con-
straints, while decisions are anchored flexibly in time. In
other words, adding a temporal constraint to the DN will ei-
ther result in the calculation of updated bounds for the inter-
vals I, I, for all decisions, or in a propagation failure, indi-
cating that the added constraint or decision is not admissible.

73

Temporal constraint propagation is a polynomial time oper-
ation, as it is based on a Simple Temporal Network (Dechter,
Meiri, and Pearl 1991).

For each component in the domain, OMPS provides built-
in methods to extract the timeline of the component. A time-
line represents the behavior of a component in time as it is
determined by the decisions and constraints imposed on this
component in the DN. Figure 1(c) shows a possible timeline
for the two components Fridge and MovingTable of the pre-
vious example. Notice that, in general, it is possible to ex-
tract many timelines for a component, as constraints bound
decision start and end times flexibly. In the remainder of this
paper we will always employ the earliest start time timeline,
i.e., the timeline obtained by choosing the lower bound for
all decisions’ temporal intervals I, .

In the previous example temporal constraints are used
to model the requirements that exist between two “actua-
tor components” (modeled as state variables) in carrying out
the task of retrieving a drink from the fridge. In addition to
actuators, however, state variables can be used to represent
sensors in an intelligent environment, their values thus rep-
resenting sensor readings rather than commands to be ex-
ecuted. Consequently, while temporal constraints among
the values of actuator components represent temporal de-
pendencies among commands to be executed that should be
upheld in proactive service enactment, temporal constraints
among ‘“‘sensor components” represent temporal dependen-
cies among sensor readings that are the result of specific
human activities. For instance, the synchronizations in fig-
ure 1(d) describe possible conditions under which the human
activities of Cooking and Eating can be inferred (where
omitted, temporal bounds are assumed to be [0,0)). The
synchronizations involve three components, namely a state
variable representing the human inhabitant of the intelligent
environment, a state variable representing a stove state sen-

sor, and another state variable representing the location of
the human as it is determined by a person localization sen-
sor in the environment. The synchronizations model how
the relative occurrence of specific values of these compo-
nents in time can be used as evidence of the human cooking
or eating: the former is deduced as a result of the user be-
ing located in the KITCHEN (DURING constraint) and is
temporally equal to the sensed activity of the Stove sensor;
similarly, the requirement for asserting the Eating activity
consists in the human being having already performed the
Cooking activity (AFTER constraint) and his being seated
at the KITCHENTABLE.

A unique feature of SAM is that the same formalism can
be employed to express requirements both for enactment and
for activity recognition. This is enabled by two specializa-
tions of the state variable component type, namely sensor
components and actuator components. As we will see, a sin-
gle inference algorithm based on temporal constraint reason-
ing provides a means to concurrently deduce context from
sensor components and to plan for actuator components.

Recognizing Activities and Executing
Proactive Services in SAM

SAM employs three types of components: state variables,
sensors and actuators. State variables are employed to
model one or more aspects of the user’s activities of daily
living. For instance, in the examples that follow we will use
a state variable whose values are {Cooking, Eating,
InBed, WatchingTV, Out} to model the human
user’s domestic activities. Sensors and actuators are spe-
cialized variants of the built-in state variable type which im-
plement an interface between the real-world sensing and ac-
tuation modules and the DN. Sensor components interpret
data obtained from the physical sensors deployed in the in-
telligent environment and represent this information as deci-
sions and constraints in the DN. Actuators are components
that trigger the execution on a real actuator of a planned de-
cision. Actuators also have a sensing capability which al-
lows to update the DN with relations that model the temporal
bounds of execution of the executed operations.

In SAM, the DN acts as a “blackboard” where decisions
and constraints re-construct the reality observed by sensor
components as well as the current hypothesis on what the
human being is doing. This hypothesis is deduced by a con-
tinuous re-planning process which attempts to infer new pos-
sible states of the human being and any necessary actuator
plans.

SAM is implemented as a multitude of concurrent pro-
cesses (described in detail in the following sections), each
operating continuously on the DN:

Sensing processes: each sensor is a process that adds de-
cisions and constraints to represent the real-world observa-
tions provided by the intelligent environment.

Inference process: the current DN is manipulated by the
continuous inference process, which adds decisions and con-
straints that model the current activity performed by the user
and any proactive support operations to be executed by the
actuators.

74

Actuator processes: actuators ensure that decisions in the
DN that represent operations to be executed are dispatched
as commands to the real actuators and that termination of
actuation operations are reflected in the DN as they are ob-
served in reality.

These processes add decisions and constraints to the DN in
real-time, and access to the DN is scheduled by an overall
process scheduler. Each process modifies the DN, thus trig-
gering constraint propagation.

Continuous Inference Process

SAM’s continuous inference process relies on the fact that
the DN represents at all times the current situation in the real
world, possesses two key capabilities: (1) to assess whether
the DN contains evidence of sensed values in a given time
interval; and (2) to assess whether the DN contains the re-
quirements described in a particular synchronization. Both
capabilities can be viewed as ways to support candidate de-
cisions. Supporting a decision means performing one of the
two following steps:

Unification. A decision is supported by unification if it is
possible to impose a temporal EQUALS constraint and a
VALUE-EQUALS constraint between it and another deci-
sion which is already supported. If the result of imposing
these two constraints is successful, then this is an indication
that indeed there is an interval of time in which the value
of the decision to support has been sensed in the real en-
vironment. SAM can therefore “query” the DN to assess
whether a value v has been sensed in a certain interval of
time [, I.] by attempting to support through unification a
decision (v, [, I]).

Expansion. Expanding a synchronization entails that new
(unsupported) decisions and constraints are added to the DN
as prescribed by the requirements of the synchronization.
Support for these new decisions is sought by recursively
expanding other synchronizations or unifying the new deci-
sions with others already present in the DN. Overall, expan-
sion is how SAM assesses whether the current situation of
sensor readings in the DN can support a particular hypothe-
sis: it adds an unsupported decision representing the current
hypothesis (e.g., that the human being is cooking), and tries
to support it through the domain theory and existing sensed
values in the DN.

The continuous re-planning process implemented in SAM
is shown in procedure Replan. The procedure leverages
unification and expansion to continuously attempt to sup-
port decisions which represent hypotheses on the state of a
number of monitored components. These components are
all those components for which we wish SAM to deduce
their current state. In our specific application domain, all
these components are state variables which model some as-
pect of the human user’s state. For each monitored compo-
nent, the procedure adds to the DN a decision whose value
is a disjunction of all its possible values (lines 2-3). For
instance, if the component in question is the state variable
Human described previously, then the new decision to be
added will be d%‘;‘a“ = ((CookingV Eating VInBed V

WatchingTV Vv Out), [[0, 00), [0, c0)]). This decision is
marked as un-supported (line 4), i.e., it constitutes a hypoth-
esis on the current activity in which the human user is en-
gage in. The procedure then constrains this decision to oc-
cur after any other decisions on the same component (lines
5-6). This is done in order to avoid that the new decision is
trivially supported by unification with a decision supported
in a previous call to the Replan procedure. Finally, the
procedure triggers a decision supporting algorithm which at-
tempts to support the newly added decisions by recursively
expanding synchronizations and unifying the resulting re-
quirements (line 7). In the process of supporting new deci-
sions, their values will be constrained (by VALUE-EQUALS
constraints) to take on a specific value. For instance, if the
domain theory contains a synchronization stating that the
requirements for Eating on component Human are a cer-
tain set of values on some sensor components, then the un-
supported decision is marked as supported, the unary con-
straint dﬁ;;“a“ VALUE-EQUALS Eating is imposed, and
new (un-supported) decisions on the sensor components are
added to the DN.

Procedure Replan (DN)
1 foreach c € MonitoredComponents do

Ve VviEpossibleValues(c) Vi
DN < DN U dj,,,, = (v, [Is, L))
mark dy,,,, as not supported
foreach d on component c do
L DN <~ DN U d;,,,, AFTER [0, c0) d

A kW N

C
hyp

7 SupportDecisions (DN)

If the decision supporting algorithm terminates success-
fully, the DN contains the new decisions that have been
added by the re-planning procedure, plus all those de-
cisions and constraints that implement support for these
decisions. The value of each newly supported decision
on monitored components has been constrained to be that
required by the synchronization that was used by the
SupportDecisions procedure. Since these decisions
are linked by temporal constraints to decisions on sensor
components, their placement in time will follow the evolu-
tion of the DN’s decisions on sensor components as time
progresses.

If SupportDecisions fails, the resulting DN is iden-
tical to before the re-planning procedure was started, there-
fore reflecting the fact that no new information was deduced.

Note that the continuous SupportDecisions proce-
dure is greedy, in that the first successfully applicable syn-
chronization is selected in support of current sensor read-
ings.

Sensing Processes

In order to realize the interface between OMPS and real-
world sensors in the intelligent environment, a new com-
ponent, the sensor, was developed in SAM. A sensor is
modeled in the domain for each physical sensor in the
intelligent environment. Each sensor component is pro-
vided with an interface to the physical sensor, as well as

(6]

the capability to periodically update the DN with decisions
and constraints that model the state of the physical sensor.
The process for updating the DN is described in procedure
UpdateSensorValues. Specifically, each sensor com-

Procedure UpdateSensorValues (DN, tyow)

1 d— (v,[[ls,us], [le,ue]]) € DN s.t. ue =00

Vs < ReadSensor ()

if d =null A vs # null then
DN « DN U d' = (vs, [[0, 00), [0, 00)])
DN « DN U d’ RELEASE [tnow, tnow]
DN « DN U d’ DEADLINE [tnow + 1, 00]

else if d # null A vg = null then

L DN < DN U d DEADLINE [tnow, tnow]

else if d # null A vg # null then
if v¢ = v then
L DN « DN U d DEADLINE [tnow + 1, 00]

else
DN « DN U d DEADLINE [tnow, tnow)
DN « DN U d’ = (v, [[0,00), [0, 00)])
DN « DN U d’ RELEASE [tnow, tnow)
DN « DN U d’ DEADLINE [thow + 1, 00]

R I | A U B W

L <
QAR WN =S

ponent’s sensing procedure obtains from the DN the deci-
sion that represents the value of the sensor at the previous
iteration (line 1). This decision, if it exists, is the decision
whose end time has an infinite upper bound (u.). No such
decision exists if at the previous iteration the sensor read-
ings were undetermined (d is null, i.e., there is no informa-
tion on the current sensor value in the DN). The procedure
then obtains the current sensor reading from its interface to
the physical sensor (line 2). Notice that this could also be
undetermined (null in the procedure), as a sensor may not
provide a reading at all. At this point, three situations may
occur.

New sensor reading. If the DN does not contain an un-
bounded decision and the physical sensor returns a value,
then a decision is added to the DN representing this (new)
sensor reading. The start time of this decision is anchored
to the current time ¢,y by means of a RELEASE constraint
and made to have an unbounded end time (lines 3-6). If
the DN contains an unbounded decision that differs from
the sensor reading, then the procedure models this fact in
the DN as above, and in addition “stops” the previous deci-
sion by imposing a DEADLINE constraint, i.e., anchoring
the decision’s end time to %,y (lines 9, 12—-16).

Continued sensor reading. If the DN contains an un-
bounded decision and the physical sensor returns the same
value as that of this decision, then the procedure ensures that
the increased duration of this decision is reflected in the DN.
It does so by updating the lower bound of the decision’s end
time to beyond the current time by means of a new DEAD-
LINE constraint (lines 9-11). Notice that this ensures that
at the next iteration the DN will contain an unbounded deci-
sion.

Interrupted sensor reading. If the DN contains an un-
bounded decision and the physical sensor returns no read-

ing (v is null), then the procedure simply interrupts the un-
bounded decision by bounding its end time to the current
time with a DEADLINE constraint (lines 7-8).

Actuation Processes

The inference procedure implemented in SAM continuously
assesses the applicability of given synchronizations in the
current DN by asserting and attempting to support new de-
cisions on monitored components, such as the Human state
variable presented earlier. This same mechanism allows to
obtain contextualized plan synthesis capabilities through the
addition of synchronizations that model how actions carried
out by actuators should be temporally related to recognized
activities. For instance, in addition to requiring that Cook-
ing should be supported by requirements such as “being in
the kitchen” and “using the stove”, a requirement involv-
ing an actuator component can be added, such as “turn on
the ventilation over the stove”. More in general, for each
actuation-capable device in the intelligent environment, an
actuator component is modeled in the domain. This compo-
nent’s values represent the possible commands that can be
performed by the device. In the domain, these values are
added as requirements to the synchronizations of monitored
components. As sensor components interface the real world
to represent sensor readings in the DN, actuator components
interface the real world to trigger commands to real actua-
tors when decisions involving them appear in the DN.

However, it should be noticed that robotic devices are
only partially controllable, in that we do not have strict guar-
antees on when and for how long given commands will be
executed. For this reason, actuator components also possess
a sensory capability that is employed to feed information on
the status of command execution back into the DN. As sen-
sor components, actuator components write this information
directly into the DN, thus allowing the re-planning process
to take into account the current state of execution of the ac-
tions.

Procedure UpdateExecutionState (DN, tyow)
1 D — {(v,][[ls,us], [le, ue]]) € DN : ls < tnow, Ue = 00}
2 foreach d € D do

if IsExecuting (v) then
| DN « DN U d DEADLINE [tyou + 1, 00]

3
4
5 elseif [, = [. then

6 StartExecuting (v)

7 DN « DN U d RELEASE [tnow, tnow]
8

else DN < DN U d DEADLINE [tnouw, tnow)

Actuators execute concurrently with the re-planning and
sensing operations described above. The operations per-
formed by actuators are shown in procedure UpdateEx~
ecutionState. Each actuator component first identifies
all decisions that have an unbounded end time and whose
earliest start time falls before or at the current time (line 1).
The fact that these decisions are unbounded indicates that
they have been planned for execution and their execution
has not yet terminated. The fact that their start time lies be-
fore or at the current time indicates that they are scheduled

76

to start or have already begun. For each of these decisions,
the physical actuator is queried to ascertain whether the cor-
responding command is being executed. If so, then the de-
cision is constrained to end at least one time unit beyond the
current time (lines 3—4). If the command is not currently in
execution, the procedure checks whether the command still
needs to be issued to the physical actuator. This is the case
if the earliest start and end times of the decision coincide
(because the decision’s end time was never updated at pre-
vious iterations). The procedure dispatches the command to
the actuator and anchors the start time of the decision to the
current time (lines 5-7). Conversely, if the decision’s start
and end times do not coincide, then the decision is assumed
to be ended, and the procedure imposes the current time as
its earliest and latest end time (line 8).

Case Studies in the PEIS-Home

We illustrate the use of sensor components in SAM with
four runs performed in the PEIS-Home, a prototypical intel-
ligent environment deployed at the at Orebro University (see
aass.oru.se/~peis). The environment provides ubig-
uitous sensing and actuation devices, including the robotic
table and intelligent fridge described in earlier examples.

In the first run our aim is to assess the sleep quality of a
person by tracking how many times and for how long the
user turns on his night light when he lies in bed. For this
purpose, we employ three physical sensors: a pressure sen-
sor, placed beneath the bed, a luminosity sensor placed close
to the night light, and a person tracker based on stereo vi-
sion. We then define a domain with three sensor compo-
nents and the two synchronizations shown in figure 2. Note

1) Human : InBed
DURING Location : NOPOS
EQUALS Bed : ON

2) HumanAbstract : Awake
DURING Human : InBed
EQUALS NightLight : ON

Figure 2: Synchronizations defined in our domain for the Human
and HumanAbstract components to assess quality of sleep.

that the human user is modeled by means of two distinct
components, Human and HumanAbstract. This allows us to
reason at different levels of abstraction on the user: while
the decisions taken on component Human are always a di-
rect consequence of sensor readings, synchronizations on
values of HumanAbstract describe knowledge that can be
inferred from sensor data as well as previously recognized
Human and HumanAbstract activities. The first synchro-
nization models two requirements for recognizing that the
user has gone to bed: first, the user should not be observ-
able by the tracking system, since the bedroom is a private
area of the apartment and, therefore, outside the field of view
of the cameras; second, the pressure sensor beneath the bed
should be activated. The resulting InBed decision has a du-
ration EQUAL to the one of the positive reading of the bed
sensor. The second synchronization grasps the situation in
which, although lying in bed, the user is not sleeping. The
decision Awake on the component HumanAbstract depends
therefore on the decision InBed of the Human and on the
sensor readings of NightLight.

This simple domain was employed to test SAM in our
intelligent home environment with a human subject. The
overall duration of the experiment was 500 seconds, with
the concurrent inference and sensing processes operating at
a rate of about 1 Hz. Figure 5 (a) is a snapshot of the five
components’ timelines at the end of the run (from top to bot-
tom, the three sensors and the two monitored components).

1) HumanAbstract : Lunch
STARTED-BY Human : Cooking
FINISHED-BY Human : Eating
DURING Time : afternoon

3) Human : Cooking
DURING Location : KITCHEN
EQUALS Stove : ON

5) Human : Eating
DURING Location : KITCHENTABLE
EQUALS KTRfid : DISH

2) HumanAbstract : Nap
AFTER HumanAbstract : Lunch
EQUALS Human : WatchingTV

4) Human : WatchingTV
EQUALS Location : COUCH

Figure 3: Synchronizations modeling afternoon activities of the
human user.

The outcome of a more complex example is shown in fig-
ure 5 (b). In this case the scenario contains four instantiated
sensors. Our goal is to determine the afternoon activities
of the user living in the apartment, detecting activities like
Cooking, Eating and the more abstract Lunch. To realize
this example, we define five new synchronizations (figure 3),
three for the Human component and two for the HumanAb-
stract component. Synchronization (3) identifies the human
activity Cooking: the user should be in the kitchen and its
duration is EQUAL to the activation of the Stove. Synchro-
nization (5) models the Eating activity, using both the Loca-
tion sensor and an RFID reader placed beneath the kitchen
table (component KTRfid). A number of objects have been
tagged to be recognized by the reader, among which dishes
whose presence on the table is required to assert the decision
Eating. The last synchronization for the Human component
(4) correlates the presence of the user on the couch with the
activity of WatchingTV.

Synchronizations (1) and (2) work at a higher level of ab-
straction. The decisions asserted on HumanAbstract are in-
ferred from sensor readings (Time), from the Human com-
ponent and from the HumanAbstract component itself. This
way we can identify complex activities such as Lunch,
which encompasses both Cooking and the subsequent Eat-
ing, and we can capture the fact that after lunch the user,
sitting in front of the TV, will most probably fall asleep.

Also this example was executed in the PEIS-Home. It
is worth mentioning that the decision corresponding to the
Lunch activity on the HumanAbstract component was iden-
tified only when both Cooking and Eating were asserted on
the Human component. Also it can be noted that Nap is
identified as the current HumanAbstract activity only after
the lunch is over and that on the first occurrence of Watch-
ingTV, Nap was not asserted because it lacked support form
the Lunch activity.

As an example of how the domain can include actuation
as synchronization requirements on monitored components,
let us consider the following run of SAM in a setup which

(s

includes the robotic table and autonomous fridge devices de-
scribed earlier.

1) Human : WatchingTV
EQUALS Location : COUCH
START MovingTable : DeliverDrink
3) MovingTable : DeliverDrink
AFTER Fridge : PlaceDrink
5) Fridge : PlaceDrink
MET-BY MovingTable : DockFridge
MEETS MovingTable : UndockFridge

2) MovingTable : DockFridge
MET-BY Fridge : OpenDoor

4) MovingTable : UndockFridge
BEFORE Fridge : CloseDoor

6) OpenDoor : OpenDoor
MET-BY Fridge : GraspDrink

Figure 4: Synchronizations defining temporal relations between
human activities and proactive services.

As shown in figure 4, we use abductive reasoning to in-
fer when the user is watching TV. In this case, however,
we modify the synchronization (4) presented figure 3 to in-
clude the actuators in the loop. The new synchronization
(figure 4, (1)), not only recognizes the WatchingTV activ-
ity, but also asserts the decision DeliverDrink on the Mov-
ingTable component. This decision can be supported only if
it comes AFTER another decision, namely PlaceDrink on
component Fridge (synchronization (3)). When SAM’s re-
planning procedure attempts to support WatchingTV, syn-
chronization (5) is called into play, stating that PlaceDrink
should occur right after (MET-BY) the MovingTable has
docked the Fridge and right before the undocking maneuver
(MEETS). The remaining three synchronizations — (2), (4)
and (6) — are attempted to complete the chain of support,
that is, the Fridge should first grasp the drink with its robotic
arm, then open the door before the MovingTable is allowed
to dock to it, and finally it should close the door right after
the MovingTable has left the docking position.

This chain of synchronizations leads to the presence in
the DN of a plan to retrieve a drink from the fridge and de-
liver it to the human who is watching TV. Notice that when
the planned decisions on the actuator components are first
added to the DN, their duration is minimal. Through the ac-
tuators’ UpdateExecutionState procedure, these du-
rations are updated at every re-planning period until the de-
vices that are executing the tasks signal that execution has
completed. Also, thanks to the continuous propagation of
the constraints underlying the plan, decisions are appropri-
ately delayed until their earliest start time coincides with the
current time. A complete run of this scenario was performed
in our intelligent environment and a snapshot of the final
timelines is shown in figure 5 (c).

Conclusions and Future Work

In this paper we have presented SAM, an architecture for
concurrent activity recognition, planning and execution. The
architecture builds on the OMPS temporal reasoning frame-
work, and leverages its component-based approach to realize
a decisional framework that operates in a closed loop with
physical sensing and actuation components in an intelligent
environment. We have demonstrated the feasibility of the
approach with a number of experimental runs in a real envi-
ronment with a human test subject.

OFF | oM OFF

[on [o [on] OFF | NightLight

LIVINGROOM |

NOPOS

[] wircren | Location

(a) QFF QN

OFF | Bed

null InEed

Human

null | Aalke | null

| Anake | null |Awake | HumanAbstract

0 20 40 50 B0 100 120 140 1RO 180 200 220

240

260 280 300 320 340 360

380 400 420 440 460 480 500

|| afternoon

| Time|

|| oFF | o |

OFF | Stove|

coucH | | | KIT CHEN |

EITCHENT ABLE

| | COUCH Location

(b)

NOGE] DISH

NOOE KTRfid

WatchingTV | null | Cooking |nu|l Eating

nuII| WatchingTV Human

null | Lunch

Jou] Nap | HumanAbstract|

0 20 40 [0 100 120 140 160 18O 200 220

240

260 280 300 320 340 360

380 400 420 440 460 480 500

null | GraspDrink | Openboor |

| FlaceDrink | null

| CIoseD00r|

Fridge

| | COUCH

| Location

©

null | DockFridge | null

| UndockFridge |

DeliverDrink | MovingTable

null | WatchingTV

| Human

] 20 40 [B0 100 120 140 160 180 200 220

240

260 280 300 320 340 360

360 400 420 440 460 480 500

Figure 5: Timelines resulting from the runs performed in our intelligent home using the sleep monitoring (a), afternoon activities (b) and

proactive service (c) domains.

One of SAM’s current limitations is its relatively sim-
ple depth-first search strategy. A more sophisticated re-
planning strategy would allow to take into account domains
in which more than one synchronization is applicable to
support a hypothesis, thus leading to different timelines for
the same component. These synchronizations could model,
for instance, alternative “explanations” for patterns of sen-
sor readings, or alternative plans that realize different forms
of support. Alternative synchronizations on the same val-
ues could also enable the synthesis of contingency plans
for dealing with actuator execution failures. However, this
would inevitably affect the performance of the re-planning
procedure, which we have purposefully kept simple in order
to maintain re-planning time within the limit of acceptable
sampling rates. A first step in the direction of obtaining a
performant re-planning procedure is presented in (Ullberg,
Loutfi, and Pecora 2009), which details the performance as
well as completeness and correctness proofs of SAM’s ac-
tivity recognition functionality.

Acknowledgements. The Authors wish to thank Alessan-

dro Saffiotti for his support as well as the anonymous re-
viewers for their helpful comments.

References

Allen, J. 1984. Towards a general theory of action and
time. Artificial Intelligence 23(2):123-154.

Cesta, A.; Cortellessa, G.; Giuliani, M.; Pecora, F.; Scopel-
liti, M.; and Tiberio, L. 2007. Caring About the User’s
View: The Joys and Sorrows of Experiments with People.
In ICAPSO7 Workshop on Moving Planning and Schedul-
ing Systems into the Real World.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artif. Intell. 49(1-3):61-95.

78

Dousson, C.; Gaborit, P.; and Ghallab, M. 1993. Situation
recognition: Representation and algorithms. In Proc. of
13th Int. Joint Conf. on Artificial Intelligence (IJCAI), 166—
174.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231-271.

Jakkula, V.; Cook, D.; and Crandall, A. 2007. Temporal
pattern discovery for anomaly detection in a smart home. In
Proc. of the 3rd IET Conf. on Intelligent Environments(IE),
339-345.

Knight, R.; Rabideau, G.; Chien, S.; Engelhardt, B.; and
Sherwood, R. 2001. Casper: Space exploration through
continuous planning. IEEE Intelligent Systems 16(5):70—
75.

Pollack, M.; Brown, L.; Colbry, D.; McCarthy, C.; Orosz,
C.; Peintner, B.; Ramakrishnan, S.; and Tsamardinos, I.
2003. Autominder: an intelligent cognitive orthotic sys-
tem for people with memory impairment. Robotics and
Autonomous Systems 44(3-4):273-282.

Ullberg, J.; Loutfi, A.; and Pecora, F. 2009. Towards Con-
tinuous Activity Monitoring with Temporal Constraints. In
Proc. of the 4th Workshop on Planning and Plan Execution
for Real-World Systems at ICAPS09. (to appear).

Vilain, M.; Kautz, H.; and van Beek, P. 1989. Constraint
propagation algorithms for temporal reasoning: A revised
report. In Weld, D., and de Kleer, J., eds., Readings in
Qualitative Reasoning about Physical Systems, 373-381.
Morgan Kaufmann.

Wu, J.; Osuntogun, A.; Choudhury, T.; Philipose, M.; and
Rehg, J. 2007. A Scalable Approach to Activity Recogni-
tion Based on Object Use. In Proceedings of ICCV 2007.
Rio de Janeiro, Brazil.

Detecting humans activities in video and still images

Hlavac, Vaclav
Czech Technical University

The method for recognizing human actions based on pose primitives will be
presented. In learning mode, the parameters representing poses and activities
are estimated from videos. In run mode, the method can be used both for
videos or still images. For recognizing pose primitives, we extend a histogram
of Oriented Gradient (HOG) based descriptor to better cope with articulated
poses and cluttered background. Action classes are represented by histograms
of poses primitives. For sequences, we incorporate the local temporal context by
means of n-gram expressions. Action recognition is based on a simple histogram
comparison. Unlike the mainstream video surveillance approaches, the proposed
method does not rely on background subtraction or dynamic features and thus
allows for action recognition in still images. (Joint work with Chritian Thurau)

79

Context and place categorization for assistive robotics

Jim Little
Computer Science
University of British Columbia

Online annotated image databases are increasingly common. We develop a
spatial-semantic modeling system that learns object-place relations from such
databases, and then apply these relations to real-world tasks. In the home such
a system can label novel scenes with place information, as we demonstrate on
test scenes drawn from the same source as our training set. We have designed
our system for future enhancement of a robot platform that performs state-of-
the-art object recognition and creates object maps of realistic environments. In
this context, we demonstrate the use of spatial-semantic information to perform
clustering and place labeling of object maps obtained from real homes and
offices. Then place information feeds back into the robot system to inform an
object search planner about likely locations of a query object.

80

Modeling the Observed Behavior of a Robot

through Machine Learning

INRIA

Artificial systems are becoming more and more complex, almost as complex in some cases as
natural systems. Up to now, the typical engineering question was “how do I design my system to
behave according to some specifications”. However, the incremental design process is leading to
so complex artifacts that engineers are more and more addressing a quite different issue of “how
do I model the observed behavior of my system”. Engineers are faced with the same problem as
scientists studying natural phenomena. It may sound strange for an engineer to engage in
observing and modeling what a system is doing, since this should be inferable from the models
used in the system's design stage. However, a modular design of a complex artifact develops only
local models that are combined on the basis of some composition principle of these models; it
seldom provides global behavior models.

These general remarks hold in computer sciences throughout several examples of complex
systems, ranging from multi-core processors to internet networks. This talk will illustrate the
global approach of observation and modeling on the problem of understanding and predicting the
behavior of a mobile robot.

Robots are becoming very complex, with a large number of sensory-motor functions combining
dozens of actuators and sensors, offering the capabilities of many navigation and manipulation
skills, and allowing the execution of sophisticated tasks. The design of these robots usually relies
on some reasonable assumptions about the environment and does not model explicitly changing,
open-ended environments with human interaction. Hence, a precise observation model of a given
robot behavior in a varying and open environment can be essential for understanding how the
robot operates within that environment, for predicting its behavior and for improving it.

Machine learning techniques are developed for acquiring the behavior models we are seeking.
Three different approaches will be illustrated. In the first approach we learn from experience very
robust ways of performing a high-level task such as “navigate to”. The designer specifies a
collection of skills represented as hierarchical tasks networks, whose primitives are sensory-
motor functions. The skills provide different ways of combining these sensory-motor functions to
achieve the desired task. The specified skills are assumed to be complementary and to cover
different situations. The relationship between control states, defined through a set of task-
dependent features, and the appropriate skills for pursuing the task is learned as a finite
observable Markov decision process. This MDP provides a general policy for the task; it is
independent of the environment and characterizes the abilities of the robot for the task.

In the second and third approaches, we learn from observations and we model as stochastic
automata the behavior of the robot in performing a given task. We use two different techniques:
= Hidden Markov models, where part of the learning problems are how to acquire the finite

81

observation space and the finite state space;
= Dynamic Bayes networks, that can be less readable from a user's point of view, but that are
used to improve online the robot behavior.

The talk will survey these approach, the tradeoffs, advantages and complexity of each approach,
how the robotics experiments have been carried out, and the obtained results. The details of this
research pursued jointly with several colleagues and PhD students can be found out in particular
in the following publications.

M.FOX, M.GHALLAB, G.INFANTES, D.LONG. Robot introspection through learned hidden
Markov models. Artificial Intelligence, 170(2): 59-113, Feb. 2006

B.MORISSET, M.GHALLAB, Learning how to Combine Sensory-Motor Functions into a
Robust Behavior. Artificial Intelligence, 172(4-5): 392-412, March 2008

G. INFANTES, F. INGRAND, M. GHALLAB, Learning Behaviors Models for Robot Execution
Control. Proc. 17th European Conference on Artificial Intelligence ECAI 2006, Aug. 2006

G.INFANTES , FINGRAND , M.GHALLAB. Learning behavior models for robot execution
control. 16th International Conference on Automated Planning and Scheduling (ICAPS),
Anableside (GB), 6-10 June 2006, pp.394-397

82

Combining qualitative modelling and trial-and-error learning for skill
acquisition

Sammut, Claude
Univ. of New South Wales

Pure reinforcement learning does not scale well to domains with many degrees of
freedom and particularly to continuous domains. We introduce a hybrid method
in which a symbolic planner constructs an approximate solution to a control
problem. Subsequently, a numerical optimisation algorithm is used to refine the
qualitative plan into an operational policy. The method is demonstrated on the
problem of learning a stable walking gait for a bipedal robot.

83

Attentive Monitoring and Adaptive Control in Cognitive Robotics

E. Burattini, A. Finzi, S. Rossi and M. Staffa
Universita’ degli Studi di Napoli ”Federico 11" - Italy.
email: {ernb, finzi, srossi}@na.infn.it, mariacarla.staffa@unina.it

Abstract

In this work, we present an attentional system for a robotic
agent capable of adapting its emergent behavior to the sur-
rounding environment and to its internal state. In this frame-
work, the agent is endowed with simple attentional mecha-
nisms regulating the frequencies of sensory readings and be-
havior activations. The process of changing the frequency
of sensory readings is interpreted as an increase or decrease
of attention towards relevant behaviors and particular aspects
of the external environment. In this paper, we present our
framework discussing several case studies considering incre-
mentally complex behaviors and tasks.

Introduction

An autonomous robotic agent is expected to operate in com-
plex dynamic environments by continuously monitoring the
internal processes and the external environment. The robot
executive system is to coordinate different low-level strate-
gies (such as obstacles avoidance, walls follow, gates cross-
ing, etc.) with high-level activities (such as achieving a goal,
picking up an object, etc.), giving them, from time to time,
different priority values both for allocation of resources and
for action selection processes. The low-level activities are
usually safety critical and are managed in a reactive way. On
the other hand, high-level activities are generally achieved
by processing more complex tasks, and, therefore, require
high computational costs for both the inputs processing and
data acquisition from the environment.

In this context, attentional mechanisms balancing sensory
elaboration and actions execution can play a crucial role. In
particular, attentional mechanisms have two main roles: di-
rect sensors towards the most salient sources of information;
filter the available sensory data to prevent unnecessary in-
formation processing. As a result of the application of these
mechanisms, the robot behavior should be enhanced: the
robot is to react faster to task-related or safety critical stim-
uli because processing resources are focused on not relevant
stimuli.

Attentional mechanisms applied to autonomous robotic
systems have been proposed elsewhere (e.g. (Mitsunaga and
Asada 2002; Carbone et al. 2008; Frintrop, Jensfelt, and
Christensen 2006)), mainly for vision-based robotics. In

84

contrast, in our work, we are interested in artificial atten-
tional processes suitable for the executive control. In partic-
ular, our aim is to provide a kind of supervisory attentional
system (Norman and Shallice 1986; Cooper and Shallice
2000) capable of monitoring and regulating multiple concur-
rent behaviors at different level of abstraction. The notion of
divided attention (Kahneman 1973) suggests that a limited
amount of attention is allocated to tasks, with the resources
involved in multi-task performances, and can be available in
graded quantity. In an artificial setting, this can be obtained
by introducing suitable scheduling mechanisms.

In this work, we present a behavior-based control ar-
chitecture endowed with attentional mechanisms which are
based on periodic releasing mechanisms of activations (Bu-
rattini and Rossi 2007; 2008). In this context, each behavior
is equipped with an adaptive internal clock that regulates the
sensing rate and the resulting action activations. The pro-
cess of changing the frequency of sensory readings is inter-
preted as an increase or decrease of attention towards rele-
vant behaviors and particular aspects of the external environ-
ment: the higher is the frequency, the higher is the resolution
at which a process is monitored and controlled. Here, we
present our framework providing several case studies where
we discuss the effectiveness of the approach considering its
scalability and the adaptivity with respect to different envi-
ronments and tasks.

Attentive Executive Control

Our goal is to develop a behavior-based control system en-
dowed with attentional mechanisms which focus sensory ac-
quisitions and processing and modulates behaviors activa-
tions. The executive system should be enhanced with a su-
pervisory attentional system (Norman and Shallice 1986) to
suitably combine delibertive and reactive activities, moni-
toring and regulating multiple concurrent behaviors (Kah-
neman 1973). Our working hypothesis is that attentional be-
haviors are affected by internal self-regulating mechanisms
and external sources of salience. The attentional global be-
havior should emerge from the interrelation of the atten-
tional mechanisms associated with each single behavior.

Design Principles

The attentional control system we consider in this work
combines the following design principles:

| Clock Releaser |
‘P(Pb)
Perceptual IMotor

inpui | o(t) Schema o(t) "l Schema | output

BEHAVIOR

Figure 1: Each behavior is composed of an adaptive clock, a
releasing function, a perceptual schema and a motor schema.

e Behavior-based control system. The attentional control
is obtained from the interaction of a set of multiple par-
allel attentional behaviors working at different levels of
abstraction.

o Attentional monitoring. Attentional mechanisms are to
focus monitoring and control activities on relevant inter-
nal behaviors and external stimuli.

o [nternal and external sources of salience. The sources of
salience are behavior and task dependent; these can de-
pendent by either internal states (e.g. hunger, fear) or ex-
ternal stimuli (e.g. obstacles, unexpected variations of the
environment).

e Adaptive sensory readings. For each behavior, the process
of changing the rate of sensory readings is interpreted as
an increase or decrease of attention towards a particular
aspect of the environment the robotic system is interacting
with: the higher is the frequency, the higher the resolution
at which an activity is monitored and regulated.

o Emergent attentive behavior. The overall attentional be-
havior should emerge from the interrelations of the atten-
tive mechanisms associated with the behaviors.

Attentive Monitoring in the AIRM Architecture

In (Burattini and Rossi 2007; 2008), we connected the con-
cept of IRM (Innate Releasing Mechanisms) (Lorenz 1991;
Tinbergen 1951) to the concept of periodical activations of
behaviors (Pezzulo and Calvi 2006; Stoytchev and Arkin
2001; 2004) introducing the Adaptive Innate Releasing
Mechanisms (AIRMs). An AIRM is a releasing mechanism
endowed with an internal adaptive clock.

In Figure 1 the AIRM is represented through a Schema
Theory representation (Arbib 1998). Each behavior is char-
acterised by a schema composed of a Perceptual Schema
(PS), which elaborates sensor data, a Motor Schema (MS),
producing the pattern of motor actions, and a control mech-
anism, based on a combination of a clock and a releaser. In
particular, the releaser enables/disables the activation of the
MS, according to the sensor data o(¢). For example, the
presence of a predator releases the motor schema of an es-
cape behavior. Instead, the adaptive clock is active with a
base period and it enables/disables data flow 0,.(¢) from sen-
sors to PS. Therefore, when the activation is disabled, sensor

85

data are not processed (yielding to sensory readings reduc-
tion). Furthermore, the clock regulates its period, hence the
frequency of data processing, using a feedback mechanism
on the sensor data o (t).

We assume a discrete time model - with the machine cy-
cle as the time unit - where each behavior is endowed with a
clock regulating its own activations. This regulation mecha-
nism, that we call monitoring strategy, is characterized by:

e An initial period p) called base period, ranging in an in-
terval [pmina pmax];

e An updating function f(t) : R" — R that changes the
clock period p, according to the parameters the behavior
depends on (sensors used, internal state, special features
of the environment, and the behavior goal).

e A trigger function p(¢, p;—1), which enables/disables the
data flow 0,(¢) from sensors to PS, at each p time unit.
More formally:

_J1, iftmodp,—1 =0
p(taplfl) - {0’ otherwise (1)

e Finally, a support function ¢(7(¢)) : R — N maps the val-
ues generated by the updating function f(¢) in a range
of allowed values for the period [pmin, Pmax]- More pre-
cisely:

Pmax; ifx > pmax
(p(x) = LxJ) lfpl'm'n <X < Pmax (2)
Pmin ifx < pin

Now, starting from the clock period at time 0,

Po = Db with # = 0 and by € [pmim pmax}

The clock period at time ¢ is regulated as follows:

=Pt p 1) x0(f(1) + (1 =p(t,pr1)) ¥ Pt (3)

That is, if the behavior is disabled, the value of the period
calculated at time 7 remains unchanged at the last computed
value p;_;. Instead, when the value of trigger function is
equal to 1, the behavior is activated and, subsequently, its
activation period changes according to the ¢ (f(¢)) function.

Attentive Monitoring and Control. The monitoring strategy,
i.e. the process of changing the clock sampling rate, can be
associated with the increase or decrease of attention towards
a particular behavior. Namely, the more salient is the behav-
ior, the higher is the clock frequency and the resolution at
which a behavior is monitored and regulated. Notice that,
the frequencies of the adaptive clocks provide also a divided
attention mechanism: the monitoring activity is distributed
over the concurrent behaviors depending on the frequencies
of their associated clocks.

Following this approach, we can obtain different atten-
tional mechanisms associated with each behavior once we
define the associated monitoring strategy. Therefore an at-
tentive behavior will result from the combination of the the
initial period pjp, the permitted values range [pmin, Pmax]
and the updating policy f(¢). In order to obtain a good

monitoring strategies, it is necessary to balance the cost of
monitoring a behavior against the risk of acquiring inaccu-
rate/degraded information about the environment.

These attentive monitoring strategies are introduced to
provide the following main benefits:

o the periodical activation can reduce the number of activa-
tions of the perceptive system causing a relative decrease
in the computational burden, and improving performance
of the entire system;

e the use of adaptive activation mechanisms allows us to
obtain a behavior that adapts itself to the specific environ-
mental conditions (e.g. the robot reads sensors more often
if there is a dangerous situation and less often in cases of
a safe operational situation).

Example. Consider the example of a person who is crossing
a street. Depending on the traffic intensity, this person has
to pay more or less attention while crossing the street, turn-
ing his head left and right. Here, the monitoring frequency
should be regulated according to the speed of the passing
cars. The pedestrian has to react according not only to the
environmental change (a car passing on the street) but also
to the speed at which this happens (fast or slow cars). In-
tuitively, we can associate the speed of the pedestrian and
his monitoring activity to the speed of the passing car. Fol-
lowing this approach, in (Burattini and Rossi 2008), we pro-
vided an example of a robot whose task was to cross a street
avoiding moving obstacles. In this case, the updating policy
has a frequency that is directly proportional to the speed of
the moving obstacles: the higher the speed, the smaller the
sampling period.

Case Studies Overview

In this section, we present and discuss our framework de-
ployed in different scenarios and setting, both in simulation
and in the real world, from simple scenarios to more com-
plex settings. Our aim is to discuss our approach considering
its effectiveness efficiency, adaptability (in different scenar-
i0s), and scalability (considering increasingly complex be-
haviors and tasks).

For the simulated experiments we used the Stage tool of
the Player project (Gerkey, Vaughan, and Howard 2003),
while for the real one we used he PFIONEER 3DX robotic
platform Active Media Robotics, endowed with a blobfinder
camera, and sonars.

Conflicting tasks

In previous work (Burattini and Rossi 2010;
Burattini et al. 2010), we investigated the application
of the AIRM attentional mechanisms in simple cases of
conflicting behaviors. In the following we provide an
overview of two scenarios presented in (Burattini and Rossi
2010) and (Burattini et al. 2010) respectively.

Emergent Action Selection in Conflicting Tasks. In (Burat-
tini and Rossi 2010), we describe a simple case study in-
volving two conflicting attentive behaviors: ESCAPE, rep-
resenting predator avoidance, FIND_FOOD, representing the

86

Figure 2: Conflicting tasks: food and predator.

search for food. FIND_FOOD has an updating policy that de-
pends on the risk of starvation, and it is regulated by a linear
time-dependent function representing hunger: the higher the
hunger, the higher the attention towards the food. ESCAPE
changes its clock period following the Weber-Fechner law
of perception which is used to represent fear: the higher the
fear, the higher the attention towards the predators. When
FIND_FOOD is enabled and the robot perceives a green ob-
ject (representing food), it activates a movement towards the
food. When the ESCAPE is enabled and the robot perceives
a red object (representing a possible threat), it activates a
movement opposite to the threat and a velocity inversely
proportional to the clock period.

When the robot encounters a red object close to a green
object (see Figure 2) we have a conflicting behavior. In
this case, the attentional mechanisms implemented with
the adaptive clocks allow to balance the trade off between
the risk of predation and the risk of starvation. This can
be obtained avoiding the introduction of explicit action
selection mechanisms. Indeed, if the threat stand still, as
soon as the risk of starvation increases more than the value
of the ESCAPE clock, the robot starts moving towards the
food, escaping in the case an abrupt movement of the threat.
The combination of these two behaviors, elicited by the
risk of starvation and the risk of predation, is an oscillating
movement that will lead, eventually, to reach the position of
the food.

Parallel Execution of Conflicting Task. Inspired by studies
(Patten et al. 2004; Harbluk, Noy, and Eizenmann 2002)
on cognitive distraction while driving (i.e., talking over a
mobile phone), (Burattini et al. 2010) considers a case
study including two behaviors that, although conflicting, can
be simultaneously carried on. (Harbluk, Noy, and Eizen-
mann 2002) shows that drivers, under a high cognitive load,
execute less saccadic movements consistently with an in-
crease of fixation time and a smaller exploration of the visual
field. These results suggest that parallel tasks can be accom-
plished, but the resources allocated to each task are dynami-
cally distributed according to environmental conditions and
to cognitive and physical capabilities.

To investigate our framework in an analogous setting, in
(Burattini et al. 2010), we designed the case study of a mo-

Figure 3: The hallway domain.

bile robot that is to run across a hallway in the shortest time
possible, while counting green blobs distributed on walls
and arranged into clusters (Burattini et al. 2010) (see Fig-
ure 3). The two tasks of running and counting conflict on
the speed of the robot. Indeed, the first task requires a high
speed, while the second require a slow speed to effectively
count all the blobs.

In order to accomplish the two tasks we implemented
a robotic system endowed with three behaviors: RUN,
SEARCH, and SCAN. SEARCH looks for green blobs on the
left and right wall. This behavior works with a maximal
frequency until at least one green blob is detected, then the
period is increased proportionally to the amount of green
blobs. SCAN counts the blobs once a salient area is iden-
tified and the clock period is proportional to the SEARCH
activation frequency. RUN sets the speed of the robot that is
in inversely proportional to the period. The clock period of
the RUN is directly proportional to the period of SEARCH.

The observed system behavior is the following. The robot
starts running with a medium speed, looking for green ob-
jects on the walls of the corridor. When the system detects
a cluster of blobs, the period of SCAN decreases, allowing
the robot to slow down its speed and to count the objects it
detects. Similarly, if no green objects are detected, the pe-
riod of the RUN become smaller, allowing a more accurate
exploration (moving several times the camera looking for
objects), and increasing the system speed to reach the end of
the corridor as soon as possible.

In (Burattini et al. 2010), we compared the system perfor-
mances with respect to an analogous system with non adap-
tive clocks (i.e. activation at each machine cycle). The ex-
periments show that the proposed architecture performs bet-
ter compared to the non attentional setting in terms of: num-
ber of detected blobs (effectiveness); tradeoff between time
and counted blobs (cost/benefit); error of detection (preci-
sion); less activations of the perceptual schema (efficiency).
The attentive system is effective in counting blobs because it
can coordinate and modulate speed and pan-tilt control, fo-
cusing the visual exploration on the region of interest. The
overall attentional coordination increases the time needed to

87

Releaser
Dbstade Seen

| OBSTACLES

Releaser
Battery Seen

T

ANOID

Cock
Aol o

[

MOVE_TO_BATTERY @
Cock Releaser
Alaglf T Low Battery
o
= SEARCH! BATTERY (_s)

Motor Action

Figure 4: Control architecture.

accomplish the task, but this additional time is spent in the
counting phase, effectively trading off between time and pre-
cision. Basically, the system can modulate the activation fre-
quencies on the basis of the available resources and external
conditions. Indeed, using the adaptive clocks, the number
of behaviors activations substantially decreases compared to
the case where each behavior is enabled at each machine cy-
cle, and this results in a substantial gain in performances.

Foraging domain

In this scenario, we consider a robot whose aim is to ex-
plore a dynamic and unknown environment avoiding obsta-
cles and seeking sources of energy to recharge its batteries
in a fixed amount of time.

In this scenario, we evaluated the performances of our at-
tentive system with respect to the performances of analogous
behavior-based systems not equipped with adaptive clocks.
In particular, to better assess the gain due to the attentional
mechanisms, we compared the system with respect to two
different versions of the control system:

(a) a cautious version of the system, that we call without
clocks (STD): where each behavior can be activated at
each machine cycle, depending on the releasing function
(as in a standard non adaptive behavior-based architec-
ture);

(b) a brave version of the system with periodic clocks: where
behaviors are associated with periodic, but fixed, activa-
tion periods. In this case, each behavior has its own clock
without attentional adaptivity.

In this setting, we want to prove the scalability of the at-
tentive mechanism with respect to the system complexity
(system with more behaviors) and different environmental
conditions (obstacles configurations). Our aim here is to
demonstrate the ability of our attentive monitoring strategies
to regulate the resources distribution among the different be-
haviors.

Behavior-based control. The robot behavior is ob-
tained as the combination of the following primitive be-
haviors (see Figure 4): AVOID, SEARCH_BATTERY,
MOVE_TO_BATTERY.

The AVOID behavior is responsible for obstacle avoid-
ance. This behavior is safety critical and needs an updating
policy for its adaptive clock which is able to timely react to
dangerous situations. In this case, the AVOID clock period
changes according to the first derivative of the input percept.
More formally, the AVOID clock period is updated accord-
ing to (3), with the following updating function:

Aavoid * Pr—1
t)=\—F7"—
S0 <Ao(t))

where Ao (t) is equal to 0(¢) — 0 (¢ — p;—1) that is the differ-
ence between the actual data perceived by the sensor o(7)
and date received at the previous sampling time o (¢t — p,—1).
In this way, the AVOID activations frequency adapts itself
not only to the environmental changes, but also to the speed
at which these changes take place. Oy0iqy and kgypiq are two
attenuation parameters. These two parameters are context
dependent and can be tuned by a suitable learning algorithm.

The AVOID behavior is responsible not only for the robot
orientation, but also for its speed variations. In particular,
speed is related to the period according to the following re-
lation:

max_speed X p;
speedy = —————
pmax
where speed; is the current speed, max_speed is the maxi-
mum value allowed for the robot speed. The range of values
for the speed is [0,0.3]m/s. In this way, if the period is re-
laxed, the robot moves at a maximum speed, otherwise, it
slows proportionally to the decrease of the period. This al-
lows the agent to avoid obstacles in a smooth way (see the
next paragraphs for details).

The SEARCH_BATTERY behavior provides a random
search of sources of energy in the environment. The fre-
quency of this behavior activation is related to the level of
charge of the robot’s battery. The lower the battery, the
greater the activity of the search behavior. Since we assume
that the energy need is represented by a function e(¢) that
grows with time, the updating function can be defined as
follows: P

search
f(t) e(t) + hseurch
where kgeqren and hgeqren are two context dependent parame-
ter to be suitably tuned by a learning algorithm. The output
of this behavior is a random pattern of orientations for the
motor action.

The MOVE_TO_BATTERY behavior guides the agent to-
wards the battery when this has been identified. So the re-
leaser is activated by battery detection using the blob cam-
era. Analogously, to the previous updating function, the pe-
riod of this behavior activation also depends on the level of
the battery charge and can be defined as:

km()V@
f(t) - e(t) + hmove

88

(= e e s [SRR]

] E B = =
L]]] b
] E B = =
L] | . m mE e« ® =
]] | | .
=] = 1
]] [| [| [|

(a) Sparse scenario (b) Dense scenario

Figure 5: Map of the environment in two scenarios. En-
ergy sources and obstacles are, respectively, the small red
boxes and the big green boxes. The robot is the blue rounded
square at the left bottom.

Namely, the adaptive clock period is regulated by a time-
dependent function that represents the agent need of energy.
If the releaser is on and the agent can perceive the bat-
tery, the output will be a movement towards it, otherwise
the agent will relies on the SEARCH_BATTERY behavior.
The trajectory towards the battery is calculated with respect
to the centroid of the red blob, which identifies the battery
charge in the scene.
Testing Scenarios. The robotic system works in a foraging
domain characterized by an area of 20m x 20m (400 m?). In
this environment we considered two possible configurations:
(1) a sparse scenario with few obstacles (Figure -(a)) and (2)
a dense scenario with many obstacles (Figure -(b)). The size
of the robot with respect to the environment is 0.2 m x 0.1 m
(0.2 m?). Obstacles are represented by a green square (0.7m
x 0.7 m), while the energy source by red square in size 0.3
mx 0.3 m. We performed the experiments in simulation us-
ing the Stage tool.

In these scenarios, we considered the system perfor-

mances by incrementally adding behaviors and tasks.
From only one behavior (AVOID) to a combination
of three behaviors (AVOID, SEARCH_BATTERY, and
MOVE_TO_BATTERY). For each setting, we collected the
data of 10 runs.
Avoiding Obstacles. First of all, we considered a robot
equipped with the AVOID behavior, whose task is to safety
navigate into the environment with obstacles, for a fixed in-
terval of time (5 minutes). This test has been performed in
both the sparse and dense scenarios.

In Table 1, the results of the attentive system are compared
with respect to the caution version (case (a)), without clocks,
and brave version (case (b)), with periodical clocks.

The collected parameters are: the number of activations of
the avoid behavior, the number of possible dangerous situa-
tion (minimum distance from the obstacle detected by sonar
less then 0.3m), and the average speed of each run.

In Table 1, we see that both in the case of sparse and dense
obstacles, the number of the different behaviors activations
is radically reduced in the case of the attentive system. Less
behavior activations determines a reduction in the computa-

\ | AVOID | dangers [speed (m/s)]

avg | st.dev | avg | st.dev avg | stdev
SPARSE adaptive 403 18| 6,8 6,7 || 0,2874 | 0,0045
SPARSE periodic 621 14243 | 274 | 0,2886 | 0,0053
SPARSE without clock | 1203 4 0 0 || 0,2078 | 0,0312
DENSE adaptive 476 30| 3.6 5,5 || 0,2696 | 0,0075
DENSE periodic 625 31453] 498 || 0,2748 | 0,0136
DENSE without clock | 1279 25 0 01 0,1704 | 0,0118

Table 1: Attentive, Periodic and STD architectures endowed with the AVOID behavior and compared in the sparsity and density
scenario.

tional time spent for sensory data acquisition and processing.

Furthermore, these results show that by improving the
complexity of the environment we do not lose the benefits
of the attentive setting in term of low activations and high

average speed. ar
The results obtained with periodic clocks represent a At
medium case. Indeed, the periodic setting reduces the
behavior activations with respect to the setting without 2
clocks, however, without adaptability we cannot ensure T e—— L L
the robot safety (note the increment of possible dangerous 0 s s T P L
. 0 20 40 60 80 100 120 140 160 180 200
situations in the case of periodic clocks). o4r =
0.3
Avoiding Obstacles and Reaching a Source of Energy. In 2 ool L /
a second set of tests, we enhanced the functionality of B
the control system by adding the SEARCH_BATTERY and o1r
MOVE_TO_BATTERY behaviors. Here, the robot task is to O 0 a0 e s o a0 a0 ie s 200
safety navigate the environment trying to reach the source [W vy
of energy according to its needs in a fixed amount of time. | | | | | | | | | || ||| ||| ||| ||| ||| ||| ||| ﬁ
The amount of time chosen for the experiments is 3 minutes. 0 20 40 0 8 100 120 140 160 180 200
As before, we compared the performances of the three archi- machine clock
tectures both in the sparse and in the dense environment. (a) Attentive avoidan
In Table 2, in addition to the data presented in the previous a) Allentive avoidance
test, we show also the average number of sources of energy
reached. T
Differently from previous case, the number of st \ ’
MOVE_TO_BATTERY activations is minimal with a pe- €2l . i
riodic system, however, here we have also a decrease in n SN A
the average number of batteries reached. This happens e
because the MOVE_TO_BATTERY behavior is responsible qu 20 40 60 80 100 120 140 160 180 200
of directing the robot toward the source of energy, hence, '
the smaller the number of the activations the lower the 03
chance of finding battery and the precision of the robot £ o2f
maneuvers during the battery approach. Moreover, in the oal
periodic setting, the number of possible dangers grows .

dramatically with respect to the attentive one, where we find 20 40 60 80 100 120 140 160 180 200

more sources of energy and less dangerous situations.
IRV

If we compare the attentive architecture with respect to

the one without clocks, we see less activations (Table 2), 0 20 40 60 B0 100 120 140 160 180 200
more energy found, and less crashes despite the average
speed the robot remains high. This means that the attentive (b) Non-adaptive avoidance
robot can reach its goals earlier with less effort.
Moreover, the attentive behavior appears smoother and Figure 6: Comparing avoidance behaviors.

more natural then the one of the non adaptive versions; this
also affects safety. For example, in the attentive case the
agent can avoid obstacles in a smooth way (Figure 6-(a)),
because the AVO 1D behavior, responsible for the speed vari-

89

AVOID MOVE_TO.B | SEARCH.B dangers speed (m/s) energy
(S=Sparse/D=Dense) avg | st.dev avg | st.dev avg | st.dev avg | st.dev avg | st.dev | avg | st.dev
S adaptive 310,7 104 | 1326 | 67,0 | 452 511 394 | 2580282 | 0,003 | 1,1 0,6
S periodic 5602 | 624 | 17,5 37,0 | 1136 | 228 | 1369 | 77,1 | 0,167 | 0,003 | 0,2 0,4
S without clock 968,8 | 69,8 | 4178 | 197,0 302 | 101,7 | 87,7 | 409 | 0,175 | 0,012 | 1,9 0,7
D adaptive 330,3 6,8 | 250,5 | 1144 | 32,6 70 | 152 9,9 | 0,238 | 0,018 | 0,8 0,4
D periodic 6052 | 1751 | 287 | 594 | 939 | 29,1 72 | 111,4 | 0,162 | 0,007 | 0,4 0,8
D without clock 1054 | 43,9 | 106,5 | 50,5 | 408,2 | 1249 | 49,5 15,2 [0,169 | 0,021 | 1,1 0,6

Table 2: Attentive, Periodic and STD architectures endowed with three behaviors and compared in the sparsity and in the dense

scenarios.

ations, can modify the robot speed proportionally to the rele-
vance of the situation. Instead, in the non-adaptive case, the
speed is very high if there is no danger, very low otherwise;
this produces drastic speed variations (Figure 6-(b)) that can
determine unsafe behaviors.

Related Works

Attention-based control is an emerging issue, in particu-
lar for vision-guided mobile robots. Several approaches
in literature address the problem of feature extraction to
support task execution (Minato and Asada 2001), localiza-
tion, mapping, and navigation (Mitsunaga and Asada 2002;
Frintrop, Jensfelt, and Christensen 2006; Carbone et al.
2008). For instance, in (Minato and Asada 2001) an attentive
behavior is learned by pairing actions and image features.

Mechanisms for executive and divided attention in robot
execution monitoring are less explored. In (Garforth,
McHale, and Meehan 2006), the authors investigate exec-
utive attention in mobile robotics tasks proposing the de-
ployment of a supervisory attentional system inspired by
(Norman and Shallice 1986). Concurrent tasks interacting
with the attentive processes are considered in (Wasson, Ko-
rtenkamp, and Huber 1999) where we find a robot architec-
ture integrating active vision and tasks execution. However,
here divided attention is not considered while attentive and
goal-directed behaviors are integrated and coordinated using
a perceptual memory.

Closely related to our system, in (Stoytchev and Arkin
2001) Stoytchev and Arkin propose an hybrid architecture
combining deliberative planning, reactive control, and mo-
tivational drives. In this context, the internal state is repre-
sented by motivational variables affecting action and percep-
tion. Analogously to our framework, periodic activations of
behaviors as cicardian rhythms and time-dependent motiva-
tional processes are deployed, however, here internal clocks
are not directly used for attention selection and behavior
modulation.

Other authors dealt with flexible/adaptive behavior real-
ized through timed activations. For example, (Pezzulo and
Calvi 2006) presented a parallel architecture focused on the
concept of activity level of each schema which determines
the priority of its thread of execution. A more active percep-
tual schema can process the visual input more quickly and
a more active motor schema can send more commands to
the motor controller. However, while in our approach such
effects are obtained through periodic activation of behav-

90

iors, in (Pezzulo and Calvi 2006) the variables are elaborated
through a fuzzy based command fusion mechanism.

Our attentive sampling can be also related to flexible
scheduling for periodic tasks in real-time systems (Buttazzo
et al. 2002; Beccari, Caselli, and Zanichelli 2005). Here,
analogously to our system, period modulation is exploited
to degrade computation and keep balanced the system load.
For example in (Buttazzo et al. 2002), the authors propose
an elastic model to decide how to change the sampling pe-
riod associated with a task. Similar techniques can be in-
corporated in our framework, however, in our case sampling
rate depends not only on the computational load, but also
on salience due to environmental changes, motivations, and
goals.

Conclusions and Future Work

In this paper, we illustrate an attention-based control archi-
tecture for a robotic system capable of adapting its emer-
gent behavior to the surrounding environment and to its in-
ternal state. While attention-based robot control has been
already considered in literature, mainly for vision-based
robots, mechanisms for executive and divided attention in
robot execution monitoring are less explored. In the context
of a behavior-based executive system, we introduced simple
attentional mechanisms which are based on the periodic re-
leasing mechanisms of activations introduced by (Burattini
and Rossi 2007; 2008).

In the proposed attentional system, each behavior is
equipped with an adaptive clock and the process of chang-
ing the frequency of sensory readings is interpreted as an
increase or decrease of attention towards relevant behaviors
and particular aspects of the external environment.

To validate our approach, we experimented the control
architecture in different case studies. In particular, we
tested the scalability and the adaptivity of the approach
with respect to different and heterogeneous environments
and tasks. Furthermore, we evaluated the performances of
the attentional system with respect to the performances of
other behavior-based systems not provided with attentive
and adaptive mechanisms. The collected results show that
attentional mechanisms permit a smooth and natural emer-
gent behavior in all the considered scenarios trading off be-
tween adaptivity and performances. We are currently inves-
tigating suitable learning mechanisms to set the parameters
associated with monitoring strategies and attentional mech-
anisms to combine deliberative and reactive processes.

Acknowledgments

The research leading to these results has received fund-
ing from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
n0.216239.

References

Arbib, M. A. 1998. Schema theory. In The handbook of
brain theory and neural networks. Cambridge, MA, USA:
MIT Press. 830-834.

Arkin, R. C.; Ali, K.; Weitzenfeld, A.; and Cervantes-Pérez,
F. 2000. Behavioral models of the praying mantis as a ba-
sis for robotic behavior. Robotics and Autonomous Systems
32(1):39-60.

Beccari, G.; Caselli, S.; and Zanichelli, F. 2005. A technique
for adaptive scheduling of soft real-time tasks. Real-Time
Syst. 30(3):187-215.

Burattini, E., and Rossi, S. 2007. A robotic architec-
ture with innate releasing mechanism. In 2nd International
Symposium on Brain, Vision and Artificial Intelligence, vol-
ume 4729 of Lecture Notes in Computer Science, 576—585.
Springer.

Burattini, E., and Rossi, S. 2008. Periodic adaptive activa-
tion of behaviors in robotic system. Int. J. Pattern Recog-
nition and Artificial Intelligence - Special Issue on Brain,
Vision and Artificial Intelligence 22(5):987-999.

Burattini, E., and Rossi, S. 2010. Periodic activations
of behaviours and emotional adaptation in behaviour-based
robotics. Connection Science 22(2):(in press).

Burattini, E.; Rossi, S.; Finzi, A.; and Staffa, M. 2010. At-
tentional modulation of mutually dependent behaviors. In
Proceedings of the 11th Interntional Conference on Simula-
tion of Adaptive Behavior, (in press).

Buttazzo, G. C.; Lipari, G.; Caccamo, M.; and Abeni, L.
2002. Elastic scheduling for flexible workload management.
IEEE Trans. Computers 51(3):289-302.

Carbone, A.; Finzi, A.; Orlandini, A.; and Pirri, F. 2008.
Model-based control architecture for attentive robots in res-
cue scenarios. Auton. Robots 24(1):87-120.

Cooper, R., and Shallice, T. 2000. Contention scheduling
and the control of routine activities. Cognitive Neuropsy-
chology 17:297-338.

Frintrop, S.; Jensfelt, P.; and Christensen, H. I. 2006. Atten-
tional landmark selection for visual slam. In Proc. of IROS
2006.

Garforth, J.; McHale, S. L.; and Meehan, A. 2006. Exec-
utive attention, task selection and attention-based learning
in a neurally controlled simulated robot. Neurocomputing
69(16-18):1923-1945.

Gerkey, B.; Vaughan, R.; and Howard, A. 2003. The
player/stage project: Tools for multi-robot and distributed
sensor systems. In Proc. ICAR 2003, 317-323.

Harbluk, J. L.; Noy, Y. I.; and Eizenmann, M. 2002. Im-
pact of cognitive distraction on driver visual behavior and
vehicle control. Technical report, 81st annual meeting of the
Transportation Research Board, Washington, DC.

91

Kahneman, D. 1973. Attention and Effort. Englewood
Cliffs, NJ: Prentice-Hall.

Lorenz, K. 1991. King solomon’s ring. Penguin.
Minato, T., and Asada, M. 2001. Image feature generation

by visio-motor map learning towards selective attention. In
Proc. of IROS-2001, 1422—1427.

Mitsunaga, N., and Asada, M. 2002. Visual attention control
for a legged mobile robot based on information criterion. In
Proc. of IROS-2002, 244-249.

Norman, D., and Shallice, T. 1986. Attention in action:
willed and automatic control of behaviour. Consciousness
and Self-regulation: advances in research and theory 4:1—
18.

Patten, C. J. D.; Kircher, A.; Ostlund, J.; and Nilsson, L.
2004. Using mobile telephones: cognitive workload and at-
tention resource allocation. Accid Anal Prev 36(3):341-350.
Pezzulo, G., and Calvi, G. 2006. A schema based model
of the praying mantis. In SAB — 9th International Confer-
ence on Simulation of Adaptive Behavior, volume 4095 of
Lecture Notes in Computer Science, 211-223. Springer.
Stoytchev, A., and Arkin, R. C. 2001. Combining delibera-
tion, reactivity, and motivation in the context of a behavior-
based robot architecture. In Proc. 2001 IEEE International
Symposium on Computational Intelligence in Robotics and
Automation, 290-295.

Stoytchev, A., and Arkin, R. C. 2004. Incorporating moti-
vation in a hybrid robot architecture. JACIII 8(3):269-274.
Tinbergen, N. 1951. The study of instinct. Oxford Univer-
sity press.

Wasson, G.; Kortenkamp, D.; and Huber, E. 1999. Integrat-
ing active perception with an autonomous robot architecture.
Robotics and Autonomous Systems 26:325-331.

Combining Planning and Motion Planning

Jaesik Choi and Eyal Amir
Department of Computer Science
University of Illinois at Urbana Champaign
Urbana, IL, 61801 USA
{jaesi,eyal} @illinois.edu

Abstract

Robotic manipulation is important for real, physical world
applications. General Purpose manipulation with a robot (eg.
delivering dishes, opening doors with a key, etc.) is demand-
ing. It is hard because (1) objects are constrained in posi-
tion and orientation, (2) many non-spatial constraints interact
(or interfere) with each other, and (3) robots may have multi-
degree of freedoms (DOF). In this paper we solve the prob-
lem of general purpose robotic manipulation using a novel
combination of planning and motion planning. Our approach
integrates motions of a robot with other (non-physical or
external-to-robot) actions to achieve a goal while manipulat-
ing objects. It differs from previous, hierarchical approaches
in that (a) it considers kinematic constraints in configuration
space (C-space) together with constraints over object manipu-
lations; (b) it automatically generates high-level (logical) ac-
tions from a C-space based motion planning algorithm; and
(c) it decomposes a planning problem into small segments,
thus reducing the complexity of planning.

1. Introduction

Algorithms for general purpose manipulations of daily-life
objects are still demanding (e.g. keys of doors, dishes in a
dish washer and buttons in elevators). However, the com-
plexity of such planning algorithm is exponentially propor-
tional to the dimension of the space (the degree-of-freedom
(DOF) of the robot and the number of objects) (Canny
1987). It was shown that planning with movable objects
is P-SPACE hard (Chen and Hwang 1991; Dacre-Wright,
Laumond, and Alami 1992; Stilman and Kuffner 2005).
Nonetheless, previous works examined such planning in
depth (Likhachev, Gordon, and Thrun 2003; Kuffner and
LaValle 2000; Kavraki et al. 1996; Brock and Khatib 2000;
Alami et al. 1998; Stilman and Kuffner 2005) because of the
importance of manipulating objects. The theoretical analysis
gave rise to some practical applications (Alami et al. 1998;
Cortés 2003; Stilman and Kuffner 2005; Conner et al. 2007),
but general purpose manipulation remains out of reach for
real-world-scale applications.

Motion planning algorithms have difficulty to represent
non-kinematic constraints despite of its strength in planning
with kinematic constraints. Suppose that we want to let a

Dagstuhl Seminar Proceedings 10081
Cognitive Robotics

92

robot push a button to turn a light on. CSpace' can repre-
sent such constraints. However, the CSpace representation
could be (1) redundant and (2) computationally inefficient
because CSpace is not appropriate for compact representa-
tions. It could be redundant, because it always considers the
configurations of all objects beside our interests (i.e. a but-
ton and a light). Moreover, mapping such constraints into
CSpace would be computationally inefficient, because map-
ping a constraint among n objects could take O(2") evalu-
ations in worst case. Thus, most of motion planning algo-
rithms assume that such mappings in CSpace are encoded.

Al planning algorithms and description languages (e.g.
PDDL (McDermott 1998)) have difficulty to execute real-
world robots despite of its strength in planing with logical
constraints. Suppose that we have a PDDL action for ‘push
the button” which makes a button pushed and a light turned
on. However, the PDDL description could be (1) ambiguous
and (2) incomplete (require details). Given a robot with m
joints, it is ambiguous how to execute the robot to push the
button, because such execution is not given in the descrip-
tion. Instead, it assumes that there is a predefined action
which makes some conditions (e.g. a button pushed) satis-
fied whenever precondition is hold and the action is done.

Both methods solve this problem in different ways. Mo-
tion planning algorithms use abstractions to solve this prob-
lem. AI plannings use manual encodings. Although abstrac-
tion provides solutions in a reasonable amount of time in
many applications, abstraction lose completeness. Thus, it
has no computational benefit in worst cases. Although Al
plannings have no need to search the huge CSpace, it re-
quires manual encodings which are not only error-prone but
also computationally inefficient.

We minimize manual encodings using the reachability of
objects. That is, logical actions are extracted from a tree
(planned by a motion planning algorithm), if the actions
change the reachability of objects (i.e. a switch can be reach-
able by opening a door).

Our algorithm provides a path of a robot given following
inputs: configurations of a robot and objects; constraints be-
tween objects; an initial state; and a goal condition.2 We
use logical expressions to represent both spatial constraints

'CSpace is the set of all possible configurations
2For each object, we provide a function which maps from a
configuration to discrete states (labels) of objects, if discrete states

in C-space (e.g. collision) and constraints in state space (we
define them formally in section 4. We automatically build a
set of actions from a motion planner, while it was done by
hands in previous works.

In detail, our algorithm unifies a general purpose (logi-
cal) planner and a motion planner in one algorithm. Our
algorithm is composed of three subroutines: (1) extract-
ing logical actions from a motion planner, (2) finding an
abstract plan from the logical domain, and (3) decoding it
into C-space. It extracts PDDL actions (McDermott 1998)
from a tree constructed by a motion planner in C-space.
Then, it combines extracted actions with a given K Bopject
(Knowledge Base) that has propositions, axioms (proposi-
tional formulas) and abstract PDDL actions. To find an
abstract plan efficiently, we automatically partitioned the
domain by a graph decomposition algorithm before plan-
ning. In the planning step, an abstract plan is found by a
factored planning algorithms (Amir and Engelhardt 2003;
Brafman and Domshlak 2006) which are designed for the
decomposed domain. In decoding, a motion plan is found
from the abstract plan.

We argue that the complexity of a planning problem is
bounded by the treewidth of the encoded KB. One may think
some analogy between the treewidth of KB in this paper
and the number of mutually-interfering objects in the motion
planning literature. However, the treewidth is more general
expression because KB has more expressive power than the
conventional C-space. In addition, this work proposes two
improvements in terms of efficiency. One improvement is to
use a factored planning algorithm for the decomposed do-
main. The other is to encode actions on behalf of workspace
which is much smaller than C-space.

This approach is a unique decomposition-based path plan-
ning algorithm. We minimize manual encodings which are
required to manipulate objects. Both (kinematic) constraints
of the robot, and constraints of manipulating object are con-
sidered in our planning. It is efficient because its efficiency
depends only on the workspace (2D or 3D), when appro-
priate conditions are met. Moreover, our method calculates
actions of a robot once and can reuse them for other tasks.

Section 2presents related works. Section 3provides a mo-
tivational example. Section 4explains our encoding to build
a KB. Sections 5and 6show our algorithm. Finally, section 7.
provides experimental results followed by the conclusion in
section 8.

2. Related Works

Here, we review the related works in two aspects: (1) using
logical representation in robot planning; and (2) modifying
the motion planning algorithm to achieve complex task (eg.
manipulating objects). One may see the former way as top-
down and the latter way as bottom-up.

(Alami et al. 1998) presents a well-integrated robot archi-
tecture which controls multiple robots. It uses logical repre-
sentations in higher level planners and C-space based motion
planners in lower-level planning. However, the combination
of two planners is rather naive (manual).

are required for the provided constraints of objects (K Bopject)-

93

N
.

. '\ Shower Light
9 c Door, * <
Door, ,

11

Off, I
Shower w / ,'
|

1

Figure 1: This figure shows an example of manipulating objects
with a robotic arm. The goal is to take care of beans in a glasshouse.
Beans require water and light everyday. The robot will provide
water and light for beans. To accomplish this goal, the arm needs
to manipulate objects such as doors and switches.

Recently, (Conner et al. 2007) provides an improved way
to combine the Linear Temporal Logic (LTL) to control con-
tinuously moving cars in the simulated environment.> How-
ever, their model is a nondeterministic automata, while our
model is deterministic. Due to the intractability of nondeter-
ministic model, their representation is restricted to a subset
of LTL to achieve a tractable (polynomial time) algorithm.
Experiments are focused on controlling cars instead of ma-
nipulating objects.

Motion planning research has a long-term goal of build-
ing a motion planning algorithm that finds plans for com-
plex tasks (eg. manipulating objects). (Stilman and Kuffner
2005) suggests such a planning algorithm based on a heuris-
tic planner (Chen and Hwang 1991) which efficiently relo-
cates obstacles to reach a goal location. Recently, it was
extended to embed constraints over object into the C-space
(Stilman 2007). In fact, the probabilistic roadmap method
(Kuffner and LaValle 2000) of the algorithm is highly ef-
fective in manipulating objects in detail. However, we argue
that our algorithm (factored planning) is more appropriate in
terms of generality and efficiency than a search-based (with
backtracks) heuristic planner.

Other works also present efforts in this direction to build
a motion planning algorithm for complex tasks. (Plaku,
Kavraki, and Vardi 2008) solves a motion planning problem
focused on safety with logical constraints represented with
LTL . (M. Pardowitz 2007) focuses on learning actions for
manipulating objects based on the explanation based learn-
ing (Dejong and Mooney 1986). They use a classical hier-
archical planner in planning. (J. Van den Berg 2007) pro-
vides an idea that extracts the propositional symbols from a
motion planner. The symbols are used to check the satisfi-
ability of the planning problems. (S. Hart 2007) uses a po-
tential field method to achieve complex tasks with two arms.
However, the main interests of these works are not planning
algorithm, or are limited to the rather simpler tasks.

3Any First Order Logic (FOL) sentences can be reduced to Lin-
ear Temporal Logic (LTL). Thus, LPL is a superset of FOL.

[@small_room, @main_room \
door,, door,_lock
shower_button

@main_room
@small_room
door,_lock

@main_room, @small_room,
@bean_room, door,, door;_lock

Open_door,, Close_door,
Turn_shower_on, Turn_shower_off
Move_to_main_room

Open_door,, Close_door, \ Small Room/
Open_door;, Close_door;
Move_to_small_room 4 @bean_room, @main_room \
Move_to_bean_room light_button

Main Room

@main_roon\

@bean_room

Open_door,, Close_door,
Turn_light_on, Turn_light_off
Move_to_main_room

_ Bean Room J

Figure 2: This is a possible tree decomposition for the toy prob-
lem of figure 1. The shared propositions appear on edges between
subgroups. For example, a proposition (‘Qdoors_lock’) is shared
by two subgroups (‘Main Room’ and ‘Small Room’) because
the proposition is used by actions of two subgroups (respectively
‘Open(Close)_doors’ and “Turn_shower_on(of f)’). The KB
is decomposed into small groups based on the geometric informa-
tion (eg. the configurations of the room).

3. A Motivating Example

Figure 1 shows a planning problem. The goal is to provide
water and light to beans. The robotic arm should be able to
manipulate buttons in the spatial space to provide water and
light. There are also non-spatial constraints. At any time
either the shower is off or doors is closed or both.

The planner requires both a general purpose (logical)
planner and a motion planner. It requires general pur-
pose planner because the arm needs to revisit some points
of C-space several times in a possible solution. The
way points may include ‘Open_door,’, ‘Close_door;’, and
“T'urn_light_on’. The state space can be different, when-
ever the robot revisits the same point in the C-space. It is
certainly motion planning problem because the kinematic
constraints of the arm should be considered. For example,
the arm should not collide with obstacles, although the hand
of the arm may contact objects.

Hierarchical planners have been classical solutions for
these problems. A hierarchical planner takes in charge of
high level planning. A motion planner takes in charge of low
level planning. However, researchers (or engineers) need
to define actions of the robot in addition to axioms among
propositions for objects. Without the manual encodings, the
hierarchical planner may need to play with the large number
of propositions (O (exp(DO F.opot))=|discretized C-Space|)
, when DOF, ;0 is the DOF of the robot. With such naive
encoding, computational complexity of planning become
(O(exp(exp(DOFs)))).

Moreover, naive hierarchical planners often have diffi-
culty to find solutions for the following reason. Firstly, it
requires interactions between subgoals. For example, the
arm must go into the “Bean room” and turn the “light”
on (subgoal) before it goes into the “small room” and turn
the “shower” on (subgoal). This is essentially the ‘Susman
anomaly’ which means that the planner dose one thing (be-
ing in the Bean room) and then it has to retract it in order to

94

KBuioton
actions:
act,(A - B)
act,(B > A)
acty(A — C)
act,(C - A)

Figure 3: This figure illustrates a process to encode a motion plan
into K Bjs. The process is follows: (1) a motion plan (a tree) is
built by a motion planning algorithm; (2) actions which changes
the states of objects are found; (3) propositions are generated (and
grouped) based on the found actions; and (4) a K B)y is created.
Here, we assume that we have a function which provides discrete
states of objects given the configuration of an object in finding ac-
tions (2). In this figure, the door; in figure 1 and 2 is closed in
a set of states (A). The door; is moved little in B. However, the
door is not fully opened. Thus, configurations in the area D is not
connected. The area C' corresponds to the pushed light button on
figure 1 and 2.

achieve other goal (turning the shower on). Thus, it may re-
quire several backtracking in planning. Secondly, there are
two ways of (in principle) achieving “on(light)”: (1) going
through the small room; and (2) opening door to the Bean
room from the Arm-base room. Unless manual encoding
is given by an engineer, The latter way (going through the
small room) is fine from the perspective of hierarchical plan-
ning. However, it will not work in practice because the arm
is not long enough (kinematics). Formally, there is no down-
ward solution.

Thus, this toy problem shows that (1) hierarchical plan-
ning does not work with a naive (simple) encoding, and (2)
a complete encoding is too complex to engineer directly. We
are interested in general principles that underlie a solution to
this problem.

In motion planning literature, hybrid planners are used to
address these problem (Alami, Siméon, and Laumond 1989;
Alami, Laumond, and Siméon 1997; Alami et al. 1998;
Conner et al. 2007; Plaku, Kavraki, and Vardi 2008). How-
ever, these are either hard to engineer due to manual encod-
ings, or infeasible to conduct complex tasks due to the curse
of dimensionality of expanded C-space. The size of C-space
of a hybrid planner exponentially increases with additional
movable objects and given propositions. Thus, solving a
complex problem may require extensive search.

Here, we seamlessly combine the general purpose plan-
ning and the motion planning. Our planner finds all reach-
able locations and possible actions that change states of ob-
ject, states of propositions, or the reachable set of objects.*
Thus, high-level planner can start to plan based on the ac-
tions extracted by a motion planner.’ The number of actions
and states can be different according to constraints of the
robot.

However, the number of actions and states can be still
intractable. To solve this problem, we partition the do-
main into the smaller groups of actions and states. For

“Here, we assume that we know states of objects without un-
certainty as in (Conner et al. 2007).

SOur planner may have more actions and states than the hand-
encoded case.

CPMP
KB gpjoct actions:
KBpotion conditional actions: 22; ES j 2;
actions: acts(Ar—light>Calight) act(A > C)
- acty(Anlight—->Ca-light
F(atB =8 | IGED g|‘ ht>C I'ght;) el A
acty(B — A) actz(DAAlght=>LAlg acts(Ar—light>Cnlight)
:g}a%é > % acty(DAlight—>Cn—light) act(Anlight—Clight)
4 axioms:
light <> —shower axioms:
light <> —shower

Figure 4: This shows an operation (or algorithm) to combine the
extracted K By with pre-existing K Bo. K Bo is independently
given in a general form to a robot. Thus, K Bo can be reusable for
robots with different configurations space. Meanwhile, K Barp is
specific to a robot. Thus, some actions (e.g. act7 and actg) in
K Bo are invalidated by the K B)y.

example, the domain can be partitioned as shown in fig-
ure 2. It is composed of three parts: (1) operating the
shower switch; (2) operating the light switch; and (3) oper-
ating in between. The partition can be automatically done
with approximate tight bound (Becker and Geiger 1996;
Amir 2001).

A factored planner(Amir and Engelhardt 2003) efficiently
finds a plan with the partitioned domain. The partitioned
groups are connected as a tree shape. In the factored do-
main, our factored planner finds all the possible effects of
the set of actions in each factored domain. Then, the planner
passes the planned results into the parents of the domain in
the tree. In the root node, all the valid actions and effects are
gathered. The planner finds a plan for the task, if it exists.

Then, we use a local planner to find a concrete path in C-
space at the final step. However, there is no manual (explicit)
encoding (eg. ‘turning the switch A’) between two layers,
except logical constraints and mapping functions provided
as input.

4. Problem Formulation
Combining C-space and State Space

Here we suggest new problem formulation to combine C-
space of an object-manipulating robot and KB (defined in
the next paragraph) of objects and propositions. An ob-
ject, located in a specific workspace, generates propositions
into KB. Other axioms (propositional formulas) and actions
(PDDL(McDermott 1998)) are given for the propositions.
We will call this KB as CPMP (Combining Planning and
Motion Planning).

Definition CPMP (Combining Planning and Motion Plan-
ning) is composed of propositions for states of a robot and
objects, logical axioms over a robot and objects, and PDDL
actions of a robot. It groups a set of points in C-space into a
proposition (p.) in the CPMP. Actions of a robot are trans-
lated into actions of the CPMP. A set of propositions and
actions are constrained each other by logical axioms (propo-
sitional formulas).

A CPMP is composed of propositional symbols, logical
axioms, and PDDL actions. The propositional symbols (P)
represent states in binary values. The axioms (Axiom) are

95

(g Light

A hand

<

Light button
<peR3, light_off>

—>

<p’eR3, light_off>

<peR3, light_on>

Figure 5: This example shows a situation in which one position
in the workspace can correspond to two different states in the com-
bined space (CPMP). Although the physical locations of the arm
and button are the same in the workspace, the state (eg. light is on)
is different. The situation can be represented when the C-space and
state space in KB are combined (CPMP), and it is not possible to
represent in the classical C-space alone.

propositional formulas. The actions (Action) represent the
pair of preconditions and effects of a robot motion. It has a
set of propositions that represents states of a robot and ob-
jects. External states are propositions in K Bj, extracted
from C-space. Internal states are propositions explicitly
given in K Bo.

It also include a set of axioms. The axioms (logical for-
mulas) represent relations among states of objects. When a
state of an object (0%) is of (e.g. light), the state of another
object (%) is constraints o] (e.g. —shower).® It is repre-
sented as follows.

ol « o)

In CPMP, a set of actions, K By, is generated from a
tree (or network) in C-space built by a motion planning al-
gorithm as shown in figure 3. In detail, two points (p; and
p2) in the network are connected by a line (an action of the
robot). This can be simply encoded as follows.

Action : Move(p1,p2)

Precond : p;
Effect : po A =y

When the action changes the state of an object (o) from
01 t0 09, the action can be encoded as follows.

Action : MoveObject(p1,p2, 01,02)

Precond : p; A 01
Effect : po A og A —p1 A -0

Figure 5 represents the expressive power of CPMP. It
represents a situation which can not be described by a C-
space but CPM P. The same physical locations are dif-
ferent states in C'PM P because the state of the light is
changed.

A CPM P has following properties.

fSuch axioms are manually encoded. However, the encodings
are independent of a specific robot. Thus, the encodings can be
reusable to other types of robot. Moreover, there are algorithms
(Amir and Russell 2003; Shahaf and Amir 2007) which can gener-
ate such axioms with a sensor-mounted robot.

@

Opening door, to reach
door, and Shower_button

Door,, Door,,

t,(B—>B'
A oo Light_button,

Add {Door,, Shower_button}

Door,, Door,,
Light_button Door,,

Shower_button

act,,(B'>B)
Delete {Door,, Shower_button}

Figure 6: This figure represents an action which changes states of
the object (Doori) to change the reachable set of objects. Before
doing the action (actg B — B'), the set of reachable objects are {
Doory, Doors, and Light_button }. After the action, { Doora,
Shower_button } are also included in the reachable set.

e A C'PM P has more expressive power than a C-space, if
no two configurations in C-space can distinguish the two
internal states.’

e It may reduce the number of propositions in CPM P, if
spatial locations of end-effector are well-defined into dis-
joint sets. In each disjoint set, all spatial locations of end-
effector have an identical internal state. Thus, any edge
between the two disjoint sets changes some of the inter-
nal state.

Lemma 1. The complexity of planning problem in the
CPMP is as hard as P-SPACE.

Proof. Any motion planning problem (P-SPASE hard) with
movable objects can be reduced to a planning problem in
CPMP. Suppose that CPMP includes only external
propositions which are extracted from the motion planning
algorithm. O

Encoding with Mapping Functions and
Reachability

Here, we suggest an automatic encoding for moving ob-
jects while maintaining states given mapping functions® and
reachability of objects. When a robot manipulates mov-
able objects, it changes C-space of the robot. Hybrid sys-
tems(Alami, Siméon, and Laumond 1989; Alami, Laumond,
and Siméon 1997; Alami et al. 1998) consider each C-space
as a mode. Then, each manipulation connects two distinct
modes. However, the size of the space is exponentially pro-
portional to the number of objects and the number of joints.
To address this issue, we group a set of modes based on the
states of propositions and reachability of objects as shown
in figure 3 and 6.

There are two cases to register an action (an edge between
two points extracted from a motion planner) into CPMP.
Firstly, we register an action into CPMP, if two points have
different states in CPMP with a mapping function as shown

7C-space normally takes into account configurations which
only consider spartial locations of a robot or objects.

8 A mapping function provides a state of a proposition (eg. ob-
ject) given a configuration of objects and a robot.

96

in figure 3. We validate abstract PDDL actions which are
realized by the action. Secondly, we also register an ac-
tion into CPMP, if an edge changes a set of reachable ob-
jects as shown in figure 6. Thus, we build a hypergraph
whose nodes are sets of modes (C-spaces) which have the
same states (in terms of mapping functions) and the same
set of reachable object. Our algorithm extensively searches
actions with a resolution complete motion planner until no
new action is found in the hypergraph given a specific reso-
lution.

Lemma 2. The size of the discretized C-space for a robot
manipulating n objects with given propositions in CPMP is
bounded by O(exp(|objects| + n + p)), when |objects| is
the number of objects, n is the DOF (Degree of Freedom) of
the robot, and p is the number of propositions.

Lemma 3. The number of possible actions (edges) in
the discretized C-space for objects is only bounded by
O((|objects|) - exp(|objects|)), when the robot moves one
object with an action.

Proof. From a point in C-space of object
O(exp(|objects|)), we can choose an object O(|objects])
to change states. O

5. Finding a Solution in C PM P

To solve a task in CPM P, we provide a naive algorithm
followed by two improvements: (1) it solves the problem in
the (smaller) factored KBs; and (2) it reduces the number of
propositions in C'PM P using workspace.

A Naive Solution

Given a CPMP, algorithm NaiveSolution finds a solu-
tion for a task. It may use a general purpose planner
(GeneralPlanner) to find an abstract solution. Then,
(Local M otion Plan) encodes a path in C-space.

Input: r(a robot), K Bo(KB of objects), sstqr¢(initial state),
and Sg0q:(goal condition)

Output: pathconcrete(Solution)

K By < FindActionFromMP(r)

CPMP=T(KBu,KBo)

pathabstract < GeneralPlanner(CPM P, Sgtart, Sgoal)

pathconcrete < LocalMotionPlan(pathapstract)
Algorithm 1: NaiveSolution provides a path for a robot. It
uses a general planner (General Planner) to find an abstract
solution. Then, it is encoded into the path in the C-space by a
motion plan (Local M otion Plan).

Tree Decomposition of KB with Objects

Given a KB, finding a tree-decomposition of the minimum
treewidth is a NP-hard problem. However, the complex-
ity is only bounded by the treewidth of CPMP, if a tree-
decomposition is found once by an efficient heuristic(Becker
and Geiger 1996; Amir 2001).

The reachable objects are added to preconditions and effects
respectively.

EF-Space

C-Space

Figure 7: This figure shows a mapping function (f()) from a C-
space to an EF-Space. p1, p2, and p3 in C-space are mapped into p’
in EF-Space. The connected lines ((p1, p2) and (p2, p3)) represent
the first condition of Theorem 3. The circles represent the second
condition.

CPMP
tree-

Theorem 4. The complexity of planning in
is bounded by O(exp(tw(CPMP))) if the

decomposition is given.

Proof. Proofs in (Brafman and Domshlak 2006; Amir 2001)
can be easily modified to prove this theorem. O

From Exponential C-space to Polynomial EF-Space

In this section, we provide an improvement for a previous
approach(Choi and Amir 2007) which uses workspace in-
stead of exponential C-space. Although it is not always
applicable, it efficiently finds a solution when applicable.
Here, we want to transform C-space into a smaller space,
EF-Space, using a mapping function f (). The function (f())
maps each point (p) in C-space into a point (p’) in EF-Space
with satisfying following conditions.
1. Suppose that P is a set of points whose image are p’ in
EF-Space (f(p) = p’). Any pair of two elements (p1, p2
€ P) is connected each other in C-space;

2. Suppose that two points (p and ¢) are mapped into two
points (p’ and ¢') in EF-Space. p and ¢ are connected
neighbor if and only if p’ and ¢’ are connected neighbor.

The connected neighbor means that they are directly con-
nected in the space.

Theorem 5. The complexity of motion planning in EF-
Space is bounded by following

O(EF-Space) - O(mamepeEF_Space(ball(Pep))).

P, is a set of points whose image is ep. (That is, P, =
{p|f(p) = ep}) The ball(P) is volume of the ball which
includes P.

Proof. Given a motion planning problem (an initial config-
uration and goal one), a path in EF-Space can be found in
O(EF-Space) with a graph search algorithm. Given the path
in EF-Space, one needs to search the whole ball in worst
case. O

One simple example of EF-Space is the workspace of end-
effector. Suppose that the points in C-space are mapped

tw(KB) is the treewidth of KB.

97

into the points of end-effector in workspace. One can build
an algorithm that finds all the neighboring points from the
innermost joint (or wheel) to the outermost joint with dy-
namic programming. If points of the previous joint are con-
nected to all the neighboring points, the neighboring points
of the current joint are found by a movement of current joint
(current step) or a movement of any previous joint (previ-
ous steps). The found connected points in workspace sat-
isfy the second conditions, if the first condition holds in the
workspace.

In worst case, the first condition is hard to satisfy. In the
environment, the mapping function (f) should be bijective.
Thus, the EF-Space is nothing but the C-space. However,
the first condition holds in many environment where the dis-
tance between the obstacles (or object) and the robot is far
enough. That is the theoretical reason why the planning
problem in the spare environment is easy even in C-space.

Moreover, one can find another EF-Space considering
topological shape of robot (Choi and Amir 2007). In the
space, two points (p; and py) are mapped into the same
point p} if two configurations (p; and ps) are homotopic,
and they indicate the same end point. Otherwise, another
point p} is generated in the EF-Space. In 2D, two groups
of configurations are divided by an island in right and left
slides. Thus, the EF-Space is exponential to the number of
island obstacles. However, the EF-Space itself is bounded
by the workspace which is polynomial to the number of
joints. Thus, it is much smaller than the C-space.

6. A Unified Motion Plan

We present our algorithms in this section. The main algo-
rithm , UnifiedMotionPlanner (Algorithm 2), is composed
of three parts: FindActionFromMP (Algorithm 3); Factored-
Plan (Algorithm 4); and LocalPlanner. The goal of Unified-
MotionPlanner is to find a solution to achieve a goal situa-
tion.

Input: r(a robot), K Bo(KB of objects), ss¢qr¢(initial state),
Sg0a1(goal condition)

Output: pathconcrete(Solution)

K Bys < FindActionFromMP(r)

CPMP=T(KBwm,KBo)

K Bryee < PartitionKBtoTree(C' P M P)

pathabstract — FactoredPlan(KBT’I‘EEs Sstart, Sgoal)

pathconcrete — LocalPlan(pathabstract)

return pathconcrete
Algorithm 2: UnifiedMotionPlaner finds all the reachable lo-
cations and actions in each location with FindActionFromMP.
A motion planner is embedded in FindActionFromMP to ex-
tract abstracted actions in C-space. Then, PartitionKBtoTree
partitions the C PM P into a tree. FactoredPlan finds a solu-
tion given the pair of initial and goal condition in the parti-
tioned tree domain. The LocalPlan finds a concrete path for
the robot.

FindActoinFromMP
FindActionFromMP searches all the reachable locations and
actions in C-space or EF-Space. In both cases, it has a dra-

Input: r(a robot)
Output: K B (extracted actions)
M Pryce < arandom tree in C-space built by a motion
planner (e.g. Probabilistic Roadmap, Factored-Guided Motion
Planning)
for each edge (ei;) € M Pryece do
if state(p;) # state(p;) then
KBy — KBam A
actij(state(ps) A pi — state(p;) Ap; A —p;) }
KBy — KBa | {
actji(state(p;) Ap; — state(pi) Api A —p;) }

return KB M

Algorithm 3: . FindActionFromMP finds all abstract ac-
tions for a robot. A motion planner (eg. FactorGuidedPlan
or RoadmapMethod) recursively finds all the reachable loca-
tions and actions. Then, the algorithm insert actions of each
configuration (c;;) of objects in the workspace. It assume that
the object is in the configuration (c;;). Thus, the condition
(configuration of objects) is combined into the actions (act;;).
The union of all actions become the K Bjy.

matically reduced space.

FactoredPlan

FactoredPlan finds a solution after factoring the domain (the
space of end-effector in workspace) into small domains. It
decomposes the domain into a tree in which each partitioned
group becomes nodes, and shared axioms appear on a link
between nodes. Then, it finds partial plans for a node and
its children nodes with assuming that the parents nodes may
change any shared states in between. After all, it finds a
global solution in the root node.

Input: K Brrce (partitioned KB as a tree), Sstqr+ (initial
states), sgoar (goal condition)

Output: pathgebsiract (An abstract plan)

depth «+— (predefined) number of interaction between domains.

for each node(K Bpart) in K Bryee from leaves to a root do

Actqp, < PartPlan(K Bpart, depth) .

SendMessage(Actqs, the parent node of K Bpart)
pathep < a solution from s;piz t0 Sgoqt in the root node of
K Btrce
return pathgp

Algorithm 4: FactoredPlanning algorithm automatically
partitions the domain to solve the planning problem (from S;n+
t0 540a1). It iterates domains from leaves to the root node with-
out backtracks. In each node, PartPlan finds all possible ac-
tions that change shared states in the parents node. PartPlan
assumes that the parent node may change any states in the
shared states in between. The planned actions in the subdo-
main become an abstract action in the parent node. They are
passed by SendMessage.

7. An Experiment in Simulation

In this preliminary simulation, we build our algorithm for a
task that pushes buttons to call numbers. There are 8 buttons
in total. 4 buttons (keyl(P1), key2(P2), unlock(P3), and

98

Figure 8: This is a capture of the motion of push button in the
wall in experiments. The robot has 5 DOFs (rotational joints on
the base and 4 revolute joints on the arm). We do experiment with
increasing the number of joints from 2 to 9.

lock(P4)) are used to lock (and unlock) the buttons. Other
4 buttons (#A(P5), #B(P6), #C(P7) and Call(P8)) are
used to make phone calls. Initially, the button is locked, the
robot needs to push unlock buttons after pushing both key
buttons (P1 and P2). Then, the robot can make a phone
call with pushing the C'all button (P8) after selecting an ap-
propriate number among # A(P5), # B(P6), and #C(PT).
After a call, the buttons are automatically unlocked. We en-
code such constraints and action in K Bp.

To build K Bj;, we build a tree from a randomized algo-
rithm with 80000 points in C-space. With a labeling function
that returned the states of buttons, we found 33 edges in the
tree!!, They are encoded into 8 actions in K B, for 8 but-
tons. Then, the combined KB (CPM P) is used to find a
goal (calling all numbers (#A, # B, and #C). The returned
abstract actions are decoded into a path on the tree of motion
plan. Figure 8 is a snapshot of the simulation.'?

In this experiment, we focus on extracting actions from
a motion planning algorithm, because factored planer itself
is not a contribution of this paper. Theoretical and exper-
imental benefits of FactoredPlan is shown in the previous
papers (Amir and Engelhardt 2003; Brafman and Domshlak
2006). We run our simulation on a general purposed planner
(Fourman 2007). Thus, the NaiveSolution algorithm is used
in this simulation.

8. Conclusions and Future Research

We present an algorithm that combines the general purpose
(logical) planner and a motion planner. Our planner is de-
signed to manipulate objects with robot. To solve the prob-
lem, previous works used a hierarchical planner (high-level)
and a motion planner (low-level). Most of them used man-
ual encodings between two layers. That was one of technical

""We simplify the manipulations for attaching and detaching
buttons

"2The details of encoded actions and movies are available at
http://reason.cs.uiuc.edu/jaesik/cpmp/supplementary/.

hardness of this problem.

Theoretically, the combination of such planner is hard
for the following reasons: (1) hierarchical planner is hard
and not feasible sometime; and (2) direct combination of
C-space and state space gives an doubly exponential search
problem. Moreover, we can miss the geometric motion plan-
ning information, if we translate everything to PDDL (Mc-
Dermott 1998) without a motion planner.

We combine the C-space and state space in a KB, CPMP
(Combining Planning and Motion Planning). Moreover, we
provide the computational complexity of the problem. We
also argue that the treewidth of CPMP determines the hard-
ness of a manipulation task.

The suggested algorithm still has some limitations that
need to be improved in future research. First, mapping
function in Section 4needs manual encodings. Our algo-
rithms assume that there is a mapping function which pro-
vides the value of shared propositions given a configuration
of C-Space. Thus, an algorithm which can detect the change
of shared propositions with sensors would be promising.
Second, the exploration steps in FindActionFromMP may
take long time due to the large cardinality of state space
(O(n + |objects| + p) as in lemma 2. Third, assumptions
of EF-space would inappropriate for cluttered environments
where O(ma:cepEEF_Space(ball (Pep)) of theorem 5 are in-

tractable.

The combining planning and motion planning is a gener-
alized framework. However, there are many research prob-
lems to be solved in the future research. First, an algorithm
which learns the mapping function between two spaces is
necessary. Our algorithm assumes that there is a mapping
function which provides the value of shared propositions
given a configuration of C-Space. Thus, an algorithm which
can detect the change of shared propositions with sensors
would be promising. Second, the exploration step may take
long time due to the large cardinality of state space. Thus, an
adaptive exploration algorithm which builds a tree or a graph
in CSpace based on the constraints of stats space would be
useful.

9. Acknowledgment

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 05-46663. We also thank
UIUC/NCSA Adaptive Environmental Sensing and Information
Systems (AESIS) initiative for funding part of the work.

References

Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand, F.
1998. An architecture for autonomy. International Journal of
Robotics Research 17(4):315-337.

Alami, R.; Laumond, J.-P.; and Siméon, T. 1997. Two manipu-
lation planning algorithms. In Laumond, J.-P., and Overmars, M.,
eds., Algorithms for Robotic Motion and Manipulation. Wellesley,
MA: A K. Peters.

Alami, R.; Siméon, T.; and Laumond, J.-P. 1989. A geometrical
approach to planning manipulation tasks. In Proceedings Interna-
tional Symposium on Robotics Research, 113—119.

Amir, E., and Engelhardt, B. 2003. Factored planning. In IJCAI,
929-935.

99

Amir, E., and Russell, S. J. 2003. Logical filtering. In IJCAI,
75-82.

Amir, E. 2001. Efficient approximation for triangulation of mini-
mum treewidth. In UAI 7-15.

Becker, A., and Geiger, D. 1996. A sufficiently fast algorithm for
finding close to optimal junction trees. In UAI, 81-89.

Brafman, R. I., and Domshlak, C. 2006. Factored planning: How,
when, and when not. In AAAL

Brock, O., and Khatib, O. 2000. Real-time replanning in high-
dimensional configuration spaces using sets of homotopic paths.
In ICRA’00, 550-555.

Canny, J. 1987. The Complexity of Robot Motion Planning. Cam-
bridge, MA: MIT Press.

Chen, P, and Hwang, Y. 1991. Motion planning for a robot and a
movable object amidst polygonal obstacles. In ICRA’91, 444-449.
Choi, J., and Amir, E. 2007. Factor-guided motion planning for a
robot arm. In IROS’07, 27-32.

Conner, D. C.; Kress-Gazit, H.; Choset, H.; Rizzi, A.; and Pappas,
G.J. 2007. Valet parking without a valet. In JROS’07.

Cortés, J. 2003. Motion Planning Algorithms for General Closed-
Chain Mechanisms. Ph.D. Dissertation, Institut National Polytech-
nique de Toulouse, Toulouse, France.

Dacre-Wright, B.; Laumond, J.-P.; and Alami, R. 1992. Motion
planning for a robot and a movable object amidst polygonal obsta-
cles. In ICRA’92, volume 3, 2474-2480.

Dejong, G., and Mooney, R. 1986. Explanation-based learning:
An alternative view. Mach. Learn. 1(2):145-176.

Fourman, M. 2007. Propplan. Software.

J. Van den Berg, M. O. 2007. Kinodynamic motion planning on
roadmaps in dynamic environments. In /ROS’07.

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high dimensional
configuration spaces. IEEE Trans. on Rob. and Auto. 12(4):566—
580.

Kuffner, J. J., and LaValle, S. M. 2000. RRT-connect: An efficient
approach to single-query path planning. In /CRA’00.

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*: Anytime
A* search with provable bounds on sub-optimality. In NIPS’03.
M. Pardowitz, R. Zollner, R. D. 2007. Incremental acquisition
of task knowledge applying heuristic relevance estimation. In
IROS’07.

McDermott, D. 1998. The planning domain definition language
manual.

Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2008. Hybrid systems:
From verification to falsification by combining motion planning
and discrete search. Formal Methods in System Design.

S. Hart, R. G. 2007. Natural task decomposition with intrinsic
potential fields. In IROS’07.

Shahaf, D., and Amir, E. 2007. Logical circuit filtering. In IJCAI,
2611-2618.

Stilman, M., and Kuffner, J. 2005. Navigation among movable
obstacles: Real-time reasoning in complex environments. Interna-
tional Journal of Humanoid Robotics 2(4):479-504.

Stilman, M. 2007. Task constrained motion planning in robot joint
space. In IROS’07.

Fast replanning

Koenig, Sven
USC, Los Angeles

Planning systems for mobile robots often need to operate in domains that are
only incompletely known or change dynamically. In this case, they need to re-
plan quickly as their knowledge changes. Replanning from scratch is often very
time consuming. In this talk, I will discuss ongoing research by us and others
on incremental heuristic search. Incremental search methods reuse information
from previous searches to find solutions to series of similar search tasks poten-
tially much faster than is possible by solving each search task from scratch, while
heuristic search methods use heuristic knowledge in form of approximations of
the goal distances to focus the search and solve search problems potentially
much faster than uninformed search methods. I will discuss the theory behind
incremental heuristic search and several of its applications. This is joint work
with my students and ex-students C. Bauer, D. Furcy, M. Likhachev, Y. Liu,
A. Ranganathan and X. Sun.

100

Spatial computing - or how to design a right brain hemisphere

Freksa, Christian
Universitat Bremen

Spatial problems come in a variety of forms: as physical tasks as in the piano
movers problem; or more abstractly as in natural language or in a formal geo-
metric specification; or in some form in between as in a diagram that exhibits
aspects of physical space and aspects of abstractions. Similarly, we have a vari-
ety of options for solving spatial problems ranging from concrete to abstract. In
my talk, I will present different ways in which we can solve spatial problems and
I will discuss some of the features of the different approaches. I will emphasize
cognitive aspects of problem solving and I propose selecting reasoning methods
with regards to the contexts of their respective task environments. From a cog-
nitive perspective, a particularly relevant method is to use spatial structures for
solving spatial problems. I will call this approach Spatial Computing. Spatial
Computing enables us solving problems of a certain type in a particularly effi-
cient way. I will address the question whether the principles underlying Spatial
Computing can be exploited for the development of special spatial computers;
and if so, whether these computers will be restricted to solving spatial problems
or whether they may be of more general use. I will suggest that humans employ
principles of Spatial Computing for solving problems that go far beyond spatial
problems.

101

Cognitive robotics, embodied cognition and human-robot interaction

J. Gregory Trafton
Naval Research Lab
Washington, DC

In the past few years, we have been building embodied cognitive models. We
use embodied representations in both the online and the offline sense (Wilson,
200Z). We use online cognition for "here and now” interactions (Brooks, 1990)
while we use offline cognition by using body based representations for think-
ing even when decoupled from the environment (e.g., Tucker and Ellis, 2001).
We build our models to be as cognitively plausible as possible, using cogni-
tive representations, strategies, and procedures with the belief that this makes
human-robot interaction easier and stronger.

We have a number of online models, including gaze-following (Trafton, Harrison,
Fransen, and Bugajska, 2009) and level 1 visual perspective taking (Trafton and
Harrison, under review). We also have a model of offline cognition based on
Tucker and Ellis’ 2001 data (Harrison and Trafton, in press).

We believe that our process models of human cognition not only help us under-
stand how people perform different tasks but also provide a different approach
to human-robot interaction.

Harrison, A. M., and Trafton, J. G. (in press). Cognition for action: an archi-
tectural account for grounded interaction. Proceedings of the Cognitive Science
Society, 2010.

Trafton and Harrison (under review). Embodied Spatial Cognition.

Trafton, J.G., Harrison, A.M., Fransen, B.R., and Bugajska, M. (2009) An
embodied model of infant gaze- following. In A. Howes, D. Peebles, R. Cooper
(Eds.), 9th International conference on cognitive modeling - ICCM2009, Manch-
ester, UK.

Tucker, M., and Ellis, R. (2001) The potentiation of grasp types during visual
object categorization. V isual cognition, 8, 769-800.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and
Review.

102

Biologically Inspired Cognitive Architectures II:
Papers from the AAAI Fall Symposium (FS-09-01)

The GLAIR Cognitive Architecture

Stuart C. Shapiro and Jonathan P. Bona
Department of Computer Science and Engineering and Center for Cognitive Science
State University of New York at Buffalo
{shapiro| jpbona}@buffalo.edu

Abstract

GLAIR (Grounded Layered Architecture with Integrated
Reasoning) is a multi-layered cognitive architecture for em-
bodied agents operating in real, virtual, or simulated envi-
ronments containing other agents. The highest layer of the
GLAIR Architecture, the Knowledge Layer (KL), contains
the beliefs of the agent, and is the layer in which conscious
reasoning, planning, and act selection is performed. The low-
est layer of the GLAIR Architecture, the Sensori-Actuator
Layer (SAL), contains the controllers of the sensors and ef-
fectors of the hardware or software robot. Between the KL
and the SAL is the Perceptuo-Motor Layer (PML), which
grounds the KL symbols in perceptual structures and subcon-
scious actions, contains various registers for providing the
agent’s sense of situatedness in the environment, and han-
dles translation and communication between the KL and the
SAL. The motivation for the development of GLAIR has been
“Computational Philosophy”, the computational understand-
ing and implementation of human-level intelligent behavior
without necessarily being bound by the actual implementa-
tion of the human mind. Nevertheless, the approach has been
inspired by human psychology and biology.

1. Introduction

GLAIR (Grounded Layered Architecture with Integrated
Reasoning) is a multi-layered cognitive architecture for em-
bodied agents operating in real, virtual, or simulated en-
vironments containing other agents (Hexmoor, Lammens,
and Shapiro 1993; Lammens, Hexmoor, and Shapiro 1995;
Shapiro and Ismail 2003). It was an outgrowth of the SNePS
Actor (Kumar and Shapiro 1991). Our motivating goal has
been what is called “Computational Philosophy” in (Shapiro
1992), that is, the computational understanding and imple-
mentation of human-level intelligent behavior without nec-
essarily being bound by the actual implementation of the hu-
man mind. Nevertheless, our approach has been inspired by
human psychology and biology.

Although GLAIR is a cognitive architecture appropriate
for implementing various cognitive agents, we tend to name
all our cognitive agents “Cassie.” So whenever in this paper
we refer to Cassie, we mean one or another of our imple-
mented GLAIR agents.

Copyright (© 2009, Stuart C. Shapiro and Jonathan P. Bona. All
rights reserved.

141

103

2. GLAIR as a Layered Architecture
2.1 The Layers

The highest layer of the GLAIR Architecture, the Knowl-
edge Layer (KL), contains the beliefs of the agent, and is
the layer in which conscious reasoning, planning, and act
selection is performed.

The lowest layer of the GLAIR Architecture, the Sensori-
Actuator Layer (SAL), contains the controllers of the sen-
sors and effectors of the hardware or software robot.

Between the KL and the SAL is the Perceptuo-Motor
Layer (PML), which, itself is divided into three sublayers.
The highest, the PMLa, grounds the KL symbols in percep-
tual structures and subconscious actions, and contains vari-
ous registers for providing the agent’s sense of situatedness
in the environment. The lowest of these, the PMLc, directly
abstracts the sensors and effectors into the basic behavioral
repertoire of the robot body. The middle PML layer, the
PMLD, handles translation and communication between the
PMLa and the PMLc.

2.2 Mind-Body Modularity

The KL constitutes the mind of the agent; the PML and SAL,
its body. However, the KL and PMLa layers are independent
of the implementation of the agent’s body, and can be con-
nected, without modification, to a hardware robot or to a
variety of software-simulated robots or avatars. Frequently,
the KL, PMLa, and PMLDb have run on one computer; the
PMLc and SAL on another. The PMLb and PMLc handle
communication over I/P sockets.!

3. The KL.: Memory and Reasoning

The KL contains the beliefs of the agent, including: short-
term and long-term memory; semantic and episodic mem-
ory; quantified and conditional beliefs used for reasoning;
plans for carrying out complex acts and for achieving goals;
beliefs about the preconditions and effects of acts; policies
about when, and under what circumstances, acts should be
performed; self-knowledge; and metaknowledge.

The KL is the layer in which conscious reasoning, plan-
ning, and act selection is performed. The KL is implemented

!Other interprocess communication methods might be used in
the future.

in SNePS (Shapiro and Rapaport 1992; Shapiro 2000b;
Shapiro and The SNePS Implementation Group 2008),
which is simultaneously a logic-based, frame-based, and
network-based knowledge representation and reasoning sys-
tem, that employs various styles of inference as well as be-
lief revision.

As a logic-based KR system, SNePS implements a
predicate logic with variables, quantifiers, and function
symbols. Although equivalent to First-Order Logic, its
most unusual feature is that every well-formed expression
is a term, even those that denote propositons (Shapiro
1993). This allows for metapropositions, propositions
about propositions, without restriction and without the need
for an explicit Holds predicate (Morgado and Shapiro
1985; Shapiro et al. 2007). For example the asserted
term, Believe (B8,Rich (B8)) in the context of the
asserted term, Propername (B8, Oscar), denotes the
proposition that Oscar believes himself to be rich (Ra-
paport, Shapiro, and Wiebe 1997). SNePS supports
forward- backward- and bidirectional-reasoning (Shapiro
1987; Shapiro, Martins, and McKay 1982) using a natural-
deduction proof theory, and belief revision (Martins and
Shapiro 1988).

Every functional term in SNePS is represented as an as-
sertional frame in which the argument positions are slots
and the arguments are fillers. This allows for sets of argu-
ments to be used to represent combinatorially many asser-
tions. For example, instanceOf ({Fido, Lassie,
Rover}, {dog, pet}) might be used to represent the
assertion that Fido, Lassie, and Rover are dogs and pets. It
also allows sets to be used for symmetric relationships, for
example adjacent ({US, Canada}) can represent the
assertion that the US and Canada are adjacent to each other
(Shapiro 1986). The frame view of SNePS supports “slot-
based inference”, whereby an asserted frame logically im-
plies one with a subset or superset of fillers in given slots
(Shapiro 2000a).

By treating the terms as nodes and the slots as labeled di-
rected arcs, SNePS can be used as a propositional network
(Shapiro and Rapaport 1987). This supports a style of in-
ference driven by following paths in the network (Shapiro
1978; 1991).

3.1 The Active Connection Graph

Reasoning is performed by an active connection graph
(ACS) (McKay and Shapiro 1980; 1981). Viewing the
SNePS knowledge base as a propositional graph, every
proposition-denoting term can be considered to be a node
with arcs pointing to its arguments. This includes non-
atomic propositions such as implications, each of which
has one set of arcs pointing to its antecedents and another
pointing to its consequents. Each proposition has a process
charged with collecting and transmitting inferred instances
of its propositions along the arcs to interested other pro-
cesses in a multiprocessing, producer-consumer, message-
passing system (Shubin 1981). This allows recursive rules to
be used without getting into an infinite loop, and prevents the
same inference from being worked on multiple times even if
it is a subgoal in multiple ways (McKay and Shapiro 1981),

142

104

and has not yet been satisfied.

The ACS is key to SNePS’ bidirectional inference
(Shapiro, Martins, and McKay 1982; Shapiro 1987). Infer-
ence processes are created both by backward inference and
by forward inference. If such a process is needed and al-
ready exists, a forward-chaining process (producer) adds its
results to the process’s collection, and a backward-chaining
process (consumer) is added to the producer-process’s con-
sumers to be notified. If a query is asked that can’t be
answered, the processes established for it remain, and can
be found be subsequent forward inferences. When new be-
liefs are added to the KL with forward inference, and exist-
ing consumer-processes are found for them, new consumer-
processes are not established. The result of this is that after
a query, additional new information is considered in light of
this concern. In other words, a GLAIR agent working on a
problem considers relevant new data only as it relates to that
problem, focussing its attention on it.

The ACS can be deleted. It is then reestablished the next
time a forward- or backward- inference begins. In this way
the GLAIR agent changes its attention from one problem to
another. When this change of attention happens is, however,
currently rather ad hoc. A better theory of when it should
happen is a subject of future research.

3.2 Contexts

Propositions may be asserted in the KL because they en-
tered from the environment. Either they were told to the
agent by some other agent, possibly a human, or they are
the result of some perception. Alternatively, a proposition
might be asserted in the KL because it was derived by rea-
soning from some other asserted propositions. We call the
former hypotheses and the latter derived propositions. When
a proposition is derived, an origin set, consisting of the set
of hypotheses used to derive it is stored with it (Martins
and Shapiro 1988) a la an ATMS (de Kleer 1986). At each
moment, some particular context, consisting of a set of hy-
potheses, is current. The asserted propositions, the propo-
sitions the GLAIR agent believes, are the hypotheses of the
current context and those derived propositions whose origin
sets are subsets of that set of hypotheses. If some hypothe-
sis is removed from the current context (i.e., is disbelieved),
the derived propositions that depended on it remain in the
KL, but are no longer believed. If all the hypotheses in the
origin set of a derived proposition return to the current con-
text, the derived proposition is automatically believed again,
without having to be rederived (Martins and Shapiro 1983;
Shapiro 2000b).

4. The PMLa

The PMLa, contains: the subconscious implementation of
the cognitively primitive actions of the KL; the structures
used for the perception of objects and properties in the en-
vironment; various registers for providing the agent’s sense
of situatedness in the environment, such as its sense of ’I”,
”You”, ”Now”, and the actions it is currently engaged in; and
procedures for natural language comprehension and genera-
tion. Further discussion of the PMLa, and its connections to
the KL may be found in §9. and (Shapiro and Ismail 2003).

5. The Behavior Cycle

Several cognitive architectures, such as ACT-R (Anderson
and Lebiere 1998), Soar (Laird, Newell, and Rosenbloom
1987), Icarus (Langley, Cummings, and Shapiro 2004), and
PRODIGY (Carbonell, Knoblock, and Minton 1990) are
based on problem-solving or goal-achievement as their basic
driver. GLAIR, on the contrary, is based on reasoning: either
thinking about some percept (often linguistic input), or an-
swering some question. The acting component is a more re-
cent addition, allowing an GLAIR agent also to obey a com-
mand, either to perform an act or to achieve a goal. However,
the focus of the design remains on reasoning. Problem solv-
ing vs. reasoning, however, are not incompatible tasks, but
alternative approaches to the ultimate goal of achieving an
Al-complete (Shapiro 1992) system.

GLAIR agents execute a sense-reason-act cycle, but not
necessarily in a strict cyclical order. GLAIR was developed
around implementations of SNePS as an interactive natu-
ral language comprehension, knowledge representation, and
reasoning system. The basic behavior cycle is:

1. input a natural language utterance.
2. analyze the utterance in the context of the current beliefs

o the analysis may require and trigger reasoning

e the analysis may cause new beliefs to be added to the
KL

3. if the utterance is a statement

(a) add the main proposition of the statement as a belief
(b) that proposition will be output

if the utterance is a question

(a) perform backward reasoning to find the answer to
the question
(b) the answer will be output

if the utterance is a command

(a) perform the indicated act
(b) the proposition that the agent performed the act will
be output

4. generate a natural language utterance expressing the out-
put proposition

e reasoning may be performed to formulate the utterance

The categorization of input into either statement (informa-
tive), question (interrogative), or command (imperative) as-
sumes that there are no indirect speech acts (Searle 1975)
or that the real speech act has already been uncovered. An
alternative would be to represent each input as “X said S,”
and reason about what the agent should do about it. Natu-
ral language analysis and generation is an optional part of
the GLAIR architecture. If it is omitted, the utterance is ex-
pressed in a formal language, such as SNePSLOG (Shapiro
and The SNePS Implementation Group 2008) (the formal
language used in this paper) and only step (3) is performed.

If this input-reason-output behavior cycle seems too re-
stricted for a cognitive agent, note that the input might be
“Perform a”, where a is an act, or “Achieve g”, where g is a

143

105

goal, and that might start an arbitrarily long sequence of be-
haviors. In fact, any of the reasoning episodes might trigger
afferent or efferent acts, and any act might trigger reasoning
(Kumar 1993; Kumar and Shapiro 1994).

There can be both passive and active sensing. Passive
sensing, such as seeing the environment as the agent navi-
gates through it, may result in percepts that, in a data-driven
fashion, motivate the agent to perform some act. Active
sensing, such as attending to some specific aspect of the en-
vironment, may be used in a goal-directed fashion to gain
particular information that can be used to decide among al-
ternative acts. For example, we have implemented a GLAIR
delivery agent that navigates the hallways of one floor of a
simulated building, and may be told to get a package from
one room, and deliver it to another. A primitive act of this
agent is goForward (): “ move one unit in the direction
it is facing.” As a result of such a move, and without an-
other act on its part, it believes either that it is facing a
room, a blank wall, or more corridor. Adding the appropri-
ate belief to the KL is built into the PMLa implementation of
goForward (), and is an example of passive sensing. On
the other hand, if the agent needs to know where it is, and it
is facing a room, it can deliberately read the room number by
performing the primitive act, readRoomNumber (). This
is an example of active sensing.

6. The Acting Model®

GLAIR’s acting model consists of: actions and acts; propo-
sitions about acts; and policies.

6.1 Policies

Policies specify circumstances under which reasoning leads
to action. An example of a policy is, “when the walk light
comes on, cross the street.” Policies are neither acts nor
propositions. We say that an agent performs an act, believes
a proposition, and adopt s a policy. To see that policies are
not acts, note that one cannot perform “when the walk light
comes on, cross the street.” A good test for an expression
¢ being a proposition is its ability to be put in the frame, “I
believe that it is not the case that ¢.” It does not make sense
to say, “I believe that it is not the case that when the walk
light comes on, cross the street.” Note that this is different
than saying, “I believe that it is not the case that when the
walk light comes on, I should cross the street.” An agent
might explicitly believe “I should cross the street” without
actually doing it. However, if an GLAIR agent has adopted
the policy, “when the walk light comes on, cross the street,”
and it comes to believe that the walk light is on, it will cross
the street (or at least try to).

Policies are represented as functional terms in the KL,
along with other conscious memory structures. Three
policy-forming function symbols are built into GLAIR, each
of which take as arguments a proposition ¢ and an act a:

e ifdo (¢, a) is the policy, “to decide whether or not ¢,
perform a”’;

e whendo (¢, «) is the policy, “when ¢ holds, perform «”;

ZParts of this section were taken from (Shapiro et al. 2007).

e wheneverdo (¢, «) is the policy, “whenever ¢ holds,
perform o’

A blocks-world example of ifdo is “To decide whether
block A is red, look at if”: ifdo (ColorOf (A, red),
lookAt (A)) (Kumar and Shapiro 1994).3

The policies whendo and wheneverdo are similar to
the production rules of production systems in that they
are condition-action rules triggered when forward-chaining
matches the condition. In the case of both whendo and
wheneverdo, if the policy has been adopted, the agent
performs o when forward inference causes ¢ to be believed.
Also, « is performed if ¢ is already believed when the pol-
icy is adopted. The difference is that a whendo policy is
unadopted after firing once, but a wheneverdo remains
adopted until explicitly unadopted.

6.2 Categories of Acts

An act may be performed by an agent, and is composed of
an action and zero or more arguments. For example, for
the Fevahr* version of Cassie (Shapiro 1998) (henceforth
Cassiep), the term find (Bil1l) denotes the act of find-
ing Bill (by looking around in a room for him), composed of
the action £ind and the object B111.

Acts may be categorized on two independent dimensions:
an act may be either an external, a mental, or a control act;
and an act may be either a primitive, a defined, or a compos-
ite act.

External, Mental, and Control Acts Actions and, by ex-
tension, acts, may be subclassified as either external, men-
tal, or control. External acts either sense or affect the real,
virtual, or simulated outside world. An example mentioned
above from the Fevahr version of Cassie is £ind (Bill).
No external acts are predefined in the architecture; they must
be supplied by each agent designer.

Mental acts affect the agent’s beliefs and policies. There
are four:

1. believe (¢) is the act of asserting the proposition ¢
and doing forward inference on it;

2. disbelieve (¢) is the act of unasserting the proposi-
tion ¢, so that it is not believed, but its negation is not
necessarily believed;

3. adopt (7) is the act of adopting the policy 7;
4. unadopt () is the act of unadopting the policy 7.

Before believe changes the belief status of a propo-
sition ¢, it performs a limited form of prioritized be-
lief revision (Alchourrén, Gérdenfors, and Makinson

31 fdo was called DoWhen in (Kumar and Shapiro 1994).

4“Fevahr” is an acronym standing for “Foveal Extra-Vehicular
Activity Helper-Retriever”.

SActually, since the Fevahr Cassie uses a natural language
interface, the act of finding Bill is represented by the term
act (lex (find), b6), where: £ind is a term aligned with the
English verb find; 1ex (find) is the action expressed in English
as “find”; and b6 is a term denoting Bill. However, we will ignore
these complications in this paper.

144

106

1985). If andor (0,0){...,¢,...} is believed,® it is

disbelieved. If andor (i, 1) {¢1,¢2,...} is believed,

fori=0or¢=1, and ¢ is believed, ¢, is disbelieved.
Control acts are the control structures of the GLAIR act-

ing system. The predefined control actions are:

e achieve (¢): If the proposition ¢ is not already be-
lieved, infer plans for bringing it about, and then perform
do-one on them.

e snsequence (a1, ag) : Perform the act iy, and then the
act .

e prdo-one ({pract (z1,a1),
pract (z,,ay,) }): Perform one
with probability z;/ >~ ;.

e do-one ({a1,...,a,}): Nondeterministically choose
one of the acts oy, . . ., o, and perform it.

of the acts «j,

e do-all ({ag,...,an}): Perform all the acts
ayq, ..., Qy in a nondeterministic order.

o snif ({if (1, 00), .., if (dn,0m),
[else(§)1}): Use backward inference to deter-

mine which of the propositions ¢; hold, and, if any do,
nondeterministically choose one of them, say ¢;, and
perform the act a;. If none of the ¢; can be inferred,
and if else (§) is included, perform §. Otherwise, do
nothing.

e sniterate ({if (¢1,01), ..., 1Ef(Pn,),
[else(d)1}): Use backward inference to de-
termine which of the propositions ¢; hold, and, if
any do, nondeterministically choose one of them,
say ¢;, and perform the act snsequence (aj,
sniterate ({if(¢1,040), ..., 1if (dn,an),
[else () 1})). If none of the ¢; can be inferred, and if
else () isincluded, perform d. Otherwise, do nothing.

e withsome (z,¢(z),a(x),[d]): Perform backward in-
ference to find entities e such that ¢(e) is believed, and,
if such entities are found, choose one of them nondeter-
ministically, and perform the act « on it. If no such e is
found, and the optional act ¢ is present, perform ¢.

e withall (z, ¢(z),a(z), [0]): Perform backward infer-
ence to find entities e such that ¢(e) is believed, and, if
such entities are found, perform the act « on them all in
a nondeterministic order. If no such e is found, and the
optional act J is present, perform 4.

The acts snif, sniterate, withsome, and
withall all trigger reasoning. The default implementa-
tion of do—-one uses a pseudorandom number generator to
choose the act to perform, and the default implementation of
do-all uses a pseudorandom number generator to choose
the order of the acts. However, an agent implementer
may replace either pseudorandom number generator with
reasoning rules to make the choice, in which case these acts
will also trigger reasoning.

®andor (Shapiro 1979) is a parameterized connective that
takes a set of argument-propositions, and generalizes and, inclu-
sive or, exclusive or, nand, nor, and exactly n of. A formula of
the form andor (i,7) {¢1,...,¢n} denotes the proposition that
at least 7 and at most j of the ¢x’s are true.

Primitive, Defined, and Composite Acts GLAIR actions
and acts may also be classified as either primitive, defined,
or composite. Primitive acts constitute the basic repertoire
of an GLAIR agent. They are either provided by the archi-
tecture itself, or are implemented at the PMLa. An example
predefined action is believe; an example primitive action
defined at the PMLa is the Fevahr Cassie’s £ind (Shapiro
1998). Because primitive actions are implemented below the
KL, GLAIR agents have no cognitive insight into how they
perform them.

A composite act is one structured by one of the con-
trol acts. For example, the Wumpus-World Cassie (Shapiro
and Kandefer 2005), whose only primitive turning acts are
go (right) and go (left), can turn around by per-
forming the composite act, snsequence (go (right),
go(right)).

A defined act is one that, unlike composite acts, is
syntactically atomic, and unlike primitive acts, is not
implemented at the PML. If a GLAIR agent is to perform
a defined act «, it deduces plans p for which it believes
the proposition ActPlan (o, p), and performs a do-one
of them. Such a plan is an act which, itself, can be
either primitive, composite, or defined. For example, the
Wumpus-World Cassie has a defined act turn (around),
which is defined by ActPlan(turn(around),
snsequence (go (right), go(right))).

6.3 Propositions About Acts

Four propositions about acts are predefined parts of the
GLAIR architecture:

1. Precondition («,¢): In order for the agent to per-
form the act «, the proposition ¢ must hold.

2. Effect (a,¢) An effect of an agent’s performing the
act « is that the proposition ¢ will hold. The proposition ¢
could be a negation, to express the effect that some propo-
sition no longer holds, such as Ef fect (putOn (z,y) ,
clear (y)).

3. ActPlan (a,p): One way to perform the act « is to per-
form the plan p.

4. GoalPlan (¢,p): One way to achieve the goal that the
proposition ¢ holds is to perform the plan p.

The only difference between a “plan” and an “act” is that a
plan is an act that appears in the second argument position
of an ActPlan ora GoalPlan proposition. However, in a
proposition of the form ActPlan (a, p), it is assumed that
pis “closer” to primitive acts than « is.

6.4 Conditional Plans

Consider a defined act for which there are different plans
depending on circumstances. For example, to get the mail, if
I’'m at home, I go to the mailbox, but if I’'m in the office, I go
to the mailroom. Such conditional plans may be represented
by implications:
=> ActPlan (get (mail),

go (mailbox))
=> ActPlan(get (mail),

go (mailroom))

at (home)

at (office)

145

107

perform(act) :

pre := {p | Precondition(act,p)};
notyet := pre - {p | p € pre & F p};
if notyet # nil
then
perform(
snsequence (
do-all({a | p € notyet
& a = achieve(p)}),
act))
else
{effects := {p | Effect(act,p)};

if act is primitive
then apply(
primitive-function (act),
objects (act));
else perform(
do-one ({p
| ActPlan(act,p)}))
believe (effects)}

Figure 1: The acting executive

In a context in which at (home) is derivable, the plan
for getting the mail will be go (mailbox). When the
context changes so that at (home) is no longer deriv-
able, ActPlan(get (mail), go(mailbox)) will
no longer be asserted, nor derivable. However,
when the context is reentered, ActPlan (get (mail),
go (mailbox)) will again be asserted without the need
to rederive it.

7. The Acting Executive
The procedure for performing an act is shown in Fig. 1.
Notice that:
e Backward inference is triggered to find:
— the preconditions of act;
— whether each precondition currently holds;
— the effects of act;

plans that can be used to perform act, if act is not
primitive.

e After the attempt is made to achieve the preconditions of
act, perform(act) is called again, which will again
check the preconditions, in case achieving some of them
undid the achievement of others.

o Effects of act are derived before act is performed in
case the effects depend on the current state of the world.

e If act is a defined act, only one way of performing it is
tried, and that is assumed to be successful. This will be
changed in future versions of GLAIR.

e After act is performed, all its effects are believed to
hold. This is naive, and will be changed in future ver-
sions of GLAIR. We have already implemented GLAIR
agents that only believe the effects of their acts that they
sense holding in the world, but this has been done by giv-
ing them no Effect assertions.

8. Modalities

Especially on hardware robots, the sensors and effectors can
operate simultaneously. To take advantage of this, GLAIR
supports a set of modalities. A modality represents a limited
resource—a PMLc-level behavior that is limited in what it
can do at once (for example, a robot cannot go forward and
backward at the same time), but is independent of the be-
haviors of other modalities (a robot can navigate and speak
at the same time). Each modality runs in a separate thread,
and uses its own communication channel between the PMLb
and PMLc layers. Each KL primitive action is assigned, at
the PMLa layer, to one or more modalities. Modalities that
have been implemented in various GLAIR agents include
speach, hearing, navigation, and vision. We intend to make
the organization into modalities a more thoroughgoing and
pervasive principle of the architecture. That version of the
architecture will be called MGLAIR.

9. Symbol Anchoring’
9.1 Alignment

There are KL terms for every mental entity Cassie has con-
ceived of, including individual entities, categories of enti-
ties, colors, shapes, and other properties of entities. There
are PML structures (at the PMLb and PMLc sub-levels) for
features of the perceivable world that Cassie’s perceptual ap-
paratus can detect and distinguish. Each particular perceived
object is represented at this level by an n-tuple of such struc-
tures, (v1, ..., v,), where each component, v;, is a possible
value of some perceptual feature domain, D;. What domains
are used and what values exist in each domain depend on the
perceptual apparatus of the robot. We call the n-tuples of
feature values “PML-descriptions”.

Each KL term for a perceivable entity, category, or prop-
erty is grounded by aligning it with a PML-description,
possibly with unfilled (null) components. For example,
Cassier used two-component PML-descriptions in which
the domains were color and shape. The KL term denoting
Cassier’s idea of blue was aligned with a PML-description
whose color component was the PML structure the vision
system used when it detected blue in the visual field, but
whose shape component was null. The KL term denoting
people was aligned with a PML-description whose shape
component was the PML structure the vision system used
when it detected a people in the visual field, but whose color
component was null.

Call a PML-description with some null components an
“incomplete PML-description”, and one with no null com-
ponents a “complete PML-description”. KL terms denot-
ing perceivable properties and KL terms denoting recogniz-
able categories of entities are aligned with incomplete PML-
descriptions. Examples include the terms for blue and for
people mentioned above, and may also include terms for
the properties tall, fat, and bearded, and the categories man
and woman. The words for these terms may be combined
into verbal descriptions, such as “a tall, fat, bearded man,”

"This section is taken from (Shapiro and Ismail 2003).

146

108

whose incomplete PML-descriptions may be used to percep-
tually recognize the object corresponding to the entity so de-
scribed.

A complete PML-description may be assembled for an
entity by unifying the incomplete PML-descriptions of its
known (conceived-of) properties and categories. Once a
PML-description is assembled for an entity, it is cached by
aligning the term denoting the entity directly with it. Af-
terwards, Cassie can recognize the entity without thinking
about its description. On the other hand, Cassie may have a
complete PML-description for some object without knowing
any perceivable properties for it. In that case, Cassie would
be able to recognize the object, even though she could not
describe it verbally.

If Cassie is looking at some object, she can recognize it
if its PML-description is the PML-description of some en-
tity she has already conceived of. If there is no such en-
tity, Cassie can create a new KL term to denote this new
entity, align it with the PML-description, and believe of it
that it has those properties and is a member of those cate-
gories whose incomplete PML-descriptions unify with the
PML-description of the new entity. If there are multiple
entities whose PML-descriptions match the object’s PML-
description, disambiguation is needed, or Cassie might sim-
ply not know which one of the entities she is looking at.

9.2 Deictic Registers

An important aspect of being embodied is being situated in
the world and having direct access to components of that
situatedness. This is modeled in GLAIR via a set of PML
registers (variables), each of which can hold one or more
KL terms or PML structures. Some of these registers derive
from the theory of the Deictic Center (Duchan, Bruder, and
Hewitt 1995), and include: I, the register that holds the KL
term denoting the agent itself; YOU, the register that holds
the KL term denoting the individual the agent is talking with;
and NOW, the register that holds the KL term denoting the
current time.

9.3 Modality Registers

GLAIR agents know what they are doing via direct access
to a set of PML registers termed “modality registers”. For
example, if one of Cassie’s modalities were speech, and she
were currently talking to Stu, her SPEECH register would
contain the KL term denoting the state of Cassie’s talking to
Stu (and the term denoting Stu would be in the YOU register).
In many cases, a single modality of an agent can be occupied
by only one activity at a time. In that case the register for that
modality would be constrained to contain only one term at a
time.

One of the modality registers we have used is for keeping
track of what Cassie is looking at. When she recognizes an
object in her visual field, the KL term denoting the state of
looking at the recognized entity is placed in the register, and
is removed when the object is no longer in the visual field. If
one assumed that Cassie could be looking at several objects
at once, this register would be allowed to contain several
terms. If asked to look at or find something that is already

in her visual field, Cassie recognizes that fact, and doesn’t
need to do anything.

9.4 Actions

Each KL action term that denotes a primitive action is
aligned with a procedure in the PMLa. The procedure takes
as arguments the KL terms for the arguments of the act to be
performed. For example, when Cassie is asked to perform
the act of going to Bill, the PMLa going-procedure is called
on the KL Bill-term. It then finds the PML-description of
Bill, and (via the SAL) causes the robot hardware to go
to an object in the world that satisfies that description (or
causes the robot simulation to simulate that behavior). The
PMLa going-procedure also inserts the KL term denoting
the state of Cassie’s going to Bill into the relevant modality
register(s), which, when NOW moves , causes an appropriate
proposition to be inserted into Cassie’s KL.

9.5 Time

As mentioned above, the NOW register always contains the
KL term denoting the current time (Shapiro 1998; Ismail
2001; Ismail and Shapiro 2000; 2001). Actually, since
“now” is vague (it could mean this minute, this day, this
year, this century, etc.), NOW is considered to include the
entire semi-lattice of times that include the smallest current
now-interval Cassie has conceived of, as well as all other
times containing that interval.

NOW moves whenever Cassie becomes aware of a new
state. Some of the circumstances that cause her to become
aware of a new state are: she acts, she observes a state hold-
ing, she is informed of a state that holds. NOW moves by
Cassie’s conceiving of a new smallest current now-interval
(anew KL term is introduced with that denotation), and NOW
is changed to contain that time. The other times in the old
NOW are defeasibly extended into the new one by adding
propositions asserting that the new NOW is a subinterval of
them.

Whenever Cassie acts, the modality registers change (see
above), and NOW moves. The times of the state(s) newly
added to the modality registers are included in the new NOW
semi-lattice, and the times of the state(s) deleted from the
modality registers are placed into the past by adding propo-
sitions that assert that they precede the new NOW.

To give GLAIR agents a “feel” for the amount of time
that has passed, the PML has a COUNT register acting as an
internal pacemaker (Ismail 2001; Ismail and Shapiro 2001).
The value of COUNT is a non-negative integer, incremented
at regular intervals. Whenever NOW moves, the following
happens:

1. the value of COUNT is quantized into a value § which
is the nearest half-order of magnitude (Hobbs 2000) to
COUNT, providing an equivalence class of PML-measures
that are not noticeably different;

. aKL term d, aligned with 6, is found or created, providing
a mental entity denoting each class of durations;

3. a belief is introduced into the KL that the duration of
t1, the current falue of NOW, is d, so that the agent can

147

109

have beliefs that two different states occurred for about
the same length of time;

. anew KL term, ¢, is created and a belief is introduced
into the KL that ¢, is before t5;

5. NOW is reset to to;

6. COUNT is reset to 0, to prepare for measuring the new
now-interval.

9.6 Language

Cassie interacts with humans in a fragment of English. Al-
though it is possible to represent the linguistic knowledge of
GLAIR agents in the KL, use reasoning to analyze input ut-
terances (Neal and Shapiro 1985; 1987b; 1987a; Shapiro and
Neal 1982), and use the acting system to generate utterances
(Haller 1996; 1999), we do not currently do this. Instead, the
parsing and generation grammars, as well as the lexicon, are
at the PML. (See, e.g. (Rapaport, Shapiro, and Wiebe 1997;
Shapiro 1982; Shapiro and Rapaport 1995).) There are KL
terms for lexemes, and these are aligned with lexemes in the
PML lexicon. We most frequently use a KL unary functional
term to denote the concept expressed by a given lexeme, but
this does not allow for polysemy, so we have occasionally
used binary propositions that assert that some concept may
be expressed by some lexeme. There may also be KL terms
for inflected words, strings of words, and sentences. This al-
lows one to discuss sentences and other language constructs
with GLAIR agents.

10. Bodily Feedback

The control acts snsequence, do—-all, sniterate,
and withall each cause a sequence of acts to be per-
formed before it is completed. In a normal, single-processor,
procedural/functional architecture this would not cause a
problem as each act in the sequence would be performed
only after the previous one returns control to the control
act. However, in GLAIR, primitive acts are performed
in modalities operating concurrently with reasoning, so it
is important for the control act to get feedback from the
body that an act has completed before it proceeds to the
next act in the sequence. Think of the problem deaf peo-
ple have speaking at a “normal” rate without being able to
hear themselves. In previous agents (Shapiro et al. 2005b;
2005¢), bodily feedback for the speech modality was pro-
vided for via the hearing modality, but this was included ex-
plicitly at the KL and using a special pacedSequence act.
We intend to build bodily feedback directly into the GLAIR
architecture in the future.

11. Properties of cognitive architectures

In this section, we discuss GLAIR using propertes listed in
(Langley, Laird, and Rogers 2009).

11.1 Representation of knowledge

Knowledge (more properly, beliefs) is represented in
the GLAIR Knowledge Layer in SNePS, which is si-
multaneously a logic-based, assertional frame-based, and

graph(network)-based knowledge representation and rea-
soning system. Noteworthy features of the SNePS repre-
sentation are: every well-formed expression is a term, even
those denoting propositions; all beliefs and conceived-of en-
tities are represented in the same formalism, including rea-
soning rules (such as conditionals) and acting plans. SNePS
is more fully discussed above and in the cited papers.

Single notation vs. Mixture of formalisms Although
all knowledge is represented in a single formalism, namely
SNePS, SNePS, itself, is simultaneously three different for-
malisms: logic-based, which supports a natural-deduction-
style inference mechanism; assertional frame-based, which
supports inference from one frame to another with a subset
or superset of fillers in some of the slots; and graph/network-
based, which supports inference of labeled arcs from the
presence of paths of labeled arcs.

Support for metaknowledge Since every SNePS expres-
sion is a term, including those that denote propositions,
propositions about propositions may be represented without
restriction and without the need for an explicit Holds
predicate. The default acts included as options in snif,
sniterate, withsome, and withall provide for
lack-of-knowledge acting. The use of conditional plans,
as discussed in § 6.4, has allowed a GLAIR agent to
use contextual information to select among alternative
mathematical procedures to perform (Shapiro et al. 2007).

By including in the Knowledge Layer a term that refers
to the agent itself, GLAIR agents are able to represent and
reason about themselves. As mentioned in § 9.2, a deictic
register in the PML is a pointer to the self-concept. PMLa
implementations of primitive acts can insert beliefs into
the KL about what the agent is currently doing, and the
movement of time, as discussed in § 9.5, gives the agent an
episodic memory.

Giving GLAIR agents knowledge of the actions they are
currently performing above the level of primitive actions is
a subject of further work.

Declarative vs. Procedural representations The Knowl-
edge Layer contains declarative representations of knowl-
edge, even of procedures for carrying out defined acts (see
§ 6.2). The PMLa contains implementations of primitive
acts in a way that is not cognitively penetrable. We have not
yet experimented with GLAIR agents that learn such proce-
dural representations of primitive acts.

Semantic memory vs. Episodic memory The Knowl-
edge Layer is the locus of both semantic and episodic mem-
ory. Most of the beliefs of GLAIR agents we have developed
so far are parts of semantic memory. As mentioned above,
PMLa implementations of primitive acts can insert beliefs
into the KL about what the agent is currently doing, and the
movement of time, as discussed in § 9.5, gives the agent an
episodic memory.

148

110

11.2 Organization of knowledge

Flat vs. Structured/Hierarchical organization of knowl-
edge SNePS uses an inherently structured organization of
knowledge. Its term-based predicate logic representation
allows for nested functional terms, including proposition-
valued terms, the act-valued terms that constitute composite
acts, and reasonng rules. SNePS has often been used to rep-
resent hierarchical information, including subsumption hier-
archies, parthood and other mereological relations, and sim-
ilar information used in ontological reasoning.

Short-term vs. long-term memory GLAIR currently has
no short-term memory from which some memories migrate
into long-term memory. The closest thing to a short-term
or working memory is the active connection graph (see
§ refsec:acg), which contains the demons currently work-
ing on one problem, which are discarded when the agent
changes to another problem.

12. Evaluation criteria for cognitive
architectures

In this section, we evaluate GLAIR according to criteria
listed in (Langley, Laird, and Rogers 2009).

12.1 Generality, versatility, and taskability

Generality The KL and PMLa layers are independent of
the implementation of the lower body and the environment
as long as there is some way for the primitive sensory and ef-
fector acts at the PMLa layer to be implemented in the SAL
layer. The agent designer designs the PMLb and PMLc lay-
ers to effect the connection. GLAIR agents have been ac-
tive in: a real world laboratory setting (Shapiro 1998); a vir-
tual reality world (Shapiro et al. 2005¢); a world simulated
by ASCII input/output (Kandefer and Shapiro 2007); and
graphically simulated worlds (Shapiro and Kandefer 2005;
Anstey et al. in press).

Versatility The GLAIR architecture lends itself to modu-
lar design for new environments and tasks. If the designers
have a specific agent body and environment in mind, they
must identify the afferent and efferent behavior repertoire
of the agent. They can then specify the actions to be im-
plemented at the PMLa layer. These become the primitive
actions at the KL layer, and high-level actions can be pro-
grammed using the acting model described in § 6.

Since the control actions, which include snsequence,
snif, and sniterate, form a Turing-complete set, a
GLAIR agent can perform any task that can be composed
computationally from its primitive acts (B6hm and Jacopini
1966).

Once the KL primitive actions have been designed, it is
common to test and further develop the agent in a simulated
environment before moving it to a hardware robot in the real
world, or to a more detailed simulation in a graphical or vir-
tual world.

Taskability One benefit of representing acts in the same
formalism as other declarative knowledge is that agents that

communicate with a GLAIR agent can command it to per-
form tasks using the same communication language. The
formal language commonly used is SNePSLOG, the lan-
guage in which the acting model was explained in § 6.,
but GLAIR agents have been built that use fragments of
English (Shapiro 1989; Shapiro, Ismail, and Santore 2000;
Shapiro and Ismail 2003; Kandefer and Shapiro 2007). The
meaning of verb phrases are represented in the act struc-
tures of the acting model. If English versions of con-
tol acts are included in the fragment of English, GLAIR
agents may be given composite acts to perform. For ex-
ample, Cassier (Shapiro 1998) can be told to “Go to the
green robot and then come here and help me.” With appro-
priate grammatical support, natural language may be used
to teach GLAIR agents new tasks. For example, an early
GLAIR agent was told, “IF a block is on a support then a
plan to achieve that the support is clear is to pick up the
block and then put the block on the table” (Shapiro 1989;
Shapiro, Ismail, and Santore 2000).

12.2 Rationality and optimality

Rationality When attempting to achieve a goal ¢, a
GLAIR agent chooses an act o to perform based on its
belief that the act will achieve the goal, as expressed by
GoalPlan (¢,a). However, we have not yet experi-
mented with GLAIR agents that formulate such beliefs by
reasoning about the effects of various acts. That is, we have
not yet developed GLAIR agents that do traditional Al plan-
ning. Nor have we experimented with GLAIR agents that
formulate GoalPlan beliefs after acting and noting the ef-
fects of its acts. So a GLAIR agent is rational in the sense
that it selects an act that it believes will lead to the goal.
However, it doesn’t know that the act will lead to the goal.

Optimality The GLAIR architecture allows for, but does
not explicitly implement as part of the architecture, agents
that choose optimal actions based on preferences they form.
This has been used to implement agents that can prefer
certain shortcut ways of performing arithmetical operations
(Goldfain 2008), and by metacognitive agents such as those
described in (Shapiro et al. 2007), which are able to observe
themselves at work and prefer efficient (requiring fewer
steps than the alternatives) ways of accomplishing a goal.

12.3 Efficiency and scalability

SNePS does not place any formal restriction on the num-
ber of terms that can be represented and stored, nor on the
number of relations between them. There is a naturally-
occurring limit that depends on the computational resources
available to the system and will vary from one machine to
the next. The upper limit for any instance of SNePS depends
on the heap size of the Lisp image in which it is running.
We have not evaluated SNePS in terms of formal computa-
tional complexity, A recent technical report on SNePS’ effi-
ciency (Seyed, Kandefer, and Shapiro 2008) shows that the
system can reason over knowledge bases that include tens
of thousands of terms/propositions, though some reasoning
tasks take many seconds to complete in this situation. The

149

111

same report outlines steps to increase the number of sup-
ported memory elements and the speed with which they are
processed by the system. Some of these planned modifica-
tions have already been implemented in the latest releases.
Other proposed changes include introducing a sophisticated
scheme for moving to long-term memory information in the
KB that is not being used in the service of reasoning at that
time and is not likely to be used soon. SNePS3 (currently un-
der development) will introduce even more efficiency gains.

12.4 Reactivity and persistence

GLAIR’s use of separate buffers for separate perceptual
modalities facilitates reactivity by ensuring that sensory data
from one modality does not block and demand all of an
agent’s “attention.” In some of our work with GLAIR-based
agent-actors for virtual drama(Shapiro et al. 2005a), agents
interact with human audience participants in a 3D virtual
world that allows the human a great deal of freedom to move
around in, and effect changes within, the world. In one case,
the agent’s task is to guide the participant on a quest and
complete a series of activities. The participant’s actions can-
not be fully anticipated, and may include verbally addressing
the agent, losing interest and wandering off, making unre-
stricted movements unrelated to the task, etc. The agent’s
task then consists of following and keeping up with the par-
ticipant and reacting as appropriately as is possible to her
actions while simultaneously trying to convince her to par-
ticipate in the assigned task. This requires an implementa-
tion of persistence in which the agent keeps track of goals
for the current task (and the greater quest), while simultane-
ously dealing with unpredictable changes in the environment
due to the participant’s activities.

12.5 Improvability
Improvability GLAIR includes several forms of learning:

Learning by being told: Propositions and policies added
to the KL, whether from a human, another agent, or via
perception are immediately available for use. For exam-
ple, a GLAIR agent is instructable. If it is unable, due
to lack of knowledge, to perform some act, a human may
instruct it so that the agent will be able to perform that act
in the future.

Contextual learning: As discussed in §3.2, when a propo-
sition ¢ is derived in a context C, its origin set o,
a set of hypotheses, is stored with it. As the agent
performs, the context will probably change and some
of the hypotheses in o be removed from the context.
When a new context arises that again contains all the
hypotheses in o, will again be asserted without hav-
ing to be rederived. Consider a conditional plan such
as ¢ => GoalPlan (a,p). The first time the plan
is considered in an appropriate context, ¢ and then
GoalPlan («,p) will have to be derived. If another sit-
uation arises in which the hypotheses in o are asserted,
GoalPlan (a,p) will be asserted without the need for
rederivation.

Experience-Based Deductive Learning Consider the gen-
eral definition of transitivity, expressible in SNePSLOG

as

all(r) (Transitive (r)
=> all(x,y,z) ({r(x,y), r(y,z)}
&=> r(x,z)))

along with the belief that Transitive (ancestor).
The first time an ancestor question is posed to Cassie,
she will use the transitivity definition to derive

all(x,y,z) ({ancestor (x,v),
ancestor (y,z) }
&=> ancestor (x,z)))

and then answer the question. The specific ancestor
rule will be stored in the Knowledge Layer. The next time
an ancestor question is posed, Cassie will use the spe-
cific ancestor rule, but not the general transitivity def-
inition. Even though the knowledge base is now larger
(two rules are stored instead of one), the second ques-
tion will be answered more quickly than if the first ques-
tion hadn’t been asked. Cassie has developed a kind of
expertise in ancestor-reasoning (Choi and Shapiro 1991;
Choi 1993).

Several other forms of improvability have not yet been
added to GLAIR. For example, we have not yet experi-
mented with agents that use the observed effects of its acts
to modify or extend its plans. Nor have we yet experimented
with agents that “compile” defined acts into primitive acts.

12.6 Autonomy and extended operation

The GLAIR acting system allows for agents that act au-
tonomously for long periods of time, though we have not
made any formal measure of agents’ degrees of autonomy.
Many of our agents can act indefinitely independent of any
explicit instructions from, or interactions with, an opera-
tor by pursuing goals, following plans, and responding to
changes in the environment as they are perceived.

13. Future Concerns

Several issues that are certainly important for cognitive ar-
chitectures have not yet been addressed in the development
of GLAIR. These include uncertainty and considerations of
real-time operation to limit the amount of reasoning.

14. Current Status

SNePS has been under development, with numerous uses,
modifications, additions, and reimplementations since be-
fore 1979 (Shapiro 1979). Likewise, GLAIR has been under
development since before 1993 (Hexmoor, Lammens, and
Shapiro 1993), and has been used for a variety of agents, for
some examples see (Shapiro and Kandefer 2005; Kandefer
and Shapiro 2007; Anstey et al. in press). MGLAIR is still
being defined, although prototype versions have been used
to build a variety of agents (Shapiro et al. 2005a).

References

Alchourrén, C. E.; Gardenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction

150

112

and revision functions.
50(2):510-530.
Anderson, J. R., and Lebiere, C. 1998. The Atomic Com-
ponents of Thought. Mahwah, NJ: Lawrence Erlbaum.
Anstey, J.; Seyed, A. P.; Bay-Cheng, S.; Bona, J.; Hibit,
S.; Pape, D.; Shapiro, S. C.; and Sena, V. in press. The
agent takes the stage. International Journal of Arts and
Technology,.

The Journal of Symbolic Logic

Bohm, C., and Jacopini, G. 1966. Flow diagrams, turing
machines, and languages with only two formation rules.
Communications of the ACM 9(5):366-371.

Carbonell, J. G.; Knoblock, C. A.; and Minton, S. 1990.
PRODIGY: An integrated architecture for planning and
learning. In VanLehn, K., ed., Architectures for Intelli-
gence. Hillsdale, NJ: Lawrence Erlbaum. 241-278.

Choi, J., and Shapiro, S. C. 1991. Experience-based deduc-
tive learning. In Third International Conference on Tools
for Artificial Intelligence TAI *91. Los Alamitos, CA: IEEE
Computer Society Press. 502-503.

Choi, J. 1993. Experience-Based Learning in Deductive
Reasoning Systems. PhD dissertation, Technical Report 93-
20, Department of Computer Science, State University of
New York at Buffalo, Buffalo, NY.

de Kleer, J. 1986. An assumption-based truth maintenance
system. Artificial Intelligence 28(2):127-162.

Duchan, J. F; Bruder, G. A.; and Hewitt, L. E., eds.
1995. Deixis in Narrative: A Cognitive Science Perspec-
tive. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Goldfain, A. 2008. A Computational Theory of Early
Mathematical Cognition. Ph.D. Dissertation, State Univer-
sity of New York at Buffalo, Buffalo, NY.

Haller, S. 1996. Planning text about plans interactively.
International Journal of Expert Systems 9(1):85-112.

Haller, S. 1999. An introduction to interactive discourse
processing from the perspective of plan recognition and
text planning. Artificial Intelligence Review 13(4):259—
333.

Hexmoor, H.; Lammens, J.; and Shapiro, S. C. 1993. Em-
bodiment in GLAIR: a grounded layered architecture with
integrated reasoning for autonomous agents. In Dankel II,
D. D., and Stewman, J., eds., Proceedings of The Sixth
Florida Al Research Symposium (FLAIRS 93). The Florida
Al Research Society. 325-329.

Hobbs, J. R. 2000. Half orders of magnitude. In Obrst,
L., and Mani, 1., eds., Papers from the Workshop on Se-
mantic Approximation, Granularity, and Vagueness, 28—
38. A Workshop of the Seventh International Conference
on Principles of Knowldege Representation and Reason-
ing, Breckenridge, CO.

Ismail, H. O., and Shapiro, S. C. 2000. Two problems with
reasoning and acting in time. In Cohn, A. G.; Giunchiglia,
F.; and Selman, B., eds., Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Seventh In-
ternational Conference (KR 2000), 355-365. San Fran-
cisco: Morgan Kaufmann.

Ismail, H. O., and Shapiro, S. C. 2001. The cognitive
clock: A formal investigation of the epistemology of time.
Technical Report 2001-08, Department of Computer Sci-
ence and Engineering, University at Buffalo, Buffalo, NY.

Ismail, H. O. 2001. Reasoning and Acting in Time. PhD
dissertation, Technical Report 2001-11, University at Buf-
falo, The State University of New York, Buffalo, NY.

Kandefer, M., and Shapiro, S. C. 2007. Knowledge acqui-
sition by an intelligent acting agent. In Amir, E.; Lifschitz,
V.; and Miller, R., eds., Logical Formalizations of Com-
monsense Reasoning, Papers from the AAAI Spring Sym-
posium, Technical Report SS-07-05, 77-82. Menlo Park,
CA: AAAI Press.

Kumar, D., and Shapiro, S. C. 1991. Architecture of an
intelligent agent in SNePS. SIGART Bulletin 2(4):89-92.

Kumar, D., and Shapiro, S. C. 1994. Acting in service of
inference (and vice versa). In Dankel II, D. D., ed., Pro-
ceedings of The Seventh Florida Al Research Symposium
(FLAIRS 94). The Florida Al Research Society. 207-211.

Kumar, D. 1993. A unified model of acting and inference.
In Proceedings of the Twenty-Sixth Hawaii International
Conference on System Sciences. Los Alamitos, CA: IEEE
Computer Society Press.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987.
SOAR: an architecture for general intelligence. Artificial
Intelligence 33(1):1-64.

Lammens, J. M.; Hexmoor, H. H.; and Shapiro, S. C. 1995.
Of elephants and men. In Steels, L., ed., The Biology
and Technology of Intelligent Autonomous Agents. Berlin:
Springer-Verlag, Berlin. 312-344.

Langley, P.; Cummings, K.; and Shapiro, D. 2004. Hierar-
chical skills and cognitive architectures. In Proceedings of
the Twenty-Sixth Annual Conference of the Cognitive Sci-
ence Society, 779-784.

Langley, P.; Laird, J. E.; and Rogers, S. 2009. Cognitive
architectures: Research issues and challenges. Cognitive
Systems Research 10(2):141-160.

Lehmann, F, ed. 1992. Semantic Networks in Artificial
Intelligence. Oxford: Pergamon Press.

Martins, J. P, and Shapiro, S. C. 1983. Reasoning in
multiple belief spaces. In Proceedings of the Eighth In-
ternational Joint Conference on Artificial Intelligence. San
Mateo, CA: Morgan Kaufmann. 370-373.

Martins, J. P., and Shapiro, S. C. 1988. A model for belief
revision. Artificial Intelligence 35:25-79.

McKay, D. P., and Shapiro, S. C. 1980. MULTI — a LISP
based multiprocessing system. In Proceedings of the 1980
LISP Conference, 29-317.

McKay, D. P,, and Shapiro, S. C. 1981. Using active con-
nection graphs for reasoning with recursive rules. In Pro-
ceedings of the Seventh International Joint Conference on
Artificial Intelligence. San Mateo, CA: Morgan Kaufmann.
368-374.

Morgado, E. J. M., and Shapiro, S. C. 1985. Believing and
acting: A study of meta-knowledge and meta-reasoning.

151

113

In Proceedings of EPIA-85 “Encontro Portugues de In-
teligencia Artificial”, 138—154.

Neal, J. G., and Shapiro, S. C. 1985. Parsing as a form
of inference in a multiprocessing environment. In Pro-
ceedings of the Conference on Intelligent Systems and Ma-
chines, 19-24. Rochester, Michigan: Oakland University.

Neal, J. G., and Shapiro, S. C. 1987a. Knowledge-based
parsing. In Bolc, L., ed., Natural Language Parsing Sys-
tems. Berlin: Springer-Verlag. 49-92.

Neal, J. G., and Shapiro, S. C. 1987b. Knowledge rep-
resentation for reasoning about language. In Boudreaux,
J. C.; Hamill, B. W.; and Jernigan, R., eds., The Role of
Language in Problem Solving 2. Elsevier Science Publish-
ers. 27-46.

Orilia, F., and Rapaport, W. J., eds. 1998. Thought, Lan-
guage, and Ontology: Essays in Memory of Hector-Neri
Castarieda. Dordrecht: Kluwer Academic Publishers.

Rapaport, W. J.; Shapiro, S. C.; and Wiebe, J. M. 1997.
Quasi-indexicals and knowledge reports. Cognitive Sci-
ence 21(1):63-107. Reprinted in (Orilia and Rapaport
1998, pp. 235-294).

Searle, J. R. 1975. Indirect speech acts. In Cole, P., and
Morgan, J. L., eds., Speech Acts: Syntax and Semantics,
volume 3. Academic Press. 59-82.

Seyed, A. P.; Kandefer, M.; and Shapiro, S. C. 2008. Sneps
efficiency report. SNeRG Technical Note 43, Department
of Computer Science, State University of New York at Buf-
falo, Buffalo, NY.

Shapiro, S. C., and Ismail, H. O. 2003. Anchoring in
a grounded layered architecture with integrated reasoning.
Robotics and Autonomous Systems 43(2-3):97-108.

Shapiro, S. C., and Kandefer, M. 2005. A SNePS approach
to the wumpus world agent or Cassie meets the wumpus. In
Morgenstern, L., and Pagnucco, M., eds., IJCAI-05 Work-
shop on Nonmonotonic Reasoning, Action, and Change
(NRAC’05): Working Notes. Edinburgh, Scotland: IJCAIIL.
96-103.

Shapiro, S. C., and Neal, J. G. 1982. A knowledge en-
gineering approach to natural language understanding. In
Proceedings of the 20th Annual Meeting of the Associa-
tion for Computational Linguistics. Menlo Park, CA: ACL.
136-144.

Shapiro, S. C., and Rapaport, W. J. 1987. SNePS con-
sidered as a fully intensional propositional semantic net-
work. In Cercone, N., and McCalla, G., eds., The Knowl-
edge Frontier. New York: Springer-Verlag. 263-315.
Shapiro, S. C., and Rapaport, W. J. 1992. The SNePS
family. Computers & Mathematics with Applications 23(2—
5):243-275. Reprinted in (Lehmann 1992, pp. 243-275).
Shapiro, S. C., and Rapaport, W. J. 1995. An introduction
to a computational reader of narratives. In Duchan, J. F.;
Bruder, G. A.; and Hewitt, L. E., eds., Deixis in Narrative:
A Cognitive Science Perspective. Hillsdale, NJ: Lawrence
Erlbaum Associates, Inc. 79-105.

Shapiro, S. C., and The SNePS Implementation Group.
2008. SNePS 2.7 User’s Manual. Department of Com-

puter Science and Engineering, University at Buffalo, The
State University of New York, Buffalo, NY.

Shapiro, S. C.; Anstey, J.; Pape, D. E.; Nayak, T. D.; Kan-
defer, M.; and Telhan, O. 2005a. MGLAIR agents in a
virtual reality drama. Technical Report 2005-08, Depart-
ment of Computer Science & Engineering, University at
Buffalo, Buffalo, NY.

Shapiro, S. C.; Anstey, J.; Pape, D. E.; Nayak, T. D.; Kan-
defer, M.; and Telhan, O. 2005b. MGLAIR agents in
virtual and other graphical environments. In Proceedings
of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05). Menlo Park, CA: AAAI Press. 1704—
1705.

Shapiro, S. C.; Anstey, J.; Pape, D. E.; Nayak, T. D.; Kan-
defer, M.; and Telhan, O. 2005¢. The Trial The Trail, Act 3:
a virtual reality drama using intelligent agents. In Young,
R. M., and Laird, J., eds., Proceedings of the First An-
nual Artificial Intelligence and Interactive Digital Enter-
tainment Conference (AIIDE-05), 157-158. Menlo Park,
CA: AAAI Press.

Shapiro, S. C.; Rapaport, W. J.; Kandefer, M.; Johnson,
F. L.; and Goldfain, A. 2007. Metacognition in SNePS. A/
Magazine 28:17-31.

Shapiro, S. C.; Ismail, H. O.; and Santore, J. F. 2000.
Our dinner with Cassie. In Working Notes for the AAAI
2000 Spring Symposium on Natural Dialogues with Prac-
tical Robotic Devices, 57-61. Menlo Park, CA: AAAIL

Shapiro, S. C.; Martins, J. P.; and McKay, D. P. 1982. Bi-
directional inference. In Proceedings of the Fourth Annual
Meeting of the Cognitive Science Society, 90-93.

Shapiro, S. C. 1978. Path-based and node-based inference
in semantic networks. In Waltz, D. L., ed., Tinlap-2: Theo-
retical Issues in Natural Languages Processing. New York:
ACM. 219-225.

Shapiro, S. C. 1979. The SNePS semantic network pro-
cessing system. In Findler, N. V., ed., Associative Net-
works: The Representation and Use of Knowledge by Com-
puters. New York: Academic Press. 179-203.

Shapiro, S. C. 1982. Generalized augmented transi-
tion network grammars for generation from semantic net-
works. The American Journal of Computational Linguis-
tics 8(1):12-25.

Shapiro, S. C. 1986. Symmetric relations, intensional in-
dividuals, and variable binding. Proceedings of the IEEE
74(10):1354-1363.

Shapiro, S. C. 1987. Processing, bottom-up and top-down.
In Shapiro, S. C., ed., Encyclopedia of Artificial Intelli-
gence. New York: John Wiley & Sons. 779-785. Reprinted
in Second Edition, 1992, pages 1229-1234.

Shapiro, S. C. 1989. The CASSIE projects: An approach
to natural language competence. In Martins, J. P., and Mor-
gado, E. M., eds., EPIA 89: 4th Portugese Conference on
Artificial Intelligence Proceedings, Lecture Notes in Artifi-
cial Intelligence 390. Berlin: Springer-Verlag. 362-380.
Shapiro, S. C. 1991. Cables, paths and “subconscious”
reasoning in propositional semantic networks. In Sowa,

152

114

J., ed., Principles of Semantic Networks: Explorations in
the Representation of Knowledge. Los Altos, CA: Morgan
Kaufmann. 137-156.

Shapiro, S. C. 1992. Artificial intelligence. In Shapiro,
S. C., ed., Encyclopedia of Artificial Intelligence. New
York: John Wiley & Sons, second edition. 54-57.

Shapiro, S. C. 1993. Belief spaces as sets of propositions.
Journal of Experimental and Theoretical Artificial Intelli-
gence (JETAI) 5(2&3):225-235.

Shapiro, S. C. 1998. Embodied Cassie. In Cognitive
Robotics: Papers from the 1998 AAAI Fall Symposium,
Technical Report FS-98-02. Menlo Park, California: AAAI
Press. 136-143.

Shapiro, S. C. 2000a. An introduction to SNePS 3. In Gan-
ter, B., and Mineau, G. W., eds., Conceptual Structures:
Logical, Linguistic, and Computational Issues, volume
1867 of Lecture Notes in Artificial Intelligence. Berlin:
Springer-Verlag. 510-524.

Shapiro, S. C. 2000b. SNePS: A logic for natural lan-
guage understanding and commonsense reasoning. In Nat-
ural Language Processing and Knowledge Representation:
Language for Knowledge and Knowledge for Language.
Menlo Park, CA: AAAI Press/The MIT Press. 175-195.
Shubin, H. 1981. Inference and control in multiprocess-
ing environments. Technical Report 186, Department of
Computer Science, SUNY at Buffalo.

Research with Collaborative Unmanned Aircraft Systems

P. Doherty J. Kvarnstrom F. Heintz D. Landen
P-M. Olsson
Department of Computer and Information Science
Linkoping University, SE-58183 Linkoping, Sweden
{patdo,jonkv,frehe,davla,perol }Qida.liu.se

Abstract

We provide an overview of ongoing research which targets development of a principled
framework for mixed-initiative interaction with unmanned aircraft systems (UAS). UASs are
now becoming technologically mature enough to be integrated into civil society. Principled
interaction between UASs and human resources is an essential component in their future
uses in complex emergency services or bluelight scenarios. In our current research, we
have targeted a triad of fundamental, interdependent conceptual issues: delegation, mixed-
initiative interaction and adjustable autonomy, that is being used as a basis for developing a
principled and well-defined framework for interaction. This can be used to clarify, validate
and verify different types of interaction between human operators and UAS systems both
theoretically and practically in UAS experimentation with our deployed platforms.

1 Introduction

In the past decade, the Unmanned Aircraft Systems Technologies Lab! at the Department of
Computer and Information Science, Linképing University, has been involved in the develop-
ment of autonomous unmanned aerial vehicles and associated hardware and software technolo-
gies [13, 11, 12]. The size of our research platforms range from the RMAX helicopter sys-
tem [14, 39, 36, 33, 7] (Figure 1) developed by Yamaha Motor Company, to smaller micro-size
rotor based systems such as the LinkQuad (Figure 2)? and LinkMAV [23, 34] (Figure 1), in
addition to a fixed wing platform, the PingWing [8] (Figure 1). The latter three have been
designed and developed by the Unmanned Aircraft Systems Technologies Lab. Previous work
has focused on the development of robust autonomous systems for UAV’s which seamlessly in-
tegrate control, reactive and deliberative capabilities that meet the requirements of hard and
soft realtime constraints [14, 32]. Additionally, we have focused on the development and inte-
gration of many high-level autonomous capabilities studied in the area of cognitive robotics such
as task planners [15, 16], motion planners [37, 36, 38|, execution monitors [18], and reasoning
systems [19, 17, 31], in addition to novel middleware frameworks which support such integra-
tion [27, 29, 30]. Although research with individual high-level cognitive functionalities is quite
advanced, robust integration of such capabilities in robotic systems which meet real-world con-
straints is less developed but essential to introduction of robotic systems into society in the future.

Lyww.ida.liu.se/~patdo/aiicssitel/
2yww.uastech.com

115

Consequently, our research has focused, not only on such high-level cognitive functionalities, but
also on integrative issues.

Figure 1: The UASTech RMAX (left), LinkMAV (center) and the PingWing (right)

More recently, our research efforts have begun to focus on applications where heterogeneous UASs
are required to collaborate not only with each other but also with diverse human resources [20,
21, 28]. UASs are now becoming technologically mature enough to be integrated into civil society.
Principled interaction between UASs and human resources is an essential component in the future
uses of UASs in complex emergency services or bluelight scenarios. Some specific target UAS
scenario examples are search and rescue missions for inhabitants lost in wilderness regions and
assistance in guiding them to a safe destination; assistance in search at sea scenarios; assistance
in more devastating scenarios such as earthquakes, flooding or forest fires; and environmental
monitoring.

As UASs become more autonomous, mixed-initiative interaction between human operators and
such systems will be central in mission planning and tasking. By mixed-initiative, we mean that
interaction and negotiation between a UAS and a human will take advantage of each of their
skills, capacities and knowledge in developing a mission plan, executing the plan and adapting
to contingencies during the execution of the plan. In the near future, the practical use and
acceptance of UASs will have to be based on a verifiable, principled and well-defined interaction
foundation between one or more human operators and one or more autonomous systems. In
developing a principled framework for such complex interaction between UASs and humans in
complex scenarios, a great many interdependent conceptual and pragmatic issues arise and need
clarification both theoretically, but also pragmatically in the form of demonstrators. Addition-
ally, an iterative research methodology is essential which combines foundational theory, systems
building and empirical testing in real-world applications from the start.

116

Figure 2: The UASTech LinkQuad Quadrotor Helicopter

2 A Conceptual Triad

In our current research, we have targeted a triad of fundamental, interdependent conceptual
issues: delegation, mixed-initiative interaction and adjustable autonomy. The triad of concepts
is being used as a basis for developing a principled and well-defined framework for interaction
that can be used to clarify, validate and verify different types of interaction between human
operators and UAS systems both theoretically and practically in UAS experimentation with
our deployed platforms. The concept of delegation is particularly important and in some sense
provides a bridge between mixed-initiative interaction and adjustable autonomy.

Delegation — In any mixed initiative interaction, humans request help from robotic systems
and robotic systems may request help from humans. One can abstract and concisely model such
requests as a form of delegation, Delegate(A, B, task, constraints), where A is the delegating
agent, B is the potential contractor, task is the task being delegated and consists of a goal and
possibly a plan to achieve the goal, and constraints represents a context in which the request is
made and the task should be carried out.

Adjustable Autonomy — In solving tasks in a mixed-initiative setting, the robotic system in-
volved will have a potentially wide spectrum of autonomy, yet should only use as much autonomy
as is required for a task and should not violate the degree of autonomy mandated by a human op-
erator unless agreement is made. One can begin to develop a principled means of adjusting auton-
omy through the use of the task and constraint parameters in the Delegate(A, B, task, constraints)
function. A task delegated with only a goal and no plan, with few constraints, allows the robot
to use much of its autonomy in solving the task, whereas a task specified as a sequence of actions
and many constraints allows only limited autonomy.

Mixed-Initiative Interaction — Mixed-initiative interaction involves a very broad set of issues,

117

both theoretical and pragmatic. One central part of such interaction is the ability of a a ground
operator (GOP) to be able to delegate tasks to a UAS, Delegate(GOP, U AS, task, constraints)
and in a symmetric manner, the ability of a UAS to be able to delegate tasks to a GOP,
Delegate(UAS, GOP, task, constraints). Issues pertaining to safety, security, trust, etc., have to
be dealt with in the interaction process and can be formalized as particular types of constraints
associated with a delegated task. Additionally, the task representation must be highly flexi-
ble, distributed and dynamic. Tasks need to be delegated at varying levels of abstraction and
also expanded and modified as parts of tasks are recursively delegated to different UAS agents.
Consequently, the structure must also be distributable.

3 A First Iteration

3.1 The Architecture

Our RMAX helicopters use a CORBA-based distributed architecture [14]. For our experimenta-
tion with collaborative UASs, we view this as a legacy system and extend it with what is con-
ceptually an additional outer layer in order to leverage the functionality of JADE [24]. "JADE
(Java Agent Development Framework) is a software environment to build agent systems for the
management of networked information resources in compliance with the FIPA specifications for
interoperable multi-agent systems.” [25]. The reason for this is pragmatic. Our formal charac-
terization of the Delegate() operator is as a speech act. We also use speech acts as an agent
communication language and JADE provides a straightforward means for integrating the FIPA
ACL language which supports speech acts with our existing systems. The outer layer may be
viewed as a collection of JADE agents that interface to the legacy system. We are currently
using four agents in the outer layer:

1. Interface agent - This agent is the clearinghouse for communication. All requests for del-
egation and other types of communication pass through this agent. Externally, it provides
the interface to a specific robotic system.

2. Delegation agent- The delegation agent coordinates delegation requests to and from other
UAS systems, with the executor, Resource and Interface agents. It does this essentially by
verifying that the pre-conditions to a Delegate() request are satisfied.

3. Executor agent - After a task is contracted to a particular UAS, it must eventually execute
that task relative to the constraints associated with it. The Executor agent coordinates
this execution process.

4. Resource agent - The Resource agent determines whether the UAS of which it is part
has the resources and ability to actually do a task as a potential contractor. Such a
determination may include the invocation of schedulers, planners and constraint solvers in
order to determine this.

3.2 Semantic Perspective: Delegation as a Speech Act
In [4, 26], Falcone & Castelfranchi provide an illuminating, but informal discussion about delega-

tion as a concept from a social perspective. Their approach to delegation builds on a BDI model
of agents, that is, agents having beliefs, goals, intentions, and plans [6], but the specification lacks

118

a formal semantics for the operators used. Based on intuitions from their work, we provided a
formal characterization of their concept of strong delegation using a communicative speech act
with pre- and post-conditions which update the belief states associated with the delegator and
contractor, respectively [21]. In order to formally characterize the operators used in the definition
of the speech act, we used KARO [35] to provide a formal semantics. The KARO formalism is
an amalgam of dynamic logic and epistemic / doxastic logic, augmented with several additional
(modal) operators in order to deal with the motivational aspects of agents.

First, we define the notion of a task as a pair consisting of a goal and a plan for that goal, or
rather, a plan and the goal associated with that plan. Paraphrasing Falcone & Castelfranchi
into KARO terms, we consider a notion of strong/strict delegation represented by a speech act
S-Delegate(A, B, 7) of A delegating a task 7 = («, ¢) to B, where « is a possible plan and ¢ is
a goal. It is specified as follows:

S-Delegate(A, B, 7), where 7 = (a, ¢)
Preconditions:

(1) Goala(9)

(2) BelyCanp(t) (Note that this implies BelaBelg(Cangp(T)))

(3) Bela(Dependent(A, B, a))

Postconditions:

(1) Goalg(¢) and BelpGoalg (o)

(2) Committedp(a).

(3) BelgGoala(¢)

(4) Canp(7) (and hence BelgCang(7), and by (1) also Intend (7))

(5) MutualBel sp(“the statements above” A SociallyCommitted(B, A, T))

Informally speaking this expresses the following: the preconditions of the S-delegation act of A
delegating task 7 to B are that (1) ¢ is a goal of delegator A (2) A believes that B can (is able
to) perform the task 7 (which implies that A believes that B himself believes that he can do the
task!) (3) A believes that with respect to the task 7 he is dependent on B.

The postconditions of the delegation act mean: (1) B has ¢ as his goal and is aware of this (2)
he is committed to the task (3) B believes that A has the goal ¢ (4) B can do the task 7 (and
hence believes it can do it, and furthermore it holds that B intends to do the task, which was
a separate condition in F&C’s set-up), and (5) there is a mutual belief between A and B that
all preconditions and other postconditions mentioned hold, as well as that there is a contract
between A and B, i.e. B is socially committed to A to achieve 7 for A. In this situation we will
call agent A the delegator and B the contractor.

Typically a social commitment (contract) between two agents induces obligations to the partners
involved, depending on how the task is specified in the delegation action. This dimension has to be
added in order to consider how the contract affects the autonomy of the agents, in particular the
contractor’s autonomy. We consider a few relevant forms of delegation specification below.

119

3.2.1 Closed vs Open delegation

Falcone & Castelfranchi furthermore discuss the following variants of task specification:

e closed delegation: the task is completely specified: both goal and plan should be adhered
to.

e open delegation: the task is not completely specified: either only the goal has to be adhered
to while the plan may be chosen by the contractor, or the specified plan contains ‘abstract’
actions that need further elaboration (a ‘sub-plan’) to be dealt with by the contractor.

So in open delegation the contractor may have some freedom to perform the delegated task,
and thus it provides a large degree of flexibility in multi-agent planning, and allows for truly
distributed planning.

The specification of the delegation act in the previous subsection was in fact based on closed
delegation. In case of open delegation « in the postconditions can be replaced by an ', and 7 by
7' = (a/,®). Note that the fourth clause, viz. Cang(7’), now implies that o’ is indeed believed
to be an alternative for achieving ¢, since it implies that Belg[a/]¢ (B believes that ¢ is true
after o is executed). Of course, in the delegation process, A must agree that o’ is indeed viable.
This would depend on what degree of autonomy is allowed.

This particular specification of delegation follows Falcone & Castelfranchi closely. One can easily
foresee other constraints one might add or relax in respect to the basic specification resulting in
other variants of delegation [5, 10].

3.2.2 Strong Delegation in Agent Programming

When devising a system like the one we have in mind for our scenario, we need programming
concepts that support delegation and in particular the open variant of delegation. In the setting
of an agent programming language such as 2APL [9], we may use plan generation rules to establish
a contract between two agents. Very briefly, a 2APL agent has a belief base, a goal base, a plan
base, a set of capabilities (basic actions it can perform), and sets of rules to change its bases:
PG rules, PR rules and PC rules. PG-rules have the form v < § | 7, meaning that if the agent
has goal v and belief 5 then it may generate plan 7w and put it in its plan base. PR rules can be
used to repair plans if execution of the plan fails: they are of the form 7 « (3 | 7/, meaning that
if 7 is the current plan (which is failing), and the agent believes 3 then it may revise 7 into 7’.
PC-rules are rules for defining macros and recursive computations. (We will not specify them
here.)

The act of strong delegation can now be programmed in 2APL by providing the delegator with
a rule
¢ «— Canpg(1) A Dependent(A, B, 1) | SDelegate(A, B, 1)

(where 7 = (o, ¢)), which means that the delegation act may be generated by delegator A exactly
when the preconditions that we described earlier are met. The action SDelegate(A, B,T) is
a communication action requesting to adapt the goal and belief bases of B according to the
KARO specification given earlier, and should thus, when successful (depending upon additional
assumptions such as that there is some authority or trust relation between A and B), result in
a state where contractor B has ¢ in its goal base, Goals(¢), Canp(r) and M B(‘contract’) in
its belief base, and plan « in its plan base. That is to say, in the case of a closed delegation
specification. If the specification is an open delegation, it instead will have an alternative plan

120

o/ in its plan base and a belief Canp(a/, ¢) in its belief base. It is very important to note that in
the case of such a concrete setting of an agent programmed in a language such as 2APL, we may
provide the Can-predicate with a more concrete interpretation: Cang(a, ¢) is true if (either ¢ is
in its goal base and « is in its plan base already, or) B has a PG-rule of the form ¢ « (3 | o' for
some [that follows from B’s belief base, and the agent has the resources available for executing
plan «. This would be a concrete interpretation of the condition that the agent has the ability
as well as the opportunity to execute the plan!

3.3 Pragmatic Perspective: Delegation as Contract Networks and Con-
straints

From a semantic perspective, delegation as a speech act provides us with insight and an abstract
specification which can be used as a basis for a more pragmatic implementation on actual UAS
platforms. There is a large gap between these perspectives though. We have chosen to also work
from a bottom-up perspective and have developed a prototype software system that implements
a delegation framework using the JADE architecture specified above. The system has been tested
using a number of complex collaborative scenarios described later in the paper.

In the software architecture, we have focused on a number of issues central to making such a
system work in practice:

e Task Specification — A specification for a task representation which we call task speci-
fication trees. This representation has to be implicitly sharable, dynamically extendable,
and distributed in nature. Such a task structure is passed from one agent to another and
possibly extended in more detail as delegation process is invoked recursively among agents
and humans. If the delegation process is successful, the resulting shared structure is in fact
executable in a distributed manner. The delegation agents associated with specific UASs
are responsible for passing and extending such structures in order to meet the requirements
of goal specifications or instantiations of abstract task specifications. The Executor agents
associated with specific UASs have the capacity to execute specific nodes in a shared task
specification tree that have been delegated to them.

e Ability and Resource Allocation — A central precondition to the Delegate speech
act specified previously is whether a potential contracting agent can do a task. This
involves a UAS determining whether it has the proper resources both statically (sensors)
and dynamically (use of sensors, power, fuel), and whether it can schedule execution of
the processes required to achieve a task at a particular time. In essence, a pragmatic
grounding of the Can() predicate in the architecture is required. We are approaching this
problem through the use of a combination of distributed constraint solving and loosely
coupled distributed task planning. The resource agents associated with specific UASs are
responsible for reasoning about resources and solving constraint problems when queried by
the associated UAS’s delegation agent.

e Collaborative Planning — UASs which have accepted a delegated task are responsible
for insuring that they can put together a team of UASs which can consistently contribute
to the solution of the task. This involves recursive calls to the delegation process, local
generation of sub-plans which achieve specific aspects of a task and the integration of
these sub-plans into a coherent global plan which can be executed consistently and in a
distributed manner to achieve the task requirements. For this we have been developing
extensions to TALplanner which combine forward chaining with partial-order planning.

121

e Delegation process - The delegation process itself involves the use of speech acts and
contract networks in combination. The process of delegation is quite complex in that a
task specification tree has to be constructed dynamically in time and then executed in a
distributed manner while meeting all the constraints specified in recursive delegation calls.
This also has to be done in a tractable manner in order to ensure that temporal and spatial
constraints are met.

These topics are work in progress and will be presented in more detail in future work. A
prototype implementation does exist and is being used for experimentation with a number of
complex collaborative UAS scenarios briefly described in the next section.

4 Collaborative Scenarios

We have chosen two relatively complex collaborative UAS scenarios in which to develop our
mixed-initiative framework.

4.1 An Emergency Services Scenario with Logistics

On December 26, 2004, a devastating earthquake of high magnitude occurred off the west coast off
Sumatra. This resulted in a tsunami which hit the coasts of India, Sri Lanka, Thailand, Indonesia
and many other islands. Both the earthquake and the tsunami caused great devastation. During
the initial stages of the catastrophe, there was a great deal of confusion and chaos in setting
into motion rescue operations in such wide geographic areas. The problem was exacerbated by
shortage of manpower, supplies and machinery. The highest priorities in the initial stages of
the disaster were searching for survivors in many isolated areas where road systems had become
inaccessible and providing relief in the form of delivery of food, water and medical supplies.
Similar real-life scenarios have occurred more recently in China and Haiti where devastating
earthquakes have caused tremendous material and human damage.

Let’s assume for a particular geographic area, one had a shortage of trained helicopter and
fixed-wing pilots and/or a shortage of helicopters and other aircraft. Let’s also assume that one
did have access to a fleet of autonomous unmanned helicopter systems with ground operation
facilities. How could such a resource be used in the real-life scenario described?

Leg I In the first part of the scenario, it is essential that for specific geographic areas, the UAS
platforms should cooperatively scan large regions in an attempt to identify injured per-
sons. The result of such a cooperative scan would be a saliency map pinpointing potential
victims, their geographical coordinates and sensory output such as high resolution photos
and thermal images of potential victims. The resulting saliency map would be generated
as the output of such a cooperative UAS mission and could be used directly by emergency
services or passed on to other UASs as a basis for additional tasks.

Leg IT In the second part of the scenario, the saliency map generated in Leg I would be used
as a basis for generating a logistics plan for several of the UASs with the appropriate
capabilities to deliver food, water and medical supplies to the injured identified in Leg I.
This of course would also be done in a cooperative manner among the platforms.

Leg I of this mission has been flown using two RMAX helicopters flying autonomously and using
the prototype software system described above. The output of the mission is a saliency map

122

e

e [
-----I-

Figure 3: Identified bodies from Leg I of the emergency services scenario

.i
’ V
's
?
B2

Figure 4: Emergency Supply Delivery

with geo-located injured humans and infrared and digital photos of the injured (Figure 3). Leg
II of this mission has been tested in hardware in the loop simulation (Figure 4). Initial work
with this scenario is reported in [21, 22, 33].

4.2 A UAS Communication Relay Scenario

A wide variety of applications of UASs include the need for surveillance of distant targets,
including search and rescue operations, traffic surveillance and forest fire monitoring as well
as law enforcement and military applications. In many cases, the information gathered by a
surveillance UAS must be transmitted in real time to a base station where the current operation
is being coordinated. This information often includes live video feeds, where it is essential to
achieve uninterrupted communication with high bandwidth. UAS applications may therefore
require line-of-sight communications to minimize quality degradation, which is problematic in
urban or mountainous areas. Even given free line of sight, bandwidth requirements will also
place strict restrictions on the maximum achievable communication range. These limitations
are particularly important when smaller UASs are used, such as the 500-gram battery-powered
LinkMAV (Figure 1), or the LinkQuad (Figure 2). In these situations, transmitting information
directly to the base station can be difficult or impossible.

Both intervening obstacles and limited range can be handled using a chain of intermediate relay
UASs passing on information from the surveillance UAV to the base station (Figure 5). A
surveillance UAV can then be placed freely in a location that yields information of high quality.
We are therefore interested in positioning relay UASs to maximize the quality of the resulting
chain, given a known target position. However, we are also interested in minimizing resource

123

Figure 5: UAVs at x1, x5 and x3 are acting as relays in a city, connecting the base station at xg
with the surveillance UAV at x4, surveilling the target at x.

usage in terms of the number of relay UAVs required. Given these two objectives, a variety of
trade-offs are possible. For example, decreasing the distance between adjacent relay UASs may
improve transmission quality but instead requires additional relays.

In [1, 3, 2], we have developed a number of graph search algorithms which are scalable and
efficient approximations to continuous bi-objective optimization problems and applicable to re-
lay positioning in discrete space. Using these algorithms as a basis, we are experimenting in
simulation with multiple platforms which combine the use of such algorithms with our collabo-
rative framework. A human operator or a contracted UAS will set up such a relay and delegate
subparts of the relay mission to other UASs in the area. Currently, we are experimenting with
hardware-in-the-loop simulations. An example of one the environments used in testing is an
urban environment with semi-random placement of 100 tall buildings, as shown in Figure 6. To
reduce clutter, the figure is based on a sparse discretization and shows only the “lowest” level
of grid cells. Figure 7 shows a ground operation interface used to generate UAS communication
relays.

Figure 6: Randomized urban environment.

10

124

RS Events O Set Grid I Show Cost I Solve Relay Problem I Update 3d collection l Difkstra Graph I

Create Relay Mission | Create Mission Delagate Mission | Update 30 Visualzer | Zoomn [zoomow |

= Colaction id:

Gnd See (cobs) 2%
Cel Sze (m) 40 a0
Grid SW Lower Comer |500 [500 o
Stert Cel 3 2 g

Goal Posiion 28 [276 1o

Communication Range [270
Goal Rangs 100
M Steps

Margin g
Cost Function: (® Distance O Hidden Volume
@® Modified Dellman Ford
Q Orignal Beliman Ford
QO Dual Ascent
O Heuristic Dual Ascent
(] Profotch Data

Survellance Start Time (s) |300
Survedlance End Time (s) |600

= 7@7’!2 3 \l

Figure 7: Ground operator interface for generating UAS communication relays

5 Conclusions

The gap between research done in cognitive robotics and pragmatic use of such results in real-life
deployed systems embedded in highly dynamic outdoor environments is currently quite large.
The research pursued and described in this paper is intended to take steps toward closing this
gap by developing theories in a more traditional manner from the top-down as exemplified by
the formal characterization of delegation as a speech act, but also by building demonstrators and
prototype software systems which deal with all the complexities associated with systems and
architectures constrained to operate in dynamic outdoor environments. This type of research
demands an iterative and open-ended approach to the problem by combining theory, engineering
and application in suitable doses, and continually trying to close the loop at early stages in the
research. We will continue to pursue this approach and hope to report additional details in the
near future.

Acknowledgements

This overview of research was written specifically for the 2010 Dagstuhl Workshop on Cognitive
Robotics, Feb 22-26, 2010. It is intended to summarize work in progress which is jointly sup-
ported by grants from the Swedish Research Council (VR), the Swedish Foundation for Strategic
Research (SSF) Strategic Research Center MOVIII, the Swedish Research Council (VR) Linnaeus
Center CADICS, ELLIIT Excellence Center at Linképing-Lund for Information Technology and
the Center for Industrial Information Technology (CENIIT). The work described in Section 3.2
was done in cooperation with Professor J-J. Ch. Meyer, Utrecht University.

11

125

References

(1

[10]

[11]

[12]

[13]

[14]

[15]

[16]

O. Burdakov, P. Doherty, K. Holmberg, J. Kvarnstrom, and P-M. Olsson. Positioning
unmanned aerial vehicles as communication relays for surveillance tasks. In Proceedings of
the 5th Robotics: Science and Systems Conference (RSS), 2009.

O. Burdakov, P. Doherty, K. Holmberg, J. Kvarnstrom, and P-M. Olsson. Relay positioning
for unmanned aerial vehicle surveillance. International Journal of Robotics Research, 2010.

O. Burdakov, P. Doherty, K. Holmberg, and P-M. Olsson. Optimal placement of UV-based
communications relay nodes. Journal of Global Optimization, 2010.

C. Castelfranchi and R. Falcone. Toward a theory of delegation for agent-based systems. In
Robotics and Autonomous Systems, volume 24, pages 141-157, 1998.

P. Cohen and H. Levesque. Teamwork. Nous, Special Issue on Cognitive Science and Al,
25(4):487-512, 1991.

P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial Intelligence,
42(3):213-261, 1990.

G. Conte and P. Doherty. Vision-based unmanned aerial vehicle navigation using geo-
referenced information. EURASIP Journal of Advances in Signal Processing, 2009.

G. Conte, M. Hempel, P. Rudol, D. Lundstrém, S. Duranti, M. Wzorek, and P. Doherty.
High accuracy ground target geo-location using autonomous micro aerial vehicle platforms.
In Proceedings of the AIAA-08 Guidance,Navigation, and Control Conference, 2008.

M. Dastani and J.-J. Ch. Meyer. A practical agent programming language. In Proceedings of
AAMASO7T Workshop on Programming Multi-Agent Systems (ProMAS2007), pages 72-87,
2007.

E. Davis and L. Morgenstern. A first-order theory of communication and multi-agent plans.
Journal Logic and Computation, 15(5):701-749, 2005.

P. Doherty. Advanced research with autonomous unmanned aerial vehicles. In Proceedings on
the 9th International Conference on Principles of Knowledge Representation and Reasoning,
2004. Extended abstract for plenary talk.

P. Doherty. Knowledge representation and unmanned aerial vehicles. In Proceedings of the
IEEE Conference on Intelligent Agent Technolology (IAT 2005), 2005.

P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, and
J. Wiklund. The WITAS unmanned aerial vehicle project. In Proceedings of the 14th
European Conference on Artificial Intelligence, pages 747-755, 2000.

P. Doherty, P. Haslum, F. Heintz, T. Merz, T. Persson, and B. Wingman. A distributed
architecture for intelligent unmanned aerial vehicle experimentation. In Proceedings of the
7th International Symposium on Distributed Autonomous Robotic Systems, 2004.

P. Doherty and J. Kvarnstrom. TALplanner: A temporal logic based forward chaining
planner. Annals of Mathematics and Artificial Intelligence, 30:119-169, 2001.

P. Doherty and J. Kvarnstrom. TALplanner: A temporal logic based planner. Artificial
Intelligence Magazine, Fall Issue 2001.

12

126

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

P. Doherty and J. Kvarnstrom. Temporal action logics. In V. Lifschitz, F. van Harmelen, and
F. Porter, editors, The Handbook of Knowledge Representation, chapter 18, pages 709-757.
Elsevier, 2008.

P. Doherty, J. Kvarnstrom, and F. Heintz. A temporal logic-based planning and execution
monitoring framework for unmanned aircraft systems. Journal of Automated Agents and
Multi-Agent Systems, 19(3):332-377, 2009.

P. Doherty, W. Lukaszewicz, and A. Szalas. Approximative query techniques for agents with
heterogenous ontologies and perceptual capabilities. In Proceedings on the 7th International
Conference on Information Fusion, 2004.

P. Doherty, W. Lukaszewicz, and A. Szalas. Communication between agents with heteroge-
neous perceptual capabilities. Journal of Information Fusion, 8(1):56—69, January 2007.

P. Doherty and J-J. Ch. Meyer. Towards a delegation framework for aerial robotic mission
scenarios. In Proceedings of the 11th International Workshop on Cooperative Information
Agents, 2007.

P. Doherty and P. Rudol. A UAV search and rescue scenario with human body detection
and geolocalization. In 20th Australian Joint Conference on Artificial Intelligence (AI07),
2007.

S. Duranti, G. Conte, D. Lundstrom, P. Rudol, M. Wzorek, and P. Doherty. LinkMAV, a
prototype rotary wing micro aerial vehicle. In Proceedings of the 17th IFAC Symposium on
Automatic Control in Aerospace, 2007.

G. Caire F. Bellifemine and D. Greenwood. Developing Multi-Agent Systems with JADE.
John Wiley and Sons, Ltd, 2007.

G. Caire F. Bellifemine, F. Bergenti and A. Poggi. JADE - a Java agent development
framework. In J. Dix R. H. Bordini, M. Dastani and A. Seghrouchni, editors, Multi-Agent
Programming - Languages, Platforms and Applications. Springer, 2005.

R. Falcone and C. Castelfranchi. The human in the loop of a delegated agent: The theory
of adjustable social autonomy. IEEE Transactions on Systems, Man and Cybernetics—Part
A: Systems and Humans, 31(5):406-418, 2001.

F. Heintz and P. Doherty. DyKnow: A knowledge processing middleware framework and its
relation to the JDL fusion model. Journal of Intelligent and Fuzzy Systems, 17(4), 2006.

F. Heintz and P. Doherty. DyKnow federations: Distributing and merging information
among UAVs. In FEleventh International Conference on Information Fusion (FUSION-08),
2008.

F. Heintz, J. Kvarnstrom, and P. Doherty. A stream-based hierarchical anchoring framework.
In Proceedings of the International Conference on Intelligent Robots and Systems (IROS),
2009.

F. Heintz, J. Kvarnstrom, and P. Doherty. Bridging the sense-reasoning gap: DyKnow
- stream-based middleware for knowledge processing. Journal of Advanced Engineering
Informatics, 24(1):14-25, 2010.

M. Magnusson, D. Landen, and P. Doherty. Planning, executing, and monitoring commu-
nication in a logic-based multi-agent system. In 18th European Conference on Artificial
Intelligence (ECAI 2008), 2008.

13

127

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

T. Merz, P. Rudol, and M. Wzorek. Control System Framework for Autonomous Robots
Based on Extended State Machines. In Proceedings of the International Conference on
Autonomic and Autonomous Systems, 2006.

P. Rudol and P. Doherty. Human body detection and geolocalization for uav rescue missions
using color and thermal imagery. In IEEE Aerospace Conference, 2008.

P. Rudol, M. Wzorek, G. Conte, and P. Doherty. Micro unmanned aerial vehicle visual ser-
voing for cooperative indoor exploration. In Proceedings of the IEEE Aerospace Conference,
2008.

B. van Linder W. van der Hoek and J.-J. Ch. Meyer. An integrated modal approach to
rational agents. In M. Wooldridge and A. Rao, editors, Foundations of Foundations of
Rational Agency, volume 14 of Applied Logic Series. An Integrated Modal Approach to
Rational Agents, 1998.

M. Wzorek, G. Conte, P. Rudol, T. Merz, S. Duranti, and P. Doherty. From motion planning
to control — a navigation framework for an unmanned aerial vehicle. In Proceedings of the
21st Bristol International Conference on UAV Systems, 2006.

M. Wzorek and P. Doherty. Reconfigurable path planning for an autonomous unmanned
aerial vehicle. In Proceedings of the 16th International Conference on Automated Planning
and Scheduling, pages 438-441, 2006.

M. Wzorek, J. Kvarnstrom, and P. Doherty. Choosing path replanning strategies for un-
manned aircraft systems. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2010.

M. Wzorek, D. Landen, and P. Doherty. GSM technology as a communication media for
an autonomous unmanned aerial vehicle. In Proceedings of the 21st Bristol International
Conference on UAV Systems, 2006.

14

128

Exploiting Spatial and Temporal Flexibility for

Plan Execution of Hybrid, Under-actuated Systems

Andreas G. Hofmann and Brian C. Williams

Computer Science and Artificial Intelligence Lab, MIT
32 Vassar St. rm. 32-275
Cambridge, MA 02139
hofma@csail.mit.edu, williams@mit.edu

Abstract

Robotic devices, such as rovers and autonomous
spacecraft, have been successfully controlled by plan
execution systems that use plans with temporal flexibility to
dynamically adapt to temporal disturbances. To date these
execution systems apply to discrete systems that abstract
away the detailed dynamic constraints of the controlled
device. To control dynamic, under-actuated devices, such
as agile bipedal walking machines, we extend this execution
paradigm to incorporate detailed dynamic constraints.

Building upon prior work on dispatchable plan execution,
we introduce a novel approach to flexible plan execution of
hybrid under-actuated systems that achieves robustness by
exploiting spatial as well as temporal plan flexibility. To
accomplish this, we first transform the high-dimensional
system into a set of low dimensional, weakly coupled
systems. Second, to coordinate these systems such that they
achieve the plan in real-time, we compile a plan into a
concurrent timed flow tube description. This description
represents all feasible control trajectories and their temporal
coordination constraints, such that each trajectory satisfies
all plan and dynamic constraints. Finally, the problem of
runtime plan dispatching is reduced to maintaining state
trajectories in their associated flow tubes, while satisfying
the coordination constraints. This is accomplished through
an efficient local search algorithm that adjusts a small
number of control parameters in real-time. The first step
has been published previously; this paper focuses on the last
two steps. The approach is validated on the execution of a
set of bipedal walking plans, using a high fidelity simulation
of a biped.

Introduction

Past work in qualitative reasoning has produced methods
for controlling dynamic systems that are distinguished in
their use of qualitative descriptions of dynamics to control
robustly over large regions of state space [Kuipers and
Ramamoorthy, 2001; Hofbaur, 1999]. In particular, the
qualitative concept of flow tubes [Bradley and Zhao, 1993;
Frazzoli, 2001] explicitly defines the control regime that is

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

129

handled robustly. With this approach, compile time
methods identify bundles of trajectories, called flow tubes,
that navigate the system to a desired equilibrium point.

One limitation of the approach is the exhaustive state
space exploration performed by these methods.
Consequently, they have only been applied to relatively
low-dimensional systems, and have not scaled well to
high-dimensional systems at the level of complexity, for
example, of walking robots (Fig. 1).

Fig. 1 — a. Walking on difficult terrain; b. kicking a ball

A second limitation is that the goals achieved by these
qualitative controllers are restricted to simple set point
regions; this type of description is not adequate for
specifying complex tasks. Such complex tasks are
distinguished by the execution of sequences of concurrent
activities that are coordinated through timing constraints.
Furthermore, while flow tubes provide state-space
trajectory flexibility, they do not provide a representation
of temporal flexibility.

Conversely, work on temporally flexible plan execution
deals with the execution of complex tasks with
many of these attributes [Tsamardinos et al., 1998;
Muscettola et al., 1998]. This approach achieves
robustness to disturbances through compile-time methods
that make explicit the family of activity execution
schedules that satisfy a plan’s temporal constraints, and

then dynamically updating this family of schedules in
response to disturbances.

However, this approach ignores the continuous
dynamics of the underlying plant, and assumes that plan
activities can be started and finished at arbitrary times, as
long as these times are within the bounds specified by the
temporal constraints of the plan. This is not valid for
under-actuated dynamic systems, like walking bipeds,
because the state of these systems is modified continuously
through their second derivative (e.g., acceleration)
resulting in inertia that can delay the achievement of a
desired goal region.

Furthermore, both flow tube based control systems, and
temporally flexible plan execution systems, as well as
STRIPS planners in general, rely heavily on the notion of
equilibrium points. Equilibrium points are points in state
space where the system is at rest, and remains at rest if
there is no disturbance or control action. This emphasis on
equilibrium points makes these methods unsuitable for an
important class of problems in which high performance is
desired from an under-actuated plant.

Agile bipedal walking on difficult terrain, shown in Fig.
la, is an important example of this class of problem. Such
walking is achieved through appropriate velocity control,
with the emphasis on limit cycle stability, rather than on
achieving an equilibrium point. In fact, agile walking, and
similar high performance tasks, is characterized by a lack
of equilibrium points; successful execution is defined by
achieving a sequence of goal regions that do not contain
any equilibrium points. A related example is kicking a
soccer ball, as shown in Fig. 1b. Stepping movement must
be synchronized with ball movement so that the kick
happens when the ball is close enough.

For such systems, traditional concepts of stability are
meaningless. Therefore, flow tube systems that explore
state space in search of equilibrium points are not useful
for this type of application. Similarly, the ability of a
temporally flexible plan execution system to set activity
execution times relies on the ability of the system to idle in
an equilibrium point for an arbitrary period of time. This is
not guaranteed in an under-actuated system. Thus, neither
the flow tube systems, nor the activity execution systems,
deal adequately with applications where there are few or
no equilibrium points.

Key Innovations of Approach

In this paper we present Chekhov, a system for robust,
task-level control of high-performance, under-actuated
systems with continuous dynamics. Chekhov achieves
responsiveness and robustness through a compiled
representation, called a qualitative control plan (QCP).
This type of plan unifies the seemingly disparate
representations used in flow tube control and activity
execution systems, resulting in a system that combines the
strengths of each.

Similar to flow tubes, a QCP maintains a representation
of bundles of feasible trajectories. However, unlike flow
tubes, a QCP addresses the problem of a high dimensional

130

state space by factoring the state space into a set of
concurrently operating single-input, single-output 2™-order
systems, and by representing feasible trajectories with a set
of concurrent flow tubes related through timing constraints.
Similar to activity execution systems, the flow tubes in a
QCP are associated with sequences of concurrent activities,
rather than with a single setpoint; successful execution of
the activities corresponds to successful execution of the
plan. Also similar to activity execution systems, the
temporal constraints of a QCP are compiled into sets of
feasible schedules, and are updated dynamically using a
simple dispatching algorithm. However, the approach is
distinguished in that the QCP incorporates the temporal
constraints imposed by the plant dynamics.

Similar to both flow tube control and activity execution
systems, a QCP is executed robustly using a combination
of off-line compilation methods, and efficient on-line
dispatching that adapts dynamically to disturbances. As
with flow tube systems, the dispatcher selects control
values that maintain the system along a feasible trajectory
within a flow tube. As with activity execution systems, the
QCP dispatcher schedules the execution times of activities
according to the compiled temporal constraints.

However, the approach is unique in that it also avoids
the reliance on equilibrium points of the other two methods
by supporting sequences of goal regions without such
points. Because the temporal constraints imposed by the
plant dynamics are included, the system knows how long it
is able to reside in a goal region that does not contain an
equilibrium point.

Compiled Model-based Executive for Under-
actuated Systems

We use a model-based executive [Williams and Nayak,
1997; Leaute and Williams, 2005] to interpret plan goals,
monitor plant state, and compute control actions, as shown
in Fig. 2.

Qualitative State
Plan

Model-based
Executive

A\ 4
‘ Plan Compiler ‘

Qualitative
_ Control Plan /

‘ Hybrid Dispatcher ‘

Plant Model

»

Plant &
state

Control
actions

A\ 4
Abstracted Plant

Fig. 2 — Model-based executive

The inputs to the model-based executive include a
Qualitative State Plan (QSP), which specifies state-space
and temporal requirements, the current plant state, and a
plant model. The outputs are control actions for the
abstracted plant. As shown in Fig. 2, the executive
consists of a plan compiler, which is the off-line
component, and a dispatcher, which is the on-line
component. The plan compiler generates a QCP
corresponding to the QSP. The QCP contains the flow
tubes and the dispatchable graph. It is executed by the
dispatcher, which schedules activity start times using a
method similar to that used in the plan execution systems,
and executes activities by keeping trajectories in their flow
tubes.

Abstracted Plant

The abstracted plant is a set of linear, 2""-order single-
input single-output (SISO) systems, as shown in Fig. 3.
Each SISO system is controlled by a proportional-
differential (PD) control law [Ogata, 1982], which is of
the form

@)

j}:kp(yset_y).+kd().)set_):}). . .
where y,, and p,, are position and velocity setpoints,
and k, and k, are proportional and differential gains.

Fig. 3 — Abstracted plant is a set of SISO systems

Definition 1 (SISO System): A single-input single-output
(SISO) system is a tuple, (V> Veer-k, ky). Given an
SISO system, S, a plant trajectory ofp S, traj(S), is a
function of time, y t), that satisfies Eq. (1), where the
control parameters in Eq. (1) are given by S. The SISO
system may, optionally, have a set of constant constraints
on the control parameters in S. These constraints are of
the form

ysetimin < Vset < ysetimax
ysetimin < Vet < ysetimax
k <k

p_max

kdimin < kd < kdimax

p_min < kp

These constraints may vary in time, according to discrete
mode of the plant.

The modes of the plant, and associated operation
constraints, are specified by activities in the QSP, as
discussed in the next section. For a walking biped, discrete
modes are defined by the base of support, the convex hull
of points in contact with the ground. The base of support
changes discontinuously with each step. The horizontal

131

balance force that can be applied to the biped’s center of
mass (CM) is limited by the base of support, as shown in
Fig. 4. The ground reaction force vector represents the
overall force exerted on the CM. This vector emanates
from a point on the ground called the zero moment point
(ZMP) [Vukobratovic and Juricic, 1969], and points
directly at the CM if the moment about the CM is zero
[Popovic, et al., 2004]. Thus, the horizontal force on the
CM can be adjusted by moving the ZMP. However, this
horizontal force is limited because the ZMP is required to
be within the base of support.

CM
L
f r
y fren
f horz
Base of support
ZMP

Fig. 4 — The ground reaction force vector, f,,., emanates
from the ZMP and exerts a horizontal force on the CM

For normal walking, the horizontal force on the CM is
well approximated by

fhorz = ks ZMP

, where k, is an empirically determined spring constant
[Popovic, et al., 2004]. In terms of Def. 1, y,,, is the ZMP
position, and k, is k,scaled by the total mass of the
biped. Thus, a limit on ZMP position represents a limit on
Ve Of the form given in Def. 1.

In some applications, the actual plant is of the form
shown in Fig. 3 and Def. 1. More typically, as is the case
with a walking robot, the actual plant is nonlinear and
tightly coupled. In this case, we linearize and decouple the
actual plant using an enhanced feedback linearizing
controller [Hofmann, et. al., 2004; Slotine and Li, 1991],
which transforms the actual plant into the required
abstracted form.

Qualitative State Plan

A QSP specifies the desired behavior of the plant in
terms of allowed state trajectories. We use a qualitative
state to specify desired state-space goal regions, and
temporal constraints to specify time ranges by which the
state space goals must be achieved. For a walking biped, a
qualitative state indicates which feet are on the ground, and
includes constraints on foot position. It may also include
constraints on the biped’s center of mass position and
velocity. A sequence of qualitative states represents
intermediate goals that lead to the final overall plan goal,
as shown in Fig. 5.

A qualitative state plan has a set of activities
representing constraints on desired state evolution. In Fig.
5, the activity left foot ground 1 is for the left foot, right
foot ground 1, is for the right foot, and CM1 — 4 are for the
center of mass. Every activity starts and ends with an
event, represented by a circle in Fig. 4. Events in this plan
relate to behavior of the stepping foot. Thus, a foe-off
event represents the stepping foot lifting off the ground,
and a heel-strike event represents the stepping foot landing
on the ground. Events define the boundaries of qualitative
states. For example, the right toe-off event defines the end
of the first qualitative state (double support), and the
beginning of the second qualitative state (left single

support).

Qualitative
States

[t_Ib, t_ub]

Left foot ground 1 Left foot step 1

right
toe-off

right
heel-strike
start

CM e R,

left
heel-strike

left
toe-off

Right foot ground 1 Right foot step 1 Right foot ground 2

Fig. 5 - Example qualitative state plan for walking gait
cycle. Circles represent events, and horizontal arrows
represent activities.

The qualitative state plan in Fig. 5 has a temporal
constraint between the start and finish events. In addition
to temporal constraints, qualitative state plans can include
required initial and goal regions for activities. In Fig. 5,
the goal region constraint CM € R, represents the
requirement that the CM trajectory must be in region R, in
order for the activity to finish successfully.

Each activity has an associated SISO system in the
abstracted plant. An activity may specify constraints on
the control parameters in the SISO system, corresponding
to actuation limits. We assume that these constraints are
constant limits; more general types of constraints are
possible, but are beyond the scope of this discussion. In
Fig. 5, the activites CM1 — CM4, representing CM
movement, have different actuation limits. This is due to
the discontinuous changes in the base of support resulting
from the foot contact events.

Definition 2 (QSP): A qualitative state plan (QSP) is a
tuple <E,A,TC> , where E is a set of events, 4 is a set of
activities, (Def. 3), and TC is a set of externally imposed
temporal constraints on the events (Def. 4). An event, ev,
represents a point in time.

132

Definition 3 (Activity): An activity is a tuple
evy,eV Ry, Rty RoparsSs Apeyy) » Where evy and ey
are activity start and finish events, R, is a set of actuation
constraints, R;,;, and R,,, are required state-space regions
for start and finish of the activity, S is the SISO system
(Def. 1), associated with the activity, and 4,,, is an
optional successor activity. R,, specifies constant limits

on the SISO control parameters.

Definition 4 (Temporal Constraint): A temporal
constraint is a tuple <ev1,ev2,l,u , Where ev; and ev, are
events (Def. 4.6), and / and u represent lower and upper
bounds on the time between these events, where
leRU -y, ueﬂ?u{oo} such that
lSt(evz —t evl)Su.

Qualitative Control Plan

The interaction of constraints explicitly specified in the
QSP, with constraints due to plant dynamics, makes
determination of feasible trajectories computationally
intensive. Because the system must run in real time, we
seek to minimize the dispatcher’s runtime computation by
pre-computing sets of feasible trajectories that satisfy both
types of constraints. The plan compiler performs this off-
line computation, as shown in Fig. 2, outputting a QCP that
contains the feasible trajectories.

A QCP augments the input QSP by adding flow tubes
and a dispatchable graph [Muscettola, 1998]. The flow
tubes represent feasible trajectory sets. The dispatchable
graph represents temporal constraints in a form easily
interpreted by the dispatcher. In this case, the temporal
constraints represented in the QCP include both the
temporal constraints explicitly specified in the QSP, and
ones due to plant dynamics.

Definition 5 (QCP): A qualitative control plan (QCP) is a
tuple <q,F,g> , Where ¢ is the associated QSP, F' is a set
of flow tubes (Def. 6), and g is a dispatchable graph.

A flow tube is associated with a QSP activity. It
represents feasible trajectories that result in successful
execution of the activity. Thus, it is a function of the
activity’s constraints, and the dynamics of the activity’s
SISO system.

Definition 6 (Flow Tube): A flow tube is a set of
trajectories, ¥ =TUBE(a), defined over a time interval
[to,th, where ais a QSP activity, such that the goal and
operating constraints of a are satisfied. Thus, a trajectory,
y(t)e Y iff <y¢‘g j/(tg)>eRgoa,(a) and all constraints in
Rop a) are satisfied over the interval [to,tg , while
obeying the dynamics of S(a), as specified by Eq. (1).

An example flow tube is shown in Fig. 6a. A flow tube
can be characterized as a set of cross-sectional regions in
position-velocity phase space, one for each time in the
interval [to,t Thus, such a cross section, 7., is a

gl cs o

flow tube, and of time:
Fig. 6b depicts cross sections

function of the
r, =CS(V,t):ty <t <t,
for times 7y, #, and 7, .

|
e L

t Ly § {
Fig. 6 — a. Example flow tube over interval [to,th; b.
cross sections at £, #, and 7.

Next, consider the set, R, of all cross sections in an
interval [to,tl], where 7, <1, <t,. We use this set to
investigate conditions under which the associated activity
can be executed successfully for any start time in the
interval [to,t,].

Theorem 1 (Temporal controllability of an activity):
Let R, be a set of cross sections of a flow tube, Y, for
activity a , where
R Cs(v,1)
to<t<t,

If an allowed initial region, 7;, is a subset of every cross
section in R, (1 cr,Vr, €R,,), then the duration of a
is controllable over the interval Il,u , where [=, —1,
and u=t,—t,. Conversely, each cross section of ¥ of
which 7 is a subset corresponds to a controllable duration
of a. Furthermore, if the position trajectories in ¥ change
monotonically, then the set of controllable durations
specified in this way by 7 will form a contiguous interval.

cs T

The monotonicity assumption is crucial in that it avoids
disjunctions in the temporal constraints.

We now extend temporal controllability concepts to
sequences of activities. Recall that activity sequences,
such as the CM1-CM2 sequence in Fig. 5, can be used to
represent discontinuous changes in operating constraints.
The transition from CM1 to CM2 represents a transition
between qualitative states; from double to single support.

In order to ensure that a flow tube for CM1 does not
contain “dead end” trajectories, we require that all
trajectories in such a flow tube have a feasible continuation
in a flow tube for CM2. Hence, we require that the goal
cross section of a flow tube, Y}, for CM1 be a subset of a
cross section of a flow tube, Y, , for CM2, as shown in Fi
6a. Thus, if Y] is defined over the 1nterva1 tO (Yl) (Y1)T
and Y, is deﬁned over the 1nterva1 t Y2 , then the
following must hold: CS Yl, < Y1 cCS Yz,t2 , where
tO(YZ)StZ Stg(Yz). For example, t, may be ¢,(Y;),
corresponding to the initial cross section of Y,, as shown
in Fig. 7a.

Suppose there exists a region, 7, which, along with Y,
determines a controllable interval [ll,ul] for CM1, as
discussed in Theorem 1. Suppose, also, that the goal
region of ¥, is a subset of the initial cross section of Y, , as

133

shown in Fig. 6a. Then, CMI is temporally controllable
over the range [ll,u1 , but CM2 must have a duration
exactly equal to ¢, (Y2 —t (Yz). We now investigate ways
to extend the controllable duration of CM2.

™

)

J

b.

Fig. 7. — a. The goal region of flow tube Y] is a subset of a
cross section of flow tube ¥,. b. Two flow tubes that
intersect with Y, .

Suppose there exists a set of flow tubes, Y;;, for CM1
that all have the property that their goal regions are subsets
of a cross section of Y,. Two such flow tubes are depicted
in Fig. 7b. Suppose, further, that these cross sections of Y.
are contiguous, and correspond to an interval [12,u2]z,
where U, :tg(YZ)—tO(YZ), 1, :tg(Yz)—tZ, and
to(Yy) <ty <t (V).

If a region, r, determines a controllable temporal range,
l;,up;] for each Y, and if the intersection of these
temporal ranges is |/,u], then CMI1 is temporally
controllable in the range rll,ul] and CM2 is temporally
controllable in the range ZZ,MZ]. This concept can be
applied recursively to successive activities in a sequence.
In this way, if the initial state of the system is in 7, the
controllable duration of all activities in the sequence are
known. These controllable durations are the temporal
constraints due to the plant dynamics. They are added to
the temporal constraints specified explicitly in the QSP.

Plan Compiler

Plan compilation is accomplished in two steps. First, the
dispatchable graph is computed based on the temporal
constraints in the QSP. This graph represents the tightest
temporal constraints on all activities. Second, flow tubes
are computed for each activity, based on the temporal
constraints for the activity specified in the dispatchable
graph. The computation of the dispatchable graph is based
on the Floyd-Warshall all pairs shortest path algorithm.
This computation has been described previously
[Muscettola, 1998], hence we focus our discussion on
computation of the flow tubes.

Flow tubes have a complex geometry. Therefore, any
tractable flow tube representation will be an approximation
of the feasible set. In order to ensure that any trajectory
chosen by the dispatcher leads to plan execution success,
we require our flow tube representation to include only
feasible trajectories; the representation may include a

subset of all feasible trajectories, but not a superset
[Kurzhanski and Varaiya, 1999].

Our flow tube approximation uses polyhedral cross
sections at discrete time intervals [Vestal, 2001]. The time
interval chosen matches the control increment of the
dispatcher. Therefore, the dispatcher will always be able
to access flow tube cross sections for exactly the correct
time. Fig. 8 shows a flow tube cross-sectional region in
position-velocity phase space, and its polyhedral
approximation. Note that the approximation is a subset of
the true region; the approximation does not include points
in state-space that do not belong to feasible trajectories.

N

Cross-section

Approximation

| L,
\ \

Ymin Ymax

Fig. 8 — Flow tube cross section and approximation

In order to generate the polyhedral cross-sections, the
plan compiler performs a reachability analysis that, for
every vertex position, computes extreme corresponding
velocities such that the resulting polygon contains only
feasible trajectory points for the time associated with the
cross section. We accomplish this reachability analysis by
formulating constraints on cross section vertices as a linear
program (LP).

The LP formulation is based on the analytical solution of
Eq. (1). Eq. (1) is a 2"-order linear differential equation,
so its analytic solution is

y=e (K, cos ft +iK, sin ft)+ulc

y=e“(B(= K, sin ft +iK, cos ft)+ @
at(K1 cos ft +iK, sin ,Ht))

where

K :y(O)—u/c, K, :(i/ﬂ)(aKl _Y(O))

a=—k,; 12,/ =(—i,/kd2 — 4k, j/2,u =KV +hgPser

If we set the time, ¢, in Eq. (2) to a particular duration,
d; , corresponding to a particular cross section of interest,
and if we fix gains k, and k,, then Eq. (2) can be
expressed as

134

y= fi (y(0)9 y(o)’ yset H J‘/set)
y=r (J’(O)s y(O), J’setaysez) 3)

where f, and f, are linear for a particular setting of ¢,
k,,and k,. Eq.(3) forms a set of equality constraints in
the LP formulation. We also include a set of inequality
constraints of the form

ysetimin < Vset < ys‘etimax

J'/Set_min < y,vet < yset_max (4)

to represent the actuation limits, specified for the activity
in the QSP. Further, we use a set of equality constraints to
express

<ya y> € Rgoal (5)

to ensure that state at the end of duration d; is in the goal
region, specified for the activity in the QSP. The
formulation of (5) as a set of linear inequalities is
straightforward because R, is required to be convex.

To compute a cross section for a particular R, , and
d; , the plan compiler uses the formulation described by
Egs. (3 — 5), and sets the LP cost function to minimize
y 0). Solving this formulation yields the minimum initial
position, y... , shown in Fig. 8. Repeating this process
with the cost function set to maximize y O) yields the
maximum initial position, y... . The compiler then
establishes vertex positions at regular increments between
Ymin and y_. . For each such vertex position, the
compiler solves the LP formulation with the cost function
set to first minimize, and then maximize, j;(O), in order to
find the minimum and maximum velocities for that
position. This results in a set of vertices in position-
velocity state space, which form the polyhedral
approximation, as shown in Fig. 8.

The compiler computes cross section approximations for
every d; in the temporal range [l,u], where this range is
given for each activity by the minimum dispatchable
graph. This set of cross sections approximates a flow tube,
such as the one shown in Fig. 6.

Consider, next, the problem of computing flow tube
approximations for a sequence of activities, as in Fig. 7.
As stated previously, the goal region for flow tube Y, if
Fig. 7a must be a subset of a cross section of Y,. For the
sake of completeness, we compute a separate set of cross
sections for Y] for each cross section of Y,serving as a
goal. This results in a set of flow tube approximations for
Y,, as shown in Fig. 7b. Each flow tube approximation in
this set represents valid trajectories that satisfy the plan
goals.

Dispatcher

In order to execute a QCP, the dispatcher must
successfully execute each activity in the QCP. The
dispatcher accomplishes this by scheduling start and finish
events, using the QCP’s dispatchable graph, and by setting

control parameters for each activity such that the
associated trajectory reaches the activity’s goal region at an
acceptable time.

In order to execute an activity, the dispatcher performs
three key functions: initialization, monitoring, and
transition. Initialization is performed at the start of an
activity’s execution, monitoring is performed continuously
during the activity’s execution, and transition is performed
at the finish of the activity’s execution.

For initialization, assuming that all trajectories begin in
the flow tube of their activity, the dispatcher chooses a
goal duration for the control activity that is consistent with
its execution window [Muscettola, 1998], and sets control
parameters such that the state trajectory is predicted to be
in the activity’s goal region after the goal duration. The
initialization function formulates a small quadratic
program (QP) and solves it in order to determine these
control parameters. This formulation is given in Fig. 9.
Key to this formulation’s simplicity is the fact that the
analytic solution of Eq. 3 (functions f; and f,) is used to
predict the future state of the SISO system associated with
the activity, and the fact that the formulation is guaranteed
to produce a feasible solution, because the trajectory is
within its flow tube. Further, presence of the trajectory in
the flow tube guarantees that there exists a set of feasible
control settings for all remaining activities in the plan, if
there are no further trajectory disturbances.

FormulateControlQP(Ry, Veurr s Veurr s st 1)

Parameters to Optimize: ¥ .5 ¥ prea s Vers Vser
Equality constraints: Eq. (3)
Inequality constraints: Egs. (4, 5)
(Eq. (5) requires that trajectory prediction be within
goal region)
Cost function

J'}goal = % Y min {Rgoal ,;+ Ymax E goal }3/ 2
y goal =/\Vmin gual y max goal
cost = (ygoal yprt.d)z Cygoal yprcd)z

Fig. 9 - Dispatcher QP formulation.

After initializing an activity, the dispatcher begins
monitoring execution of that activity., To monitor
execution, the dispatcher continually checks whether the
state trajectory remains in its flow tube. If this is not the
case, then plan execution has failed, and the dispatcher
aborts to a higher-level control authority. Such a control
authority might issue a new plan in response to such an
abort. For example, the biped trying to kick the soccer ball
may give up on this goal if it is no longer feasible.

If the state trajectory is in its flow tube, the dispatcher
checks whether it is on track to be in the goal region at the
end of the goal duration. This check is accomplished by
evaluating Eq. (3) for the current state, and checking
whether the predicted state is within the goal region. If this
is not the case, the dispatcher corrects this situation by
adjusting control parameters using the QP formulation of

135

Fig. 9. Note that because the state trajectory is in its flow
tube at this point, such a correction will always be possible.

As part of the monitoring function, the dispatcher also
continually checks whether an activity’s completion
conditions are satisfied. Thus, it checks whether the state
trajectory is in the activity’s goal region, and whether the
state trajectories of other activities whose completion must
be synchronized are in their activity’s goal regions. If all
completion conditions for a control activity are satisfied,
the dispatcher switches to the transition function.

If the activity being executed has a successor, the
transition function invokes the initialization function for
this successor. As part of this transition, the dispatcher
notes the time of the transition event and propagates this
through the temporal constraints using a local constraint
propagation algorithm [Muscettola, 1998]. This
propagation tightens execution windows of future events.
When all activities in the QCP have been executed
successfully, execution terminates.

Results and Discussion

Fig. 10 shows an example sequence of flow tubes
corresponding to lateral CM movement for activities CM1
— CM4 in Fig. 5. This sequence represents two steps,
which takes approximately 1.4 seconds.

Fig. 11 shows initial cross sections for the flow tube set
for activity CM1 such that the goal region for CM2 is
achieved. The goal region is specified explicitly in the
QSP. If the initial state of the biped is in the controllable
initial region, then the goal region can be achieved after
any duration in the range [0.7, 1.0]. Since CM1 and CM2
represent a single step (single support followed by double
support), the temporal controllability for two steps is [1.4,
2.0]. Such controllability can be used to synchronize biped
movement with that of a moving soccer ball in order to
kick it, as shown in Fig. 12.

Fig. 10 — Example flow tube sequence.

If the initial state of the biped is outside the controllable
initial region shown in Fig. 11, then temporal
controllability is reduced. This expansion of the initial
state region can be thought of as an enlargement of 7 in
Theorem 1, which results in 7 being a subset of fewer
cross sections. Thus, the requirement n c 7, Vr, € R,

from Theorem 1 implies a smaller set R, and a
correspondingly smaller temporally controllable range.
This trade-off is a direct result of the actuation limits and
plant dynamics. Our plan compiler supports user control
over this tradeoff through adjustment of required initial
regions in the QSP.

R P
Y o AN
'Y \'\ \\\‘.
0.8 WY N u
NS

0.7}
0.6+

05}
0.4}
03t
02}

Goal region |

/

0.1 5
0.05

01 015

b. .y

Fig. 11 — Initial cross sections for CM1 that achieve goal
region in CM2; a. lateral, b. forward.

Fig. 12 — Walking to a moving soccer ball and kicking it.

An important challenge with this approach is the
potentially large number of flow tubes in the set Y}, that
may have to be computed, especially when the met}(lod is
applied recursively to longer activity sequences. This
results in a fan-out for each predecessor activity. This
problem can be mitigated by explicitly specifying tight
temporal bounds in the QSP, and by explicitly specifying
goal regions. An explicitly specified goal region serves as
a root that terminates fan-out. An area of current research
is incremental shifting of flow tubes. With such a
capability, the full number of flow tubes in the set ¥,
would not have to be computed. Rather, a sparse subset
would be computed, the elements of which would be
shifted as needed.

136

References

Bradley, E. and Zhao, F. 1993. Phase-space control
system design. Control Systems, 13(2),39-46

Frazzoli, E. 2001. Robust Hybrid Control for Autonomous
Vehicle Motion Planning. Ph.D. Thesis, MIT

Hofbaur, M. 1999. Lyapunov ~ Methods for
Semiquantitative Simulation. Ph.D. Thesis, TU Graz
Hofmann, A., Massaquoi, S., Popovic, M., and Herr, H.,
2004. A sliding controller for bipedal balancing using
integrated movement of contact and non-contact limbs.
Proc. International Conference on Intelligent Robots and
Systems (IROS). Sendai, Japan

Kuipers, B., and Ramamoorthy, S. 2001. Qualitative
Modeling and Heterogeneous Control of Global System
Behavior. Hybrid Systems Control Conference.
Kurzhanski, A., and Varaiya, P. 1999.
Techniques for Reachability —Analysis:
Approximation

Leaute, T., Williams, A. 2005. Coordinating Agile
Systems Through the Model-based Execution of Temporal
Plans. ICAPS, 2005

Muscettola, N., Morris, P., and Tsamardinos, L. 1998
Reformulating temporal plans for efficient execution.
Proc. Of Sixth Int. Conf. On Principles of Knowledge
Representation and Reasoning

Ellipsoidal
Internal

Popovic, M., Hofmann, A., Herr, H. 2004. Angular
momentum regulation during human walking:
biomechanics and control. Proceedings of the

International Conference on Robotics and Automation
(ICRA). New Orleans (LA, USA).

Tsamardinos, 1., Muscettola, N., Morris, P. 1998. Fast
Transformation of Temporal Plans for Efficient Execution.
AAAI

Vestal, S. 2001. 4 New Linear Hybrid Automata
Reachability Procedure. HSCC

Vukobratovic, M. and Juricic, D. 1969. Contribution to the
Synthesis of biped Gait. IEEE Transactions on Bio-
Medical Engineering, Vol. BME-16, No. 1, 1969, pp. 1-6
Williams, B. and Nayak, P. 1997. 4 Reactive Planner for
a Model-based Executive. Proceedings of the
International Joint Conference on Artificial Intelligence

Stream-Based Reasoning in DyKnow™

Fredrik Heintz, Jonas Kvarnstrom, and Patrick Doherty
{frehe, jonkv, patdo} @ida.liu.se

Dept. of Computer and Information Science
Link6ping University, 581 83 Linkoping, Sweden

Abstract. The information available to modern autonomous systems is often in
the form of streams. As the number of sensors and other stream sources increases
there is a growing need for incremental reasoning about the incomplete content
of sets of streams in order to draw relevant conclusions and react to new situa-
tions as quickly as possible. To act rationally, autonomous agents often depend
on high level reasoning components that require crisp, symbolic knowledge about
the environment. Extensive processing at many levels of abstraction is required
to generate such knowledge from noisy, incomplete and quantitative sensor data.
We define knowledge processing middleware as a systematic approach to inte-
grating and organizing such processing, and argue that connecting processing
components with streams provides essential support for steady and timely flows
of information. DyKnow is a concrete and implemented instantiation of such
middleware, providing support for stream reasoning at several levels. First, the
formal KPL language allows the specification of streams connecting knowledge
processes and the required properties of such streams. Second, chronicle recogni-
tion incrementally detects complex events from streams of more primitive events.
Third, complex metric temporal formulas can be incrementally evaluated over
streams of states. DyKnow and the stream reasoning techniques are described
and motivated in the context of a UAV traffic monitoring application.

1 Introduction

Modern autonomous systems usually have many sensors producing continuous streams
of data. As the systems become more advanced the number of sensors grow, as exem-
plified by the humanoid robot CB? which has 2 cameras, 2 microphones, and 197 tactile
sensors [1]. Further communication streams are produced when such systems interact.
Some systems may also be connected to the Internet and have the opportunity to access
streams of online information such as weather reports, news about the area, and so on.
The fact that much of this information is available in the form of streams highlights
the growing need for advanced stream processing capabilities in autonomous systems,
where one can incrementally reason about the incomplete content of a set of streams
in order to draw new conclusions as quickly as possible. This is in contrast to many of
the current techniques used in formal knowledge representation and reasoning, which

* This work is partially supported by grants from the Swedish Foundation for Strategic Research
(SSF) Strategic Research Center MOVIII, the Swedish Research Council (VR) Linnaeus Cen-
ter CADICS, and the Center for Industrial Information Technology CENIIT (10.04).

137

assume a more or less static knowledge base of facts to be reasoned about.

Additionally, much of the required knowledge must ultimately originate in physi-
cal sensors, but whereas deliberative functionalities tend to assume symbolic and crisp
knowledge about the current state of the world, the information extracted from sensors
often consists of noisy and incomplete quantitative data on a much lower level of ab-
straction. Thus, there is a wide gap between the information about the world normally
acquired through sensing and the information that deliberative functionalities assume
to be available for reasoning.

Bridging this gap is a challenging problem. It requires constructing suitable rep-
resentations of the information that can be extracted from the environment using sen-
sors and other available sources, processing the information to generate information at
higher levels of abstraction, and continuously maintaining a correlation between gener-
ated representations and the environment itself. We use the term knowledge processing
middleware for a principled and systematic software framework for bridging the gap
between sensing and reasoning in a physical agent.

We believe that a stream-based approach to knowledge processing middleware is
appropriate. To demonstrate the feasibility we have developed DyKnow, a fully im-
plemented stream-based framework providing both conceptual and practical support
for structuring a knowledge processing system as a set of streams and computations on
streams [2, 3]. The properties of each stream is specified by a declarative policy. Streams
represent aspects of the past, current, and future state of a system and its environment.
Input can be provided by a wide range of distributed information sources on many
levels of abstraction, while output consists of streams representing objects, attributes,
relations, and events. DyKnow also explicitly supports two techniques for incremental
reasoning with streams: Chronicle recognition for detecting complex events and pro-
gression of metric temporal logic to incrementally evaluate temporal logical formulas.

DyKnow and the stream reasoning techniques are described and motivated in the
context of a UAV traffic monitoring application.

2 A Traffic Monitoring Scenario

Traffic monitoring is an important application domain for autonomous unmanned aerial
vehicles (UAVs), providing a plethora of cases demonstrating the need for stream rea-
soning and knowledge processing middleware. It includes surveillance tasks such as
detecting accidents and traffic violations, finding accessible routes for emergency vehi-
cles, and collecting traffic pattern statistics.

Suppose a human operator is trying to maintain situational awareness about traffic
in an area using static and mobile sensors such as surveillance cameras together with an
unmanned helicopter. Reducing the amount of information sent to the operator also re-
duces her cognitive load, helping her to focus her attention on salient events. Therefore,
each sensor platform should monitor traffic situations and only report back relevant
high-level events, such as reckless overtakes and probable drunk driving.

Traffic violations, or other events to be detected, should be represented formally and
declaratively. This can be done using chronicle recognition [4], where each chronicle
defines a parameterized class of complex events as a simple temporal network [5] whose
nodes correspond to occurrences of high-level qualitative events and edges correspond

138

Symbolic reasoning Uhigils
Recognition

Qualitative spatial relations
(close, behind, same_road, ...)

Geographical Qualitative Spatial
Information Reasoning Temporal Logic
t Progression
System Car objects e

Anchoring

Vision|objects

Legend

[] Sensor
(] Process

——> Data flow

Image
Processing

Sensor
.
processing

Camera|state
Helicopter State
Estimation

Camera State
Estimation
Pan-tilt unit

Fig. 1. An overview of how the processing required for traffic surveillance could be organized.

to metric temporal constraints. For example, events representing changes in qualitative
spatial relations such as beside(car, car,), close(cary, car,), and on(cary, road;) might
be used to detect a reckless overtake. Creating these high-level representations from
low-level sensor data, such as video streams from color and thermal cameras, involves
extensive information and knowledge processing within each sensor platform.

Fig. 1 provides an overview of how part of the incremental processing required for
the traffic surveillance task could be organized as a set of distinct DyKnow knowledge
processes. At the lowest level, a helicopter state estimation component uses data from
an inertial measurement unit (IMU) and a global positioning system (GPS) to gener-
ate a stream of position and attitude estimates. A camera state estimation component
uses this information, together with a stream of states from the pan-tilt unit on which the
cameras are mounted, to generate a stream of current camera states. The image process-
ing component uses the camera state stream to determine where the camera is currently
pointing. Video streams from the color and thermal cameras can then be analyzed in
order to generate a stream of vision percepts representing hypotheses about moving and
stationary physical entities, including their approximate positions and velocities.

Symbolic formalisms such as chronicle recognition require a consistent assignment
of symbols, or identities, to the physical objects being reasoned about and the sensor
data received about those objects. This is a process known as anchoring [6]. Image
analysis may provide a partial solution, with vision percepts having symbolic identities
that persist over short intervals of time. However, changing visual conditions or objects
temporarily being out of view lead to problems that image analysis cannot (and should
not) handle. This is the task of the anchoring component, which uses progression over
a stream of states to evaluate potential hypotheses expressed as formulas in a metric
temporal logic. The anchoring system also assists in object classification and in the ex-

139

traction of higher level attributes of an object. For example, a geographic information
system can be used to determine whether an object is currently on a road or in a cross-
ing. Such attributes can in turn be used to derive streams of relations between objects,
including qualitative spatial relations such as beside(cary, car,) and close(cary, car,).
Streams of concrete events corresponding to changes in these predicates and attributes
finally provide sufficient information for the chronicle recognition system to determine
when higher-level events such as reckless overtakes occur.

3 Stream-Based Knowledge Processing Middleware

Knowledge processing for a physical agent is fundamentally incremental in nature.
Each part and functionality in the system, from sensing up to deliberation, needs to
receive relevant information about the environment with minimal delay and send pro-
cessed information to interested parties as quickly as possible. Rather than using polling,
explicit requests, or similar techniques, we have therefore chosen to model and imple-
ment the required flow of data, information, and knowledge in terms of streams, while
computations are modeled as active and sustained knowledge processes ranging in com-
plexity from simple adaptation of raw sensor data to complex reactive and deliberative
processes. This forms the basis for stream-based knowledge processing middleware,
which we believe will be useful in a broad range of applications. A concrete imple-
mented instantiation, DyKnow, will be discussed later.

Streams lend themselves easily to a publish/subscribe architecture. Information
generated by a knowledge process is published using one or more stream generators,
each of which has a (possibly structured) label serving as a global identifier within
a knowledge processing application. Knowledge processes interested in a particular
stream of information can subscribe using the label of the associated stream generator,
which creates a new stream without the need for explicit knowledge of which pro-
cess hosts the generator. Information produced by a process is immediately provided
to the stream generator, which asynchronously delivers it to all subscribers, leaving the
knowledge process free to continue its work.

In general, streams tend to be asynchronous in nature. This can often be the case
even when information is sampled and sent at regular intervals, due to irregular and
unpredictable transmission delays in a distributed system. In order to minimize delays
and avoid the need for frequent polling, stream implementations should be push-based
and notify receiving processes as soon as new information arrives.

Using an asynchronous publish / subscribe pattern of communication decouples
knowledge processes in time, space, and synchronization [7], providing a solid founda-
tion for distributed knowledge processing applications.

For processes that do not require constant updates, such as an automated task plan-
ner that needs an initial state snapshot, stream generators also provide a query interface
to retrieve current and historic information generated by a process. Integrating such
queries into the same framework allows them to benefit from decoupling and asyn-
chronicity and permits lower level processing to build on a continuous stream of input
before a snapshot is generated.

140

3.1 Streams

Intuitively, a stream serves as a communication channel between two knowledge pro-
cesses, where elements are incrementally added by a source process and eventually
arrive at a destination process. Verifying whether the contents such a stream satisfies a
specific policy requires a formal model. For simplicity, we define a stream as a snap-
shot containing its own history up to a certain point in time, allowing us to determine
exactly which elements had arrive at any preceding time. This is essential for the ability
to validate an execution trace relative to a formal system description.

Definition 1 (Stream). A stream is a set of stream elements, where each stream element
is a tuple (t,,...) whose first value, t,, is a time-point representing the time when the
element is available in the stream. This time-point is called the available time of a
stream element and has to be unique within a stream.

Given a stream structure, the information that has arrived at its receiving process at
a particular time-point ¢ consists of those elements having an available time 7, < t.

3.2 Policies

Each stream is associated with a policy specifying a set of requirements on its contents.
Such requirements may include the fact that each value must constitute a significant
change relative to the previous value, that updates should be sent with a specific sample
frequency, or that there is a maximum permitted delay. A policy can also give advice
on how to ensure that these requirements are satisfied, for example by indicating how
to handle missing or excessively delayed values. For introspection purposes, policies
should be declaratively specified. Concrete examples are given in Section 4.

Each subscription to a stream generator includes a specific policy to be used for
the generated stream. The stream generator can use this policy to filter the output of a
knowledge process or forward it to the process itself to control its internal setup. Those
parts of the policy that are affected by transmission through a distributed system, such
as constraints on delays, can also be used by a stream proxy at the receiving process.
This separates the generation of stream content from its adaptation.

Definition 2 (Policy). A policy is a declarative specification of the desired properties
of a stream, which may include advice on how to generate the stream.

3.3 Knowledge Processes

A knowledge process operates on streams. Some processes take streams as input, some
produce streams as output, and some do both. A process that generates stream output
does so through one or more stream generators to which an arbitrary number of pro-
cesses may subscribe using different policies. An abstract view of a knowledge process
is shown in Fig. 2.

Definition 3 (Knowledge process). A knowledge process is an active and sustained
process whose inputs and outputs are in the form of streams.

Four distinct process types are identified for the purpose of modeling: Primitive
processes, refinement processes, configuration processes, and mediation processes.

141

Knowledge Process)

eam
Stream :

Generator i
stream 5
J

Fig. 2. A prototypical knowledge process

Primitive Processes Primitive processes serve as interfaces to the outside world, con-
necting to sensors, databases, or other information sources and providing their output in
the form of streams. Such processes have no stream inputs but provide a non-empty set
of stream generators. Their complexity may range from simple adaptation of external
data into a stream-based framework to more complex tasks such as image processing.

Definition 4 (Primitive process). A primitive process is a knowledge process without
input streams that provides output through one or more stream generators.

Refinement Processes The main functionality of stream-based knowledge processing
middleware is to process streams to create more refined data, information, and knowl-
edge. This type of processing is done by a refinement process which takes a set of
streams as input and provides one or more stream generators providing stream outputs.
For example, a refinement process could do image processing, fuse sensor data using
Kalman filters estimating positions from GPS and IMU data, or reason about qualitative
spatial relations between objects.

Definition 5 (Refinement process). A refinement process is a knowledge process that
takes one or more streams as input and provides output through one or more stream
generators.

When a refinement process is created it subscribes to its input streams. For example,
a position estimation process computing the position of a robot at 10 Hz could either
subscribe to its inputs with the same frequency or use a higher frequency in order to
filter out noise. If a middleware implementation allows a process to change the poli-
cies of its inputs during run-time, the process can dynamically tailor its subscriptions
depending on the streams it is supposed to create.

In certain cases, a process must first collect information over time before it is able
to compute an output. For example, a filter might require a number of measurements
before it is properly initialized. This introduces a processing delay that can be remedied
if the process is able to request 30 seconds of historic data, which is supported by the
DyKnow implementation.

Configuration Processes Traffic monitoring requires position and velocity estimates
for all currently monitored cars, a set that changes dynamically over time as new cars
enter an area and as cars that have not been observed for some time are discarded.

142

This is an instance of a recurring pattern where the same type of information must be
produced for a dynamically changing set of objects.

This could be achieved with a static process network, where a single refinement
process estimates positions for all currently visible cars. However, processes and stream
policies would have to be quite complex to support more frequent updates for a specific
car which is the current focus of attention.

As an alternative, one can use a dynamic network of processes, where each refine-
ment process estimates positions for a single car. A configuration process provides a
fine-grained form of dynamic reconfiguration by instantiating and removing knowledge
processes and streams as indicated by its input.

Definition 6 (Configuration process). A configuration process is a knowledge process
that takes streams as inputs, has no stream generators, and creates and removes knowl-
edge processes and streams.

For traffic monitoring, the input to the configuration process would be a single
stream where each element contains the set of currently monitored cars. Whenever a
new car is detected, the new (complete) set of cars is sent to the configuration process,
which may create new processes. Similarly, when a car is removed, associated knowl-
edge processes may be removed.

Mediation Processes Finally, a mediation process allows a different type of dynamic
reconfiguration by aggregating or selecting information from a static or dynamic set of
existing streams.

Aggregation is particularly useful in the fine-grained processing networks described
above: If there is one position estimation process for each car, a mediation process
can aggregate the outputs of these processes into a single stream to be used by those
processes that do want information about all cars at once. In contrast to refinement
processes, a mediation process can change its inputs over time to track the currently
monitored set of cars as indicated by a stream of labels or label sets.

Selection forwards information from a particular stream in a set of potential input
streams. For example, a mediation process can provide position information about the
car that is the current focus of attention, automatically switching between position input
streams as the focus of attention changes. Other processes interested in the current focus
can then subscribe to a single semantically meaningful stream.

Definition 7 (Mediation process). A mediation process is a knowledge process that
changes its input streams dynamically and mediates the content on the varying input
streams to a fixed number of stream generators.

Stream Generators A knowledge process can have multiple outputs. For example, a
single process may generate separate position and velocity estimates for a particular
car. Each raw output is sent to a single stream generator, which can create an arbitrary
number of output streams adapted to specific policies. For example, one process may
wish to receive position estimates every 100 ms, while another may require updates
only when the estimate has changed by at least 10 meters.

143

Definition 8 (Stream generator). A stream generator is a part of a knowledge process
that generates streams according to policies from output generated by the knowledge
process.

Using stream generators separates the generic task of adapting streams to policies
from the specific tasks performed by each knowledge process. Should the generic poli-
cies supported by a particular middleware implementation be insufficient, a refinement
process can still subscribe to the unmodified output of a process and provide arbitrarily
complex processing of this stream.

Note that a stream generator is not necessarily a passive filter. For example, the
generator may provide information about its current output policies to the knowledge
process, allowing the process to reconfigure itself depending on parameters such as the
current sample rates for all output streams.

4 DyKnow

DyKnow is a concrete instantiation of the generic stream-based middleware framework
defined in the previous section. DyKnow provides both a conceptual framework for
modeling knowledge processing and an implementation infrastructure for knowledge
processing applications. The formal framework can be seen as a specification of what
is expected of the implementation infrastructure. It can also be used by an agent to
reason about its own processing. A detailed formal description of DyKnow is available
in [2,3].

DyKnow views the world as consisting of objects and features, where features may
for example represent attributes of objects. The general stream concept is specialized to
define fluent streams representing an approximation of the value of a feature over time.
Two concrete classes of knowledge processes are introduced: Sources, corresponding to
primitive processes, and computational units, corresponding to refinement processes. A
computational unit is parameterized with one or more fluent streams. Each source and
computational unit provides a fluent stream generator creating fluent streams from the
output of the corresponding knowledge process according to fluent stream policies. The
declarative language KPL is used for specifying knowledge processing applications.

DyKnow is implemented as a CORBA middleware service. It uses the CORBA
event notification service [8] to implement streams and to decouple knowledge pro-
cesses from clients subscribing to their output. See [3] for the details.

A knowledge processing domain defines the objects, values, and time-points used in a
knowledge processing application. From them the possible fluent streams, sources, and
computational units are defined. The semantics of a knowledge processing specification
is defined on an interpretation of its symbols to a knowledge processing domain.

Definition 9 (Knowledge processing domain). A knowledge processing domain is a
tuple (O, T, V), where O is a set of objects, T is a set of time-points, and V is a set of
values.

144

4.1 Fluent Streams

Due to inherent limitations in sensing and processing, an agent cannot always expect
access to the actual value of a feature over time but will have to use approximations.
Such approximations are represented as fluent streams, a specialization of the previ-
ously introduced stream structure where elements are samples. Each sample represents
an observation or estimation of the value of a feature at a specific point in time called
the valid time. Like any stream element, a sample is also tagged with its available time,
the time when it is ready to be processed by the receiving process after having been
transmitted through a potentially distributed system.

The available time is essential when determining whether a system behaves accord-
ing to specification, which depends on the information actually available as opposed to
information that may have been generated but has not yet arrived. Having a specific rep-
resentation of the available time also allows a process to send multiple estimates for a
single valid time, for example by quickly providing a rough estimate and then running a
more time-consuming algorithm to provide a higher quality estimate. Finally, it allows
us to formally model delays in the availability of a value and permits an application
to use this information introspectively to determine whether to reconfigure the current
processing network to achieve better performance.

Definition 10 (Sample). A sample in a domain D = (O, T, V) is either the constant
no_sample or a stream element {t,,t,,v), where t, € T is its available time, t, € T is
its valid time, and v € V is its value. The set of all possible samples in a domain D is
denoted by S p.

Example 1. Assume a picture p is taken by a camera source at time-point 471, and that
the picture is sent through a fluent stream to an image processing process where it is
received at time 474. This is represented as the sample (474,471, p).

Assume image processing extracts a set b of blobs that may correspond to vehicles.
Processing finishes at time 479 and the set of blobs is sent to two distinct recipients, one
receiving it at time 482 and one receiving it at time 499. This information still pertains
to the state of the environment at time 471, and therefore the valid time remains the
same. This is represented as the two samples (482,471, b) and (499,471, b) belonging
to distinct fluent streams.

The constant no_sample will be used to indicate that a fluent stream contains no
information at a particular point in time, and can never be part of a fluent stream.

Definition 11 (Fluent stream). A fluent stream in a domain D is a stream where each
stream element is a sample from Sp \ {no_sample}.

4.2 Sources

Primitive processes can be used to provide interfaces to external data producers or sen-
sors, such as the GPS, IMU, and cameras on a UAV. A primitive process is formally
modeled as a source, a function from time-points to samples representing the output
of the primitive process at any point in time. If the function returns no_sample, the
primitive process does not produce a sample at the given time.

145

Definition 12 (Source). Let D = (O, T, V) be a domain. A source is a function T — Sp
mapping time-points to samples.

4.3 Computational Units

Refinement processes are used to perform computations on streams, ranging from sim-
ple addition of integer values to Kalman filters, image processing systems, and even
more complex functions. In a wide variety of cases, only a single output stream is re-
quired (though this stream may consist of complex values). It is also usually sufficient
to have access to the current internal state of the process together with the most recent
sample of each input stream to generate a new output sample. A process of this type
can be modeled as a computational unit.

Definition 13 (Computational unit). Let D = (O, T, V) be a domain. A computational
unit with arity n > 0, taking n inputs, is associated with a partial function T XS, XV
Sp X V of arity n + 2 mapping a time-point, n input samples, and a value representing
the previous internal state to an output sample and a new internal state.

The input streams to a computational unit do not necessarily contain values with
synchronized valid times or available times. For example, two streams could be sampled
with periods of 100 ms and 60 ms while a third could send samples asynchronously. In
order to give the computational unit the maximum amount of information, we choose
to apply its associated function whenever a new sample becomes available in any of its
input streams, and to use the most recent sample in each stream. Should the unit prefer
to wait for additional information, it can store samples in its internal state and return
no_sample to indicate that no new output sample should be produced at this stage.

4.4 Fluent Stream Policies

A policy specifies the desired properties of a fluent stream and is defined as a set of
constraints on the fluent stream. There are five types of constraints: Approximation,
change, delay, duration, and order constraints.

A change constraint specifies what must change between two consecutive samples.
Given two consecutive samples, any update indicates that some part of the new sample
must be different, while any change indicates that the value or valid time must be
different, and sample every ¢ indicates that the difference in valid time must equal the
sample period 7.

A delay constraint specifies a maximum acceptable delay, defined as the difference
between the valid time and the available time of a sample. Note that delays may be in-
tentionally introduced in order to satisfy other constraints such as ordering constraints.

A duration constraint restricts the allowed valid times of samples in a fluent stream.

An order constraint restricts the relation between the valid times of two consecutive
samples. The constraint any order does not constrain valid times, while monotone
order ensures valid times are non-decreasing and strict order ensures valid times are
strictly increasing. A sample change constraint implies a strict order constraint.

An approximation constraint restricts how a fluent stream may be extended with

146

new samples in order to satisfy its policy. If the output of a knowledge process does
not contain the appropriate samples to satisfy a policy, a fluent stream generator could
approximate missing samples based on available samples. The constraint no approxi-
mation permits no approximated samples to be added, while use most recent permits
the addition of samples having the most recently available value.

For the stream generator to be able to determine at what valid time a sample must
be produced, the use most recent constraint can only be used in conjunction with a
complete duration constraint from 7, to ¢, and a change constraint sample every #,. For
the stream generator to determine at what available time it should stop waiting for a
sample and produce an approximation, this constraint must be used in conjunction with
a delay constraint max delay .

4.5 XPL

DyKnow uses the knowledge processing language KPL to declaratively specify knowl-
edge processing applications, static networks of primitive processes (sources) and re-
finement processes (computational units) connected by streams. Mediation and config-
uration processes modify the setup of a knowledge processing application over time and
are left for future work. For details of KPL including the formal semantics see [2, 3].

Definition 14 (KPL Grammar).

KPL_SPEC = (SOURCE_DECL | COMP_UNIT_DECL
| FSTREAM_GEN_DECL | FSTREAM.DECL)*
SOURCE_DECL := source SORT_-SYM SOURCE_SYM
COMP_UNIT_DECL := compunit SORT_SYM
COMP_UNIT_SYM'(" SORT_SYM (', SORT_SYM)*"Y
strmgen LABEL ' =’
SOURCE_SYM
COMP_UNIT_SYM'(" FSTREAM_TERM (', FSTREAM_TERM)*')")
FSTREAM_DECL := stream STREAM_SYM’ =" FSTREAM_TERM
LABEL == FEATURE_SYM ('’ OBJECT_.SYM (', OBJECT_.SYM)* '])?
FSTREAM_TERM = LABEL (with FSTREAM_POLICY)?
FSTREAM_POLICY = STREAM_CONSTR (', STREAM_CONSTR)*
STREAM_CONSTR = APPRX_CONSTR | CHANGE_CONSTR | DELAY_CONSTR
DURATION_CONSTR | ORDER_.CONSTR
APPRX_CONSTR := no approximation | use most recent
CHANGE_CONSTR := any update | any change | sample every TIME_SYM
DELAY_CONSTR == max delay (TIME_SYM | 00)
DURATION_CONSTR == from TIME_SYM | (from TIME_.SYM)? to (TIME_SYM | 00)
ORDER_CONSTR == any order | monotone order | strict order

FSTREAM_GEN_DECL ::

="

5 Chronicle Recognition

Many applications of autonomous vehicles involve surveillance and monitoring where it
is crucial to recognize events related to objects in the environment. For example, a UAV
monitoring traffic must be able to recognize events such as a car overtaking another, a

147

car stopping at an intersection, and a car parking next to a certain building.

We can classify events as being either primitive or complex. A primitive event is
either directly observed or grounded in changes in feature values, while a complex
event is defined as a spatio-temporal pattern of other events. The purpose of an event
recognition system is to detect complex events from a set of observed or previously
detected events. In the traffic monitoring domain, for example, the complex event of car
A overtaking car B can be defined in terms of a chain of events where a car A is first
behind, then left of, and finally in front of car B together with temporal constraints on
the events such as the total overtake should take less than 120 seconds.

One formalism for expressing complex events is the chronicle formalism which
represents and detects complex events described in terms of temporally constrained
events [4]. The chronicle recognition algorithm takes a stream of time-stamped event
occurrences and finds all matching chronicle instances as soon as possible. This makes
it a good example of a stream reasoning technique. To do this, the algorithm keeps
track of all possible developments in an efficient manner by compiling chronicles into
simple temporal constraint networks [5]. To detect chronicle instances, the algorithm
keeps track of all partially instantiated chronicle models. To begin with each chronicle
model is associated with a completely uninstantiated instance. Each time a new event
is received it is checked against all the partial instances to see if it matches any previ-
ously unmatched event. If that is the case, then a copy of the instance is created and
the new event is integrated into the temporal constraint network by instantiating the ap-
propriate variables and propagating all constraints [4]. This propagation can be done in
polynomial time since the temporal constraint network is simple. It is necessary to keep
the original partial chronicle instance to match a chronicle model against all subsets of
event occurrences. If all the events have been matched then a complete instance has been
found. Recognized instances of a chronicle can be used as events in another chronicle.
The chronicle recognition algorithm is complete as long as the observed event stream
is complete, i.e. any change of a value of an attribute is captured by an event.

Time is considered a linearly ordered discrete set of instants, whose resolution is
sufficient to represent the changes in the environment. Time is represented by time-
points and all the interval constraints permitted by the restricted interval algebra [9] are
allowed. This means that it is possible to represent relations such as before, after, equal,
and metric distances between time-points but not their disjunctions.

We have used chronicle recognition in the traffic monitoring application to detect
traffic patterns [10].

6 Progression of Metric Temporal Logic

First order logic is a powerful technique for expressing complex relationships between
objects. Metric temporal logics extends first order logics with temporal operators that
allows metric temporal relationships to be expressed. For example, our temporal logic,
which is a fragment of the Temporal Action Logic (TAL) [11], supports expressions
which state that a formula F' should hold within 30 seconds and that a formula F’ should
hold in every state between 10 and 20 seconds from now. This fragment is similar to
the well known Metric Temporal Logic [12]. Informally, 7, -, ¢ (“eventually”) holds
at 7 iff ¢ holds at some 7’ € [t + 7, T + 2], while O, r,1 ¢ (“always”) holds at 7 iff ¢

148

average time to progress a state

140 r ‘ : —
apeai p true —+——
apeai p (false*1,true*40)
apeai p (false*1,true*10) :--*---
120 + apeai p (false*10,true*10) & 4
100 e > :/ |
fffff & +

80 | * L /E/E/

40 | .
.y

time (milli seconds)

Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500
formulas

o

Fig. 3. Testing: Always Not p Implies Eventually Always p (average progression time).

holds at all " € [t + 7y, T + 72]. Finally, ¢ U, ,;¥ (“until”) holds at 7 iff ¢ holds at
some 7’ € [T + 71, T + T2] such that ¢ holds in all states in (7, 7’).

The semantics of these formulas are defined over infinite state sequences. To make
metric temporal logic suitable for stream reasoning, the formulas are incrementally
evaluated by DyKnow using progression over a timed state stream. The result of pro-
gressing a formula through the first state in a stream is a new formula that holds in the
remainder of the state stream iff the original formula holds in the complete state stream.
If progression returns true (false), the entire formula must be true (false), regardless of
future states. See Heintz [3, 13] for formal details.

DyKnow also provides support for generating streams of states synchronizing dis-
tributed streams. Using their associated policies it is possible to determine when the
best possible state at each time-point can be extracted.

Even though the size of a progressed formula may grow exponentially in the worst
case, many common formulas do not. One example is the formula 0 —p — $0,10001 Oj0,999] P>
corresponding to the fact that if p is false, then within 1000 ms, there must begin a pe-
riod lasting at least 1000 ms where p is true. To estimate the cost of evaluating this
formula, it was progressed through several different state streams corresponding to the
best case, the worst case, and two intermediate cases. A new state in the stream was
generated every 100 ms, which means that all formulas must be progressed within this
time limit or the progression will fall behind. The results in Fig. 3 shows that 100 ms
is sufficient for the progression of between 1500 and 3000 formulas of this form on the
computer on-board our UAV, depending on the state stream.

We have used this expressive metric temporal logic to monitor the execution of

149

complex plans in a logistics domain [13] and to express conditions for when to hy-
pothesize the existence and classification of observed objects in an anchoring module
[3, 14]. For example in execution monitoring, suppose that a UAV supports a maxi-
mum continuous power usage of M, but can exceed this by a factor of f for up to
7 units of time, if this is followed by normal power usage for a period of length at
least 7. The following formula can be used to detect violations of this specification:
O Yuav.(power(uav) > M — power < f - M Ujo) Ojo] power(uav) < M)

7 Related Work

The conceptual stream reasoning architecture proposed by Della Valle et al [15] con-
sists of four stages: Select, Abstract, Reason, and Decide. The Select component uses
filtering and sampling to select a subset of the available streams. These streams are then
processed by the Abstract component to turn data into richer information by convert-
ing the content to RDF streams. The Reason component takes these RDF streams and
reasons about their content. Finally, the Decide component evaluates the output and
determines if the result is good enough or if some of the previous stages have to be
adapted and further data processed.

Compared to this framework, DyKnow provides support for all four stages to a vary-
ing degree without restricting itself to serial processing of the four steps. The policies
and the computational units provide tools for selection and abstraction, with particular
support from the anchoring module to associated symbols to sensor data. The chronicle
recognition component and the formula progression engine are two particular stream
reasoning techniques that can be applied to streams.

In general, stream reasoning is related to many areas, since the use of streams is
common and have many different uses. Some of the most closely related areas are
data stream management systems [16—18], publish/subscribe middleware [7, 19], event-
based systems [20-23], complex event processing [24, 25], and event stream processing
[26]. Even though most of these systems provide some contributions to stream reason-
ing few of them provide explicit support for lifting the abstraction level and doing gen-
eral reasoning on the streams. The approaches that come the closest are complex event
processing, but they are limited to events and do not reason about objects or situations.

8 Conclusions

We have presented DyKnow, a stream-based knowledge processing middleware frame-
work, and shown how it can be used for stream reasoning. Knowledge processing mid-
dleware is a principled and systematic software framework for bridging the gap between
sensing and reasoning in a physical agent. Since knowledge processing is fundamen-
tally incremental in nature it is modeled as a set of active and sustained knowledge
processes connected by streams where each stream is specified by a declarative policy.

DyKnow is a concrete and implemented instantiation of such middleware, providing
support for stream reasoning at several levels. First, the formal KPL language allows the
specification of streams connecting knowledge processes and the required properties
of such streams. Second, chronicle recognition incrementally detects complex events

150

from streams of more primitive events. Third, complex metric temporal formulas can
be incrementally evaluated over streams of states using progression.

Since DyKnow is a general framework providing both conceptual and implemen-

tation support for stream processing it is easy to add new functionality and further
improve its already extensive support for stream reasoning.

References

10.

11.

12.

14.

15.

16.

18.

19.

. Minato, T., Yoshikawa, Y., Noda, T., Ikemoto, S., Ishiguro, H., Asada, M.: Cb2: A child robot

with biomimetic body for cognitive developmental robotics. In: Proceedings of IEEE/RAS
International Conference on Humanoid Robotics. (2007)

Heintz, F., Kvarnstrom, J., Doherty, P.: Bridging the sense-reasoning gap: DyKnow — stream-
based middleware for knowledge processing. Journal of Advanced Engineering Informatics
24(1) (2010) 14-26

Heintz, F.: DyKnow: A Stream-Based Knowledge Processing Middleware Framework. PhD
thesis, Linkopings universitet (2009)

Ghallab, M.: On chronicles: Representation, on-line recognition and learning. In: Proceed-
ings of KR. (1996) 597-607

Dechter, R., Meiri, L., Pearl, J.: Temporal constraint networks. AlJ 49 (1991)

Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robotics and Au-
tonomous Systems 43(2-3) (2003) 85-96

Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. 35(2) (2003) 114-131

Gore, P., Schmidt, D.C., Gill, C., Pyarali, I.: The design and performance of a real-time
notification service. In: Proc. of Real-time Technology and Application Symposium. (2004)
Nebel, B., Burckert, H.J.: Reasoning about temporal relations: A maximumal tractable sub-
class of allen’s interval algebra. Journal of ACM 42(1) (1995) 43-66

Heintz, F., Rudol, P.,, Doherty, P.: From images to traffic behavior — a UAV tracking and
monitoring application. In: Proceedings of Fusion’07. (2007)

Doherty, P., Kvarnstrom, J.: Temporal action logics. In Lifschitz, V., van Harmelen, F.,
Porter, F., eds.: The Handbook of Knowledge Representation. Elsevier (2007)

Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2(4) (1990) 255-299

. Doherty, P., Kvarnstrom, J., Heintz, F.: A temporal logic-based planning and execution mon-

itoring framework for unmanned aircraft systems. Journal of Autonomous Agents and Multi-
Agent Systems 19(3) (2009)

Heintz, F., Kvarnstrom, J., Doherty, P.: A stream-based hierarchical anchoring framework.
In: Proc. of IROS. (2009)

Valle, E.D., Ceri, S., Barbieri, D., Braga, D., Campi, A.: A First step towards Stream Rea-
soning. In: Proceedings of the Future Internet Symposium. (2008)

Abadi, D., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: A new model and architecture for data stream management.
VLDB Journal (August 2003)

Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream
systems. In: Proceedings of PODS’02. (2002)

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston,
C., Rosenstein, J., Varma, R.: Query processing, resource management, and approximation
in a data stream management system. In: Proceedings of CIDR’03. (2003)

OMG: The data-distribution service specification v 1.2 (jan 2007)

151

20.

21.

22.

23.

24.

25.

26.

Carzaniga, A., Rosenblum, D.R., Wolf, A.L.: Challenges for distributed event services: Scal-
ability vs. expressiveness. In: Engineering Distributed Objects. (1999)

Pietzuch, P.: Hermes: A Scalable Event-Based Middleware. PhD thesis, University of Cam-
bridge (2004)

Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems 19(3) (2001) 332-383
Cugola, G., Nitto, E.D., Fuggetta, A.: The jedi event-based infrastructure and its application
to the development of the opss wfms. IEEE Trans. Softw. Eng. 27(9) (2001) 827-850
Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley, Boston, MA, USA (2002)

Gyllstrom, D., Wu, E., Chae, H.J., Diao, Y., Stahlberg, P., Anderson, G.: Sase: Complex
event processing over streams. In: Proceedings of CIDR’07. (2007)

Demers, A., Gehrke, J., Biswanath, P., Riedewald, M., Sharma, V., White, W.: Cayuga: A
general purpose event monitoring system. In: Proceedings of CIDR’07. (2007)

152

Self-Maintenance for Autonomous
Robots in the Situation Calculus

Stefan Schiffer Andreas Wortmann Gerhard Lakemeyer

Knowledge-Based Systems Group
RWTH Aachen University
Aachen, Germany
andreas.wortmann@gmail.com
(schiffer,gerhard)@cs.rwth-aachen.de

Abstract. In order to make a robot execute a given task plan more
robustly we want to enable it to take care of its self-maintenance re-
quirements during online execution of this program. This requires the
robot to know about the (internal) states of its components, constraints
that restrict execution of certain actions and possibly also how to recover
from faulty situations. The general idea is to implement a transforma-
tion process on the plans, which are specified in the agent programming
language ReadyLog, to be performed based on explicit (temporal) con-
straints. Afterwards, a 'guarded’ execution of the transformed program
should result in more robust behavior.

1 Introduction

Today’s artificial intelligence provides a rich framework for the development of
“intelligent” autonomous agents. Several branches explore improvements of these
agents, dealing with perception, human-robot-interaction, locomotion, reason-
ing, planning, and more. One aspect of current robotics research is “the study of
the knowledge representation and reasoning problems faced by an autonomous
robot (or agent) in a dynamic and incompletely known world” [1], coined as
cognitive robotics by Ray Reiter. The central effort of Reiter’s vision [2] “is to
develop an understanding of the relationship between the knowledge, the per-
ception, and the action of such a robot”. This is outlined by through several
questions the research program of cognitive robotics is supposed to answer, es-
pecially “what does the robot need to know about its environment” and “when
should the inner workings of an action be available to the robot for reasoning”.
We approach a specialization of their intersection, namely “what does the robot
need to know about itself and its requirements”. This is especially interesting as
present agents are often unable to explicate their requirements (e.g., calibration
of manipulators before usage) relative to a plan. They usually need these require-
ments to be considered externally and in advance, otherwise they fail during plan
execution. Therefore, we propose a constraint based self-maintenance framework,
which will enable an agent to monitor its self-maintenance requirements dur-
ing program execution. Whenever the self-maintenance framework determines

153

unsatisfied requirements, appropriate recovery measures are performed online.
This behaviour increases agent autonomy and robustness. We do so by adding
a program transformation step in ReadyLog, a logic-based robot programming
language (with planning support) based on the Situation Calculus. This transfor-
mation uses explicitly formulated constraints that express dependencies between
task actions and the robot itself. These are important at run-time and we can-
not and do not want to consider them at planning time already. Thus we also
alleviate the costs for planning.

2 Foundations

In the following, we briefly sketch the foundations our approach builds on. For
one, that is the Situation Calculus and our robot control language ReadyLog,
for another that is a formulation of temporal constraints.

2.1 Situation Calculus & ReadyLog

The Situation Calculus [3] is a sorted logical language with sorts situations,
actions, and objects. Properties of the world are described by relational and
functional fluents that change over time (situation dependent). Actions have
preconditions, and effects of actions are described by successor state axioms.
The world evolves from situation to situation, e.g., s = do(a, s) means that
the world is in situation s’ after performing action a in situation s. GOLOG [4]
is a logic based robot programming (and planning) language based on the Sit-
uation Calculus. It allows for Algol-like programming but it also offers some
non-deterministic constructs. It uses an evaluation semantics: Do(d, s, s’) means
that executing program 4 transforms situation s to s’.

There exist various extensions and dialects to the original Golog interpreter,
one of which is ReadyLog [5]. It provides an online interpreter and integrates
several extensions like interleaved concurrency, sensing, exogenous events, and
online decision-theoretic planning (following [6]) into one framework. We use
ReadyLog to specify our agents and the approach presented here is an extension
to ReadyLog. As programs in ReadyLog represent task plans, we will use the
term program from now on instead of plan.

2.2 Temporal Constraints

To formulate (temporal) constraints we obviously require a notion of (tempo-
ral) relations between actions (or more generally, between states). Since we are
interested in constraints that should be easy to formulate for the designer we
prefer a qualitative description of these relations. We consider this sufficient for
most cases we intend to handle and spare computing explicit timing values. We
therefore chose Allen’s Interval Algebra [7] as our basis. For an overview on im-
portant relations in this algebra see Fig. 1. An example of a constraint that we

154

a1 ||l a4 | [a]
| B] (B |[_B] [B]

(a) A MEETS B (b) A BEFORE B (C) A STARTS B (d) A ENDS B

— | [=

(e) A CONTAINS B (f) A OVERLAPS B (g) A EQUALS B

Fig. 1. Seven of Allen’s interval relations.

want to formulate could be
calibrate_arm BEFORE manipulate

to indicate that the manipulator has to be calibrated before we can actually use
it. We are not the first to consider an interval formulation in Golog [8], however,
our use is not targeted at flexible interval planning but more to formulate the
constraints and augment a given program according to these.

2.3 Durative Actions

Usually actions are durative, i.e., they consume time. The original Situation Cal-
culus only knows ’instantaneous’ actions. There are, however, some extensions
that we are going to adopt to represent durative actions [9,10]. In these ap-
proaches, actions with a duration are considered activities that are bounded by
instantaneous start/stop-actions. The fact that such an activity is currently be-
ing performed is indicated by a fluent for each activity. See Fig. 2 for an example.

Durative Action “Goto”

+ Going —

Action Fluent Action
“start_going” “Going” “stop_going”

Fig. 2. Exemplary decomposition of a durative action

3 Approach

The general idea is to implement a program transformation process based on
temporal constraints and the program to be performed. Fig. 3 depicts how we
propose to integrate the components of our self-maintenance framework into
existing agent controllers.

155

Plan/Program Task BAT

Todo-List ’ [Transformatlon)<—¢

Fig. 3. Architectural overview of our approach

We propose to intervene between decision-theoretic planning, whose output
is an executable program, and its online execution. Before any action of the
program is performed in the real world, a self-maintenance interpreter checks
whether there are unsatisfied constraints for this action. If such constraints are
found, the program execution is delayed and the program is augmented with
maintenance and recovery measures. The augmented program is only then passed
on for execution. Depending on the constraint(s) the transformation also includes
monitoring markers, e.g., making sure the locomotion_module is off throughout
the execution of manipulating something.

3.1 Constraints

For this transformation to work, we need to make one important restriction,
though. Since the self-management may not invalidate the program, we separate
the task from the maintenance domain and restrict the constraints to only map
elements from the latter to the former.

Our approach is similar to [11] who propose a framework for online plan repair
and execution control based on temporal constraints. Their work is motivated by
the same problems than ours, namely that “taking into account run-time failures
and timeouts” requires online plan recovery, However, they rely on partial order
planning and assume temporal flexible plans. Their objective is to execute a plan
under resource and timing constraints by grounding time points at execution
time. We, on the other hand, are interested in interleaving self-maintenance and
task actions at execution time on a qualitative level. Time points in the Situation
Calculus are only characterized by actions. Still, we borrow their notion of (non)
preemptive actions and the idea that the system sends some form of report about
action completion and the systems’ components’ states.

Our constraint syntax is A ® B where

A is from self-management domain only. It can be (a) a instantaneous action
which corresponds to an interval end point, (b) a durative action that needs
to be decomposed to its end points, or (¢) a fluent formula that needs to be
checked with respect to the interval.

® 1is one of Allen’s relations.

B is from task domain only. The same cases as described above for A also apply
for B.

156

Table 1. Translation of a constraint to an order on situations

Task (B)
A BEFORE B b ‘ B ‘ "
= a a<b|a<BT a<AI
N A A~ <b[AT <BT|AT < A]
g @ A, <bHA; <BT]A; < A7

3.2 Online Program Transformation

We transform the program (i.e., a plan generated by ReadyLog) using the set
of constraints available for the next task action to be executed. The set of con-
straints is translated to a Constraint Satisfaction Problem (CSP) by resolving
each constraint to an order on situations described by primitive or start/stop-
actions. An example is given in Table 1. Small case letters denote instantaneous
actions, capital letters stand for complex actions, and A; and A;f represent a
fluent formula ¢ becoming false or true in a certain situation, respectively. The
solution of the CSP then dictates the transformation. It inserts maintenance
actions and monitoring markers at appropriate positions in the program.

3.3 Inheritance

It is an often seen bad practice to duplicate constraints for related actions. To
alleviate this and provide a more convenient way of formulating the constraints,
it should be possible to give constraints for actions classes, e.g., we would like
to have an action inheritance about several move actions. Building on [12], we
employ a modular BAT that allows for inheritance of constraints along the hi-
erarchy of actions. See Fig. 4 for an example.

Fig. 4. Inheritance of constraints in a hierarchy of actions

3.4 A Simple Example

To clarify our approach we depict a simplistic example of the general process in
the following. The single steps of this process are depicted in Fig. 5.

In Step 1 we show the state of affairs before our process is about to kick
in. Then, as soon as the task program features an action that appears in any
of the constraints, the CSP solve is triggered. The solution forces us to insert a
start_beep action before we can actually execute start_goto. After executing

157

constraint
beep EQUALS goto
todo {}

constraint
beep EQUALS goto
todo {}

Task [coro [-]

Memr
Now

- >

history h = ...
program § = start_goto; ...

constraint
beep EQUALS goto
todo {stop-beep at
stop_goto, ensure beep}

history h = ...
program § = start_beep;
start_goto; ...

(a) Step 1

(b) Step 2

(c) Step 3

constraint beep EQUALS
goto

todo {stop-beep at
stop_goto, ensure beep}

constraint
beep EQUALS goto
todo {stop-beep at
stop_goto, ensure beep}

constraint
beep EQUALS goto
todo {stop_beep at

stop_goto, ensure beep}

T I T o EEEL T o s
MomT Mamr -I B Maemr - BEEP
Now Now
L — — ow 5 p— LN
history h — start_beep history h = ...; history h = ...;
start_beep; start_goto; ... start-beep; start_goto; ...
program 6§ = start_goto; ...
program § = stop_goto; program § = stop_goto; ...
(d) Step 4 (e) Step 5 (f) Step 6
constraint constraint constraint
todo (o becn o becp EQUALS goto
stop-becr todo {} todo {}

stop-goto, ensure beep}

o« IIFLGOTP]
Mevr [l BEEP -]

Now
e

history h =
start_bee

start_goto; ...

Task [H] GOTO |-

Mamt BEEP [—
Now
—_—
history h = .

start-beep; start_goto; ...;

ok [GOTO]

Mamr

history h = ...;

program § = stop_beep; stop_beep
stop_goto; ... program & = stop_goto; ... program § = ...
(g) Step 7 (h) Step 8 (i) Step 9

Fig. 5. Exemplary Maintenance Process

158

start_beep the execution of start_goto succeeds. Throughout the run-time of
the goto action we ensure that beep is also running. Then, when stop_goto is
about to be executed, when detect that we have to stop_beep. Only after we do
this, stop_goto can actually be executed.

Note that in Step 3, when inserting the start_beep action we make use of
something we call the e-slot. We consider two actions happening simultaneously
if they happen within a time span not exceeding the e-slot. This is due to the
fact that ReadyLog only supports interleaved concurrency [9] which executes
two action sequences concurrently by interleaving them. This is opposed to true
concurrency [13] where sets of actions may be executed ’truly concurrently’
between any two situations.

4 Discussion

In this paper we sketched our approach to self-maintenance for autonomous
robots controlled by ReadyLog. We modify a given program at run-time using
explicitly formulated temporal constraints that relate self-maintenance actions
with actions from the task domain. This way we achieve more robust and en-
during operation and take care of maintenance when it is relevant: at execution
time. Keeping our approach in one framework allows to use all of ReadyLog’s
features in maintenance and recovery.

In future work we will consider two extensions. Explanation: Since the robot
knows which constraint(s) failed in a particular situation and it probably does
not have means to take care of it itself the robot can at least exhibit to the
user what went wrong. Interaction: Alternatively, if the robot can not handle a
constraint itself (e.g., no_emergency_off while drive) but knows, that a human
user could do, it can simply trigger an interaction, e.g., ask “Could you please
release my emergency button?”.

References

1. Levesque, H., Lakemeyer, G.: Cognitive Robotics. Handbook of Knowledge Rep-
resentation. Elsevier (2007)

2. Levesque, H., Reiter, R.: High-level robotic control: Beyond planning. a position
paper. In: AIIT 1998 Spring Symposium: Integrating Robotics Research: Taking
the Next Big Leap. (1998)

3. McCarthy, J.: Situations, Actions, and Causal Laws. Technical Report Memo
2, AI Lab, Stanford University, California, USA (1963) Published in Semantic
Information Processing, ed. Marvin Minsky. Cambridge, MA: The MIT Press, 1968.

4. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: A Logic
Programming Language for Dynamic Domains. Journal of Logic Programming 31
(1997) 59-83

5. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains.
Robotics and Autonomous Systems 56 (2008) 980-991

159

10.

11.

12.

13.

Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-theoretic, high-
level agent programming in the situation calculus. In: Proceedings of the 17th
National Conference on Artificial Intelligence and 12th Conference on Innovative
Applications of Artificial Intelligence, AAAI Press / The MIT Press (2000) 355-362
Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26
(1983) 832-843

Finzi, A., Pirri, F.: Flexible interval planning in concurrent temporal golog. In:
Working notes of the 4th Int. Cognitive Robotics Workshop. (2004)

de Giacomo, G., Lespérance, Y., Levesque, H.J.: Congolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121 (2000)
109-169

Claflen, J., Hu, Y., Lakemeyer, G.: A Situation-Calculus Semantics for an Expres-
sive Fragment of PDDL. In: AAAT’07: Proceedings of the 22nd National Conference
on Artificial Intelligence, AAATI Press (2007) 956-961

Lemai, S., Ingrand, F.: Interleaving temporal planning and execution in robotics
domains. In: AAAI’04:Proceedings of the 19th National Conference on Artifical
Intelligence, AAAI Press / The MIT Press (2004) 617-622

Gu, Y., Soutchanski, M.: Reasoning about Large Taxonomies of Actions. In Fox,
D., Gomes, C.P.,; eds.: AAAT08: Proceedings of the 23rd National Conference on
Artificial Intelligence. Volume 2., AAAT Press (2008) 931-937

Reiter, R.: Natural actions, concurrency and continuous time in the situation cal-
culus. In: In Principles of Knowledge Representation and Reasoning: Proceedings
of the Fifth International Conference (KR’96), Cambridge, Massachusetts, U.S.A.
(1996) 2-13

160

Improving the Performance of Complex Agent
Plans Through Reinforcement Learning

Matteo Leonetti and Luca Iocchi

Sapienza University of Rome
Department of Computer and System Sciences
via Ariosto 25, 00185
Rome, Italy

Abstract. Agent programming in complex, partially observable, and
stochastic domains usually requires a great deal of understanding of both
the domain and the task in order to provide the agent with the knowledge
necessary to act effectively. While symbolic methods allow the designer
to specify declarative knowledge about the domain, the resulting plan
can be brittle since it is difficult to supply a symbolic model that is
accurate enough to foresee all possible events in complex environments,
especially in the case of partial observability. Reinforcement Learning
(RL) techniques, on the other hand, can learn a policy and make use
of a learned model, but it is difficult to reduce and shape the scope of
the learning algorithm by exploiting a priori information. We propose a
methodology for writing complex agent programs that can be effectively
improved through experience. We show how to derive a stochastic process
from a partial specification of the plan, so that the latter’s perfomance
can be improved solving a RL problem much smaller than classical RL
formulations. Finally, we demonstrate our approach in the context of
Keepaway Soccer, a common RL benchmark based on a RoboCup Soccer
2D simulator.

1 Introduction

Despite the great deal of research on planning over many years and in many
different domains, planning in dynamic and uncertain domains is still a chal-
lenging task. In many applications, agents operate in highly dynamic and un-
certain environments where most of the changes are not a consequence of the
agent behavior. They usually have limited knowledge of the environment and
noisy sensors. Many approaches rely on a transitional model of the domain; in
these cases the knowledge about the environment is encoded and exploited for
planning either offline or online.

As stated by Bonet and Geffner [2], creating a controller that maps observa-
tions into actions has been mainly achieved in three ways:

— the programming approach, where the controller is programmed by hand in
a suitable high-level procedural language;

— the planning approach, where the controller is derived automatically from a
suitable description the actions, sensors and goals;

161

2 LearnPNP: A tool for modeling and learning agent behaviors

— the learning approach, where the controller is derived from experience.

The programming approach allows to encode procedural information about how
the task must be performed, but it makes improving the agent’s behavior quite
difficult, leaving little or no room for automation. The planning approach, on
the other hand, allows to provide the agent with declarative knowledge about
the environment, but is sensitive to inaccuracy of the model: in the class of
environments we are considering, a declarative model cannot in general be able
to foresee all possible events that can cause the plan to fail. This issue, especially
in robotics, leads to the need for execution monitoring [14], that constitutes a
whole research field. Finally, the learning approach can learn both a model of the
environment and/or a policy, but it is particularly difficult for the designer to
shape the search space, even when his/her knowledge could reduce the learning
burden significantly.

In spite of many efforts to planning and learning in complex domains, hand-
crafted plans still have a major role in many applications, even though they
require a lot of effort from the designer and the results are of limited use in
highly dynamic and uncertain domains.

Some relevant works in the direction of integrating a priori knowledge into a
learning framework are present (cf Section 5). However, these works have limited
applicability and do not scale to the class of problems we consider.

In this paper we introduce a novel use of Reinforcement Learning (RL) to
improve planning from experience, while still allowing the designer to write a
knowledge base or a set of plans. The proposed approach allows to convey prior
knowledge to the agent in a straightforward way, more specifically in the form
of a partially specified plan (or a set of plans). This is in contrast with standard
approaches to learning to perform a specific task, which usually require a non
negligible effort in the definition of the features of the environment to feed the
learning algorithm, a careful choice of a function approximator and also the
definition of proper actions.

The novelty of the approach is in the application of well established RL theory
and methods in a novel learning state space, which is obtained directly from the
plan, and it is considerably smaller with respect to standard formulations, thus
not requiring function approximation. The proposed approach is targeted at all
the “real world” applications in which the knowledge about the domain, even
from the designer perspective, does not allow him/her to establish which plan
(in a set of admissible ones) is going to perform better. In this context the agent
behavior can automatically adapt during plan execution gaining benefit from
experience.

To verify the effectiveness of our solution we implemented and tested it in
the Keepaway domain [16, 8], a benchmark for learning algorithms at the edge
of what RL can currently face. Our learning method could learn a behavior that
significantly outperforms former results in the same setting and converges to the
optimal solution several times faster.

162

Title Suppressed Due to Excessive Length 3

2 Plan Representation

Our approach addresses the planning problem in complex, dynamic environments
and is suited for reactive systems. In the rest of the paper we consider reactive
plans represented as generic state machines, like state charts [6], in which every
state corresponds to a set of actions and each transition corresponds to an event.

A plan state is a configuration of the machine that encodes the plan, as
opposed to an environment state that is a configuration of the variables that
represent the agent knowledge. Each plan state is associated the set of actions
that is being executed in that point of the plan. Notice that the same set of
actions may occur several times in different plan states. The state of the whole
system is the Cartesian product of the plan and the environment state spaces.

An event is a general happening in the environment that can be whatever
the agent is capable of detecting, for instance: a condition that becomes true, a
message received from another agent, a timeout expired or a joint that reached
its target position.

The representation of plans considered in this paper is based on a transition
system defined over plan states and events. Such a transition system determines
a set of plans, or plan schemas, as formally stated in the following definition.

Definition 1 (Plan Schema). A Plan Schema is a tuple (S, so, F, E, @, A,
L, T) where:

— S is a finite set of plan states

— Sg is the initial plan state

— F C Sis a set of final plan states

— F is a finite set of events

D is a set of conditions

— A is a set of actions

L:S — p(A) is a total labeling relation that maps plan states on actions

—T:S8%xExXx® — S is a transition relation augmented with a triggering
event and a condition. For each s € S, e € E and ¢ € D, ¢ must entail the
pre-conditions of all the actions in L(T(s,e,))

The underlying assumption is that all actions are indeed procedures that
involve some actuators and then take time to execute. During the execution of
an action the environment state changes continuously while the plan state does
not. Indeed this representation does not model explicitly the agent’s knowledge,
but only the execution state of the plans.

The outcome of actions may be uncertain and we assume that a knowledge
base (KB) exists such that at any moment it is possible to check whether or not
it entails a certain condition. We also assume that appropriate modules keep
such a KB updated with respect to the agent’s perceptions.

In addition to events, edges are labeled with guard conditions that must hold
for the edge to be enabled. The behavior of the machine is the following: the
current state contains the currently executed set of actions which is performed
until one of the events associated to the outgoing edges happens. Whenever such
an event is sensed by the agent we say that the event triggers the transition which

163

4 LearnPNP: A tool for modeling and learning agent behaviors

makes it available for execution. For the edge to be actually enabled at that time
another condition must be met, namely the guard of the transition must hold.
When an edge is triggered (the associated event happens) and enabled (its guard
condition holds) it is allowed to be followed and the next state represents the set
of actions the agent is to execute next. If an action was present in the previous
plan state and it is not in the next one that action must be terminated. On the
other hand, if an action appears in the next state it must be started. All actions
that are both in the previous and next plan state keep being executed. To make
the operational semantic clearer we assume that all events are external (i.e., they
cannot be generated by the machine itself) and transitions are instantaneous, so
that no event can be lost during a transition execution. Final states are absorbing
states that cannot be left once entered and determine the execution termination.

If the state machine is deterministic (it can never happen that two transitions
are triggered and enabled at the same time), then the plan schema is actually
a single plan since no choices are left to the executor and the entire behavior
is specified. On the other hand, if the machine is non-deterministic the plan
schema represents multiple plans and each non-deterministic choice is a fork
among them. Nothing prevents different plans from sharing common paths and
depart only where their behavior differs.

Such a state machine can easily represent any reactive, conditional plan with
also while-loops. Transformation from plans in classical state-based represen-
tation to plan schemas as defined above is straightforward, since events may
model post-conditions that become true and the guards can easily represent
the pre-condition of the following action. But events can do much more, they
can represent communication among agents (recall that an event can be associ-
ated to the receipt of a message), allowing the specification of multi-agent plan
schemas. Events can also represent unexpected conditions (not necessarily the
awaited post conditions), so that the plan may also account for interrupts. Fi-
nally, it is possible to easily extend the representation for hierarchical plans in
which actions can be low level behaviors or state machines themselves, even if
for this paper we limit the analysis to non-hierarchical plans. Thus, the proposed
plan representation is quite general and we do not pose any restriction on the
origin of plans, they can come from anything between automatic generation and
handcrafting. The only assumption we require is that plans must be correct, in
the sense that they should reach goal situations without violating action pre-
conditions or domain constraints. Checking correctness of input plan schemas is
outside the scope of the proposed approach.

2.1 Keepaway Soccer example

In order to make the plan representation and execution clear, we show a sim-
ple example borrowed by the Keepaway Soccer domain proposed by Stone and
Sutton [16, 8]. Keepaway Soccer is a subtask of RoboCup Soccer in which one
team, the keepers, must keep possession of the ball in a limited region as long
as possible while another team, the takers, tries to gain possession. The task is
episodic and one episode ends whenever the takers manage to catch the ball or
the ball leaves the region.

164

Title Suppressed Due to Excessive Length 5

Keepaway soccer retains some of the complexity of real world for the sensors
are noisy, the environment is highly dynamic, also due to adversarial agents, and
the communication among agents is limited.

holdBall

takerApproaching|takerApproaching
[Player1Ready] | [Player2Ready]

passToPlayer2 moveToPlayer2

Fig. 1. An example of a simple plan. Actions label states, events and guards label
transitions.

player2calling

passToPlayerl

As an example, consider the plan schema in Figure 1. In the initial state
the agent simply holds the ball until an event occurs. If takerApproaching hap-
pens two transitions are triggered. When at least one transition is triggered the
post-conditions are checked, and if a transition is also enabled (its condition at
that moment holds), it is followed setting the plan in a new state. Of course not
necessarily there must be at least one enabled transition when an event hap-
pens and some events may be uncaught. In that case, the system remains in its
current state waiting for the next event to happen. Notice that, if the guards
Player1Ready and Player2Ready are not mutually exclusive, two transitions can
be triggered and enabled at the same time. Thus, the transition system is non-
deterministic and, in the same situation, two plans are available: the first one is
(holdBall, passToPlayerl) while the second one is (holdBall, passToPlayer2).

In other words, in general, plan schemas are a compact way of representing
multiple plans providing for different alternatives to achieve a goal.

3 Learning Framework

The learning framework is focused on exploiting the non determinism of a plan
schema to make an informed choice.

Reinforcement Learning allows us to make use of experience to improve an
agent’s performance over time and seems a reasonable choice to achieve our
goal. RL has been thoroughly studied within the MDP framework, since this
framework provides a formal and neat mathematical notation for studying an
important class of sequential decision problems. In traditional RL applications
it is assumed that all relevant knowledge about an agent’s environment can be
encoded in a structure, usually a Markov Decision Process (MDP). Moreover,
both in “model-free” and “model-based” RL techniques, it is assumed that even

165

6 LearnPNP: A tool for modeling and learning agent behaviors

though the agent might not know exactly what the structure of the MDP is
(e.g. the transition matrix, etc), all sample observations are drawn from some
underlying MDP. In the class of problems we are considering, however, assuming
the existence of a fully observable MDP, or even trying to come up with a
reasonable possible encoding for the states, which could somehow guarantee
that the Markovian assumption is respected, might be infeasible. One reason
for that is that it can be quite hard, or even impossible, to represent all the
required information about other agents, their policies, unpredictable events,
parallel action execution, unexpected changes in the task or in the environment,
etc. In other words, it might be unreasonable or infeasible to assume that the
task being solved can be well represented by an MDP. This is still true despite
the sophisticated work on function approximation.

For this reason we rely on a generic knowledge base that reflects the beliefs
of the agent about the environment, without building a dynamic model of it. In
the following, we will define a stochastic decision process by deriving it from the
plan and we will use this model to gather the experience to use in subsequent
trials.

The state of the system is composed by both the state of the plan and the
state of the environment but the latter is in general not completely known. The
reward depends on how the state of the environment is perceived by the agent.
In order to make a decision in non-deterministic choice points, we want to look
forward in the plan having a value function associated with plan states, but not
looking forward in the environment state space trying to predict the outcome of
actions (i.e. the next environment state).

The plan executor must adhere to the state machine operational semantic as
long as the choices are deterministic. Whenever a non-deterministic choice must
be taken, the executor can refer to the value function to evaluate the alternatives
and then exploit or explore as usual in RL.

3.1 Problem Definition

In order to properly characterize the stochastic process associated to the pre-
viously described state machine, and to set the proposed method in the RL
framework, we define it in terms of a Semi Non-Markov Decision Process (SN-
MDP), since the actions do not have the same duration and the process is in
general non Markovian.

We first show the construction of the SNMDP with an example and then
we provide its formal definition. Suppose that at some point of the plan schema
you have a choice point like the one previously described (Figure 1). The nodes
that allow for non-determinism (i.e., that have more than a transition associated
with the same event, and whose guard conditions are not mutually exclusive)
are split into a number of nodes equal to the constituent events of the condition.
In the example, the event takerApproaching (abbreviated as ta) is associated
to the conditions PlayerlReady (p1r) and Player2Ready (p2r). This gives raise
to four possible constituents, namely: only pir is true, only p2r is true, both
are true or none is. To the first three we associate a state and an arc from the

166

Title Suppressed Due to Excessive Length 7

original holdBall state. The last situation, in which none of the conditions holds,
translates into a loop on the holdBall state.

The resulting graph is represented in Figure 2. All the created edges corre-
spond to the same non-deterministic action of the SNMDP reported as ta. Since
it is caused by the perception of the event ta, the result of this action depends
on the environment and cannot be chosen by the agent. In this section we make
use of the term “action” as it is in the literature of stochastic processes when
we refer to the SNMDP. Therefore, while an action in the plan schema is the
actual intervention of the agent in the environment, an action in the SNMDP is
an instantaneous transition available to the controller. An action in the SNMDP
causes a change in the state of the process but cannot modify the state of the
environment while this is the primary intention of an action in the plan schema.

Each node associated to a constituent of the conditions is connected to the
action node containing the actions enabled by that constituent. In our example,
plr is connected to the node representing the action passToPlayer! (ppl), while
p2r is connected to passToPlayer?2 (pp2) and pIr&p2r is connected to both. At
this level the edges reaching different action nodes are associated to different
actions of the SNMDP. The resulting graph has a choice point in the state
plr&p2r since in that case two actions are simultaneously available.

holdBall) Dta

° plr&p2r
ppl

Fig. 2. Creation of the SNMDP. The original node with the action holdBall is split
creating nodes to represent the conditions

The number of nodes in which a choice point in the original plan is split
is exponential in the number of conditions. This is not surprising, and in the
case of full observability and discrete state space this number would be equal to
the number of states storing an entire Q-function. Nonetheless, the underlying
assumption is that the domain is continuous and partially observable so that
there is no notion of single state and considering single states or many small
regions is not possible nor desirable. Hence, even if it is possible to consider

167

8 LearnPNP: A tool for modeling and learning agent behaviors

function approximation, it is not necessary for the number of nodes generated
in practice.

To give a formal definition of the SNMDP we have informally previously
introduced, we define the set C,,q4(s,e) of the constituent events generated
by overlapping conditions in a specific choice point (denoted as (s,e)) of a
plan schema PS = (S,so, F,E,®,T, A, L) as follows: if there exist k condi-
tions ¢1 ... ¢, and a state s; s.t. (s,e, ¢;,s;) € T for each ¢ € {1,...,k} then
Cena(s,e) = p({dr}) \ O while Cepna(s,e) = 0 otherwise. In our example Cepg(
holdball, taker Approaching) = {{plr}, {p2r}, {plr, p2r}}.

Next, we define the set S, of the states generated by condition overlapping
in all choice points:

Se = {{s,e,cond)|s € S,e € E,cond € Cenal(s,e)}
In our example

Se = { (holdball, taker Approaching, {plr}),
(holdball, taker Approaching, {p2r}),
(holdball, taker Approaching, {plr, p2r}),
(holdball, player2calling, {true})}

Those states constitute the second layer of Figure 2 except for the last one since
the event player2calling has been omitted for simplicity. Finally, we also define
a utility function S¢ to select in S, the states that are generated by a specific
choice point as follows:

Se(s,e) = {(s,e,cond) € Sc|cond € Cepna(s,e)}

Time has not been addressed yet so far. We consider time in discrete timesteps
and actions can take multiple timesteps to complete. We use the following no-
tation:

— t5: the time of occurrence of the k** transition. By convention we denote
to =0

— s = s(tx) where s(t) = s for ¢, <t < tpy1

— ay = a(ty) where a(t) = ay, for t, <t < tp41

We define a Semi Non-Markov Decision Process SNMDP = (Sy, Asp, Psp,
Tsp) such that:

— Ssp = Sc. U S, is the state set. The set S is the set generated by overlap-
ping conditions, whereas S is borrowed directly from the plan schema and
accounts for action states, that is states that are not the result of a choice
point split but are associated to actions in execution. The first and last layer
of Figure 2 are an example of the states in S while the intermediate layer is
an example of the states in S..

— Ay ={a€ p(4)|3s € S s.t. L(s) = a} U E, is the action set. The first part
is the co-domain of the labeling function in the plan schema. We create an
action for each possible set that labels the states of the plan schema. Notice

168

Title Suppressed Due to Excessive Length 9

that those actions are deterministic and we give them the same name of their
target state. In our example of Figure 1 the co-domain of labeling function is
{{holdBall}, {pp1}, {pp2}, {mp2}}. In this example there is no parallelism,
so all sets are singletons. You can spot the corresponding actions in Figure
2. The set FE (events in the plan schema) is used to define the actions on
which the agent has no control. These actions are non-deterministic and their
outcome depends on the environment. Again, in Figure 2, ta is an example
of such an action.

— Pyp(s',a,7,8) = Pr(tps1—ti < 7, 5541 = §'|sg = s, ar = a) is the probability
for action a to take 7 time steps to complete, and to reach state s’ from state
S

e if a ¢ E: the action is deterministic. An action that is not in E connects a
state in S, to the state in S (second to third layer in the example) labeled
with the actions enabled by the condition in that state. Moreover, those
actions do not reflect any change in the environment so they always
complete in zero time. That is,

=1if 3s;,¢€,¢.
(siye 0,8y eT
Pyy(s',a,7,5) As € C(sy,e)
ANL(sY=aNnT=0
=0 otherwise

A state s is connected to the state s’ by a iff s is a state generated by a
condition constituent, it is linked to s’ by the plan schema, and «a is the
label of that link.

e if ¢ € E: the action is non-deterministic. These actions take the time
spent in the previous state waiting for the event. An action that is in E
connects a state in .S to itself and to all the condition states that its split
generate (first to second layer in the example). Therefore, events cannot
connect all pairs of states, which translates into:

=0ifs¢ SV
s' ¢ C5(s,a) U{s}

= [y p(tesr —tp < 7,541 =
§'|sk = s,ar = a, h)
p(h) dh

otherwise

]Dsp(3/7 a, T, S)

If a connection between s and s’ through e exists according to the plan
schema, the value of the transition function is the probability for the
event a to happen in the state (s, h) € S x H where H is the domain of
(continuous) hidden variables. Since those variables are not observable,
the sample distribution is the (hidden) underlying one marginalized over
the hidden variables. This makes the stochastic process non Markovian

due to partial observability.
— 14p(s’,a,k, s;) is the reward function. It is Markovian (but the total reward
in general is not) and we define its value to be 0 if a ¢ E. Therefore the

169

10 LearnPNP: A tool for modeling and learning agent behaviors

immediate reward is non-zero only for events. Since events can take time
(the time spent waiting in the previous state for the event to happen) the
reward is defined in terms of immediate rewards as:

k
rep(s,a,k, s¢) = LR
sp s Uy vy ot) — v Tt4i
i=1

where the ry4; are the instantaneous rewards collected during the action
execution, and v such that 0 < v < 1 is the discount factor. Instantaneous
rewards are defined over perceptions, that is they are a function of the state
of the knowledge base.

In order to define a decision problem, we establish a performance criterion
that the controller of the stochastic decision process tries to maximize. As such,
we consider the expected discounted cumulative reward, defined for a stochastic
policy 7(s,a) and for all s € S, and a € Ay, as:

Qn(s.0) = By 7' 'ri}

- Y S P

s'€8sp T=0

. (rsp(s', a,7,s) +

SRAD DI CH M ENTDTY (1)

a’€Asp(s’)

where Ag,(s) is the set of actions for which P,(s’,a,7,s) > 0 for some value of
7. The optimal discounted reward function is defined as:

Q" (s,a) = mazr Qr(s,a), s € Ssp, a € Ay (2)

3.2 Learning Algorithm

Since the stochastic process is in general non Markovian, extra attention must
be paid at the algorithm used to evaluate the expected reward of a given policy.
Usual algorithms based on a value function for MDPs make use of temporal
difference (TD) methods to compute the expected reward from a state onward.
The actual proof of convergence for TD relies on the Markov property and,
even if Sarsa(\) can be quite robust to partial observability [9], it is in general
not guaranteed to converge. It has also been shown that adding memory to the
observations can solve some POMDPs [11] and the plan schema allows to add ar-
bitrary memory: if the plan schema is a tree the whole history is considered, but
loops can create any situation in between memory-less and full memory. Prac-
tically, Sarsa(A) should converge to a policy that, even if suboptimal, can allow
for behavior improvement. A sound algorithm for the general case is MCESP by

170

Title Suppressed Due to Excessive Length 11

Perkins [13], and good other candidates can be found in policy search methods,
whose evaluation on our framework we leave for future work. For a brief review
of results we can leverage, please refer to Section 5

The value function, that is the cumulative discounted reward from each state
executing each action onward, will converge to the expected value of the reward
influenced by the experience. It might happen that a choice point in the stochas-
tic process corresponds to a region of the actual state space in which no action
is in most of the cases better than any other. In such a case the value of all the
available actions in that choice point would average out each other giving no re-
liable estimation of the expected reward. For this reason, a method (such as the
aforementioned MCESP and Sarsa()\)) that performs some form of Monte Carlo
update must be preferred, so that is does not spoil the estimation of the for-
mer states. If the available knowledge does not allow to separate the conflicting
regions in the actual state space, the agent cannot do any better.

4 Experimental Evaluation

The learning approach described in this paper has been tested in Soccer Keep-
away on the 3 vs 2 task, i.e. with three keepers and two takers. Although the
agents learn separately and there is no communication involved in the task,
Keepaway is still a multi-agent task since the agents share the reward signal and
each agent’s action has an impact on all the others. Thus, credit assignment is
particularly difficult since the reward for the whole team behavior is received by
each agent as if it was its own.

In our work, we focus on the keepers and leave the takers’ behavior to their
predefined policy that consists in both of them following the ball. We refer to
Stone at al. [16] and especially to the more recent work by Kalyanakrishnan and
Stone [8] as representatives of the “RL way” to face Keepaway Soccer and we
show our methodology applied to this task. As in that last reference, we consider
the problem of learning both a behavior for the agent in possession of the ball
and a behavior for the agents that are far from the ball. This is an additional
challenge since the two behaviors interact making credit assignment even more
problematic.

The first step consists in devising a proper set of actions. We consider three
actions for the agent closer to the ball and three for the other two agents. The
actions available to an agent close enough to kick are holdBall that just keeps
possession of the ball, passToCloser that passes the ball to the agent that is
closer to the kicker and passToFree that passes the ball to the agent whose line
of pass is further from the takers. The first action is clearly wrong since a player
cannot hold the ball indefinitely without being reached by the takers but we
added it as a control, to make sure that our algorithm assigns the correct value
to it and never chooses that action after convergence. The actions available to
the agents far from the ball are searchForBall that just turns in place, getOpen
that is the default handcoded behavior provided by the framework described
as “move to a position that is free from opponents and open for a pass from

171

12 LearnPNP: A tool for modeling and learning agent behaviors

the ball’s current position”, and goToTheNearestCorner that goes to the corner
closer to the agent.

450
400
350
300

250

= Learning both
==| earning pass
— Learning position

Duration

150
100

50

0 50 100 150 200 250 300 350 400 450 500
Episodes

Fig. 3. A representative run of experiments. The x axis is the number of episodes in
the run while y axis is the hold time in tenths of seconds

After the definition of the available actions we create a plan schema to ac-
commodate our choice points. The entire plan schema used in these experiments
is shown in Figure 4. States labeled with noaction have the empty action set
associated, while noevent is a special event that takes zero time. This event has
no impact on learning but it allows to add states in the plan schema convenient
for representation and readability. Similarly, when no condition is indicated the
guard of that edge is assumed to be true, i.e. the condition that is always fulfilled.
Again, this is just syntactic sugar and does not affect the method. The leftmost
node is the initial state, the control flows from left to right and it reaches the
rightmost node within a simulation server cycle. In each cycle the agent must
send a command to the server, thus performing an action, therefore every path
from the leftmost to the rightmost nodes contains exactly one action. All of the
conditions except those that guard the edges with event takerApproaching are
mutually exclusive and leave no choice to the executor. As already mentioned, in
the case of the passing actions since all three of them are triggered by the same
event (takerApproaching) and their conditions (true) always hold at the same
time, there is a non-determinism that can be exploited to make an informed
choice. TakerApproaching is triggered when the agent perceives that a taker is
closer than a certain threshold, actionPerfomed happens when the previous ac-
tions has queued its command for the server, and the conditions are similarly
defined over state variables. In a similar way, the three choices for the position-
ing behavior getOpen, searchForBall and goToTheNearestCorner are taken into
account when the player is not the one closest to the ball. In this setting even
the simple Sarsa algorithm converged to the optimal solution.

172

Title Suppressed Due to Excessive Length 13

takerApproaching

takerApproaching

actionPerformed

noevent [BallSeen &
BallKickable]

noevent [NearestToBall

actionPerformed

actionPerformed

getOpen

noevent [not NearestToB:

actionPerformed

noevent [BallSeen &
not BallKickable

noevent [not NearestToBall]

noevent [not NearestToBall]

noaction #{ scarchForBall

actionPerformed

noevent [not BallSeen]

searchForBall

actionPerformed

Fig. 4. The plan schema for a keeper with choice points on the passing and positioning
behaviors

We performed different trials learning the two behaviors simultaneously and
also the passing behavior and the positioning behavior separately. Our imple-
mentation used a greedy policy with optimistic initialization, a value of & = 0.3
and v = 1.0 which is sound since the task is episodic and the cumulative reward
is limited. The reward signal is given by the duration of the episode: at every
server cycle each agent receives a reward of 1/10 of second. Even if the immedi-
ate reward is the same after every action, the cumulative reward depends on the
previous choices and on the behavior of all the agents resulting in being highly
non Markovian. Indeed what each agent aims maximize is actually the team per-
formance. A representative trial is plotted in Figure 3 where each point is the
average over a window of 50 episodes. With our approach we obtain the optimal
behavior (that can be manually verified to be when passToFree and goToTheN-
earestCorner are chosen) after about 200 episodes in the case of learning both
passing and positioning, with an average episode duration after learning of about
31 seconds. In previous works [16, 8] the best results are about 16 seconds of hold
time and they take tens of thousands of episodes to be learned. We also show the
learning curves of the single behaviors separately when coupled with the optimal
choice for the other one. It appears that the passing behavior is the harder to
learn, while positioning is learned in the first few episodes. Moving to the nearest
corner without the ball then proves to be the crucial action that outperforms its
alternatives quite quickly. In Figure 5 we show the box-plot of the distributions
of the episodes’ duration before (random behavior) and after learning. Both plots
are drawn from 250 runs. We first used the Shapiro-Wilk normality test to check
whether the two samples come from a normally distributed population, which
turned out to be false for the second sample. Then, we used the non-parametric
Mann-Whitney U test to confirm that the two samples do not (are extremely

173

14 LearnPNP: A tool for modeling and learning agent behaviors

unlikely to: p = 5.7271 % 10726) come from the same distribution. This means
that the learning algorithm has indeed had a statistically significant impact on
the duration of the episodes. The domain proved to be extremely noisy and the
variance of both the samples is quite noteworthy.

1200 F N]
+

1000 - i 1
&

g00 ¥ 1

—

|
|

600 | | 1
|
|

00t ! .

zo0 | 1
E—— |

ok - —]
1 2

Fig. 5. Box-plot of the distributions of the episodes’ duration (1) before and (2) after
learning.

At the cost of devising a few (quite simple indeed) actions, and creating
a partially specified plan exploiting the designer’s knowledge about the task,
we obtained a performance twice as high as the previous works in a number of
learning episodes thousands of times smaller even with an algorithm as simple as
Sarsa. The burden of creating the state representation and tailoring the function
approximation for traditional RL is quite remarkable compared to the effort
required of a designer to define such a plan schema and implement those actions.
Also notice we made little use of perceptions, since conditions and events consider
only a few aspects of the environment.

5 Related Work

Our work can be considered as part of the field of Hierarchical Reinforcement
Learning (HRL). The overall idea of HRL is the ability of expressing constraints

174

Title Suppressed Due to Excessive Length 15

on the behavior of the agent so that knowledge about the task and the envi-
ronment can be exploited to shrink the search space. The optimal policy in this
setting is the best one among those compatible with the constraints. The ap-
proaches closest to ours are Parr and Russell’s HAM [1] and Andre and Russell’s
ALisp [10]. A similar approach can also be found in the field of symbolic agent
programming, as this is the case of Decision Theoretic Golog (DTGolog) [3, 5].
All of the mentioned works allow to partially define the agent behavior in a
high-level language (hierarchical state machines, Lisp and Golog respectively)
and learn (or compute, in the case of DTGolog) the best behavior when this
is not specified. While we share their motivation, our work departs from the
previous ones in at least two aspects: (1) the formalism we adopt allows for deal-
ing with reactive plans, non atomic actions, and continuous state spaces: these
aspects are strictly related, leading to the representation of actions as states (in-
stead of transitions) and to the need for events to both determine the end of an
action and to mark those perceptions among the continuous infinity of possible
ones that the agent should pay attention to; (2) even more importantly, we do
not assume the existence of a Markov process as the underlying environment (an
assumption common to all of the previous methods), but we derive a controllable
process directly from the plan. Notice that the implementation of Kalyanakr-
ishnan and Stone [8] fixes the behavior of the agent everywhere except for the
two aspects they want to learn actually implementing a HAM. Therefore, the
performance evaluation we carried can also be considered with respect to HAMs.

As a result of giving up the Markov assumption, and since partial observ-
ability is an aspect of common applications we consider in our approach, the
control of the stochastic process resulting from the plan schema belongs to the
class of problems usually referred to as with hidden states. The most general
formulation of learning with hidden state are Partially Observable Markov Deci-
sion Processes (POMDP) [4]. Most of the methods for POMDPs attempt some
state estimation, while we do not.

The stochastic process resulting from the observations in a POMDP (ignor-
ing the underlying state space) is non-Markovian, and it is in some sense similar
to the process we generate. The literature about N-MDPs is not as extensive as
the one about MDPs, nonetheless some interesting results have been proved. A
review of the available results is beyond the scope of this section, but we refer
to the analysis by Pendrith and McGarity [11] and Singh et al. [15] about the
characteristics of optimal policies in N-MDP and the effects of applying direct
RL to them. An algorithm sound in the general case (although potentially sub-
optimal) is provided by Perkins [13] and the role of the exploration policy in
the convergence of Sarsa and Q-learning is pointed out by Perkins and Pendrith
[12]. Moreover, while examples can be constructed to prove that some (extremely
simple indeed) implementation of direct RL on N-MDPs can diverge, there are
promising empirical results about eligibility traces and partial observability [9].
Thus, although a comprehensive study about classes of N-MDPs and the tradi-
tional RL algorithms able to cope with them is still an issue, the lack of general
results about convergence in non Markovian environments does not imply that
those methods are doomed, it simply entails that further work is still needed.

175

16 LearnPNP: A tool for modeling and learning agent behaviors

We have shown through experiments that standard RL on the SNMDP built
from a plan schema as shown before converges in a well-known (quite difficult)
benchmark domain.

6 Discussion and Future Work

In this paper we have presented a methodology to write agent programs and
to improve the agent’s behavior through learning for a quite general category
of plans. We have defined a proper controllable stochastic process deriving it
from a partial specification of plans, in order to use it as a model for RL algo-
rithms to improve the performance of the agent through experience. Finally, we
have discussed the applicability of the available RL algorithms to the particular
class of stochastic processes that our method generates and we have proved the
effectiveness of our approach on a widely adopted test bed.

In our work we used actions as procedures that are usually referred in Hi-
erarchical RL as skills. A popular model for skills is provided by the option
framework [17] in which options and basic actions can be simultaneously con-
sidered. The role of options and their utility has been regarded as arguable [7]
when the focus is on optimality. Nonetheless, in the class of problems we are
considering optimality is quite difficult to achieve anyway, and our approach
semi-automatically combining a set of handcoded skills proved to be more effec-
tive than flat RL which, even though is supposed to eventually reach the optimal
behavior, was outperformed making use of a number of training episodes several
orders of magnitude lower. In this context, having a good set of reusable skills
to combine is of the utmost importance, and the work on temporal abstraction
to create them automatically can profitably be integrated with our method pro-
viding different levels of intervention. Thus, where flat RL suffers in scaling up
the search for a global optimum, the role of skills can be less arguable.

We have demonstrated in this paper a simple application of our approach to
Keepaway Soccer limiting for simplicity the number of actions, and by no means
obtaining the best behavior achievable. Our method is conceived to scale up to
domains in which RL has not yet been successfully applied. In future work we
plan to face more complicated settings possibly defining a new benchmark for
hierarchical methods. We also plan to extend our formalism to multi-agent plans,
exploiting events to represent message delivery or, more in general, coordination
signals, thus learning team behaviors and coordination. Finally, we will further
investigate the properties of the RL algorithms when applied to the stochastic
process generated from a plan schema, and how to make use of the structure of
plan schemas to obtain processes that favor convergence and/or optimality.

References

1. D. Andre and S. Russell. Programmable reinforcement learning agents. Advances
in Neural Information Processing Systems, pages 1019-1025, 2001.

2. B. Bonet and H. Geffner. Planning and control in artificial intelligence: A unifying
perspective. Applied Intelligence, 14(3):237-252, 2001.

176

10.

11.

12.

13.

14.

15.

16.

17.

Title Suppressed Due to Excessive Length 17

C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-
level agent programming in the situation calculus. In Proceedings of the National
Conference on Artificial Intelligence, pages 355-362. AAATI Press / The MIT Press,
2000.

. A.R. Cassandra. Ezact and approzimate algorithms for partially observable markov

decision processes. PhD thesis, Providence, RI, USA, 1998. Adviser-Kaelbling,
Leslie Pack.

. C. Fritz and S. Mcllraith. Decision-theoretic golog with qualitative preferences.

In Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning, Lake District, UK, 2006.

. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.

Program., 8(3):231-274, 1987.

. N. K. Jong, T. Hester, and P. Stone. The utility of temporal abstraction in rein-

forcement learning. In The Seventh International Joint Conference on Autonomous
Agents and Multiagent Systems, 2008.

. S. Kalyanakrishnan and P. Stone. Learning Complementary Multiagent Behaviors:

A Case Study. In Proceedings of the 13th RoboCup International Symposium, 2009.

. J. Loch and S. Singh. Using eligibility traces to find the best memoryless policy

in partially observable Markov decision processes. In Proceedings of the Fifteenth
International Conference on Machine Learning, pages 141-150. Morgan Kaufmann,
1998.

B. Marthi, S. J. Russell, D. Latham, and C. Guestrin. Concurrent hierarchical
reinforcement learning. In L. P. Kaelbling and A. Saffiotti, editors, IJCAI pages
779-785. Professional Book Center, 2005.

M. D. Pendrith and M. McGarity. An analysis of direct reinforcement learning in
non-markovian domains. In J. W. Shavlik, editor, ICML, pages 421-429. Morgan
Kaufmann, 1998.

T. Perkins and M. Pendrith. On the existence of fixed points for Q-learning and
Sarsa in partially observable domains. In Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning, page 497. Morgan Kaufmann Publishers
Inc., 2002.

T. J. Perkins. Reinforcement learning for pomdps based on action values and
stochastic optimization. In Eighteenth national conference on Artificial intelligence,
pages 199-204, Menlo Park, CA, USA, 2002. American Association for Artificial
Intelligence.

O. Pettersson. Execution monitoring in robotics: A survey. Robotics and Au-
tonomous Systems, 53(2):73-88, 2005.

S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in par-
tially observable Markovian decision processes. In Proc. of 11th International Con-
ference on Machine Learning, 1994.

P. Stone, R. S. Sutton, and G. Kuhlmann. Reinforcement learning for RoboCup-
soccer keepaway. Adaptive Behavior, 13(3):165-188, 2005.

R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1):181-211, 1999.

177

