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Abstract. Global tradeoffs for aerodynamic design of Supersonic 
Transport (SST) have been investigated by Multi-Objective Evolutionary 
Algorithms (MOEAs). The objectives are to reduce both drag and sonic 
boom to make next-generation SST more feasible. Adaptive Range Multi-
Objective Genetic Algorithms (ARMOGAs) are utilised for the efficient 
search. The trade-offs are analysed by Self-Organising Map (SOM), which 
provides a topology preserving mapping from the high dimensional space 
to two dimensions. ARMOGAs and SOM can be good design tools to 
conduct aerodynamic design optimisations and analyse the results. 

1   Introduction 

Multi-Objective Evolutionary Algorithms (EAs) are becoming popular in many 
fields since they provide a unique opportunity to address global trade-offs 
between multiple objectives by sampling a number of Pareto solutions. Especially 
in the field of aeronautical engineering, a series of studies for aerodynamic design 
of supersonic wings have been performed by the present authors [1-3]. 
Throughout these researches, the following two problems have been revealed: 
Enormous computational time and difficulties in analysis of non-dominated 
solutions. As high-fidelity Computational Fluid Dynamics (CFD) computations, 
such as Euler or Navier-Stokes computations, require a large computational time, 
efficient optimisers based on EAs are highly desired for the general use. A data 
mining technique is also necessary because it is not easy to analyse the non-
dominated solutions after the optimisation. For example, four design objectives 
were used and the resulting non-dominated front was obtained as a three-
dimensional surface in the four-dimensional objective function space. Although 
766 non-dominated solutions were obtained in total, only a few solutions were 
examined in detail [3]. That was a typical case that computer 
produces/accumulates too much data. To make a good use of the large data, a data 
mining technique was necessary. 
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In this paper, the Adaptive Range Multi-Objective Genetic Algorithms 
(ARMOGAs, [4]) and the Self-Organising Map (SOM, [5]) are applied to the 
aerodynamic design problem of Supersonic Transport (SST). The next generation 
SST still has many technical obstacles to overcome. One of them is high 
aerodynamic efficiency for an economic flight, and another is low sonic boom for 
an environmental issue. These demands have a severe trade-off, because the 
reduction of sonic boom often leads to an increase in drag [6]. Several innovative 
designs have been proposed for low-boom, low-drag SST configuration. One idea 
is to equip a canard for SST wing-fuselage configuration to obtain more lift near 
the nose with a slender fuselage. This configuration may allow realisation of a 
low boom, while minimising drag. Two objectives of minimising both drag and 
boom will be optimised efficiently by ARMOGAs, which have been developed to 
reduce the number of evaluations. This would be an advantage for engineering 
design problems that require large computational time for each evaluation. After 
non-dominated solutions that form trade-offs are obtained, SOM is applied to the 
solutions. As the SOM is a cluster analysis tool for high-dimensional data, the 
trade-offs can be successfully visualized. By these results, the viability of the SST 
wing-fuselage configuration with a canard for low drag and boom will be 
discussed. 

2   Adaptive Range Multi-Objective Genetic Algorithms 

To reduce the large computational burden, the reduction of the total number of 
evaluations is needed.  On the other hand, a large string length is necessary for 
real parameter problems. Adaptive Range Genetic Algorithms (ARGAs), 
originally proposed by Arakawa and Hagiwara, is a quite unique approach to 
solve such problems efficiently [7]. Oyama developed real-coded ARGAs and 
applied them to a transonic wing optimisation [8]. Both methods make use of 
range adaptation for effective search of the best solution for single-objective 
optimisation problems. In addition, archiving and constraint-handling techniques 
are considered to select better solutions to determine new search range. 

The basis of the present ARMOGAs is the same as real-coded ARGAs, but a 
straightforward extension may cause a problem in the diversity of the population. 
Therefore, ARMOGAs have been developed based on ARGAs to deal with 
multiple Pareto solutions for multi-objective optimisation.  

ARMOGAs have been developed to consider the following things: 
sophisticated encoding system for multiple solutions, archiving technique, and 
constraint-handling technique. The encoding system is based on the normal 
distribution with the plateau region as shown in Fig. 1. The selected superior 
designs are located in the plateau region, and the normal distribution region is 
determined based on the population statistics to preserve the diversity of 
candidate solutions. The solutions, which have higher fitness values based on 
Pareto ranking method for all solutions obtained so far, are selected to determine 
the search range for unconstrained problems. For constrained problems, 
constrained Pareto ranking method is used to evaluate all solutions. In addition to 
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the constrained Pareto ranking method, infeasible solutions that violate the 
constraint slightly are selected to search near the boundary between feasible and 
infeasible solutions. 

A flowchart of ARMOGAs is shown in Fig. 2. The range adaptation is carried 
out every M generations. The new decision space is determined based on the 
statistics of selected better solutions. The new population is then randomly 
generated in the new decision space. This helps to maintain the diversity of 
solutions. Subsequently, all the genetic operators are applied to the new design 
space.  

In the present ARMOGAs, the fitness value of each solution is determined by 
Fleming and Fonseca’s Pareto-ranking method [9] coupled with fitness sharing 
approach [10]. Each individual is assigned a rank according to the number of 
individuals dominating it. The assigned fitness values are divided by the niche 
count, which is calculated by summing the sharing function values. Each new 
parent set is selected from the present population and the previous parent set by 
CHC [11] and Stochastic Universal Selection (SUS, [12]) according to shared 
fitness values. SBX [10] and polynomial mutation [10] methods are adopted for 
crossover and mutation. 
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Fig. 1. Sketch of range adaptation 
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Fig. 2. Flowchart of ARMOGAs 
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3   Aerodynamic Optimisation by ARMOGAs 

The objectives of the present aerodynamic optimisation are to reduce both drag 
and boom for canard-wing-fuselage configuration. The aerodynamic evaluation 
proceeds in the following order: geometry definition, unstructured mesh 
generation, and aerodynamic evaluation by Euler computation. In this study, 
TAS-Code (Tohoku University Aerodynamic Simulation Code [13-18] is used for 
the mesh generation and the aerodynamic evaluation.  

Design variables that determine the shape of wing-fuselage configurations 
equipped with a canard are composed of four groups: wing shape, canard shape, 
fuselage configuration, and wing lofting. Design variables for the wing shape was 
categorised to planform, warp shape and thickness distribution. Figure 3 shows 
the definition of the planform shape based on six design variables.  

The planform shape of canard is defined as similar to the inboard of the main 
wing. The symmetric wing is assumed for the canard, and it is composed of 
planform shape and thickness distribution. In the system, thickness distribution is 
defined by Bézier surface having four control points at root and tip location, 
respectively. 

Fuselage configuration was defined by the area-rule theory. The area-ruled 
fuselage is determined by the distribution of the cross-sectional area of the wing 
and the canard to satisfy the Sears-Haack Body. 

Other design variables are used for wing lofting that indicates how to combine 
wing and fuselage, and canard and fuselage. The total number of design variables 
is 94. 

In the present optimisation, one of the objective functions is to minimise drag 
coefficient (CD) at a Mach number of 1.6 with fixed lift coefficient (CL) of 0.125. 

Minimise DCf =1 , (1) 

subject to 0.97×CL,target ≤ CL,design ≤ 1.03 × CL,target, CL,target=0.125. (2) 

Second objective function is to minimize the difference between target and 
designed equivalent area distribution (Ae(t)) which is a summation of contribution 
from lift A(t) and volume B(t). 

Minimise ∫ ⋅−=
*

0
2 )()(

l

gettardesign dttAetAef , (3) 

where l* is set to the rear part position of the main wing.  

In linear theory, low sonic boom flight can be achieved by realising Darden’s 
equivalent area distribution [19]. Darden’s and sample equivalent area 
distribution are plotted in Fig. 4.  
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In total, six constraints are imposed in the optimisation system. In addition to 
the wing volume, fuselage volume, and minimum fuselage diameter, the 
feasibility of the design is also considered. Table 1 shows the minimum constraint 
values of wing volume, fuselage volume and minimum fuselage diameter. 

ARMOGAs were adopted as optimisers to reduce the number of CFD 
evaluations. In addition, Master-Slave type parallelisation was performed to 
reduce the computational time. Master processor manages ARMOGAs and slave 
processors conduct separate CFD computations for different individuals. After the 
range adaptation starts at the fifth generation, new ranges of design variables 
according to better solutions are determined every five generations. At the 
production of new individuals, such as by crossover, mutation, or re-initialisation, 
new individuals are generated repeatedly until they satisfy the constraints related 
to the geometry. The following settings were used. 

• Number of individuals per generation: 8 
• Number of generations: 50 
Figure 5 shows the history of design improvements from the beginning to the 

final generations. Many initial SST configurations generated randomly were quite 
different from the modern aeroplane configuration. With increasing number of 
generations, more sophisticated geometries were generated. Finally, eight non-
dominated solutions were obtained. 

The low-boom design is selected to discuss the viability of canard-wing-
fuselage configuration. The shape with pressure contours is shown in Fig. 6. 
Figure 7 shows the equivalent area distributions of designed configuration and 
Darden’s. In this design problem, as the shape near the nose of the fuselage was 
determined by the area rule, both the equivalent area distributions near the nose 
were not similar. However, in other regions, both distributions were quite similar 
because of the canard, and the large swept back wing to obtain a great deal of lift 
at the rear of the fuselage. 

 
 
 

Table 1. Geometrical constraints 

Constraint MinimumValue 
Wing Volume 16,000 ft3 

Fuselage Volume 30,000 ft3 
Minimum Fuselage Diameter 11.68 ft 
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Fig. 3. Wing planform definition 
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Fig. 7. Equivalent area distributions of the low-boom design and Darden 

4   Self-Organising Map 

Self-Organising Map is a two-dimensional array of neurons: }  { 1 qp×= mmM L . 
One neuron is a vector called the codebook vector ⎣ ⎦niii  m m L

1
=m . This has the 

same dimension as the input vectors. The neurons are connected to adjacent 
neurons by a neighborhood relation. This dictates the topology, or the structure, 
of the map. Usually, the neurons are connected to each other via rectangular or 
hexagonal topology as shown in Fig. 8. One can also define a distance between 
the map units according to their topology relations. Immediate neighbors (the 
neurons that are adjacent) belong to the neighborhood Nc of the neuron mc. The 
neighborhood function should be a decreasing function of time: Nc=Nc(t). 

The training consists of drawing sample vectors from the input data set and 
“teaching'” them to the SOM. The teaching consists of choosing a winner unit by 
means of a similarity measure and updating the values of codebook vectors in the 
neighborhood of the winner unit. This process is repeated a number of times. In 
one training step, one sample vector is drawn randomly from the input data set. 
This vector is fed to all units in the network and a similarity measure is calculated 
between the input data sample and all the codebook vectors. The best-matching 
unit is chosen to be the codebook vector with greatest similarity with the input 
sample. The similarity is usually defined by means of a distance measure. For 
example in the case of Euclidean distance the best-matching unit is the closest 
neuron to the sample in the input space.  
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The best-matching unit, usually denoted as mc, is the codebook vector that 
matches a given input vector x best. It is defined formally as the neuron for which 

⎣ ⎦ic mxmx −=− min . After finding the best-matching unit, units in the SOM are 
updated. During the update procedure, the best-matching unit is updated to be a 
little closer to the sample vector in the input space. The topological neighbors of 
the best-matching unit are also similarly updated. This update procedure stretches 
the best-matching unit and its topological neighbors towards the sample vector. 
The update procedure is illustrated in Fig. 9. The codebook vectors are situated in 
the crossings of the solid lines. The topological relationships of the SOM are 
drawn with lines. The input fed to the network is marked by x in the input space. 
The best-matching unit, or the winner neuron is the codebook vector closest to the 
sample, in this example the codebook vector in the middle above x. The winner 
neuron and its topological neighbors are updated by moving them a little towards 
the input sample. The neighborhood in this case consists of the eight neighboring 
units in the figure. The updated network is shown in the same figure with dashed 
lines. In the following, SOMs were generated in the hexagonal topology by using 
Viscovery® SOMine Plus 4.0 
(http://www.eudaptics.com/technology/somine.html). 

 

 
Fig. 8. Different topologies used in SOM 

 

 
Fig. 9. Updating the best matching unit and its neighbour 
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5   Visualisation by SOM 

All seven non-dominated solutions obtained during the present optimisation were 
mapped onto SOM according to the scaled objective function values. The 
resulting SOM is shown in Fig. 10. The map consists of three clusters based on 
the similarity of seven non-dominated solutions’ in terms of the objective-
function values. Three non-dominated solutions (S1, S2, S3) that represent 
respective cluster are also drawn in the figure. The corresponding objective-
function values (OBJ1: drag, OBJ2: boom) are then plotted in Fig. 11 where 
white indicates low value, and dark colour indicates high value. The lower left 
cluster contains the extreme approximate Pareto solution of the minimum drag. 
The upper left cluster contains the extreme approximate Pareto solution of the 
minimum boom. The other cluster has medium values of drag and boom. As 
seven non-dominated solutions can be divided into three groups, three 
configurations that represent each cluster would be enough to understand the 
trade-offs involved in this optimisation problem. Table 2 shows the aerodynamic 
performance and geometrical values of the three solutions. High lift to drag ratio 
(L/D) indicates the high aerodynamic performance in the table. Three shapes 
achieve different values of L/D and boom, however, fuselage volumes and 
minimum fuselage diameters of the three configurations are almost the same. This 
indicates the canard configuration has an effect to obtain the lift at the fore part 
while maintaining the size of the fuselage. 

To understand the trade-off among design variables, the 94 design variables of 
seven non-dominated solutions were mapped onto SOM as shown in Fig. 12. 
Different from the cluster from seven non-dominated solutions in Fig. 10, 94 
design variables are categorized based on their similarity. Design variables are 
categorized into 13 clusters. Figure 13 shows the same SOM coloured by three 
solutions (S1, S2, S3). Some clusters, for example, (C1, C2) show large 
difference of values among three designs, other clusters, for example, (C3, C4) 
show little difference. Four design variables (DV27, DV86, DV02, DV05) are 
selected from the above four clusters C1, C2, C3, C4, respectively, for 
comparison purposes. Figure 14 shows the four design-variable values of seven 
non-dominated solutions for objective functions. As DV02 (inboard span length) 
and DV05 (chord length at tip) are constant for both objective functions, these 
two design variables can be fixed for the further optimisation. However, DV27 
(one of the design variables related to the height of camber) has an effect on the 
boom strength. In addition, larger value of DV86 (one of the design variables 
related to the height of thickness for canard) tends to increase the drag while 
decreasing the boom. These analyses would be useful to determine the influence 
of the design variables on the objective functions. 

 
 
 
 
 

10



Table 2. Typical design specifications of three non-dominated solutions 

 S1 S2 S3 
L/D 13.64 13.20 13.39 

Difference of Ae (t) 3555 1369 1449 
Fuselage volume (ft3) 32834 32933 32610 

Minimum fuselage diameter (ft) 11.80 11.79 11.84 
Wing total volume (ft3) 16225 16365 16192 

 
 

S1 

S2
S3

 
Fig. 10. SOM of objective function space with shapes of three non-dominated solutions  

 
Fig. 11. SOM of objective function space coloured by each objective function 

 
Fig. 12. SOM of design variable space 
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Fig. 13. Design variable space coloured by three non-dominated solutions 
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6   Conclusion 

 

In this study, real-coded ARMOGAs, the aim of which was to find non-
dominated solutions efficiently, has been applied to the aerodynamic optimisation 
problem of SST. Because of the system utilising both ARMOGAs and Master-
Slave type parallelisation for each Euler computation, seven non-dominated 
solutions could be obtained efficiently. The equivalent area distributions of the 
low-boom design were quite similar to Darden’s low-boom distribution by means 
of the canard and the swept back wing.  

Self-Organising Map has also been applied to analyse seven non-dominated 
solutions. All solutions are mapped onto the SOM according to objective function 
values, and seven non-dominated solutions were divided into three clusters. By 
analysing the influence of design variables on objective function values, the 
objectives are sensible only to some of the design variables. ARMOGA and SOM 
would be useful tools for optimisation and analysis. 
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