
Using Attribute Sli
ing to Refa
tor Large ClassesDouglas Kirk1, Mar
 Roper1, Neil Walkinshaw2

1 The Department of Computer and Information S
ien
e, Livingstone Tower, 26Ri
hmond Street, G1 1XH
2 The Department of Computer S
ien
e, Regent Court, 211 Portobello Street,She�eld, S1 4DPAbstra
t. It
an often be the
ase in obje
t-oriented programming that
lasses bloat, parti
ularly if the represent an ill-formed abstra
tion. Apoorly formed
lass tends to be formed from disjoint sets of methodsand attributes. This
an result in a loss of
ohesion within the
lass.Sli
ing attributes
an be used to identify and make expli
it the relation-ships between attributes and the methods that refer to them. This
anbe a useful tool for identifying
ode smells and ultimately refa
toring.Attribute sli
ing
an also be used to examine the relationships betweenattributes, as is the
ase in de
omposition sli
ing. This paper introdu
esattribute sli
ing in the
ontext of refa
toring bloated
lasses.1 Introdu
tionThis paper introdu
ed the
on
ept of attribute sli
ing - a form of de
ompositionsli
e [8℄ based on the attributes (also known as �elds or instan
e variables) of a
lass, and its appli
ation to design-�aw dete
tion and refa
toring (transforma-tion) [5℄. The motivation for this
on
ept originated from desire to be able toidentify and split a `large'
lass (i.e. one that represented an ill-formed abstra
-tion) on the basis of the usage made by the methods of the attributes of the
lass. This is based on the observation that if most attributes are not used bymost methods (i.e. there are subsets of methods whi
h use distin
t subsets ofattributes) then the
lass is an unhealthy
omposition of abstra
tions and shouldbe refa
tored into a number of smaller
lasses.1.1 Motivating ProblemThe de�nition of an obje
t in the form of a
lass
aptures the state and behaviourof the obje
t. This state and behaviour should all be strongly related in orderfor the
lass to be
ohesive. Striving for
ohesion and ensuring that the
lassimplements just a single abstra
tion is an important and well-established designguideline that ensures that the system is well-balan
ed and the
lass is easy tounderstand and usable in multiple
ontexts in the system. However, this ideal isnot always easy to a
hieve and it is even harder to maintain as the system growsand the design evolves. This leads to an imperfe
tly designed system whi
h mayexhibit several design �aws or �bad smells� [5℄.

Dagstuhl Seminar Proceedings 05451Dagstuhl Seminar Proceedings 05451
Beyond Program Slicing
http://drops.dagstuhl.de/opus/volltexte/2006/490

One of the most proli�
 bad smells is referred to as a �god
lass�. Besideshaving many methods and lines of
ode, a god
lass is a
ode smell be
ause it
aptures more than one abstra
tion; its fun
tionality is implemented by meth-ods that do not stri
tly belong together
ausing poor
ohesion. This may havehappened for a number of reasons - a poor early design de
ision, a
onsequen
eof several small evolutions - the pre
ise reasons are not relevant. This paperidenti�es a sli
ing approa
h that is useful for identifying this problem as well asthe statements in the sour
e
ode that need to be refa
tored.We have observed that the way in whi
h the methods referen
e the
lassattributes serves as a strong indi
ator of whether or not a
lass is a god
lass.In a
ohesive
lass the state and fun
tionality are
losely related and most ofthe methods manipulate (a

ess or mutate) most3 of the instan
e variables. In a
lass whi
h exhibits a la
k of
ohesion this uniformity of attribute usage begins tofragment and distin
t subsets of method/attribute usage begin to appear. Thisis a
lassi
 symptom of a
lass whi
h implements more than one abstra
tion -the additional methods require additional state and have little intera
tion withthe rest of the
lass. The role of attributes in the identi�
ation of poor
lassabstra
tions has been noted in several real systems.2 Attribute Sli
ingThe approa
h taken in this paper is to use the notion of Attribute Sli
ing as ame
hanism for both identifying and addressing the �God
lass�
ode smell. Anattribute sli
e identi�es the
ode that is related to (uses or modi�es) a parti
ularattribute, or set of attributes in a
lass (in this
ase it
an be per
eived as ade
omposition sli
e, this is elaborated in se
tion 3). As a starting point we needto modify the de�nition of Weiser's
onventional sli
e [12℄. A
onventional sli
e
riterion
onsists of a set of variables and a single point on the
ontrol �owgraph. With an attribute sli
e, the attribute is not tied to a spe
i�
 point in the
ontrol �ow graph. If we
onsider the attribute to be the target then:� A ba
kward sli
e identi�es those statements that a�e
t the value of theattribute.� A forward sli
e identi�es those statements that are a�e
ted by the value ofthe attribute.Applying these ideas to the simple
ase below (and taking some synta
ti
alliberties) these sli
es are illustrated in �gure 1. Note that the ba
kward sli
e es-sentially extra
ts the mutators and the forward sli
e the a

essors. The methodsin
x() appears in both
ases sin
e it both a

esses and mutates the attribute.By performing both ba
kwards and forwards sli
ing the entire
lass is returnedin this
ase.3 It would be ni
e to be able to be de�nitive in these observations and say �all� ratherthan �most� but software design, in
ommon with any other human task, involvesjudgement and
ompromise so it is rarely possible to make su
h absolute statements.

lass A{int x;setx(int y){x = y;}getx(){return x;}in
x(){x++}}

lass A{int x;setx(int y){x = y;}in
x(){x++}}

lass A{int x;getx(){return x;}in
x(){x++}}Complete
lass ba
kward-sli
e on x forward sli
e on xFig. 1. Illustration of ba
kward and forward attribute sli
esSo far, nothing has been said about the details of the sli
e
onstru
tion orthe level of abstra
tion at whi
h this is applied. The example in �gure 1 is verysimple and entire methods are returned as part of the sli
e. Attribute sli
ing hasthe potential to be applied at the method level and the intra-method level: Amethod level attribute sli
e returns the entire body of a method if it
ontributesto the sli
e in any way (i.e any part of the method updates or manipulates theattribute). An intra-method level attribute sli
e takes into a

ount the detailed
ontrol stru
ture of a method and, in the same vein as traditional sli
ing, returnsonly the
ode that updates or manipulates the attribute.Figure 2 serves to illustrate the di�eren
e between method and intra-methodlevel attribute sli
es. Figure (a)
ontains the sour
e
ode for a simple ti
ketma
hine
lass (taken from Barnes and Koelling [1℄, the
lass
ontains severalother methods but these are omitted to aid this dis
ussion). If we sli
e (eitherforwards, ba
kwards or both) on the balan
e attribute, the entire insertMoneymethod will be returned (along with the balan
e attribute). Sometimes howeverwe need more pre
ise information, and so an intra-method sli
e would returnonly the
ode that
on
erns the balan
e attribute, as shown in �gure (b). In this
ase the ba
kwards and forwards sli
es are identi
al, but this is not generallythe
ase.3 Viewing Attribute Sli
es as De
omposition Sli
esHaving
arried out sli
es on the various attributes of a
lass we
an then investi-gate the way in whi
h an attribute
ontributes (or not) to the general
ohesionof the
lass by applying de
omposition sli
ing [8℄. De
omposition sli
ing is anattra
tive te
hnique for this problem, be
ause it makes expli
it the relationshipsbetween the attributes (i.e. whether or not and to what extent the
omputationof attribute x is related to the
omputation of y). To re
ap, a de
omposition sli
eDS(x) is not taken with respe
t to a single point in the program, but only withrespe
t to a variable x. It
ontains those lines that
an a�e
t the value of x at

/** * �author David J. Barnes and*Mi
hael Kolling*�version 2003.12.01*/publi

lass Ti
ketMa
hine {private int pri
e;private int balan
e;private int total;// several methods omittedpubli
 void insertMoney(int amount) {if(amount > 0) {balan
e = balan
e + amount;} else {System.out.println("Use apositive amount: " + amount);}}}
publi

lass Ti
ketMa
hine {private int balan
e;publi
 void insertMoney(int amount) {if(amount > 0) {balan
e = balan
e + amount;}}}(a) (b)Fig. 2. Illustrating method level and intra-method level attribute sli
es"output points" in the program. On
e de
omposition sli
es are
al
ulated withrespe
t to all of the variables (attributes in our
ase) the de
omposition sli
e
ontents are
ompared (using set relationships) and ea
h de
omposition sli
e isdivided into the following three parts:� The independent part: Statements that belong to the de
omposition sli
eand no other de
omposition sli
es.� The dependent part: Statements that belong to the de
omposition sli
eand also belong to other de
omposition sli
es.� The
omplement: Statements that don't belong to the de
omposition sli
e.Gallagher and Lyle observe that by manipulating a statement that belongs to thedependent part, it
an't a�e
t the behaviour of any statements belonging to the
omplement. For us this is interesting be
ause the extent to whi
h an attribute isinvolved with the rest of the
lass is determined by the
ontents of its dependentpart. If the dependent part is empty (an extreme
ase), we have a strong
asefor removing the attribute from the
lass. If it isn't, we
an �nd out whi
h otherattributes it is involved with by
omparing the
ontents of its dependent partwith the dependent parts of the rest of the de
omposition sli
es. It may also befeasible to use this as a basis for quantifying how mu
h a parti
ular attribute
ontributes to the
ohesion of the
lass in general.Figure 3 shows how viewing attribute sli
es as de
omposition sli
es
an beuseful for establishing (a) the relationships between attributes and (b) the ap-propriate refa
toring (if any). The venn diagram shows whi
h statements belong

Fig. 3. Investigating relations between attributes A, B and Cto whi
h attribute sli
es4, making the independent part, dependent part and
omplement expli
it. In �gure 3 it be
omes apparent that the dependent part ofthe attribute sli
e on variable
 is empty. This indi
ates that variable
 has norelationship to variables a and b. In terms of establishing suitable refa
toringsthis is useful in two respe
ts. Firstly, it indi
ates that variable
 is not integral tothe fun
tionality of the
lass as a whole. Se
ondly, it suggests that the removalof those statements that manipulate and are manipulated by attribute
 (e.g.via the `move �eld' refa
toring' [5℄) will have no e�e
t on the fun
tionality thatis related to attributes a and b.4 Appli
ation to Refa
toringAt the start we mentioned that this was motivated by the desire to investigatesplitting large
lasses that had been formed from more than one abstra
tion.To illustrate this appli
ation
onsider the following pathologi
al
ase - the Stu-dentHeater (an unfortunate allian
e between a simple student
lass and a heaterthermostat) adapted again from Barnes and Kollings' book [1℄. The plain sour
e
ode is shown in �gure 4 (a) and the sli
es are shown in (b). The sli
es are
olour-
oded (so those pertaining to name are in yellow, those for id are in blueet
.), and both ba
kward and forward sli
ing has been applied at the methodlevel. Methods that belong to multiple sli
es are highlighted in a di�erent
olorand annotated.4 These attribute sli
es are a union of forward and ba
kward sli
es on attributes, i.e.they
ontain both those statements that
an a�e
t and
an be a�e
ted by the valuesof the attributes.

Fig. 4. StudentHeater example

In trying to dete
t problems in
lasses, with a view to splitting a
lass upa

ording to its attributes, we are interested in identifying disjoint or nearlydisjoint subsets of sli
es depending on what is being sought (sometimes, forexample, the sli
e will be on a set of
learly related attributes). It is
lear fromexample in �gure 4 that the temperature attribute (unsurprisingly) shares littlein
ommon with the other attributes ex
ept in the
onstru
tor. If, upon furtheranalysis, we are
onvin
ed that temperature should be fa
tored out of this
lassthen we
an immediately extra
t the methods in red, and then apply intra-method sli
ing to extra
t the
ode relevant to the temperate attribute for theshared methods (the
onstru
tor in this
ase, but potentially other methods too),leaving the
omplement (as in de
omposition sli
ing) in pla
e to form a student
lass. Although the above
ase is deliberately extreme we have witnessed severalmu
h larger and
omplex
ases whi
h exhibit similar properties.5 Further Observations and Compli
ating IssuesThis se
tion illustrates some of the potential problems we have en
ountered whentrying to refa
tor large
lasses. These are not insurmountable problems but areimportant to
onsider, espe
ially when performing any automati
 analysis andtransformation.5.1 Dependen
ies between attributesThis seems to o

ur widely in the
lasses we have looked at. In parti
ular wesee this as a problem not just of dividing the
ode into separate
lasses but alsoof preserving the ordering of a
tions between the new
lasses. In parti
ular itseems to mandate that the original method remain in some form so that the
lasses
an share a dialogue whi
h mat
hes the original sequen
e - this is highlyundesirable for refa
toring as it keeps the original
lass in existen
e and it alsomaintains its size.publi
 void addToSele
tion(Figure figure) {if (!fSele
tion.
ontains(figure)) {fSele
tion.addElement(figure);fSele
tionHandles = null;figure.invalidate();sele
tionChanged();}} Fig. 5. Dependen
e between fSele
tion and fSele
tionHandles in JHotDrawFigure 5 illustrates how dependen
e
an o

ur between attributes in an ex-ample taken from JHotDraw. The sequen
e in whi
h these dependen
es o

uris important if the resulting refa
toring is to preserve the semanti
s of the
lass. This method
ontains dire
t statements a
ting on both the fSele
tion

and fSele
tionHandles attributes. At �rst glan
e this doesn't appear to be aproblem as it doesn't parti
ularly matter whether one happens before the otherbut what is not obvious is that the �nal method
all - to sele
tionChanged - isindire
tly a

essing the fEditor attribute (telling it to redraw its menus withrespe
t to the
hanges in the sele
tion). This is dependant upon the
hange tothe fSele
tion attribute and must
ome after it for the behaviour of the systemto be preserved.5.2 Methods that exhibit no dire
t attribute usageIn our experien
e these mainly fall into two
amps: Methods that a

ess onlylo
al variables to
ompute something, and methods that indire
tly use (private)methods to a

ess attributes.Methods that a

ess only lo
al variables The problem that arises in this
ase is where to put them if the
lass is to be refa
tored. Do they belong withother methods asso
iated with an attribute or attributes? If so how
an this beestablished?The problem is illustrated in �gure 6. This might be a somewhat pithy ex-ample as handles are perhaps unusual but it does show that methods
an existin a
lass without a�e
ting its state dire
tly. It
ould perhaps it
ould be arguedthat the handles ve
tor is a virtual attribute of the
lass as it is dynami
ally
reated there during exe
ution.publi
 Ve
tor handles() {Ve
tor handles = new Ve
tor();handles.addElement(new NullHandle(this, RelativeLo
ator.northWest()));handles.addElement(new NullHandle(this, RelativeLo
ator.northEast()));handles.addElement(new NullHandle(this, RelativeLo
ator.southWest()));handles.addElement(new NullHandle(this, RelativeLo
ator.southEast()));return handles;}Fig. 6. Method from StandardDrawingView in JHotDraw that only a

esses lo
al vari-ablesMethods that use private methods to a

ess attributes Here the problemagain is how to best transform the existing
ode if the
lass needs to be refa
tored.Does the method belong with the attribute
lass (i.e. it ex
lusively a

esses oneattribute indire
tly), or
an it be split up in the fa
e of multiple shared attributes,or should it in fa
t exist in some other as yet unidenti�ed
lass a

essing bothattributes through separate publi
 interfa
es? In general it appears di�
ult toresolve this problem from the stati
 relationships of the
ode alone (although it
an be dete
ted easily enough). Related to this it is worth noting that methodswhi
h are de
lared as stati
 in Java (i.e.
lass methods) may need some form of

spe
ial treatement. The example in �gure 5 already
ontains an illustration ofan indire
t usage (where sele
tionChanged hides use of the fEditor variable).5.3 Inheritan
eInheritan
e e�e
tively distributes attributes a
ross a hierar
hy of
lasses. Someattributes are prote
ted (thereby brea
hing en
apsulation) and some are private.This
reates a problem not just be
ause splitting into attribute
lasses mighte�e
t multiple pla
es in the original
ode but also be
ause dependen
ies
anexist between publi
/prote
ted and private attributes whi
h may make themharder to split apart.One
ase observed is in StandardDrawing, where the
lass implements theDrawing interfa
e but inherits from CompositeFigure. This example is interestingas the CompositeFigure provides about half of the implementation of the Drawinginterfa
e even though it is not supposed to be implementing any of it (it is higherup the hierar
hy but obviously has been
reated in anti
ipation of be
oming apart of the Drawing). It seems that
omposition rather than inheritan
e is
alledfor to help keep the interfa
es fo
used on the domain abstra
tions they aresupposed to represent.5.4 Dependent ClientsIt is unlikely that all the
ode relegated to an attribute will exist ni
ely within the
lass
ontaining that attribute. There are a number of bad smells whi
h alludeto the idea of
ode out with the
lass feeling envious and wanting a

ess. Thisraises the question of how to
he
k for and �nd this mispla
ed fun
tionality inthe
lasses that talk to the target in question, and this is a
hievable by extendingthe sli
e outside the bounds to the
lass to pi
k up these dependent
lients. Thisis bad for the usual reasons that it introdu
es the possibility of polymorphismand basi
ally
hanges the re fa
toring from a lo
al sear
h problem into a globalone.An example of fun
tionality being distrusted outside of a
lass o

urs be-tween the drawing and the view in JHotDraw. In one
ase the view should beresponsible for displaying the
ontents of a drawing yet delegates the renderingof its
ontents to the drawing. This is
learly a brea
h of MVC as the model isnow di
tating what the view will look like. Instead, the draw method of drawingshould be moved over to the view so that it
an
ontrol how the �gures are ren-dered (this also a�e
ts �gures as the drawing delegates to them to render their
ontents).Similarly there is a method in the view whi
h makes more sense in the draw-ing. The
he
kDamage method gets the listeners of a drawing and sear
hes throughthem looking for drawing views - when any are found they are sent a messagetelling them to redraw. This should not be the responsibility of the drawing viewinstead the drawing should be monitoring its state
hanges and whenever it feelsthat a redraw is required it should ask all its views to redraw. Its interesting tonote that both
ases where a method has been dete
ted out of pla
e are design

patterns; perhaps it is knowledge of the expe
ted stru
ture that is helping todete
t the mispla
ed fun
tionality.6 Related WorkThis work is
losely related to work on metri
s and sli
ing. A substantial amountof work has been
arried out (primarily by Bieman et al.) into the use of sli
esto
ompute
ohesion. Their work is elaborated in se
tion 6.1. Se
tion 6.2 looksat the relevant sli
ing-related resear
h,
on
entrating on de
omposition sli
ingand its use in software maintenan
e.6.1 Measuring CohesionCohesion is notoriously di�
ult to measure and has been the subje
t of a sub-stantial amount of resear
h. Most of this work has been
arried out in the pro-
edural domain. Bieman and Ott [2℄ investigated the use of sli
es to
omputefun
tional
ohesion. They produ
e a sli
e-based te
hnique that
an be used tomeasure the
ohesion of individual pro
edures (based on the overlap of the sli
esfor variables in the pro
edure).In later work [10℄ they re
onsider the notion of
ohesion when applied toobje
t-oriented systems. Citing Fenton [4℄, they establish an interesting di
hotomybetween the (traditional) notion of fun
tional
ohesion, whi
h
annot be applieddire
tly to obje
t-oriented
lasses, and a new notion of
ohesion
alled data
o-hesion. They extend the original
ohesion
omputation approa
h illustrated in[2℄ and extend it by
omputing sli
es with respe
t to the attributes. The endresult of their pro
edure produ
es two measures: Strong data
ohesion and weakdata
ohesion. The former measure
ounts the number of statements that belongto all of the sli
es.Their motivation for
omputing sli
es of attributes is similar to ours; theywant to identify (la
k of)
ohesion in
lasses. There are however important dif-feren
es between their work and ours. They simply aim to establish the extent of
lass
ohesion, returning an absolute value. Our approa
h aims to use the sli
esnot only as a means to obtaining the extent of
lass
ohesion, but also aimsto make the sli
es themselves a resour
e for determining whi
h elements of thesour
e
ode
an be (safely) altered during the refa
toring pro
ess and how theyare related to ea
h other (via de
omposition sli
ing, see below).6.2 De
omposition Sli
ingDe
omposition sli
ing was proposed by Gallagher and Lyle [8℄. It provides aframework to
ompare the
ontributions made by a set of variables to the fun
-tionality of the program as a whole (see se
tion 3). It has been implemented byGallagher et al. in their Surgeon's Assistant [6℄ and has been evaluated exten-sively on pro
edural sour
e
ode. This is (to the best of the authors' knowledge)

the �rst paper to propose the use of (a spe
ialised form of) de
omposition sli
ingto analyse the
omposition of
lasses by
omparing sli
es on
lass attributes.An inherent problem that arises in using sli
es as feedba
k for users is that,despite the usefulness of establishing whi
h statements belong to a sli
e, it is verydi�
ult to
onvey why a given statement belongs to the sli
e. Our work aims notonly to establish whi
h statements belong to attribute sli
es, but also to
onveyto the programmer how a given attribute
ontribute to the fun
tionality of the
lass as a whole. Gallagher [7℄ suggests a visual solution to this problem, wherethe relationship between de
omposition sli
es
an be visualised as a graph thatshows a partial ordering between them (and hen
e how they are related to ea
hother). Tonella [11℄ has re
ently elaborated on this work, using a formal
on
eptlatti
e (whi
h is a produ
t of formal
on
ept analysis [9℄) to produ
e a latti
eof de
omposition sli
es that in
ludes nodes that suggest points of interferen
ebetween variables that are not apparent on Gallagher's graphs.6.3 Sli
ing for Refa
toringEttinger and Verbaere [3℄ have developed an E
lipse-based tool that
an beused to refa
tor Java programs. Their work is an important demonstration ofthe potential of using sli
ing to refa
tor
ode. Their sli
ing primarily aims toautomate the transformations at a method-level (i.e. extra
ting a new methodfrom an existing method) and does not
on
entrate on identifying
ode smellsat a higher, stru
tural level, as is the
ase with attribute sli
ing.7 Con
lusions and Future WorkThis paper has des
ribed the problem of identifying and splitting large
lassesthrough the appli
ation of attribute sli
ing and the investigation of the rela-tionships between the sli
es. The notion of attribute sli
ing has been illustratedand the prin
iple of the te
hnique explained. The work is very mu
h in its earlystages and to progress it further the following work is planned. Firstly, the no-tion of attribute sli
ing and its variations needs to be formally de�ned. Se
ondly,the te
hnique requires implementation. At the more abstra
t method level thisappears to be fairly straightforward and mu
h of the
omputation
an be
ar-ried out using existing tools su
h as E
lipse. The intra-method sli
es on theother hand may be more
hallenging and will need a program dependen
e-basedrepresentation of the
lass. Finally, the te
hnique needs to be applied to largerexamples both to validate its a

ura
y and identify any potentially interesting
ases that may have been overlooked.Referen
es1. D. Barnes and M. Koelling. Obje
ts First With Java - A Pra
ti
al Introdu
tionUsing BlueJ. Prenti
e Hall / Pearson Edu
ation, 2004.

2. J. Bieman and L. Ott. Measuring Fun
tional Cohesion. IEEE Transa
tions onSoftware Engineering, 20(8):644�658, August 1994.3. R. Ettinger and M. Verbaere. Untangling: A Sli
e Extra
tion Refa
toring. In Pro-
eedings of the International Conferen
e on Aspe
t-Oriented Software Development(AOSD'04), 2004.4. N. Fenton. Software Metri
s - A Rigorous Approa
h. Chapman and Hall, 1991.5. M. Fowler. Refa
toring: Improving the Design of Existing Code. Addison-Wesley,1999.6. K. Gallagher. Evaluating the Surgeon's Assistant: Results of a Pilot Study. InPro
eedings of the International Conferen
e on Software Maintenan
e (ICSM'92),1992.7. K. Gallagher. Visual Impa
t Analysis. In Pro
eedings of the International Confer-en
e on Software Maintenan
e (ICSM'96), 1996.8. K. Gallagher and J. Lyle. Using Program Sli
ing in Software Maintenan
e. IEEETransa
tions on Software Engineering, 17(8):751�761, August 1991.9. B. Ganter and R. Wille. Formal Con
ept Analysis: Mathemati
al Foundations.Springer, 1999.10. L. Ott, J. Bieman, B-K. Kang, and B. Mehra. Developing Measures of Cohesionfor Obje
t-Oriented Software. In Pro
eedings of the Annual Oregon Workshop onSoftware Metri
s (AOWSM'95), 1995.11. P. Tonella. Using a Con
ept Latti
e of De
omposition Sli
es for Program Un-derstanding and Impa
t Analysis. IEEE Transa
tions on Software Engineering,29(6):459�509, 2003.12. M. Weiser. Program Sli
ing. IEEE Transa
tions on Software Engineering, SE-10(4):352�357, July 1984.

