Using Attribute Slicing to Refactor Large Classes

Douglas Kirk', Marc Roper!, Neil Walkinshaw?

! The Department of Computer and Information Science, Livingstone Tower, 26
Richmond Street, G1 1XH
2 The Department of Computer Science, Regent Court, 211 Portobello Street,
Sheffield, S1 4DP

Abstract. It can often be the case in object-oriented programming that
classes bloat, particularly if the represent an ill-formed abstraction. A
poorly formed class tends to be formed from disjoint sets of methods
and attributes. This can result in a loss of cohesion within the class.
Slicing attributes can be used to identify and make explicit the relation-
ships between attributes and the methods that refer to them. This can
be a useful tool for identifying code smells and ultimately refactoring.
Attribute slicing can also be used to examine the relationships between
attributes, as is the case in decomposition slicing. This paper introduces
attribute slicing in the context of refactoring bloated classes.

1 Introduction

This paper introduced the concept of attribute slicing - a form of decomposition
slice [8] based on the attributes (also known as fields or instance variables) of a
class, and its application to design-flaw detection and refactoring (transforma-
tion) [5]. The motivation for this concept originated from desire to be able to
identify and split a ‘large’ class (i.e. one that represented an ill-formed abstrac-
tion) on the basis of the usage made by the methods of the attributes of the
class. This is based on the observation that if most attributes are not used by
most methods (i.e. there are subsets of methods which use distinct subsets of
attributes) then the class is an unhealthy composition of abstractions and should
be refactored into a number of smaller classes.

1.1 Motivating Problem

The definition of an object in the form of a class captures the state and behaviour
of the object. This state and behaviour should all be strongly related in order
for the class to be cohesive. Striving for cohesion and ensuring that the class
implements just a single abstraction is an important and well-established design
guideline that ensures that the system is well-balanced and the class is easy to
understand and usable in multiple contexts in the system. However, this ideal is
not always easy to achieve and it is even harder to maintain as the system grows
and the design evolves. This leads to an imperfectly designed system which may
exhibit several design flaws or “bad smells” [5].

Dagstuhl Seminar Proceedings 05451Dagstuhl Seminar Proceedings 05451
Beyond Program Slicing
http://drops.dagstuhl.de/opus/volltexte/2006/490



One of the most prolific bad smells is referred to as a “god class”. Besides
having many methods and lines of code, a god class is a code smell because it
captures more than one abstraction; its functionality is implemented by meth-
ods that do not strictly belong together causing poor cohesion. This may have
happened for a number of reasons - a poor early design decision, a consequence
of several small evolutions - the precise reasons are not relevant. This paper
identifies a slicing approach that is useful for identifying this problem as well as
the statements in the source code that need to be refactored.

We have observed that the way in which the methods reference the class
attributes serves as a strong indicator of whether or not a class is a god class.
In a cohesive class the state and functionality are closely related and most of
the methods manipulate (access or mutate) most® of the instance variables. In a
class which exhibits a lack of cohesion this uniformity of attribute usage begins to
fragment and distinct subsets of method/attribute usage begin to appear. This
is a classic symptom of a class which implements more than one abstraction -
the additional methods require additional state and have little interaction with
the rest of the class. The role of attributes in the identification of poor class
abstractions has been noted in several real systems.

2 Attribute Slicing

The approach taken in this paper is to use the notion of Attribute Slicing as a
mechanism for both identifying and addressing the “God class” code smell. An
attribute slice identifies the code that is related to (uses or modifies) a particular
attribute, or set of attributes in a class (in this case it can be perceived as a
decomposition slice, this is elaborated in section 3). As a starting point we need
to modify the definition of Weiser’s conventional slice [12]. A conventional slice
criterion consists of a set of variables and a single point on the control flow
graph. With an attribute slice, the attribute is not tied to a specific point in the
control flow graph. If we consider the attribute to be the target then:

— A backward slice identifies those statements that affect the value of the
attribute.

— A forward slice identifies those statements that are affected by the value of
the attribute.

Applying these ideas to the simple case below (and taking some syntactical
liberties) these slices are illustrated in figure 1. Note that the backward slice es-
sentially extracts the mutators and the forward slice the accessors. The methods
incx() appears in both cases since it both accesses and mutates the attribute.
By performing both backwards and forwards slicing the entire class is returned
in this case.

* It would be nice to be able to be definitive in these observations and say “all” rather
than “most” but software design, in common with any other human task, involves
judgement and compromise so it is rarely possible to make such absolute statements.



class A{
int x;

) CI?:: i;{ clz}ss A{
setx(int y){ int x;
} ey setx(int y){ getxO1

} * =y return x;
getx(){ }
return x; inexO4 1n;:(-){
incx(){ ¥ }
}
x++ 1
} }
¥

| Complete class

backward-slice on x

forward slice on x

Fig. 1. Tllustration of backward and forward attribute slices

So far, nothing has been said about the details of the slice construction or
the level of abstraction at which this is applied. The example in figure 1 is very
simple and entire methods are returned as part of the slice. Attribute slicing has
the potential to be applied at the method level and the intra-method level: A
method level attribute slice returns the entire body of a method if it contributes
to the slice in any way (i.e any part of the method updates or manipulates the
attribute). An intra-method level attribute slice takes into account the detailed
control structure of a method and, in the same vein as traditional slicing, returns
only the code that updates or manipulates the attribute.

Figure 2 serves to illustrate the difference between method and intra-method
level attribute slices. Figure (a) contains the source code for a simple ticket
machine class (taken from Barnes and Koelling [1], the class contains several
other methods but these are omitted to aid this discussion). If we slice (either
forwards, backwards or both) on the balance attribute, the entire insertMoney
method will be returned (along with the balance attribute). Sometimes however
we need more precise information, and so an intra-method slice would return
only the code that concerns the balance attribute, as shown in figure (b). In this
case the backwards and forwards slices are identical, but this is not generally
the case.

3 Viewing Attribute Slices as Decomposition Slices

Having carried out slices on the various attributes of a class we can then investi-
gate the way in which an attribute contributes (or not) to the general cohesion
of the class by applying decomposition slicing [8]. Decomposition slicing is an
attractive technique for this problem, because it makes explicit the relationships
between the attributes (i.e. whether or not and to what extent the computation
of attribute x is related to the computation of y). To recap, a decomposition slice
DS(x) is not taken with respect to a single point in the program, but only with
respect to a variable x. It contains those lines that can affect the value of x at



/*% % Qauthor David J. Barnes and
*Michael Kolling

*Qversion 2003.12.01

*/

public class TicketMachine {
private int price;
private int balance;
private int total;

public class TicketMachine {
private int balance;
public void insertMoney(int amount) {

if (amount > 0) {
balance = balance + amount;

// several methods omitted

public void insertMoney(int amount) { }
if (amount > 0) { 3
balance = balance + amount;
} else {
System.out.println("Use a }
positive amount: " + amount);

(a) | (b)

Fig. 2. Illustrating method level and intra-method level attribute slices

"output points" in the program. Once decomposition slices are calculated with
respect to all of the variables (attributes in our case) the decomposition slice
contents are compared (using set relationships) and each decomposition slice is
divided into the following three parts:

— The independent part: Statements that belong to the decomposition slice
and no other decomposition slices.

— The dependent part: Statements that belong to the decomposition slice
and also belong to other decomposition slices.

— The complement: Statements that don’t belong to the decomposition slice.

Gallagher and Lyle observe that by manipulating a statement that belongs to the
dependent part, it can’t affect the behaviour of any statements belonging to the
complement. For us this is interesting because the extent to which an attribute is
involved with the rest of the class is determined by the contents of its dependent
part. If the dependent part is empty (an extreme case), we have a strong case
for removing the attribute from the class. If it isn’t, we can find out which other
attributes it is involved with by comparing the contents of its dependent part
with the dependent parts of the rest of the decomposition slices. It may also be
feasible to use this as a basis for quantifying how much a particular attribute

contributes to the cohesion of the class in general.
Figure 3 shows how viewing attribute slices as decomposition slices can be

useful for establishing (a) the relationships between attributes and (b) the ap-
propriate refactoring (if any). The venn diagram shows which statements belong



Fig. 3. Investigating relations between attributes A; B and C

to which attribute slices*, making the independent part, dependent part and
complement explicit. In figure 3 it becomes apparent that the dependent part of
the attribute slice on variable ¢ is empty. This indicates that variable ¢ has no
relationship to variables a and b. In terms of establishing suitable refactorings
this is useful in two respects. Firstly, it indicates that variable ¢ is not integral to
the functionality of the class as a whole. Secondly, it suggests that the removal
of those statements that manipulate and are manipulated by attribute ¢ (e.g.
via the ‘move field’ refactoring’ [5]) will have no effect on the functionality that
is related to attributes a and b.

4 Application to Refactoring

At the start we mentioned that this was motivated by the desire to investigate
splitting large classes that had been formed from more than one abstraction.
To illustrate this application consider the following pathological case - the Stu-
dentHeater (an unfortunate alliance between a simple student class and a heater
thermostat) adapted again from Barnes and Kollings’ book [1]. The plain source
code is shown in figure 4 (a) and the slices are shown in (b). The slices are
colour-coded (so those pertaining to name are in , those for id are in blue
etc.), and both backward and forward slicing has been applied at the method
level. Methods that belong to multiple slices are highlighted in a different color
and annotated.

4 These attribute slices are a union of forward and backward slices on attributes, i.e.
they contain both those statements that can affect and can be affected by the values
of the attributes.



public class StudentHeater({

private String name;
private String id;
private int

rivate int

> Slices on all
attributes

slices on name and id

Slices en name, id
and credits

Fig. 4. StudentHeater example



In trying to detect problems in classes, with a view to splitting a class up
according to its attributes, we are interested in identifying disjoint or nearly
disjoint subsets of slices depending on what is being sought (sometimes, for
example, the slice will be on a set of clearly related attributes). It is clear from
example in figure 4 that the temperature attribute (unsurprisingly) shares little
in common with the other attributes except in the constructor. If, upon further
analysis, we are convinced that temperature should be factored out of this class
then we can immediately extract the methods in red, and then apply intra-
method slicing to extract the code relevant to the temperate attribute for the
shared methods (the constructor in this case, but potentially other methods too),
leaving the complement (as in decomposition slicing) in place to form a student
class. Although the above case is deliberately extreme we have witnessed several
much larger and complex cases which exhibit similar properties.

5 Further Observations and Complicating Issues

This section illustrates some of the potential problems we have encountered when
trying to refactor large classes. These are not insurmountable problems but are
important to consider, especially when performing any automatic analysis and
transformation.

5.1 Dependencies between attributes

This seems to occur widely in the classes we have looked at. In particular we
see this as a problem not just of dividing the code into separate classes but also
of preserving the ordering of actions between the new classes. In particular it
seems to mandate that the original method remain in some form so that the
classes can share a dialogue which matches the original sequence - this is highly
undesirable for refactoring as it keeps the original class in existence and it also
maintains its size.

public void addToSelection(Figure figure) {
if (!fSelection.contains(figure)) {
fSelection.addElement (figure) ;
fSelectionHandles = null;
figure.invalidate();
selectionChanged() ;
}

}

Fig. 5. Dependence between fSelection and fSelectionHandles in JHotDraw

Figure 5 illustrates how dependence can occur between attributes in an ex-
ample taken from JHotDraw. The sequence in which these dependences occur
is important if the resulting refactoring is to preserve the semantics of the
class. This method contains direct statements acting on both the fSelection



and fSelectionHandles attributes. At first glance this doesn’t appear to be a
problem as it doesn’t particularly matter whether one happens before the other
but what is not obvious is that the final method call - to selectionChanged - is
indirectly accessing the fEditor attribute (telling it to redraw its menus with
respect to the changes in the selection). This is dependant upon the change to
the fSelection attribute and must come after it for the behaviour of the system
to be preserved.

5.2 Methods that exhibit no direct attribute usage

In our experience these mainly fall into two camps: Methods that access only
local variables to compute something, and methods that indirectly use (private)
methods to access attributes.

Methods that access only local variables The problem that arises in this
case is where to put them if the class is to be refactored. Do they belong with
other methods associated with an attribute or attributes? If so how can this be
established?

The problem is illustrated in figure 6. This might be a somewhat pithy ex-
ample as handles are perhaps unusual but it does show that methods can exist,
in a class without affecting its state directly. It could perhaps it could be argued
that the handles vector is a virtual attribute of the class as it is dynamically
created there during execution.

public Vector handles() {
Vector handles = new Vector();
handles.addElement (new NullHandle(this, RelativeLocator.northWest()));
handles.addElement (new NullHandle(this, RelativeLocator.northEast()));
handles.addElement (new NullHandle(this, RelativeLocator.southWest()));
handles.addElement (new NullHandle(this, RelativeLocator.southEast()));
return handles;

}

Fig. 6. Method from StandardDrawingView in JHotDraw that only accesses local vari-
ables

Methods that use private methods to access attributes Here the problem
again is how to best transform the existing code if the class needs to be refactored.
Does the method belong with the attribute class (i.e. it exclusively accesses one
attribute indirectly), or can it be split up in the face of multiple shared attributes,
or should it in fact exist in some other as yet unidentified class accessing both
attributes through separate public interfaces? In general it appears difficult to
resolve this problem from the static relationships of the code alone (although it
can be detected easily enough). Related to this it is worth noting that methods
which are declared as static in Java (i.e. class methods) may need some form of



special treatement. The example in figure 5 already contains an illustration of
an indirect usage (where selectionChanged hides use of the fEditor variable).

5.3 Inheritance

Inheritance effectively distributes attributes across a hierarchy of classes. Some
attributes are protected (thereby breaching encapsulation) and some are private.
This creates a problem not just because splitting into attribute classes might
effect multiple places in the original code but also because dependencies can
exist between public/protected and private attributes which may make them
harder to split apart.

One case observed is in StandardDrawing, where the class implements the
Drawing interface but inherits from CompositeFigure. This example is interesting
as the CompositeFigure provides about half of the implementation of the Drawing
interface even though it is not supposed to be implementing any of it (it is higher
up the hierarchy but obviously has been created in anticipation of becoming a
part of the Drawing). It seems that composition rather than inheritance is called
for to help keep the interfaces focused on the domain abstractions they are
supposed to represent.

5.4 Dependent Clients

It is unlikely that all the code relegated to an attribute will exist nicely within the
class containing that attribute. There are a number of bad smells which allude
to the idea of code out with the class feeling envious and wanting access. This
raises the question of how to check for and find this misplaced functionality in
the classes that talk to the target in question, and this is achievable by extending
the slice outside the bounds to the class to pick up these dependent clients. This
is bad for the usual reasons that it introduces the possibility of polymorphism
and basically changes the re factoring from a local search problem into a global
one.

An example of functionality being distrusted outside of a class occurs be-
tween the drawing and the view in JHotDraw. In one case the view should be
responsible for displaying the contents of a drawing yet delegates the rendering
of its contents to the drawing. This is clearly a breach of MVC as the model is
now dictating what the view will look like. Instead, the draw method of drawing
should be moved over to the view so that it can control how the figures are ren-
dered (this also affects figures as the drawing delegates to them to render their
contents).

Similarly there is a method in the view which makes more sense in the draw-
ing. The checkDamage method gets the listeners of a drawing and searches through
them looking for drawing views - when any are found they are sent a message
telling them to redraw. This should not be the responsibility of the drawing view
instead the drawing should be monitoring its state changes and whenever it feels
that a redraw is required it should ask all its views to redraw. Its interesting to
note that both cases where a method has been detected out of place are design



patterns; perhaps it is knowledge of the expected structure that is helping to
detect the misplaced functionality.

6 Related Work

This work is closely related to work on metrics and slicing. A substantial amount
of work has been carried out (primarily by Bieman et al.) into the use of slices
to compute cohesion. Their work is elaborated in section 6.1. Section 6.2 looks
at the relevant slicing-related research, concentrating on decomposition slicing
and its use in software maintenance.

6.1 Measuring Cohesion

Cohesion is notoriously difficult to measure and has been the subject of a sub-
stantial amount of research. Most of this work has been carried out in the pro-
cedural domain. Bieman and Ott [2] investigated the use of slices to compute
functional cohesion. They produce a slice-based technique that can be used to
measure the cohesion of individual procedures (based on the overlap of the slices
for variables in the procedure).

In later work [10] they reconsider the notion of cohesion when applied to
object-oriented systems. Citing Fenton [4], they establish an interesting dichotomy
between the (traditional) notion of functional cohesion, which cannot be applied
directly to object-oriented classes, and a new notion of cohesion called data co-
hesion. They extend the original cohesion computation approach illustrated in
[2] and extend it by computing slices with respect to the attributes. The end
result of their procedure produces two measures: Strong data cohesion and weak
data cohesion. The former measure counts the number of statements that belong
to all of the slices.

Their motivation for computing slices of attributes is similar to ours; they
want to identify (lack of) cohesion in classes. There are however important dif-
ferences between their work and ours. They simply aim to establish the extent of
class cohesion, returning an absolute value. Qur approach aims to use the slices
not only as a means to obtaining the extent of class cohesion, but also aims
to make the slices themselves a resource for determining which elements of the
source code can be (safely) altered during the refactoring process and how they
are related to each other (via decomposition slicing, see below).

6.2 Decomposition Slicing

Decomposition slicing was proposed by Gallagher and Lyle [8]. It provides a
framework to compare the contributions made by a set of variables to the func-
tionality of the program as a whole (see section 3). It has been implemented by
Gallagher et al. in their Surgeon’s Assistant [6] and has been evaluated exten-
sively on procedural source code. This is (to the best of the authors’ knowledge)



the first paper to propose the use of (a specialised form of) decomposition slicing
to analyse the composition of classes by comparing slices on class attributes.

An inherent problem that arises in using slices as feedback for users is that,
despite the usefulness of establishing which statements belong to a slice, it is very
difficult to convey why a given statement belongs to the slice. Our work aims not
only to establish which statements belong to attribute slices, but also to convey
to the programmer how a given attribute contribute to the functionality of the
class as a whole. Gallagher [7] suggests a visual solution to this problem, where
the relationship between decomposition slices can be visualised as a graph that
shows a partial ordering between them (and hence how they are related to each
other). Tonella [11] has recently elaborated on this work, using a formal concept
lattice (which is a product of formal concept analysis [9]) to produce a lattice
of decomposition slices that includes nodes that suggest points of interference
between variables that are not apparent on Gallagher’s graphs.

6.3 Slicing for Refactoring

Ettinger and Verbaere [3] have developed an Eclipse-based tool that can be
used to refactor Java programs. Their work is an important demonstration of
the potential of using slicing to refactor code. Their slicing primarily aims to
automate the transformations at a method-level (i.e. extracting a new method
from an existing method) and does not concentrate on identifying code smells
at a higher, structural level, as is the case with attribute slicing.

7 Conclusions and Future Work

This paper has described the problem of identifying and splitting large classes
through the application of attribute slicing and the investigation of the rela-
tionships between the slices. The notion of attribute slicing has been illustrated
and the principle of the technique explained. The work is very much in its early
stages and to progress it further the following work is planned. Firstly, the no-
tion of attribute slicing and its variations needs to be formally defined. Secondly,
the technique requires implementation. At the more abstract method level this
appears to be fairly straightforward and much of the computation can be car-
ried out using existing tools such as Eclipse. The intra-method slices on the
other hand may be more challenging and will need a program dependence-based
representation of the class. Finally, the technique needs to be applied to larger
examples both to validate its accuracy and identify any potentially interesting
cases that may have been overlooked.

References

1. D. Barnes and M. Koelling. Objects First With Java - A Practical Introduction
Using BlueJ. Prentice Hall / Pearson Education, 2004.



10.

11.

12.

. J. Bieman and L. Ott. Measuring Functional Cohesion. IEEE Transactions on

Software Engineering, 20(8):644 658, August 1994.

R. Ettinger and M. Verbaere. Untangling: A Slice Extraction Refactoring. In Pro-
ceedings of the International Conference on Aspect-Oriented Software Development
(AOSD’04), 2004.

N. Fenton. Software Metrics - A Rigorous Approach. Chapman and Hall, 1991.
M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

. K. Gallagher. Evaluating the Surgeon’s Assistant: Results of a Pilot Study. In

Proceedings of the International Conference on Software Maintenance (ICSM’92),
1992.

K. Gallagher. Visual Impact Analysis. In Proceedings of the International Confer-
ence on Software Maintenance (ICSM’96), 1996.

K. Gallagher and J. Lyle. Using Program Slicing in Software Maintenance. /IEEE
Transactions on Software Engineering, 17(8):751-761, August 1991.

B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1999.

L. Ott, J. Bieman, B-K. Kang, and B. Mehra. Developing Measures of Cohesion
for Object-Oriented Software. In Proceedings of the Annual Oregon Workshop on
Software Metrics (AOWSM’95), 1995.

P. Tonella. Using a Concept Lattice of Decomposition Slices for Program Un-
derstanding and Impact Analysis. IEEE Transactions on Software Engineering,
29(6):459-509, 2003.

M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, SE-
10(4):352 357, July 1984.



