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Abstract. Similarity search in large multimedia databases requires ef-
ficient query processing based on suitable similarity models. Similarity
models consist of a feature extraction step as well as a distance defined
for these features, and they demand an efficient algorithm for retrieving
similar objects under this model. In this work, we focus on the Earth
Movers Distance (EMD), a recently introduced similarity model which
has been successfully employed in numerous applications and has been re-
ported as well reflecting human perceptual similarity. As its computation
is complex, the direct application of the EMD to large, high-dimensional
databases is not feasible. To remedy this and allow users to benefit from
the high quality of the model even in larger settings, we developed vari-
ous lower bounds for the EMD to be used in index-supported multistep
query processing algorithms. We prove that our algorithms are complete,
thus producing no false drops. We also show that it is highly efficient as
experiments on large image databases with high-dimensional features
demonstrate.
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1 Introduction

In content-based retrieval, multimedia objects are compared using similarity
models. These include a feature extraction scheme, a (dis-)similarity model be-
tween features and efficient query processing algorithms. A common model for
feature extraction is recording the feature distribution of objects in histograms,
e.g. color or texture histograms for images or shape histograms for 3D objects
[1,2].

For (dis-)similarity measures, a simple approach are Lp norms, such as Man-
hattan norm, Euclidean norm or Maxnorm, distances. The basic idea is to as-
sess the distance between histograms by summarizing the differences in indi-
vidual bins. Lp norms are defined for two histograms x = (x1, . . . , xn) and
y = (y1, . . . , yn), where xi and yi denote the bin entries, as follows: Lp(x, y) =
p
√∑n

i=1 (xi − yi)
p.
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Fig. 1. Example color images

To understand the implications of this model, consider the three images in
Figure 1. The two left ones are similar in terms of color distribution with only a
minor shift in color tone, whereas the right one has a completely different color
structure.
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Fig. 2. Computation of Lp norms

The corresponding histograms are illustrated above: depending on the desired
resolution, histogram bins representing parts of the color space are created. To
obtain an image’s histogram, the number of pixels belonging to a certain bin are
added up. The Lp norm values between the respective images are then obtained
by summing up the differences in each bin. Doing so, comparing e.g. via Man-
hattan norm (summing up the absolute differences) the leftmost one with the
right image, we obtain a value of 25 + 25 + 175 + 25 + 25 + 25 + 25 + 25 = 350,
and the two images on the left yield 0 + 200 + 200 + 0 + 0 + 0 + 0 + 0 = 400. As
we can see, the result is counterintuitive since Lp norms ignore the relationship
between neighboring histogram bins.

To remedy this, adaptable similarity models like Quadratic Forms have been
introduced. Quadratic Forms use a similarity matrix to encode the neighbor-
hood relationship between bins and correspondingly weights the bin differences.
Given a similarity matrix A = [aij ] for distances between bin i and bin j the

Quadratic Form is defined as QFA(x, y) =
√∑n

i=1

∑n
j=1(xi − yi)aij(xj − yj).

Thus, Quadratic Forms weight the differences between histogram bin entries by
the entries in the similarity matrix. Quadratic Forms have been studied in [3,1].

Another model, recently introduced in Computer Vision, the Earth Mover’s
Distance (EMD) uses a cost matrix to direct a similarity match between his-
tograms [4].
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2 Adaptable similarity: The Earth Mover’s Distance

The Earth Mover’s Distance takes a slightly different approach towards assessing
the (dis-)similarity between features. The basic idea is to find the best match
between e.g. two color histograms by measuring the minimal effort for trans-
forming one into the other. The intuition, which explains the name, is that one
histogram’s entries are earth piles, whereas the other’s are holes of earth. The
cost matrix contains the cost for moving earth from piles to holes. By deter-
mining the ”cheapest” way of moving all earth from the piles to the holes, the
distance between the two histograms is measured.

Formally, the Earth Mover’s Distance between histograms x and y with re-
spect to a cost matrix C = [cij ] is defined as follows:

EMDC(x, y) =
n∑

i=1

n∑
j=1

cij

m
fij

where fij (fij ≥ 0 for all 1 ≤ i, j ≤ n) is the minimum flow subject to

n∑
j=1

fij = xi,

n∑
i=1

fij = yj

where m :=
∑n

i=1

∑n
j=1 fij normalizes the EMD by the mass of the histograms.

When defined this way, the EMD is metric as long as the ground distance is
metric.

Reconsidering the exemplary images in Figure 1, the corresponding EMD
distances best distributes the upper histogram’s mass into the lower one’s bin
entries. As we can see, earth may be moved to neighboring bins, resulting in
small cost values (assuming e.g. Manhattan cost matrix); whereas moving the
earth to bins which are further away results in larger values, thus resulting in
large distance values for structurally different color distributions. Consider a
Manhattan cost matrix which means zero cost for identical bins, a cost of ”1”
for direct neighbors, a cost of ”2” for next-to-direct neighbors, and so on. For
the shift in color tone on the left in Figure 2, we thus have an EMD distance of
200 ∗ 1 = 200. Comparing one of them to the structurally different image yields
an EMD distance of 1∗25+2∗25+0∗25+1∗25+2∗25+3∗25+4∗25+3∗25 = 400.
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Fig. 3. EMD computation
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The Earth Mover’s Distance has been thoroughly evaluated and successfully
employed in content-based image retrieval [4] and numerous other application
areas. Examples include graph matching, where a low-distortion embedding is
used to transform graph matching to geometric point matching in vector spaces
and the EMD is used for dissimilarity assessment [5]. A low-distortion embedding
of the Earth Mover’s Distance is utilized for contour matching [6]. In physics,
vector fields may be described using critical points and EMD measures their
dissimilarity [7]. Another example from color-based image retrieval evaluates
region-based similarity via EMD and employs a relevance feedback scheme to
improve result quality [8]. Region-based similarity focusing on texture is studied
in another EMD application approach [9]. Music can be described in terms of
time and pitch as well as note durations which may be compared via EMD or
a modified version thereof, the pseudometric PTD (proportional transportation
distance) [10].

The Earth Mover’s Distance can be computed using a Linear Programming
scheme, following a Transportation Problem [11]. While this is a feasible method
for small, low-dimensional applications, large multimedia databases cannot ben-
efit. To overcome this limitation, we propose a multi-step query processing al-
gorithm, using novel filter distances, which guarantees exactly the same result,
yet at far faster response times. These perfect recall/precision results stem from
a lower-bounding property in a GEMINI or KNOP multistep query processing
algorithm (see Section 4), which is proven in [12]. The effectiveness and efficiency
of the approach is validated in experiments on large color image databases.

3 Speeding up response times: indexing structures

Index structures are used to organize the data with the objective that only
a small percentage needs to be accessed during query processing. In a multi-
dimensional space, index structures such as R-trees or X-trees [13,14] can be
used.

Fig. 4. R-Tree structure
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The basic idea is illustrated in Figure 3: data is organized hierarchically,
grouping objects into minimum bounding rectangles (Fig. 3, whose description
is stored in the tree’s nodes. During query processing, the query is compared
with these minimum bounding rectangles in a top-down fashion. Whenever the
distance between query and minimum bounding rectangle exceeds the given
limit, the corresponding subtree can be safely pruned from search. Reaching the
lowest level, the leafs contain the actual objects.

Typical query types on these index structures are range queries, where a
maximum distance threshold is given by the user along with the query object.
All those objects are returned which are within at most this maximum distance
from the query. Another query type is the k nearest neighbor (kNN) query, where
the k most similar objects to the query are returned. While this is convenient
for users who do not need to know typical distance values in the data base and
can simply adjust the size of the result set, query processing is slightly more
complex in this case for both indexing structures as well as multistep query
processing algorithms. For range queries, all those regions indexed which are
farther away than the maximum distance can be safely pruned. For kNN queries,
this maximum distance is not known in advance and needs to be constantly
updated as more similar objects are found during search.

Fig. 5. Geometric visualization of R-Tree index

4 Fast query processing: multi-step algorithms

Index usage can be even more accelerated by multistep retrieval algorithms as
illustrated in Figure 6. A query is first executed as an approximative query
using a suitable index structure. This filter step, based on an approximate filter
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distance function, generates a set of candidates which is then evaluated using
the real distance function to retrieve the desired result from the database.

Index
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Query

Candidates

Exact 
Distance 

Calculation
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Approximate 
Distance 

Calculation

Fig. 6. Multistep Retrieval

A first multistep algorithm, GEMINI was presented in [15]. It was further
optimized in terms of number of pages which have to be accessed in [16]. Crucial
for the efficiency of these multistep algorithms is the quality of the filter distance
measure. This measure should meet a number of criteria (ICES):

Index

Completeness

Efficiency

Selectivity

Fig. 7. Filter criteria
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Index: as mentioned above, index structures shorten response times.

Completeness means no false drops.

For GEMINI, and KNOP, completeness can be ensured by proving

that the filter distance lower bounds the exact object distance

for any two objects in the data base.

Efficiency of single computations of the filter is crucial for the overall

response time of the multistep algorithm.

Selectivity means that the filter should discard as many objects as possible

without producing false drops (completeness).

5 Reducing costly computations: lower bounds for the
EMD

A simple lower bound for smaller, low-dimensional feature spaces can be ob-
tained by averaging histograms in the features space, i.e. for color histograms

by computing a 3D color average [17]: EMD(x, y) ≥ ‖
n∑

i=0

xiri

m −
n∑

i=0

yiri

m ‖, where

the ri denote the bin representatives. As the efficiency gains are not sufficient
for high-dimensional and large multimedia databases, a geometrical approach
for developing novel filters is followed.

Fig. 8. Iso-lines of the EMD

Figure 8 highlights an exemplary 2D projection of an EMD iso-contour, i.e.
points which have the same EMD-distance value from the center point. A good
lower bounding filter approximation should describe a closely surrounding ge-
ometry.

The distance functions for diamonds, rectangles and spheres are represented
by weighted Manhattan (L1), weighted maximum (L∞) and weighted Euclidean
norms (L2), respectively (Fig. 5). The weights stretch and compress these geome-
tries. They have to be determined as parameters to optimally enclose the EMD
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Fig. 9. Iso-contours of weighted Lp norms and EMD

as a lower bound in multi step query processing (Fig. 5). Lp filter distances are
computed in linear time and can be supported by any available multi-dimensional
indexing structure.

Fig. 10. EMD and surrounding geometries (3D projections)

We define these Lp filters as follows (for details refer to [12]):

LBManh(x, y) :=
∑n

i=1 wi|xi − yi|, wi = minj,i 6=j{ cij

2·m} ≤ EMD(x, y)

LBMax(x, y) := max
i
{min

j
i6=j

{ cij

m }|xi − yi|} ≤ EMD(x, y)

LBEucl(x, y) :=
√∑n

i=1(min
j

i6=j

{ cij

2·m})2(xi − yi)2 ≤ EMD(x, y)
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In high-dimensional settings, selectivity of these filters is bound to drop as the
minimum over more and more values decreases. Moreover, indexing structures
also lose their pruning power. Thus, more selective complex filters are needed.

3D
Index

Image 
Database

Query

EMD

Result

LB_Manh
LB_Avg

LB_IMHighD

Candidates

Candidates

Fig. 11. EMD Multistep Concept

By refining the techniques used for the Lp norm based lower bounds, a re-
peated computing of minimal cost entries leads to the Independent Minimization
lower bound:

LBIM (x, y) := min
i,j


n∑

i=1

n∑
j=1

cij

m
fij , fij ≥ 0,

n∑
j=1

fij = xi, fij ≤ yj

 ≤ EMD(x, y)

Thus, the difference between the LBIM and the EMD is the constraint on how
much mass one histogram bin may receive. While the EMD requires that the
sum of flows to a certain bin equals its mass over all dimensions, the LBIM only
ensures that for any single dimension the incoming flows do not exceed its mass.
Further improvements of the Independent Minimization lower bound as well as
completeness proofs for all of the above filters can be found in [12].

5.1 Adapted multistep concept for combined filters

The combination of the above filters further reduces the computation time as
they dismiss different sets of objects as non-candidates. A sequential scan on
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a good-selectivity-filter in high dimensions on the output of an efficient low-
dimensional, index-supported filter makes best use of database technology avail-
able. We therefore construct three-dimensional indexes based on the averaging
lower bound or on dimensionality reduced 3D weighted Manhattan lower bound
(determining those three dimensions with highest variability and discarding the
remainder).

6 Experiments

Experiments on 200,000 color image histograms using KNOP query processing
were evaluated in terms of selectivity ratios as well as total response times for
query processing. The selectivity is the average percentage of database images
for which EMD computation is necessary. Note that this approximately reflects
the number of false positives. As we have proven completeness, there are no false
negatives.
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Fig. 12. Scalability: selectivity perc. (left), response time in sec. (right)

We measured the selectivity for database sizes ranging from 25.000 to 200,000
images for 10-nearest-neighbor queries on 64d histograms. In the left diagram in
Figure 12 we can see that LBMax produces many more candidates than LBAvg;
its selectivity is inferior by an order of magnitude. LBIM is noticeably more
selective. It outputs far less than 0.1% of the data as candidates for all database
sizes. This is an improvement by more than two orders of magnitude to the
second-best lower bound. In the right part of this figure, we see that the re-
sponse times of LBMan and LBAvg are closely related to their selectivity. LBIM

requires more computational effort, thus it shows only similar response times.
Their combination, as presented in Section 5.1, yields fastest results.

We also varied histogram sizes from 16 to 64. We can see in the left diagram in
Figure 13, where the largest database with 200,000 was queried for k = 10 nearest
neighbors, that LBIM has the best selectivity. For finer histogram resolutions,
by more than two orders of magnitude. In the right part of the figure, we can
see that with increasing dimensionality, the computation of LBAvg increases
in complexity. The response times of LBMan are more closely related to its
selectivity ratios. As in the previous experiment, the overhead of LBIM is greater
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than that of the other two lower bounds. Once again, the proposed combination
yields the best performance improvements. We include the sequential scan EMD
computation times as a baseline comparison. Note that the improvement for 64
dimensions comparing EMD and the best multistep concept is from 1000 seconds
to less than one second, i.e. more than three orders of magnitude.
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Fig. 13. Dimensionality: selectivity perc. (left), response time in sec. (right)

7 Conclusion

In summary, our experiments demonstrate that the best strategy for query pro-
cessing is a combination of assets. By building a small three-dimensional index
based on simpler filter functions and combining it with a highly selective LBIM

filter, index support can be profited from while expensive EMD computations
are minimized. Users benefit from noticeably smaller response times while losing
no actual result.
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