
QoS-aware Multicommodity Flows
and Transportation Planning ?

George Tsaggouris1,2, Christos Zaroliagis1,2

1 Computer Technology Institute, N. Kazantzaki Str,
Patras University Campus, 26500 Patras, Greece

2 Department of Computer Engineering and Informatics,
University of Patras, 26500 Patras, Greece

{tsaggour,zaro}@ceid.upatras.gr

Abstract. We consider the QoS-aware Multicommodity Flow problem,
a natural generalization of the weighted multicommodity flow problem
where the demands and commodity values are elastic to the Quality-of-
Service characteristics of the underlying network. The problem is funda-
mental in transportation planning and also has important applications
beyond the transportation domain. We provide a FPTAS for the QoS-
aware Multicommodity Flow problem by building upon a Lagrangian
relaxation method and a recent FPTAS for the non-additive shortest
path problem.

1 Introduction

Consider a capacitated directed network G = (V,E) in which we wish to route
k commodities to meet certain initial demands. Each commodity i is associated
with a specific origin-destination pair (si, ti), a demand di, and a value vi repre-
senting the profit of routing one unit of flow from that commodity. Also, for each
commodity i, a weight wti : E → IR+

0 is defined that quantifies the provided
quality of service (QoS) when this commodity is routed along an edge e or a
path p, where wti(p) =

∑
e∈p wti(e). Smaller weight means better QoS. When

a commodity is not routed along its shortest w.r.t. wti (optimal w.r.t. the QoS)
path due to capacity restrictions, then (i) a portion of its demand di drops (the
worse the QoS of the path, the larger the portion of di that is lost), and (ii)
its value vi is reduced (the worse the QoS, the larger the reduction). In other
words, demands and values are elastic to the provided QoS. The objective is to
compute the maximum weighted multicommodity flow (sum over all commodi-
ties and over all paths of the flow routed from every commodity on each path
multiplied by the commodity’s value) subject to the QoS-elastic demands and
values. We call the above the QoS-aware Multicommodity Flow (MCF) problem.

The QoS-aware MCF problem is a natural generalization of the weighted
MCF problem that (is motivated by and) plays a key role in transportation

? This work was partially supported by the FET Unit of EC (IST priority – 6th FP),
under contracts no. FP6-021235-2 (ARRIVAL) and no. IST-2002-001907 (DELIS).

ATMOS 2006
6th Workshop on Algorithmic Methods and Models for Optimization of Railways
http://drops.dagstuhl.de/opus/volltexte/2006/682

2 George Tsaggouris and Christos Zaroliagis

planning: one of the prime issues that planners of transport operators in pub-
lic transportation networks have to deal with concerns the routing of various
commodities (customers with common origin-destination pairs) to meet certain
demands [9,13,14]. A customer, when provided with a non-optimal path (route)
due to unavailable capacity, s/he will most likely switch to another operator
or even other means of transport and the probability in doing so increases as
the QoS drops (actually, as a result of statistical measurements over several
years, major European railway companies know quite accurately the percentage
of customers they lose in such cases as a function of the path’s QoS [9,14]). To
minimize the loss of customers, the value charged for the requested service is
usually reduced to make the alternative (worse in QoS) path, offered for that
service, attractive.

Consequently, transportation planners are confronted with the following net-
work and line planning issues:

– Which is the maximum profit obtained with the current capacity policy that
incurs certain QoS-elastic demands and values?

– How much will this profit improve if the capacity is increased?
– Which is the necessary capacity to achieve a profit above a certain threshold?

A fast algorithm for the QoS-aware MCF problem would allow transporta-
tion planners to address effectively such network and line planning issues by
identifying capacity bottlenecks and proceed accordingly.

It is worth mentioning that the QoS-aware MCF problem is also fundamental
in applications beyond the transportation domain. For instance, in networking
(e.g., multimedia) applications over the Internet [8], or in information dissem-
ination over various communication networks [3]. In such a setting, a “server”
(owned by some service provider) sends information to “clients”, who retrieve
answers to queries they have posed regarding various types of information. Com-
mon queries are typically grouped together. Answering a query incurs a cost and
a data acquisition time that depends on the communication capacity. When a
“client” is provided with an non-optimal service (e.g., long data acquisition time
due to capacity restrictions), s/he will most likely switch to another provider.
On the other hand, the provider may reduce the cost of such a service in order
to minimize the loss.

A related problem, called max-flow with QoS guarantee (QoS max-flow),
has been considered in [2]. The problem asks for computing the maximum (un-
weighted) MCF routed along a set of paths whose cost does not exceed a spe-
cific bound, and has been shown to be NP-hard in [2]. In the same paper [2],
a pseudopolynomial time approximation scheme for QoS max-flow is given. It
can be easily seen that QoS max-flow is a special case of the QoS-aware MCF
problem (Section 5).

In this paper, we show that the QoS-aware MCF problem can be formulated
(in a non-straightforward manner) as a fractional packing LP, and provide a
FPTAS for its approximate solution. Our algorithm builds upon the Garg &
Könemann Lagrangian relaxation method for fractional packing LPs [5], com-
bined with the phases technique by Fleischer [4]. A crucial step of the method is

QoS-aware Multicommodity Flows and Transportation Planning 3

to construct an oracle that identifies the most violated constraint of the dual LP.
While in the classical weighted MCF problem the construction of the oracle is
harmless (reduces to the standard, single objective shortest path problem), this
is not the case with the QoS-aware MCF problem. The construction turns out to
be non-trivial, since it reduces to a multiobjective (actually non-additive) short-
est path problem due to the QoS-elastic demands and values. Building upon a
recent FPTAS for non-additive shortest paths [12], we are able to construct the
required oracle and hence provide a FPTAS for the QoS-aware MCF problem.
Our approach gives also a FPTAS for the QoS max-flow problem, thus improving
upon the result in [2].

The rest of the paper is organized as follows. We start (Section 2) with
some necessary preliminaries, a formal definition of the problem and its LP
formulation. We then proceed (Section 3) with a review of the GK method [5]
upon which our algorithm builds. Subsequently, we give the details of our FPTAS
(Section 4), and present extensions of our results to constrained versions of the
QoS-aware problem (Section 5). We conclude in Section 6.

2 Preliminaries and Problem Formulation

2.1 Problem Definition and LP Formulation

We are given a digraph G = (V,E), along with a capacity function u : E → IR+
0

on its edges. We are also given a set of k commodities. A commodity i, 1 ≤ i ≤ k,
is a tuple (si, ti, di, wti(·), fi(·), vi(·)), whose attributes are defined as follows.
Attributes si ∈ V and ti ∈ V are the source and the target nodes, respectively,
while di ∈ IR+

0 is the demand of the commodity. The weight function wti : E →
IR+

0 quantifies the quality of service (QoS) for commodity i (smaller weight
means better QoS). For any si-ti path p, wti(p) :=

∑
e∈p wti(e) and let δi(si, ti)

be the length of the shortest path from si to ti w.r.t. the weight function wti(·).
The non-decreasing function fi : [1,∞) → [0, 1] is the elasticity function of i that
determines the portion fi(x) of the commodity’s demand di that is lost if the
provided path is x times worse than the shortest path w.r.t. wti(·); that is, if
a units of di were supposed to be sent in case the provided path was shortest
(optimal), then only (1 − fi(x))a units will be shipped through the actually
provided (non-optimal) path, while fi(x)a units will be lost. Commodity i is also
associated with a non-increasing profit function vi : [1,∞) → IR+

0 that gives the
profit vi(x) from shipping one unit of flow of commodity i through a path that is
x times worse than the shortest path w.r.t. wti(·). The objective is to maximize
the total profit, i.e., the sum over all commodities and over all paths of the flow
routed from every commodity on each path multiplied by the commodity’s profit,
subject to the capacity and demand constraints, and w.r.t. the QoS-elasticity of
demands and profits. We call the above the QoS-aware Multicommodity Flow
(MCF) problem.

Let Pi = {p : p is an si-ti path} be the set of candidate paths along which
flow from commodity i can be sent. Consider such a particular path p ∈ Pi and
let Xi(p) ∈ IR+

0 denote the flow of commodity i routed along p. The definition

4 George Tsaggouris and Christos Zaroliagis

of the elasticity function implies that for each unit of flow of commodity i routed
along p, there are 1

1−fi(x) units consumed from the demand of the commodity.
Thus, we define a consumption function hi : [1,∞) → [1,∞) with hi(x) = 1

1−fi(x) .
Since fi is non-decreasing, hi is also non-decreasing. Accordingly, we define the
consumption hi(p) ≥ 1 of a path p as the amount of demand consumed for each
unit of flow routed along p:

hi(p) = hi

(
wti(p)

δi(si, ti)

)
.

Similarly, we define the value vi(p) of a path p as the profit from routing one
unit of flow of commodity i through p:

vi(p) = vi

(
wti(p)

δi(si, ti)

)
.

Using the above definitions, the QoS-aware MCF problem can be described by
the following linear program (LP).

max
k∑

i=1

∑
p∈Pi

vi(p)Xi(p) (1)

s.t.
k∑

i=1

∑
e∈p,p∈Pi

Xi(p) ≤ u(e),∀e ∈ E (2)

∑
p∈Pi

Xi(p)hi(p) ≤ di,∀i = 1 . . . k (3)

Xi(p) ≥ 0,∀i = 1 . . . k, ∀p ∈ Pi

2.2 Non-Additive Shortest Paths

In this section, we introduce the non-additive shortest path (NASP) problem that
will be used as a subroutine in our FPTAS for the QoS-aware MCF problem.

In NASP, we are given a digraph G = (V,E) and a d-dimensional function
vector c : E → [IR+]d associating each edge e with a vector of attributes c(e)
and a path p with a vector of attributes c(p) =

∑
e∈p c(e). We are also given

a d-attribute non-decreasing and non-linear utility function U : [IR+]d → IR.
The objective is to find a path p∗, from a specific source node s to a destination
t, that minimizes the objective function, i.e., p∗ = argminp∈P (s,t)U(c(p)). (It is
easy to see that in the case where U is linear, NASP reduces to the classical
single-objective shortest path problem.) For the general case of non-linear U , it
is not difficult to see that NASP is NP-hard.

The first FPTAS for NASP were independently presented in [11] (for any
d > 1 and polynomially bounded utility function) and in [1] (for d = 2 and quasi-
polynomially bounded utility function), with the former having a better time
complexity. Recently, an improved FPTAS for NASP was given [12] that holds

QoS-aware Multicommodity Flows and Transportation Planning 5

for any d > 1 and a larger than quasi-polynomially bounded family of utility
functions. The new result improves considerably upon those in [1,11] w.r.t. time
(dependence on 1/ε), number of objectives, and class of utility functions.

The following lemma is an immediate consequence of [12, Theorem 4].

Lemma 1. Let the utility function of NASP be of the form U([x1, x2]T) =
x1U1(x2) + U2(x2), where U1,U2 are any non-negative and non-decreasing func-
tions. Then, for any ε > 0, there is an algorithm that computes an (1 + ε)-
approximation to the optimum of NASP in time O(n2m log(nC1)

ε), where C1 =
maxe∈E c1(e)
mine∈E c1(e)

.

3 Review of the GK Method

The linear program for the QoS-aware MCF problem (given in Section 2.1) is a
(pure) fractional packing LP, i.e., a linear program of the form max{cT x|Ax ≤
b, x ≥ 0}, where AM×N , bM×1 and cN×1 have positive entries. By scaling we also
assume that A(i, j) ≤ b(i), ∀i, j. The dual of that problem is min{bT y|AT y ≥
c, y ≥ 0}. In [5], Garg and Könemann present a remarkably elegant and simple
FPTAS for solving fractional packing LPs. Their algorithm maintains a primal
and a dual solution. At each step they identify the most violated constraint in
the dual and increase the corresponding primal variable, and the dual variables.
The most violated constraint is identified by using an exact oracle.

The algorithm works as follows. Let the length of a column j with respect to
the dual variables y be lengthy(j) =

∑
i

A(i,j)
c(j) y(i). Let a(y) denote the length

of the minimum-length column, i.e., a(y) = minj lengthy(j). Let also D(y) =
bT y be the dual objective value with respect to y. Then, the dual problem is
equivalent to finding an assignment y that minimizes D(y)

a(y) . The procedure is
iterative. Let yk−1 be the dual variables and fk−1 be the value of the primal
solution at the beginning of the k-th iteration. The initial values of the dual
variables are y0(i) = δ/b(i), where δ is a constant to be chosen later, and the
primal variables are initially zero. In the k-th iteration, a call to an oracle is made
that returns the minimum length column q of A, i.e., lengthyk−1

(q) = α(yk−1).

Let now p = argmini
b(i)

A(i,q) be the “minimum capacity” row. In this iteration, we

increase the primal variable x(q) by b(p)
A(p,q) , thus the primal objective becomes

fk = fk−1 + c(q) b(p)
A(p,q) . The dual variables are updated as

yk(i) = yk−1(i)
(

1 + ε
b(p)/A(p, q)
b(i)/A(i, q)

)
,

where ε > 0 is a constant depending on the desired approximation ratio. For
brevity we denote a(yk) and D(yk) by a(k) and D(k), respectively. The proce-
dure stops at the first iteration t such that D(t) ≥ 1. The final primal solution
constructed may not be feasible since some of the packing constraints may be

6 George Tsaggouris and Christos Zaroliagis

violated. However, scaling the final value of the primal variables by log1+ε
1+ε

δ
gives a feasible solution (see Lemma 6 in the Appendix).

The above algorithm can be straightforwardly extended to work with an
approximate oracle1. Simply, in the k-th iteration we call an oracle that returns
an (1+w)-approximation of the minimum length column of A. If q is the column
returned by the oracle, then we have that lengthyk−1

(q) ≤ (1 + w)a(yk−1). By
working similarly to [5] and choosing δ = (1+ε)((1+ε)M)−1/ε, we can show the
following theorem (whose proof is in the Appendix for the sake of completeness).

Theorem 1. There is an algorithm that computes an (1−ε)−2(1+w)-approximation
to the packing LP after at most Mdlog1+ε

1+ε
δ e = Md 1

ε (1+log1+ε M)e iterations,
where M is the number of rows.

4 The FPTAS for QoS-aware Multicommodity Flows

In this section, we describe the (non-straightforward) details of solving the QoS-
aware MCF problem by building upon the GK method. We start by obtaining
the dual of the LP formulation of the QoS-aware MCF problem. We introduce for
each edge e a dual variable l(e) that corresponds to the capacity constraint (2)
on e, and for each commodity i we introduce a dual variable φi that corresponds
to the demand constraint (3) on i. The dual LP becomes

min D =
∑
e∈E

l(e)u(e) +
k∑

i=1

φidi (4)

s.t. l(p) + φihi(p) ≥ vi(p),∀i = 1 . . . k, ∀p ∈ Pi (5)
l(p) ≥ 0,∀i = 1 . . . k,∀p ∈ Pi φi ≥ 0,∀i = 1 . . . k

where l(p) :=
∑

e∈p l(e).
To apply the GK method, it must hold u(e) ≥ 1, ∀e ∈ E, and di ≥ hi(p),

∀1 ≤ i ≤ k, p ∈ Pi. To ensure this, we scale the capacities and demands by
min{mine∈E u(e),min1≤i≤k

di

hmax
i

}, where hmax
i = hi(

(n−1) maxe∈E wti(e)
δi(si,ti)

) is an
upper bound on the maximum possible value of hi(·).

Given an assignment (l, φ) for the dual variables, the length of a dual con-
straint is defined as length(l,φ)(i, p) = l(p)+φihi(p)

vi(p) and the length of the most
violated constraint is denoted by a(l, φ) = min1≤i≤k minp∈Pi length(l,φ)(i, p).
The algorithm maintains a dual variable l(e) for each edge e, initially equal
to δ

u(e) , and a dual variable φi for each commodity i, initially equal to δ
di

, where

δ = (1 + ε)((1 + ε)(m + k))−
1
ε .

The algorithm proceeds in iterations. Initially all flows are zero. In each
iteration, it makes a call to an oracle that returns a commodity i′ and a path
1 Such an extension of the GK approach to work with approximate oracles was known

before [6], and its combination with the phases technique of Fleischer [4] for solving
packing problems has been first observed by Young [15] for solving the more general
case of mixed packing LPs.

QoS-aware Multicommodity Flows and Transportation Planning 7

p ∈ Pi′ that approximately minimizes length(l,φ)(i, q) over all 1 ≤ i ≤ k and
q ∈ Pi; i.e., we have length(l,φ)(i′, p) ≤ (1 + ε)a(l, φ). It then augments ∆ =

min{ d′i
h′i(p) ,mine∈p u(e)} units of flow from commodity i′ through p and updates

the corresponding dual variables by setting l(e) = l(e)(1 + ε ∆
u(e)), ∀e ∈ p, and

φi′ = φi′(1 + ε∆hi′ (p)
di′

). The algorithm terminates at the first iteration for which

D =
∑

e∈E l(e)u(e) +
∑k

i=1 φidi > 1, and scales the final flow by log1+ε
1+ε

δ .
We now turn to the most crucial step of the algorithm: to build a suitable

approximate oracle to identify the most violated constraint (5) of the dual. Our
task is to approximately minimize, overall 1 ≤ i ≤ k and q ∈ Pi, the function

l(q) + φihi(q)
vi(q)

=
l(q) + φi · hi

(
wti(q)

δi(si,ti)

)
vi

(
wti(q)

δi(si,ti)

) .

Note that for a fixed i, this requires the solution of a NASP instance with

objective function U([x1, x2]T) =
x1+φihi

�
x2

δi(si,ti)

�

vi

�
x2

δi(si,ti)

� and cost vector c = [l, wti]T .

Note also that the above function is of the form required by Lemma 1 with

U1(x) = 1

vi

�
x

δi(si,ti)

� and U2(x) = φi ·
hi

�
x

δi(si,ti)

�

vi

�
x

δi(si,ti)

� . Consequently, we can apply

Lemma 1 for any fixed i and make use of a non-additive shortest path routine p̄ =
NASP(G, si, ti, l, wti, ε) that returns an si-ti path p̄ that approximately (within
(1 + ε)) minimizes the above function, overall q ∈ Pi, in time O(n2m log(nL)

ε),
where L = maxe∈E l(e)

mine∈E l(e) .
To efficiently implement the oracle, we do not call the NASP routine for every

value of i. Instead, the oracle proceeds in phases (like in [4]), maintaining a lower
bound estimation a of a(l, φ), initially equal to a = 1

1+ε min1≤i≤k{ l(pi)+φihi(pi)
vi(pi)

|pi =
NASP(G, si, ti, l, wti, ε)}. In each phase, the oracle examines the commodities
one by one by performing NASP computations. For each commodity i the oracle
returns a path p = NASP(G, si, ti, l, wti, ε)} for which l(p)+φihi(p)

vi(p) ≤ a(1 + ε)2.
As long as such a path can be found, the oracle sticks to commodity i. Other-
wise, it continues with commodity i + 1. After all k commodities are considered
in a phase, we know that a(l, φ) ≥ (1 + ε)a and proceed to the next phase by
setting a = (1 + ε)a. The pseudocodes of our algorithm and the oracle are given
in Fig. 1.

To discuss correctness and time bounds, we start with the following lemma
that establishes an upper bound on the ratio of the lengths of the minimum
length column at the start and the end of the GK algorithm.

Lemma 2. Let a(0) and a(t) be the lengths of the minimum length column at
the start and the end of the algorithm, respectively. Then, a(t)

a(0) ≤
1+ε

δ .

Proof. By the initial values of the dual variables, we have a(0) = minj

∑
i

A(i,j)
c(j) y0(i) =

δ · minj

∑
i

A(i,j)
c(j)b(i) . Since now the algorithm stops at the first iteration t such

8 George Tsaggouris and Christos Zaroliagis

QoS-MCF(G, u, s, t, d, wt, v, ε) {
forall e ∈ E { l(e) = δ

u(e)
}

for i = 1 to k { φi = δ
di

}
for i = 1 to k { forall e ∈ E { Xi(e) = 0 }}
D = (m + k)δ;
for i = 1 to k { pi = NASP(G, si, ti, l, wti, ε) }
a = 1

1+ε
min1≤i≤k

n
l(pi)+φihi(pi)

vi(pi)

o
;

i = 1;
while D ≤ 1 {

(p, i, a) = QoS-MCF-oracle(G, s, t, l, wt, v, φ, ε, i, a);

∆ = min{ di
hi(p)

, mine∈p u(e)};
Xi(p) = Xi(p) + ∆;
forall e ∈ p do l(e) = l(e)(1 + ε ∆

u(e)
);

φi = φi(1 + ε∆hi(p)
di

);

D = D + ε∆ l(p)+φihi(p)
vi(p)

;

}
for i = 1 to k { forall e ∈ E { Xi(e) = Xi(e)/log1+ε

1+ε
δ

}}
}

QoS-MCF-oracle(G, s, t, l, wt, v, φ, ε, j, a) {
while true {

for i = j to k {
p = NASP(G, si, ti, l, wti, ε);

if l(p)+φihi(p)
vi(p)

≤ a(1 + ε)2

return (p, i, a);
}
a = a(1 + ε); /* update rule for

next phase */
}

}

Fig. 1. The approximation algorithm for the QoS-MCF problem.

QoS-aware Multicommodity Flows and Transportation Planning 9

that D(t) > 1 and the dual variables increase by at most 1 + ε in each iter-
ation, it holds that D(t) ≤ 1 + ε. Consequently,

∑
i b(i)yt(i) ≤ 1 + ε, which

implies that yt(i) ≤ (1 + ε) 1
b(i) , ∀i. Hence, a(t) = minj

∑
i

A(i,j)
c(j) yt(i) ≤ (1 + ε) ·

minj

∑
i

A(i,j)
c(j)b(i) = 1+ε

δ a(0). ut

The following lemma establishes the approximation guarantee for the oracle.

Lemma 3. A call to the oracle returns an (1 + ε)2-approximation of the most
violated constraint in the dual.

Proof. Let aj be the value of a during the j-th phase of the algorithm. It suffices
to show that for all phases j ≥ 1, aj ≤ a(l, φ).

Initially (j = 1), we set a1 = 1
1+ε min1≤i≤k{ l(pi)+φihi(pi)

vi(pi)
|pi = NASP(G, si, ti,

l, wti, ε)}. By the definition of the NASP routine, we get a1 ≤ 1
1+ε min1≤i≤k{(1+

ε) minp∈Pi

l(p)+φihi(p)
vi(p) } = a(l, φ).

For any subsequent phase j > 1, consider phase j − 1. The oracle finishes
the examination of a commodity i and proceeds with i + 1 only when a call to
NASP(G, si, ti, l, wti, ε) in phase j−1 returns a path pi for which l(pi)+φihi(pi)

vi(pi)
>

aj−1(1 + ε)2. This inequality and the definition of the NASP routine imply that
at the end phase j − 1, we have for each commodity i

aj−1(1 + ε)2 < (1 + ε) min
p∈Pi

l(p) + φihi(p)
vi(p)

.

Hence, by the definition of a(l, φ), and since l(e) can only increase during the
algorithm, at the end of the phase we have aj−1(1 + ε)2 < (1 + ε)a(l, φ). Since
aj = aj−1(1 + ε), we get aj < a(l, φ). ut

To establish a bound on the time complexity of the algorithm, we need to
count the number of NASP computations. Clearly, at most one NASP compu-
tation is needed per augmentation of flow. The rest of NASP computations (not
leading to an augmentation) are bounded by k times the number of phases. The
following lemma establishes a bound on the total number of phases.

Lemma 4. The number of phases of algorithm QoS-MCF is bounded by d 1
ε (1+

log1+ε(m + k))e+ 2.

Proof. Let a(0) and a(t) be the lengths of the most violated constraint at the
start and the end of the algorithm, respectively. Let now aj be the value of a
during the j-th phase of the algorithm, and T be the last phase of the algorithm.

Initially, we set a1 = 1
1+ε min1≤i≤k

{
l(pi)+φihi(pi)

vi(pi)
|pi = NASP(G, si, ti, l, wti, ε)

}
and by the definition of the NASP routine we get that a(0) ≤ (1 + ε)a1. From
the proof of Lemma 3, we have that aT ≤ a(t), and from Lemma 2 we get that
a(t) ≤ 1+ε

δ a(0). Combining the last three inequalities we get aT ≤ (1+ε)2

δ a1. By
the update rule for a on each phase, we have that aT = a1(1+ ε)T−1, and there-
fore a1(1 + ε)T−1 ≤ (1+ε)2

δ a1, which implies that T ≤ log1+ε
(1+ε)3

δ . Hence, the

10 George Tsaggouris and Christos Zaroliagis

number of phases is bounded by dlog1+ε
(1+ε)3

δ e = d 1
ε (1 + log1+ε(m + k))e + 2,

since δ = (1 + ε)((1 + ε)(m + k))−
1
ε . ut

We are now ready for the main result of this section.

Theorem 2. There is an algorithm that computes an (1−ε)−2(1+ε)2-approximation
to the QoS-aware MCF problem in time O((1

ε)3(m+k) log(m+k)mn2(1
ε log(m+

k) + log(nU)), where n is the number of nodes, m is the number of edges, k is
the number of commodities, and U = maxe∈E u(e)

mine∈E u(e) .

Proof. From Theorem 1 (with M = m + k) and Lemma 3 we have that the
algorithm computes an (1− ε)−2(1 + ε)2-approximation to the optimal and ter-
minates after at most (m + k)d 1

ε (1 + log1+ε(m + k))e augmentations. Since for
each phase at most k NASP computations do not lead to an augmentation, we
get from Lemma 4 that the oracle performs at most kd 1

ε (1+log1+ε(m+k))e+2k
NASP computations not leading to an augmentation. Therefore, the total num-
ber of NASP computations during an execution of the algorithm is O(1

ε (m +
k) log1+ε(m + k)) = O((1

ε)2(m + k) log(m + k)).
A NASP computation is carried out in time O(1

εn2m log(nL)), where L =
maxe∈E l(e)
mine∈E l(e) . From the initialization of l(e), and since they can only increase during
the algorithm, it is clear that mine∈E l(e) ≥ δ

maxe∈E u(e) . Since now the algorithm

stops at the first iteration such that
∑

e∈E l(e)u(e)+
∑k

i=1 φidi > 1 and the dual
variables increase by at most 1+ε in each iteration, it holds that

∑
e∈E l(e)u(e)+∑k

i=1 φidi ≤ 1+ε. Consequently at the end of the algorithm we have l(e) ≤ (1+ε)
u(e) ,

∀e ∈ E, and thus maxe∈E l(e) ≤ 1+ε
mine∈E u(e) . Hence, L ≤ 1+ε

δ U . By our choice of

δ = (1 + ε)((1 + ε)(m + k))−
1
ε , we have that L ≤ ((1 + ε)(m + k))

1
ε U , and hence

the time required for a NASP computation is O(1
εmn2(1

ε log(m+k)+log(nU))).
Thus, we get an algorithm that computes an (1− ε)−2(1+ ε)2-approximation to
the QoS-aware MCF problem in time O([(1

ε)2(m+k) log(m+k)][1εmn2(1
ε log(m+

k) + log(nU)]) = O((1
ε)3(m + k) log(m + k)mn2(1

ε log(m + k) + log(nU)), which
is polynomial to the input and 1

ε . ut

5 Extensions

Better bounds can be obtained for the constrained version of the QoS-aware
MCF problem. In that version all profits are constant (non QoS-elastic) — i.e.,
vi(p) = vi, ∀i, p ∈ Pi — and there is an upper bound (constraint) on the QoS
per path provided — i.e., the consumption functions are now defined as:

hi(p) =
{

1 if wti(p) ≤ bi

+∞ otherwise , ∀i, p ∈ Pi.

The objective is to maximize the total profit. In this case, we can achieve a FP-
TAS by implementing the oracle using a FPTAS for the Restricted Shortest Path

QoS-aware Multicommodity Flows and Transportation Planning 11

(RSP) problem instead of NASP. The currently best FPTAS for general digraphs
is due to Lorenz and Raz [7], and runs in O(mn(log log n+1/ε)) time. Arguing as
in Theorem 2 and taking into account the time complexity of the FPTAS for RSP
[7], we can achieve a running time of O((1

ε)2(m+k) log(m+k)mn(log log n+1/ε))
for the constrained version of the QoS-aware MCF problem.

For the version of the problem with unbounded demands, which constitutes
the QoS max flow problem defined in [2], we can achieve a better time bound of
O((1

ε)2nm2 log m(log log n + 1/ε)), since the number of constraints in its corre-
sponding LP is m.

6 Conclusions

We considered the QoS-aware MCF problem, a natural and important gener-
alization of the weighted multicommodity flow problem with elastic demands
and values that is fundamental in transportation planning (and beyond). We
formulated the problem as a fractional packing LP, and provided a FPTAS for
its solution by building upon a Lagrangian relaxation method combined with
a recent FPTAS for non-additive shortest paths. Finally, we presented better
FPTAS for constrained versions of the QoS-aware MCF problem.

Acknowledgments. We are indebted to Naveen Garg, Jochen Könemann, Spyros
Kontogiannis, Frank Geraets (aka Wagner) for various useful discussions, and to
Christos Papadimitriou for bringing [2] to our attention.

References

1. H. Ackermann, A. Newman, H. Röglin, and B. Vöcking, “Decision Making Based
on Approximate and Smoothed Pareto Curves”, in Algorithms and Computation –
ISAAC 2005, LNCS Vol. 3827 (Springer 2006), pp. 675-684; full version as Tech. Re-
port AIB-2005-23, RWTH Aachen, December 2005.

2. K. Chaudhuri, C. Papadimitriou, and S. Rao, “Optimum Routing with Quality of
Service Constraints”, manuscript, 2004.

3. A. Datta, D. Vandermeer, A. Celik, and V. Kumar, “Broadcast Protocols to Sup-
port Efficient Retrieval from Databases by Mobile Users”, ACM Transactions on
Database Systems, 24:1 (1999), pp. 1-79.

4. L.K. Fleischer, “Approximating fractional multicommodity flows independent of
the number of commodities”, SIAM Journal on Discrete Mathematics, 13:4 (2000),
pp. 505-520.

5. N. Garg and J. Könemann, “Faster and simpler algorithms for multicommodity
flow and other fractional packing problems”, in Proc. 39th IEEE Symposium on
Foundations of Computer Science – FOCS’98, (IEEE CS Press, 1998), pp.300-309.

6. N. Garg and J. Könemann, personal communication, 2005.

7. D.H. Lorenz and D. Raz, “A simple efficient approximation scheme for the re-
stricted shortest path problem”, Operations Research Letters, 28 (2001) pp.213-
219.

12 George Tsaggouris and Christos Zaroliagis

8. P. Van Mieghem, F.A. Kuipers, T. Korkmaz, M. Krunz, M. Curado, E. Monteiro,
X. Masip-Bruin, J. Sole-Pareta, and S. Sanchez-Lopez, “Quality of Service Rout-
ing”, Chapter 3 in Quality of Future Internet Services, LNCS Vol. 2856 (Springer-
Verlag, 2003), pp. 80-117.

9. PIN project (Projekt Integrierte Netzoptimierung), Deutsche Bahn AG, 2000.

10. S. Plotkin, D. Shmoys, and E. Tardos, “Fast Approximation Algorithms for Frac-
tional Packing and Covering Problems”, Mathematics of Operations Research
20 (1995), pp. 257-301.

11. G. Tsaggouris and C. Zaroliagis, “Improved FPTAS for Multiobjective Shortest
Paths with Applications”, CTI Techn. Report TR-2005/07/03, July 2005.

12. G. Tsaggouris and C. Zaroliagis, “Multiobjective Optimization: Improved FPTAS
for Shortest Paths and Non-linear Objectives with Applications”, CTI Techn. Re-
port TR-2006/03/01, March 2006. Preliminary version in Proc. ISAAC 2006, LNCS
(Springer, 2006).

13. F. Wagner, “Challenging Optimization Problems at Deutsche Bahn”, AMORE
Workshop (invited talk), 1999.

14. F. Wagner (Deutsche Bahn AG), personal communication, 2004.

15. N. Young, “Sequential and Parallel Algorithms for Mixed Packing and Covering”,
in Proc. 42nd IEEE Symp. on Foundations of Computer Science – FOCS 2001,
pp. 538-546.

A APPENDIX

A.1 Proof of Theorem 1

The analysis is straightforward from [5]. We only consider an approximate oracle.
In order to prove Theorem 1 we need the next two lemmata. In the first lemma,
we establish a bound on the ratio of the optimal dual value to the primal objective
value at the end of the algorithm.

Lemma 5. Let β = miny
D(y)
a(y) be the optimal dual value and let t be the last

iteration of the algorithm. The ratio of the optimal dual value to the primal
objective value at the end of the algorithm is bounded by ε(1+w)

ln(1/Mδ) .

Proof. For each iteration k ≥ 1 it is

D(k) =
∑

i

b(i)yk(i)

=
∑

i

b(i)yk−1(i) + ε
b(p)

A(p, q)

∑
i

A(i, q)yk−1(i)

≤ D(k − 1) + (1 + w)ε(fk − fk−1)a(k − 1)

which implies that

D(k) ≤ D(0) + (1 + w)ε
k∑

l=1

(fl − fl−1)a(l − 1).

QoS-aware Multicommodity Flows and Transportation Planning 13

Since β = miny D(y)/a(y) it is β ≤ D(l − 1)/a(l − 1),∀l = 1 . . . k, and thus

D(k) ≤ Mδ +
(1 + w)ε

β

k∑
l=1

(fl − fl−1)D(l − 1).

Observe now that for fixed k, this right hand side is maximized by setting D(l−1)
to its maximum possible value for all 1 ≤ l − 1 < k, and let us denote this
maximum value by D′(k), i.e.,

D′(k) = Mδ +
(1 + w)ε

β

k∑
l=1

(fl − fl−1)D′(l − 1).

Consequently,

D(k) ≤ D′(k)

= D′(k − 1) +
(1 + w)ε

β
(fk − fk−1)D′(k − 1)

= D′(k − 1)
(

1 +
(1 + w)ε

β
(fk − fk−1)

)
≤ D′(k − 1)e

(1+w)ε
β (fk−fk−1)

≤ D′(0)e
(1+w)ε

β

Pk
l=1(fl−fl−1)

≤ D′(0)e
(1+w)ε

β (fk−f0)

Since now D′(0) = Mδ and f0 = 0 it follows that

D(k) ≤ Mδe(1+w)εfk/β .

From our stopping condition it is 1 ≤ D(t) ≤ Mδe(1+w)εft/β and hence

β

ft
≤ ε(1 + w)

ln(1/Mδ)
.

ut

The final primal solution constructed may not be feasible since some of the
packing constraints may be violated. The second lemma shows that the final
primal assignment can be appropriately scaled as to obtain a feasible solution.

Lemma 6. Scaling the final primal assignment by log1+ε

(
1+ε

δ

)
, we obtain a

feasible solution to the fractional packing LP.

Proof. When we pick a column q and increase the left-hand-side of the i-th
constraint by A(i,q)b(p)

A(p,q)b(i) . Simultaneously we increase the dual variable y(i) by

a multiplicative factor of 1 + εA(i,q)b(p)
A(p,q)b(i) . By the definition of p it follows that

A(i,q)b(p)
A(p,q)b(i) ≤ 1 and thus increasing the left-hand-side of the i-th constraint by one

14 George Tsaggouris and Christos Zaroliagis

causes an increase in y(i) by a multiplicative factor of 1 + ε. Since t is the first
iteration for which D(t) > 1, it is yt−1(i) < 1/b(i) and thus yt(i) < (1 + ε)/b(i).
Since now y0(i) < δ/b(i) it follows that the left-hand-side of the i-th constraint
is no more than log1+ε

(
1+ε

δ

)
for any i. Thus scaling the primal solution by

log1+ε

(
1+ε

δ

)
gives a feasible solution. ut

We now proceed with the proof of Theorem 1.

Proof. In the k-th iteration we increase the dual variable of the “minimum ca-
pacity” row by a factor of 1+ε. Since we stop the algorithm at the first iteration
t such that D(t) > 1 it follows that D(t) < 1 + ε and thus yt(i) < 1+ε

b(i) for any
row. Since now y0(i) = δ

b(i) and yt(i) < 1+ε
b(i) and there are M rows the total

number of iterations is at most Mdlog1+ε
1+ε

δ e = Md 1
ε log1+ε Me, by choosing

δ = (1 + ε)((1 + ε)M)−1/ε.
The ratio of the optimal dual value to objective value of the scaled final

primal assignment is γ = β
ft

log1+ε

(
1+ε

δ

)
by substituting the bound on β

ft
from

Lemma 5 we get

γ ≤ ε(1 + w)
ln(1/Mδ)

log1+ε

(
1 + ε

δ

)
=

ε(1 + w)
ln(1 + ε)

ln 1+ε
δ

ln(1/Mδ)

For δ = (1+ε)((1+ε)M)−1/ε, the ratio ln 1+ε
δ

ln(1/Mδ) equals (1−ε)−1, hence we have

γ ≤ ε(1 + w)
(1− ε) ln(1 + ε)

≤ ε(1 + w)
(1− ε)(ε− ε2/2)

≤ (1− ε)−2(1 + w)

ut

