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Abstract. We present a new model for a strategic locomotive schedul-
ing problem arising at the Deutsche Bahn AG. The model is based on a
multi-commodity min-cost flow formulation that is also used for public
bus scheduling problems. However, several new aspects have to be addi-
tionally taken into account, such as cyclic departures of the trains, time
windows on starting and arrival times, network-load dependend travel
times, and a transfer of wagons between trains. The model is formu-
lated as an integer programming problem, and solutions are obtained
using commercial standard software. Computational results for several
test instances are presented.

Keywords. Freight Transport, Vehicle Scheduling, Time Windows, In-
teger Programming.

1 Introduction

Deutsche Bahn AG (DB) is the largest German railway company with 216,000
employees and a turnover of 25 billion Euros in 2005. DB is active in both
passenger and freight transportation. Per year, 1.8 billion passengers (72 billion
passenger kilometers) and 253 million tons of goods (77 billion ton kilometers)
are transported. Moreover, DB is the owner of the German railway system,
where DB freight and passenger trains travel 887 million kilometers per year,
and external railway companies around 110 million kilometers. The overall length
of the railways is 34,000 kilometers, and about 4,400 freight trains and 30,000
passenger trains per day traverse this network [1,2]. All in all, DB’s network is
considered as one of the most dense and most frequently used railway network
in the world.

For the long-term simulations and future predictions of the network load,
DB developed a complex simulation tool. The entire simulation tool can be con-
sidered as a chain, which decomposes into several components. To this end it
is possible to model the normal course of business operations, and to analyze
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the influence of changing external parameters, such as future demands on goods,
possible network expansions or the sensitivity to the price for oil. The compo-
nents of the tool chain interact by generating output data, which is used as input
for other parts of the chain. The entire simulation tool has evolved over the last
5 years, and is still under continuous improvement. In this article we describe
the development of a new segment for the tool chain.

Currently, a chain’s segment called train scheduler is responsible for the gen-
eration of trains from individual wagons. As soon as enough wagons are assem-
bled, the train is started. That means, the starting times of the trains are not
aligned to some timetable, they just follow the estimated customers’ productions
and demand peaks in the simulation. Hereby it is assumed that a locomotive for
pulling this train is always and immediately available. Moreover, the locomotives
are not scheduled.

From the area of public bus transport it is known that routing and scheduling
of the vehicles is an important field in the optimization of the operator’s business
process. For instance, Löbel [3] and Gintner, Kliewer, and Suhl [4] developed
models for the scheduling of public buses, which led to significant cost savings
in public transport. Moreover, it was noted by Daduna and Völker [5] that in
public bus transport an even fewer number of buses is necessary to serve all trips,
if the starting times of the vehicles are altered within some small interval. Later,
Fügenschuh [6] also included the customers’ demands into the optimization such
that the scheduling problem of the vehicles is solved together with the starting
time problem of the trips, which leads to further reductions of vehicles and costs.

The scope of our research is to carry over these observations to the locomotive
scheduling in freight transport of Deutsche Bahn. Several new aspects have to
be taken into account, such as cyclic departures of the trains, time windows on
starting and arrival times, network-load dependend travel times, and a transfer
of wagons between trains. The model presented in this article aims at a support
of strategic simulations of the future, for example, simulating the network load
in freight transport in the year 2015. The model is formulated as a linear integer
programming problem (IP, for short). We give a computational evaluation of the
resulting IPs and show whether standard commercial IP solvers (such as ILOG
Cplex [7]) are able to handle problem sizes of instances that occur in the context
of DB.

The remainder of this article is organized as follows. In Section 2 we describe
the problem in greater detail. In Section 3 we provide a stepwise refined model,
formulated as an integer programming problem. In Section 4 we present compu-
tational results for the different varients of our model using standard software.
An outlook to further work is finally given in Section 5. For a survey on combi-
natorial optimization problems in connection with rail transport we refer to the
literature, for instance, the survey articles of Bussieck, Winter, and Zimmermann
[8] and Caprara, Fischetti, Toth, and Vigo [9].
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2 The Problem Settings

In this section we give details of the integrated scheduling problem and introduce
the terminology used at DB.

Wagons. A wagon is a rolling stock for freight transport. The wagons have
to be delivered between a source and a destination point (goods station)
within the network. Large customers produce and/or consume so much goods
that they order whole trains. In these cases, the route of the wagons equals
the route of the train. Smaller customers order individual wagons. Then
the wagons of different customers are assembled to trains and pulled as a
whole to an intermediate destination (a shunting yard), where the trains are
disaggregated and reassembled to new trains. The trains and the yards where
the wagon transfer between trains are known in advance. When changing
the starting time of the trains, one has to take care that these transfers still
remain feasible.

Trains. A freight train (also called production trip) consists of several wagons.
Each train has a start and a destination, which are goods stations or railroad
shunting yards. Also given are starting times and arrival times. These can
be either fixed times or intervals, in which the start or the arrival has to
take place. We assume that the trains start cyclical every 24 hours. The trip
duration is the time difference between start and arrival. The average travel
speed of freight trains is not as high as in passenger transport, especially at
daytime, when passenger trains always have priority, such that some trips
can last up to 3 days. The trains have different length and weight and thus
require locomotives with sufficient driving power. In contrast to the prob-
lems described by Ahuja et al. [10] or Ziarati [11], a train is always pulled
by a single locomotive. At the start a locomotive is attached to the train,
and at the destination station it is detached (uncoupled). For both coupling
processes, a certain train-dependent amount of time has to be taken into
account (15 to 30 minutes). At this stage, technical checks and refueling of
diesel locomotives are carried out.

Locomotives. DB uses up to 30 different locomotives of several manufacturers.
However, the differences between them are often minor, so they are grouped
into 3 to 6 classes of similar locomotives. The main differences among the
classes are the driving power of the engines, and the traction (i.e., the motor
type, diesel or electrical). Electrical locomotives can only be used on elec-
trical tracks, whereas diesel locomotives in principle can drive everywhere.
However, diesel soots the electrical wires, so one wants to avoid their deploy-
ment on such tracks. Hence, it is only possible to assign such locomotives to
trains that have a sufficient power and the right traction for the track.

Deadheads. A locomotive is either active, i.e., pulling a train, or deadheading,
i.e., driving under its own power without pulling a train from the destination
station of one train to the start of another train. The duration for a deadhead
trip depends on the distance between these two points, and on the class of
the locomotive (diesel and electrical might have to use different routes), but
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not so much on the network load (i.e., independent of daytime or nighttime),
because it is assumed that a single locomotive can always be pushed through.

Goals and Objectives. The main goal is to compute feasible starting and ar-
rival times of the trains such that the wagons are transported as fast as
possible from their start to the destination within the trains. At interme-
diate shunting stations the stopover of wagons should not exceed certain
limits. The main objective is to reduce operating expenses, that is, to use as
few locomotives as possible to pull all trains and, on a subordinate level, to
schedule the locomotives in such a way that the deadhead trips are as short
as possible.

3 Models

The models we describe in this section can be classified by one main characteris-
tic, the starting time intervals. In the first type of the models, the starting time
is given by the pre-scheduler of the tool chain. By this tool, a train is started as
soon as enough wagons are assembled. What “enough” in this context means is
guided by a local criterion, which is mainly based on the number, total weight,
and total length of the wagons. However, this local criterion does not take the
availability of locomotives into account. It is simply assumed that a locomo-
tive is always available, if required by some train. A model for scheduling the
locomotives under this assumptions is presented in Section 3.1.

On the other hand, there is always a little flexibility in the departure and
arrival of the trains, which has to be negotiated with the customers. In Section 3.2
we describe a model where the starting time can vary within a given interval.
This model is much more complex, since it has to take care of the syncronization
of the train departures and the wagon schedules. A further refinement of this
model is given in Section 3.3. Here the trip durations are not constant but
dynamically depending on the actual network load.

For all models we use the following notations. Let V be the set of freight trains
(production trips), and let B be the set of locomotive classes. We introduce a
parameter ab,i ∈ {0, 1} with ab,i = 0 if a class b locomotive cannot pull train i.
Let A := V×V denote the set of all deadhead trips. Denote ab,(i,j) := ab,i ·ab,j ∈
{0, 1}, then we have ab,(i,j) = 0 if and only if the deadhead trip from i to j is
not feasible for a class b locomotive. Moreover, those ab,(i,j) can be set to zero
where the corresponding deadhead trip exceeds a certain length.

3.1 Fixed Starting Times

To begin with, we take the starting and arrival times for the trains as they were
computed by the train scheduler of the tool chain. This computation also ensures
that individual wagons can transfer between trains. We introduce a decision
variable xb,(i,j) ∈ {0, ab,(i,j)} with xb,(i,j) = 1 if trains i and j are connected and
both served with a locomotive of class b, and xb,(i,j) = 0 otherwise. Each train j
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must be served with one class of locomotive, that is,∑
b∈B

∑
i:(i,j)∈A

xb,(i,j) = 1. (1)

There is a flow conservation in the sense that the cycles of each class b and each
trip j must be closed, that is,∑

i:(i,j)∈A

xb,(i,j) =
∑

k:(j,k)∈A

xb,(j,k). (2)

The connection of production and deadhead trips is called cycle. This notion is
justified since each trip has a unique predecessor and a unique successor, and
therefore at some point each locomotive will serve the first trip again. We denote
by λb,(i,j) the number of locomotives of class b that are additionally necessary
due to the connection of i with j. Similar to Liebchen and Möhring [12] this
number is computed as

λb,(i,j) :=

⌈
t̂i − t̂j + δb,(i,j)

1440

⌉
≥ 0. (3)

Here t̂i, t̂j are the pre-scheduled starting times of trains i and j, respectively.
The constant 1440 refers to the number of minutes per day, which is the basis
of the cycles (i.e., all trips are repeated on a daily base), and δb,(i,j) denotes the
total trip and deadhead trip duration, that is,

δb,(i,j) := δtrp
i + δuncpl

i + δdhd
b,(i,j) + δcpl

j , (4)

where

– δtrp
i denotes the trip duration, i.e., the time the locomotive is active while

pulling train i,
– δuncpl

i denotes the time for uncoupling the locomotive from the train at the
arrival,

– δdhd
b,(i,j) denotes the time for deadheading from the end of i to the start of

train j, and
– δcpl

j denotes the time for coupling the locomotive to the train at the start of
j.

Remark that the driving time δtrp
i is assumed to be independent of the actual

class, whereas the deadhead time δdhd
b,(i,j) is class dependent (since diesel and

electrical might use different routes).
A capacity in form of an upper bound Bb on the number of available loco-

motives of class b can be specified:∑
(i,j)∈A

λb,(i,j)xb,(i,j) ≤ Bb. (5)
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As objective function we want to minimize the total costs defined as∑
b∈B

∑
(i,j)∈A

(γcls
b λb,(i,j) + γdhd

b,(i,j))xb,(i,j) (6)

where

– γcls
b denotes the costs for a locomotive of class b,

– γdhd
b,(i,j) denotes the costs in connection with deadheading from i to j with

locomotive b.

The most important objective is the reduction of the deployed locomotives, and
second is the reduction of deadhead costs. Hence γcls

b � γdhd
b,(i,j).

The optimization problem is the minimization of (6) subject to the con-
straints (1), (2), (5), and the integrality of all xb,(i,j). Due to the cyclic character
of the schedules of the locomotives we call this problem the capacitated cyclic
vehicle scheduling problem (CVSP). In the case of no upper bounds (or Bb = ∞)
we also speak of the uncapacitated CVSP.

For |B| = 1, this problem reduces to a single-commodity minimum-cost flow
problem, which can be solved efficiently by polynomial or pseudopolynomial
algorithms (for instance by the Hungarian Method, see Ahuja, Magnanti, and
Orlin [13] for details). For |B| > 1, the uncapacitated CVSP is a multi-commodity
min-cost flow problem, which is known to be NP -hard. Moreover, it is NP -
complete to decide whether a feasible solution exists for the capacitated CVSP
(see Löbel [3]).

3.2 Variable Starting Times

We change the above model for locomotive scheduling for the case where the
starting times of the trains are allowed to be changed within a given interval.
The corresponding model is called (capacitated or uncapacitated) cyclic vehi-
cle scheduling problem with time windows (CVSPTW). In comparison with the
CVSP, the CVSPTW model is more complicated, because we have to take care
of the transfer of wagons between trains.

We first introduce bounds on the starting time of the trains. The starting
time for i ∈ V is denoted by ti ∈ Z+. The set V is devided into two subsets,
V = C ∪̇ S. In C there are all trips i with a connected starting time interval
[ti, ti] ⊆ [0, 1439] ∩ Z in which the starting time must lie:

ti ≤ ti ≤ ti. (7)

In particular, each trip has to start during the first day. If the starting time
exceeds this limit, the interval is split into two. This is the case for all trips
i ∈ S. Their starting time must be in ([ti, 1439] ∪

[
0, ti

]
) ∩ Z. We introduce a

binary variable yi ∈ {0, 1} with yi = 1 if the starting time is in [0, ti] (after
midnight), and yi = 0 if it is in [ti, 1439] (before midnight). We then obtain the
following constraints for the starting times:

ti(1− yi) ≤ ti ≤ 1439 + (ti − 1439)yi. (8)
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As in the CVSP model we introduce decision variables xb,(i,j) ∈ {0, ab,(i,j)} for
the deadhead trips, and use the same multi-commodity flow formulation:∑

b∈B

∑
i:(i,j)∈A

xb,(i,j) = 1, (9)

and ∑
i:(i,j)∈A

xb,(i,j) =
∑

k:(j,k)∈A

xb,(j,k). (10)

If i, j ∈ V are connected, then the corresponding starting times must be syn-
chronized,

ti + δb,(i,j) − 1440lb,(i,j) ≤ tj + 5760(1− xb,(i,j)). (11)

The constant 5760 = 4 ·1440 reflects the assumption that the train starting time
is fixed to the first day, and a trip duration per train is at most 3 days. Since the
starting time selection is now integrated in the model, we cannot compute the
number of locomotives λb,(i,j) beforehand, as in the case of the CVSP. Instead
we introduce a variable lb,(i,j) ∈ Z+ which represents the number of additional
locomotives due to the connection of i with j.

Finally we have to syncronize those trains i, j ∈ V where wagons transfer
from one to the other. Since all trains are cyclic, there are in principle no missed
transfers. That is, if j departs before the arrival of i, then the wagons have to
wait at most 24 hours until the arrival of the next train j. However, long idle
waiting times of the wagons are undesired. This is modeled by the following
inequality:

0 ≤ (tj + 1440qi,j)− (ti + δtrp
i + δshnt

i,j ) ≤ 719 + 720pi,j , (12)

where

– δshnt
i,j denotes the time for shunting the wagon from i to j,

– qi,j ∈ {0, . . . , 4} is a variable to shift the starting time of j within the same
day of the arrival of i, and

– pi,j ∈ {0, 1} is a decision variable with pi,j = 1 if and only if the wagons
from i to j are idle for more than 12 hours.

In this formulation, the variables pi,j are put into the objective function with
a suitable scaling coefficient. In this way it is possible to analyze how many
locomotive could potentially be saved if some transfers are missed. It is also
possible to set pi,j := 0 for all transfers i, j, which gives a hard constraint, i.e.,
the transfers are much more important than saved locomotives.

The objective is to minimize the total costs defined as∑
(i,j)∈A

γidle
i,j pi,j +

∑
b∈B

∑
(i,j)∈A′

(γcls
b lb,(i,j) + γdhd

b,(i,j)xb,(i,j)), (13)

where γcls
b and γdhd

b,(i,j) are defined as above, and γidle
i,j denotes the costs for idle

wagons, i.e., a wagon missing its subsequent train which then has to wait for
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more than 12 hours. In general, these coefficients reflect the following ordering:
Reducing idle wagons is most important, since high contract penalties for late
arrivals have to be paid. Second is now the reduction of the deployed locomotives,
and the reduction of deadhead costs is moved to the third place.

3.3 Netload-dependent Travel Times

We further refine the above CVSPTW model to the case that the driving time of
the trains is not constant, but a function depending on the total network load.
At daytime the freight transport has to wait for the passenger transport such
that the traveling speed is much lower than at nighttime.

To this end, the whole day is partitioned into a discrete number of time slices
H = {1, . . . ,H}, that is, [0, 1439] =

⋃̇
h∈H[τh, τh]. For each train i we introduce

decision variables zi,h ∈ {0, 1} with zi,h = 1 if and only if the train starts within
time slice h. Exactly one slice must be selected:∑

h∈H

zi,h = 1. (14)

The slice selection is coupled to the starting time of train i such that the “right”
slice h is chosen:

τh − ti ≤ 1439(1− zi,h), (15)
ti − τh ≤ 1439(1− zi,h). (16)

Then the trip duration of train i is given by

dtrp
i =

∑
h∈H

δtrp
i,hzi,h, (17)

where dtrp
i ∈ Z+ is a new variable, and δtrp

i,h is a parameter giving the trip duration
of train i when being started in slice h. The actual values of δtrp

i,h are statistically
estimated along historical data. Then in the CVSPTW model, δtrp

i is replaced
by dtrp

i .
Morover, in case of dynamic trip durations it is desired to specify bounds on

the arrival time of some of the trains in addition to the starting time bounds,
i.e.,

T i ≤ ti + dtrp
i ≤ T i, (18)

where [T i, T i] ⊆ [0, 5759] ∩ Z is the arrival time interval of train i.

4 Computational Results

The CVSP and the CVSPTW problems are formulated as integer programming
problems. Thus one can use standard IP solvers to compute feasible or optimal
solutions. For an introduction to integer programming we refer to the literature
(Nemhauser and Wolsey [14] for instance). For our computational studies we used
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ILOG Cplex 10 [7], one of the currently fastest IP solvers. We made exhaustive
tests with the number of parameters that guide the solution process. We made
overall best experiences when setting cut generation and probing to the highest
level. These settings yield the shortest computation times that are reported in
the sequel. The software was running on a Linux server with 16 GByte main
memory and 4 dual core AMD Opteron 880 processors running at 2.4 GHz each.
Cplex is able to make use out of such environment by parallelizing the branch-
and-bound tree.

From the data base of the tool chain we extracted 7 test instances, which we
refer to as A, B, C, D, E, F, G in the sequel. Here A is the smallest instance with
42 trains and 3 classes of locomotives, whereas G is the largest, having 1,537
trains and 4 classes of locomotives (for details see the first three columns of
Table 1 or Table 2). The instances are related to certain regions within the DB
railway network. For example, instance G consists of trains mainly from the south
of Germany, trains from A serve north-south connections, whereas E comprises
trains from all over Germany.

4.1 Results for the CVSP

At first we take the fixed starting times for the trains in the form they were
generated by the train scheduling part of the tool chain. Here each train is
assumed to depart as soon as enough wagons are assembled. For most instances
the solver was able to find optimal solutions within short amount of time, with
exception of G, where more than 3 hours of computation time was needed. Note
that an instance with around n trains and m classes leads to integer programs
with around n2m many variables, which is more than 3 Mio. for instances F and
G. For the instances from A to G the solution time grows with the size of the
instance (see column 4 of Table 1 or Table 2).

name trips classes time locomotives
P

km

A 42 3 1 2/19/2 23 3,808
B 82 3 2 3/34/8 45 52
C 120 4 18 6/35/1/1 43 2,560
D 394 5 27 12/11/21/15/26 85 27,132
E 945 3 480 137/51/45 233 42,057
F 1, 507 4 652 28/19/287/52 386 58,446
G 1, 537 4 9, 502 53/22/26/72 173 2,942

Table 1. Solutions for the uncapacitated CVSP.

The actual amount of locomotives per class that is needed to serve all trips
is shown in column 5, the sum of these is given in column 6. Table 1 shows the
solutions for the uncapacitated case, that is, it is possible to deploy arbitrarily
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name trips classes time locomotives
P

km

A 42 3 1 6/15/2 23 958
B 82 3 2 3/26/16 45 52
C 120 4 7 15/26/1/1 43 1,919
D 394 5 27 12/14/22/19/20 87 26,776
E 945 3 2, 837 150/38/45 233 35,375
F 1, 507 4 4, 971 28/19/216/123 386 56,130
G 1, 537 4 13, 864 53/22/46/52 173 2,838

Table 2. Solutions for the capacitated CVSP.

many locomotives of each class. In contrast, Table 2 shows the solutions of the
capacitated case, that is, the number of locomotives per class is limited to the
actual stock of DB. In general, the solution times for the capacitated case were
higher, in particular for the larger instances E, F, G. However, the total number of
locomotives is unchanged (with the exception of instance D), only the locomotives
per class are different between the capacitated and the uncapacitated case. The
last column of Table 1 and Table 2 shows the sum of deadhead trips lengths for
all locomotives. Interestingly, the total length (in kilometer) of deadhead trips
decrease when switching from the uncapacitated to the capacitated version of the
CVSP. This could be ascribed to an increase in diesel locomotives for example,
whose deadhead trips are in general shorter.

4.2 Results for the CVSPTW

In the CVSP instances the starting times of all trains were fixed to the times that
were computed by the tool chain’s scheduler. We now allow the starting times to
be altered within a small time window centered around the pre-scheduled start-
ing time, that is, we consider the (uncapacitated) vehicle scheduling problem
with time windows (CVSPTW). It turns out that the computation time heavily
depends on the actual size of the time windows. Generally speaking, the larger
the time window, the more time the solver needs. For all computations we now
impose a time limit of 3,600 seconds. We consider the three smallest instances A,
B, and C, and take intervals of ±10,±30,±60, and ±120 minutes around the cur-
rent (pre-scheduled) starting time. Moreover, the solver Cplex allows to specify
so-called starting solutions, which are integral feasible solutions to the problems
that can be generated by other methods (primal heuristics, for instance). For our
computations, we take the respective optimal solutions to the (uncapacitated)
CVSP (presented in Table 1) as input for the ±10 instances. Then, we take the
optimal (or best feasible) solutions of ±10 as input for ±30, and so on. The
computational results are shown in Table 3. For the other instances D to G the
solver did not find feasible solutions, or did not even solve the root LP relaxation
within the time limit. In column 3 of Table 3 we show the computation time in
seconds. An asterisk (*) marks whether the given limit was reached. In those
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cases the integrality gap (i.e., the distance between the best known solution and
the corresponding lower bound) shown in column 4 is non-zero. The last three
columns of Table 3 depict the quality of the optimal or best feasible solution. It
turns out that there is a significant potential to save locomotives by changing
the departure times of the trains. The possible savings are higher the wider the
time windows are open. The price one has to pay for this additional flexibility
is the increasing solution time.

instance time w. time gap locomotives
P

km

A-42-3 ± 10 4 0.00 % 2/18/2 22 3, 931
A-42-3 ± 30 30 0.00 % 2/14/2 18 3, 731
A-42-3 ± 60 3, 600∗ 11.69% 2/11/2 15 2, 516
A-42-3 ±120 3, 600∗ 27.78% 2/10/2 14 1, 640

B-82-3 ± 10 79 0.00 % 3/27/14 44 52
B-82-3 ± 30 183 0.00 % 3/23/16 42 52
B-82-3 ± 60 3, 600∗ 5.32 % 3/15/19 37 6
B-82-3 ±120 3, 600∗ 9.59 % 2/14/16 32 1, 591

C-120-4 ± 10 753 0.00 % 5/35/1/1 42 2, 301
C-120-4 ± 30 3, 600∗ 21.84% 6/32/1/1 40 3, 608
C-120-4 ± 60 3, 600∗ 38.14% 6/30/1/1 38 3, 120
C-120-4 ±120 3, 600∗ 79.06% 6/29/1/1 37 2, 882

Table 3. CVSPTW with different time window sizes.

Note that in these computations the number of missed transfers of wagons is
not shown. This is due to the fact that the corresponding variables pi,j are fixed
to their lower bounds beforehand. This reflects the fact that a fast transfer of
wagons is always more important than saved locomotives.

4.3 Results for the refined CVSPTW

Finally we consider the (uncapacitated) CVSPTW with netload-dependend travel
times for the trains. This is the most evolved model in our hierarchy and it
comes with no surprise that the solution times here are even higher than for the
CVSPTW with constant traveling times. As before, we take the best feasible
solution of an instance with a smaller time window as integer starting solution
for the instance with the next bigger time window. Our results are summarized
in Table 4. Depending on the starting time, the total travel time varies between
70 % and 130% of the constant travel time. The bias of the travel time is esti-
mated using historical data.

The results in Table 4 give an impression on the current state of problem
sizes that can be solved using Cplex out of the box, with some altered parameter
settings. Since we are far from solving even medium-size instances to optimality,
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instance time w. time gap locomotives
P

km

A-42-3 ± 10 5 0.00 % 2/18/2 22 3, 808
A-42-3 ± 30 34 0.00 % 2/13/2 17 2, 510
A-42-3 ± 60 3, 600∗ 19.38 % 2/11/2 15 2, 516
A-42-3 ±120 3, 600∗ 36.99% 3/9/2 14 2, 125

B-82-3 ± 10 102 0.00 % 3/24/17 44 98
B-82-3 ± 30 213 0.00 % 3/19/18 40 52
B-82-3 ± 60 3, 600∗ 9.41 % 3/20/13 36 6
B-82-3 ±120 3, 600∗ 16.56 % 2/18/11 31 1, 649

C-120-4 ± 10 1, 033 0.00% 5/35/1/1 42 2, 301
C-120-4 ± 30 3, 600∗ 22.60% 8/30/1/1 40 3, 083
C-120-4 ± 60 3, 600∗ 41.10% 7/29/1/1 38 3, 168
C-120-4 ±120 3, 600∗ 79.06% 6/29/1/1 37 4, 191

Table 4. CVSPTW with netload-dependent travel times.

one can try to use heuristic reductions of the problem’s complexity. A first idea
in this respect is to remove those deadhead trips that are above a certain limit.
The hope is that sufficiently many long deadhead trips are removed by this, such
that the remaining instance is smaller and computationally easier to solve, and
on the other hand the solution is not too far away from the optimal solution.
Similar as above, the best feasible solution of one instance with a tighter bound
on the maximal deadhead length can be used as input for another instance with
a larger bound. This we use here for the C instances, which cannot be solved to
optimality within the given time limit. Our results are shown in Table 5. Column
3 of this table contains the upper bound on the deadhead trip length δdhd

b,(i,j). If
δdhd
b,(i,j) exceeds the respective bound then ab,(i,j) is set to zero. The last three

columns of Table 5 show the deviation from the optimality (for those instances
A and B where the optimal solution is known, cf. Table 4). For convenience we
repeat in the first row of each block A, B, C the results from Table 5 (with an
upper bound of ∞, which is equivalent to no upper bound). As one can see, the
loss is only a small one, whereas the solution time (given in column 4) is much
lower now.

5 Conclusions and Further Work

In this article we presented new models for the strategic locomotive scheduling.
These models were in part inspired by similar optimization problems in pub-
lic bus transport. However, several new rail-specific requirements emerged such
that the models could not be directly carried over. The models were formu-
lated as integer programs. Thus commercial standard software for their solution
could be applied. The evaluation of the capability of this software was part of
our project. It turned out that for the cyclic vehicle scheduling without time
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instance time w. bound time gap locomotives
P

km

A-42-3 ±30 ∞ 34 0.00% 2/13/2 17 2,510
A-42-3 ±30 600 27 0.00 % 3/12/2 17 958
A-42-3 ±30 300 9 0.00 % 3/12/2 17 958
A-42-3 ±30 100 2 0.00 % 3/16/2 21 6
A-42-3 ±30 0 2 0.00 % 3/16/3 22 0

B-82-3 ±30 ∞ 213 0.00% 3/19/18 40 52
B-82-3 ±30 100 39 0.00 % 3/25/12 40 52
B-82-3 ±30 50 39 0.00 % 3/23/14 40 52
B-82-3 ±30 10 24 0.00 % 3/24/14 41 6
B-82-3 ±30 0 22 0.00 % 4/23/15 41 0

C-120-4 ±30 ∞ 3, 600∗ 21.08 % 4/34/1/1 40 2,459
C-120-4 ±30 600 3, 600∗ 18.63 % 4/34/1/1 40 2,459
C-120-4 ±30 300 3, 600∗ 18.54 % 5/33/1/1 40 2,113
C-120-4 ±30 100 3, 600∗ 13.85 % 6/37/1/1 45 486
C-120-4 ±30 0 3, 600∗ 12.28 % 7/44/2/1 54 0

Table 5. CVSPTW with upper bounds on the deadhead trips.

windows, the software was able to solve even larger instances. As soon as time
windows enter the scene, the sizes where global optimal solutions were computed
was reduced by some orders of magnitude. Our further work thus aims at an im-
provement of the model formulation, where we want to develop and implement
primal heuristics, problem-specific cutting planes, and branching rules such that
larger models can be routinely solved to optimality. Also a further refinement
of the presented model is on our agenda. An example in this direction is the
inclusion of deadheading locomotives which are included in trains and thus do
not need own power and staff for operating.
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