Shape Analysis of Sets

Jan Reineke

Master's Thesis

Saarland University
Chair for Programming Languages and Compiler Construction
Prof. Dr. R. Wilhelm

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbständig, ohne fremde Hilfe und ohne Benutzung anderer als der von mir angegebenen Quellen angefertigt zu haben. Alle aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche gekennzeichnet. Die Arbeit wurde noch keiner Prüfungsbehörde in gleicher oder ähnlicher Form vorgelegt.

Jan Reineke

Acknowledgements

Dank gilt an erster Stelle Jörg Bauer für die Betreuung der Arbeit. Seine Ratschläge und seine hartnäckige Kritik trugen sehr zum Fortschritt der Arbeit bei. Björn Wachter möchte ich für viele Diskussionen rund um den Themenkomplex und Verbesserungsvorschläge danken. Weiterhin gilt mein Dank Prof. Reinhard Wilhelm für die Vergabe des Themas und die Übernahme der Begutachtung. Nicht zuletzt danke ich meiner Familie, insbesondere meinen Eltern, meinem Bruder und meiner Oma, für ihre Unterstützung während des gesamten Studiums.

Abstract

Shape Analysis is concerned with determining "shape invariants", i.e. structural properties of the heap, for programs that manipulate pointers and heap-allocated storage. Recently, very precise shape analysis algorithms have been developed that are able to prove the partial correctness of heap-manipulating programs. We explore the use of shape analysis to analyze abstract data types (ADTs). The ADT Set shall serve as an example, as it is widely used and can be found in most of the major data type libraries, like STL, the Java API, or LEDA. We formalize our notion of the ADT Set by algebraic specification. Two prototypical C set implementations are presented, one based on lists, the other on trees. We instantiate a parametric shape analysis framework to generate analyses that are able to prove the compliance of the two implementations to their specification.

The scalability of shape analysis algorithms could be improved by modular analysis. Some types of aliasing are, however, preventing modular analysis. We investigate the negative effects of aliasing on set implementations. For this purpose we introduce RESET, a language with sets as primitives. We give two semantics for RESET that differ in the way sets are represented. One representation is idealized, the other makes a step towards the set implementations. After formally relating the two semantics, we develop a shape analysis for the second semantics of RESET. In a small case study we analyze a program that computes the intersection of two sets.

Finally, we deal with modular analysis in a more general sense. We briefly introduce the concept of modularity and discuss benefits of modular analysis. Earlier, we observed that aliasing can be harmful. We introduce some existing encapsulation schemes that restrict aliasing to allow for modular analysis. On this basis we discuss modular shape analysis and how our previous analyses relate to this.

Contents

1 Introduction 11
1.1 Overview 13
2 Shape Analysis Foundations 17
2.1 Foundations of Shape Analysis 17
2.1.1 Concrete Semantics using 2-Valued Logic 17
2.1.2 Abstract Semantics using 3-Valued Logic 20
2.2 TVLA - Three-Valued-Logic Analyzer 28
3 Sets as Data Abstractions 29
3.1 Mathematical Sets 29
3.2 Abstract Data Type Set 31
4 Shape Analysis of Implementations 35
4.1 List-based Implementation 35
4.1.1 Data Structure Invariants 36
4.2 Tree-based Implementation 37
4.2.1 Data Structure Invariants 38
4.3 Shape Analysis 39
4.3.1 Shape Analysis of List-based Implementation 39
4.3.2 Shape Analysis of Tree-based Implementation 42
4.3.3 Empirical Results 50
4.3.4 Discussion 50
4.3.5 Abstraction Expressions 51
4.3.6 Future Work 53
5 RESET - An imperative language with sets as primitives 55
5.1 Syntax 55
5.2 Static Semantics 56
5.3 Dynamic Semantics I 57
5.4 Semantics II 62
5.5 Comparison 62
6 Shape Analysis of RESET 71
6.1 Shape Analysis 2-valued 71
6.1.1 Domains 72
6.1.2 Semantics of Expressions 73
6.1.3 Semantics of Statements 74
6.2 Shape Analysis 3-valued 75
6.3 Case Study - Intersection Program 76
7 Modular Analysis 79
7.1 Modularity 79
7.2 Benefits of Modular Analysis 80
7.3 Aliasing 81
7.4 Ways to deal with Aliasing 83
7.5 Modular Shape Analysis 87
7.6 Assume/Guarantee Reasoning 89
8 Conclusion 91
8.1 Contributions 91
8.2 Future Work 92
Bibliography 97
A Proofs 101
B Source Code 113
B. 1 C Implementations 113
B.1.1 List-based Implementation 113
B.1.2 Tree-based Implementation 118
B. 2 TVLA Analyses 126
B.2.1 List-based Implementation 126
B.2.2 Tree-based Implementation 140

1 Introduction

This thesis deals with Shape Analysis and the Abstract Data Type (ADT) Set. It has two main goals:

- To use Shape Analysis to prove that Set implementations written in C comply to an algebraic specification of the ADT Set.
- To investigate Modular Shape Analysis. Is it possible to modularly analyze programs using set implementations? Does this depend on the specific implementation?

Let us go into a little more detail: Shape Analysis [CWZ90, GH96, SRW99, SRW02] is concerned with determining "shape invariants", i.e. structural properties of the heap, for programs that manipulate pointers and heap-allocated storage. Formerly, it was primarily used to aid compilers. Knowledge about the structure of the heap allows to carry out several optimizations, for instance, compile-time garbage collection, better instruction scheduling and automatic parallelization.

Recently, more precise shape analysis algorithms have been developed that are able to prove the partial correctness of heap-manipulating programs. In [LARSW00] bubble-sort and insertion-sort procedures are analyzed. The analyses were able to infer that the procedures indeed returned sorted lists. They also successfully analyzed destructive list reversal and the merging of two sorted lists.

The analyses of [LARSW00] and our analyses are based on the Shape Analysis Framework presented in [SRW02]. Logical structures are used to represent the program state in this framework. The concrete semantics is specified in first-order logic. By interpreting the concrete semantics in a 3 -valued domain sound and precise abstractions can be extracted automatically. We will formally describe the framework in Chapter 2.

Set implementations are widely used and can be found in most of the major data type libraries, like STL [MS96], the Java API [Mic04], or LEDA [MN99]. The ADT Set shall serve as an example of abstract data types. One of the main goals of this thesis is to show the partial correctness of set implementations using Shape Analysis. For this purpose we will formally define our notion of the ADT Set. As a motivation, we will first examine mathematical sets, because they share some key properties with the ADT that we want to define. Early efforts to formalize the notion of mathematical sets, now called Naïve Set Theory led to contradictions. The most famous of these is known as Russell's paradox. Several independent efforts were undertaken to overcome these problems. Russell and

Figure 1.1: Modular Analysis

Whitehead proposed a solution in their Principia Mathematica introducing Type Theory. A hierarchy of types ensured that contradictions were prevented. Interestingly, such type restrictions are also useful when using sets as data abstractions in programming languages.

On this basis, we will go on to formally define the ADT Set using the algebraic specification [EM85, EM90, LEW97]. It shall serve as a reference for the implementations described later. Algebraic Specification allows us to express the intended behaviour independently of possible concrete implementations. Such specifications consist of a signature and a set of axioms. The axioms specify the meaning of the predicate and function symbols of the signature. The following two axioms are taken from our definition in Chapter 3:

$$
\begin{align*}
& a \in s . \operatorname{insert}(b) \leftrightarrow a=_{e l} b \vee a \in s, \tag{3}\\
& a \in s \cdot \operatorname{remove}(b) \leftrightarrow a \neq e l \tag{4}\\
& b \wedge a \in s
\end{align*}
$$

They capture the effect of the $\cdot \operatorname{insert}(\cdot)$ - and \cdot.remove (\cdot)-functions on the \in-predicate. Notice that they do not make any statement about the concrete data structures or algorithms employed.

After formally defining our notion of the ADT Set we will present two prototypical C implementations. One implementation is based on singly-linked lists, the other on binary trees. Using Shape Analysis, we will demonstrate that these implementations comply to our specification of the data type. This involves creating precise analyses using the framework of [SRW02] and linking the results to the specification of the ADT.

The second major question we deal with in this context is how to analyze programs using the ADT Set. Can we perform a modular analysis? What is a modular analysis? Modularity is an important concept in software engineering. Some of the advantages that a modular approach yields in the design process also translate to advantages of modular analyses. Figure 1.1 illustrates the idea of modular analysis in our particular setting. A

Figure 1.2: Complexity of Domains
conventional analysis would analyze the program as a whole including the set implementation. In a modular analysis we would divide this into two steps. In the first step we would show the compliance of the implementation to its specification. Then, we could analyze the program on the basis of the specification. This has several benefits. Usually, a specification is much simpler than its implementation. This yields smaller domains and could thus help to improve the scalability of shape analysis algorithms. In addition, we could then more easily distinguish between bugs in the program and bugs in the set implementation. Other aspects of modularity yield additional advantages that we will discuss in Chapter 7.

Unfortunately, it is not always possible to perform modular analyses. Problems arise, where modules are not completely separated from each other. A modular view requires that changes to the state of a module can only be made by calls to the interface. Often, this can not be guaranteed. When a memory location is reachable through different access paths, this is called aliasing. Aliasing allows to manipulate the heap at one place, causing problems at another. We claim that the extent of problems caused by aliasing rises with the complexity of the data structures employed. For instance, tree data structures suffer more than list structures. To further investigate this proposition, we create RESET, a language with sets as primitives. We specify two semantics for this language. Semantics I provides an idealized view of an implementation of the ADT Set defined in Chapter 3. Semantics II comes a little closer to the list- and tree-based set implementations. Figure 1.2 illustrates this.

Finally, we discuss some existing approaches to control aliasing in such a way that enables modular analysis. We also briefly investigate how modular shape analysis could look like.

1.1 Overview

In Chapter 1 we introduce the topic and give an overview of the thesis. We then go on to describe the foundations of the shape analysis framework underlying our analyses in Chapter 2. Here, we also give a brief description of TVLA, a tool that implements the framework. Chapter 3 consists of a formalization of the Abstract Data Type (ADT) Set. It is motivated by a short introduction to Mathematical Sets and serves as a basis for the

Figure 1.3: Structure of Thesis
following work.
In Chapter 4 we present two C implementations of the ADT Set defined in Chapter 3. We identify a number of data structure invariants specific to the implementations. Then we go on to present a shape analysis implemented in TVLA that checks two of the axioms of the ADT Set. The analyses rely on the data structure invariants to hold at entrance to the analyzed methods, but also show their maintenance throughout the execution of the methods. In Chapter 5 we introduce RESET, an imperative language with sets as primitives. Two semantics are given for this language and formally related. Chapter 6 builds on the second semantics of the previous chapter. We construct a shape analysis for it and use it to analyze a small program. In Chapter 7 we first explore modularity and modular analysis in a general sense. Then we investigate how a modular shape analysis could look like and how our previous shape analyses relate to this. Chapter 8 briefly summarizes the findings and discusses future work. Figure 1.3 illustrates the structure of the thesis.

Appendix A contains proofs of theorems and lemmas of Chapter 5. Source files of our implementations and shape analyses can be found in Appendix B.

2 Shape Analysis Foundations

2.1 Foundations of Shape Analysis

Shape Analysis is concerned with determining "shape invariants", i.e. structural properties of the heap, for programs that manipulate pointers and heap-allocated storage.

Our analyses fit into the Shape Analysis Framework introduced in [SRW02]. Their framework allows to specify the concrete semantics in first-order logic. By interpreting the concrete semantics in a 3 -valued domain sound and precise abstractions can be extracted. We will therefore recapitulate the foundations before describing our analyses. For a more thorough treatment of these foundations consult [SRW02].

2.1.1 Concrete Semantics using 2-Valued Logic

Let $\mathcal{P}=\left\{p_{1}^{a(i)}, \ldots, p_{n}^{a(n)}\right\}$ be a set of predicate symbols. The arity of predicate $p_{i}^{a(i)}$ is $a(i)$.
Definition 1 (Syntax of First-Order Logic with Transitive Closure) The set of firstorder formulae with transitive closure over vocabulary \mathcal{P}, denoted $F(\mathcal{P})$, is defined inductively as follows:

- $\mathbf{0}$ and $\mathbf{1}$ are atomic formulae with no free variables.
- $p_{i}^{a(i)}\left(v_{1}, \ldots, v_{a(i)}\right)$ is an atomic formula with free variables $\left\{v_{1}, \ldots, v_{a(i)}\right\}$.
- $\left(v_{1}=v_{2}\right)$ is an atomic formula with free variables $\left\{v_{1}, v_{2}\right\}$
- $\neg \phi_{1}, \phi_{1} \wedge \phi_{2}, \phi_{1} \vee \phi_{2}$ are formulae with free variables $V_{1}, V_{1} \cup V_{2}, V_{1} \cup V_{2}$, respectively, if ϕ_{1} and ϕ_{2} are formulae with free variables V_{1} and V_{2}, respectively.
- $\forall v . \phi_{1}, \exists v . \phi_{1}$ are formulae with free variables $V_{1} \backslash\{v\}$, if ϕ_{1} is a formula that has free variables V_{1}.
- $\left(T C v_{1}, v_{2}: \phi_{1}\right)\left(v_{3}, v_{4}\right)$ is a formula with free variables $\left(V_{1} \backslash\left\{v_{1}, v_{2}\right\}\right) \cup\left\{v_{3}, v_{4}\right\}$, where V_{1} are the free variables of the formula ϕ_{1} and $v_{3}, v_{4} \notin V_{1}$.

Definition 2 (2-valued Logical Structures) A 2-valued logical structure (also called algebra) over vocabulary \mathcal{P} is a tuple $S=\left\langle U^{S}, \iota^{S}\right\rangle$. The universe U^{S} is a set of individuals and ι^{S} maps each predicate symbol p^{k} to a truth-valued function: $\iota^{S}\left(p^{k}\right):\left(U^{S}\right)^{k} \rightarrow\{0,1\}$.

We denote the set of 2-valued structures over vocabulary \mathcal{P} by 2-STRUCT(P).

Logical Structure						Graphical Representation
indi		x	n	u_{1}		
u_{1}		1	u_{1}	0		
indiv.						
u_{1}						
u_{2}						
indiv.	x	n	u_{1}	u_{2}	u_{3}	
u_{1}	1	u_{1}	0	1	0	
u_{2}	0	u_{2}	0	0	1	
u_{3}	0	u_{3}	0		0	

Figure 2.1: 2-valued logical structures representing lists of length l, with $1 \leq l \leq 3$

Such logical structures are used to represent the stores arising during the execution of programs. They can be graphically represented, following the intuition that unary predicates represent pointer variables and binary predicates represent pointer fields in the heap. A unary predicate is true for the particular heap cell the pointer variable points to. Binary predicates are true for those pairs of heap cells that are linked by the pointer field they represent. Figure 2.1 is an example of such a representation.

Definition 3 (Assignment) An assignment (or valuation) β over a given structure $S=$ $\left\langle U^{S}, \iota^{S}\right\rangle$ is a function that maps free variables to individuals: $\beta:\left\{v_{1}, \ldots v_{n}\right\} \rightarrow U^{S}$.

Definition 4 (Meaning of Formulae) The 2-valued meaning of a formula ϕ in a structure S under assignment β, denoted by $\llbracket \phi \rrbracket_{2}^{S}(\beta)$ is defined inductively. It yields a truth value in $\{0,1\}$.

$$
\begin{aligned}
& \llbracket \mathbf{0} \rrbracket_{2}^{S}(\beta)=0 \text { and } \llbracket \mathbf{1} \rrbracket_{2}^{S}(\beta)=1 \\
& \llbracket p_{i}^{a(i)}\left(v_{1}, \ldots, v_{a(i)}\right) \rrbracket_{2}^{S}(\beta)=\iota^{S}\left(p_{i}^{a(i)}\right)\left(\beta\left(v_{1}\right), \ldots, \beta\left(v_{a(i)}\right)\right) \\
& \llbracket v_{1}=v_{2} \rrbracket_{2}^{S}(\beta)= \begin{cases}1 & \beta\left(v_{1}\right)=\beta\left(v_{2}\right) \\
0 & \beta\left(v_{1}\right) \neq \beta\left(v_{2}\right)\end{cases} \\
& \llbracket \neg \phi_{1} \rrbracket_{2}^{S}(\beta)=1-\llbracket \phi_{1} \rrbracket_{2}^{S}(\beta) \\
& \llbracket \phi_{1} \wedge \phi_{2} \rrbracket_{2}^{S}(\beta)=\min \left(\llbracket \phi_{1} \rrbracket_{2}^{S}(\beta), \llbracket \phi_{2} \rrbracket_{2}^{S}(\beta)\right) \\
& \llbracket \phi_{1} \vee \phi_{2} \rrbracket_{2}^{S}(\beta)=\max \left(\llbracket \phi_{1} \rrbracket_{2}^{S}(\beta), \llbracket \phi_{2} \rrbracket_{2}^{S}(\beta)\right) \\
& \llbracket \forall v \cdot \phi_{1} \rrbracket_{2}^{S}(\beta)=\min _{u \in U S} \llbracket \phi_{1} \rrbracket_{2}^{S}(\beta[v \mapsto u \rrbracket)
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \exists v \cdot \phi_{1} \rrbracket_{2}^{S}(\beta)=\max _{u \in U^{S}} \llbracket \phi_{1} \rrbracket_{2}^{S}(\beta[v \mapsto u\rfloor) \\
& \llbracket\left(T C v_{1}, v_{2}: \phi_{1}\right)\left(v_{3}, v_{4}\right) \rrbracket_{2}^{S}(\beta) \\
& \quad=\max _{n \geq 1, u_{1}, \ldots, u_{n+1} \in U^{S}, \beta\left(v_{3}\right)=u_{1}, \beta\left(v_{4}\right)=u_{n+1} \in\{1, \ldots, n\}} \min \llbracket \phi_{1} \rrbracket_{2}^{S}\left(\beta\left[v_{1} \mapsto u_{i}, v_{2} \mapsto u_{i+1}\right]\right)
\end{aligned}
$$

To express the effect of program statements predicate-update formulae are used. They relate the interpretation of the predicates in \mathcal{P} after the execution of the statement to their interpretation before.

Definition 5 (\mathcal{P} Transformer) Let st be a program statement, and for every k-ary predicate p in vocabulary \mathcal{P}, let $p_{s t}^{\prime}$ be the predicate-update formula for p at statement st over free variables x_{1}, \ldots, x_{k}. Then the \mathcal{P} transformer associated with st, denoted by $\llbracket s t \rrbracket: 2-S T R U C T[\mathcal{P}] \rightarrow 2-S T R U C T[\mathcal{P}]$, is defined as follows.

$$
\llbracket s t \rrbracket(S)=\left\langle U^{S}, \lambda p \cdot \lambda u_{1}, \ldots, u_{k} \cdot \llbracket p_{s t}^{\prime} \rrbracket_{2}^{S}\left(\left[x_{1} \mapsto u_{1}, \ldots, x_{k} \mapsto u_{k}\right]\right)\right\rangle .
$$

To analyze imperative programs in this setting they have to be translated into Control Flow Graphs.

Definition 6 (Control Flow Graph) A Control Flow Graph is a tuple $G=\langle V(G), b g(G), \operatorname{As}(G), I d(G), E(G), T b(G), F b(G)\rangle$, where

- $V(G)$ denotes the set of vertices of G,
- $b g(G) \in V(G)$ denotes the entrance vertex of G,
- As $(G) \subseteq V(G)$ denotes the set of assignment statements that manipulate the state,
- $\operatorname{Id}(G) \subseteq V(G)$ denotes the set of statements that have no effect on the state as well as unconditional branch points,
- $E(G) \subseteq V(G) \times V(G)$ denotes the set of edges of the graph,
- $T b(G) \subseteq E(G)$ denotes the set of edges that represents true branches,
- $F b(G) \subseteq E(G)$ denotes the set of edges that represents false branches.
- cond (w) denotes the formula for the program condition at w.

Figure 2.2 shows a simple C program and a graphical representation of its corresponding Control Flow Graph.

Collecting Semantics. The goal of an analysis is to compute all possible structures arising at a given program point. This is formalized by Collecting Semantics. Let ConcStructSet $[v]$ denote the (possibly infinite) set of structures that may arise on entry to v for

```
void insertElement(List* list, void* element)
{
    List* prev = 0;
    while (list != 0)
    {
        if (compare(list->data, element) == 0)
            return;
        prev = list;
        list = list->next;
    }
}
```


Figure 2.2: C program and corresponding Control Flow Graph
the set of input structures $I n$. Then it can be defined as the least fixed pointed in terms of set inclusion of the following system of equations.

```
ConcStructSet \([v]=\)
\[
\left\{\begin{array}{lll}
\text { In } & \bigcup_{w \rightarrow v \in E(G),}\{\llbracket \in A s(G) \\
& \{\llbracket s t(w) \rrbracket(S) \mid S \in \text { ConcStructSet }[w]\} & \text { (1) } \\
\cup & \bigcup_{w \rightarrow v \in E(G), w \in I d(G)}\{S \mid S \in \text { ConcStructSet }[w]\} & \text { if } v=b g(G) \\
\cup & \bigcup_{w \rightarrow v \in T b(G)}\{S \mid S \in \text { ConcStructSet }[w] \text { and } S \models \operatorname{cond}(w)\} & (3) \\
\cup & \bigcup_{w \rightarrow v \in F b(G)}\{S \mid S \in \text { ConcStructSet }[w] \text { and } S \models \neg \operatorname{cond}(w)\} & \text { (4) }
\end{array}\right\} \quad \text { otherwise. }
\]
```

The effect of assignment statements is captured by (1). In (3) and (4) conditional branches are handled by transferring the specific structures the structures that fulfill the condition associated with the edge.

2.1.2 Abstract Semantics using 3-Valued Logic

As noted before, the Collecting Semantics defined above can yield infinite sets of structures. The least fixed point is not computable in general. In this section we show how 3 -valued logical structures can be used to overcome this problem.

Figure 2.3 shows the semi-bilattice of 3 -valued logic. In addition to the definite truth values 0 and 1 a third indefinite truth value $1 / 2$ is introduced. The information order captures certainty of the information, i.e. $1 / 2$ is less certain than 0 or 1 . In the logical order \wedge and \vee are meet and join of the lattice. Figure 2.4 shows how \wedge and \vee are interpreted in the 3 -valued domain.

Figure 2.3: The semi-bilattice of 3 -valued logic

\wedge	0	$1 / 2$	1					
0	0	0	0					
$1 / 2$	0	$1 / 2$	$1 / 2$					
1	0	$1 / 2$	1	\quad	\vee	0	$1 / 2$	1
:---:	:---:	:---:	:---:					
0	0	$1 / 2$	1					
$1 / 2$	$1 / 2$	$1 / 2$	1					
1	1	1	1					

Figure 2.4: Meaning of \wedge and \vee in the 3 -valued domain

3 -valued logical structures are defined similarly to their 2-valued counterparts:
Definition 7 (3-valued Logical Structures) A 3-valued logical structure (also called algebra) over vocabulary \mathcal{P} is a tuple $S=\left\langle U^{S}, \iota^{S}\right\rangle$. The universe U^{S} is a set of individuals and ι^{S} maps each predicate symbol p^{k} to a truth-valued function:

$$
\iota^{S}\left(p^{k}\right):\left(U^{S}\right)^{k} \rightarrow\{0,1,1 / 2\}
$$

We denote the set of 3-valued structures over vocabulary \mathcal{P} by 3-STRUCT($\mathcal{P})$.
We assume every 3-valued logical structures to include a unary predicate sm. sm stands for "summary node". These are individuals of a 3 -valued structure that possibly represent more than one individual in corresponding 2 -valued structures. Using the $s m$ predicate we can define the 3 -valued meaning of formulae, denoted by $\llbracket \phi \rrbracket_{3}^{S}(\beta)$. It is defined inductively as in the definition for 2 -valued structures, with the following difference:

$$
\llbracket v_{1}=v_{2} \rrbracket_{3}^{S}(\beta)= \begin{cases}0 & \beta\left(v_{1}\right) \neq \beta\left(v_{2}\right) \\ 1 & \beta\left(v_{1}\right)=\beta\left(v_{1}\right) \text { and } \iota^{S}(s m)\left(\beta\left(v_{1}\right)\right)=0 \\ 1 / 2 & \text { otherwise }\end{cases}
$$

We say that S and β potentially satisfy ϕ, denoted by $S, \beta \models_{3} \phi$, if $\llbracket \phi \rrbracket_{3}^{S}(\beta)=1 / 2$ or $\llbracket \phi \rrbracket_{3}^{S}(\beta)=1$. We write $S \models_{3} \phi$ if for every β we have $S, \beta \models_{3} \phi$.

Logical Structure						Graphical Representation
indiv.		x		n	u_{1}	
u_{1}		1		u_{1}	0	4
indiv.	x	sm	n	u_{1}	u_{2}	
$u_{1}$$u_{2}$	1	0	u	0	1/2	(${ }_{4}$
	0	1/2	u^{\prime}	0	1/2	(u) $u^{-n \rightarrow 1} u_{2}$;

Figure 2.5: 3-valued logical structures representing the 2-valued structures of Figure 2.1

As in the case of 2 -valued logical structures, 3 -valued logical structures can be represented graphically. Figure 2.5 illustrates this. Summary nodes are identified by dashed lines.

In order to relate 2 -valued and 3 -valued structures we introduce the concept of embedding.
Definition 8 (Embedding Order) Let $S=\left\langle U^{S}, \iota^{S}\right\rangle$ and $S^{\prime}=\left\langle U^{S^{\prime}}, \iota^{S^{\prime}}\right\rangle$ be two structures, and let $f: U^{S} \rightarrow U^{S^{\prime}}$ be a surjective function. We say that f embeds S in S^{\prime}, denoted by $S \sqsubseteq^{f} S^{\prime}$ if (1) for every predicate symbol $p \in \mathcal{P} \cup\{s m\}$ of arity k and all $u_{1}, \ldots, u_{k} \in U^{S}$,

$$
\iota^{S}(p)\left(u_{1}, \ldots, u_{k}\right) \sqsubseteq \iota^{S^{\prime}}(p)\left(f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right)
$$

and (2) for all $u^{\prime} \in U^{S^{\prime}}$

$$
\left(\left|\left\{u \mid f(u)=u^{\prime}\right\}\right|>1\right) \sqsubseteq \iota^{S^{\prime}}(s m)\left(u^{\prime}\right) .
$$

Condition (2) ensures that if several individuals from U^{S} are mapped to one individual in $U^{S^{\prime}}$ than $s m$ will be $1 / 2^{1}$ in S^{\prime} for that individual.

The definition of Embedding allows the predicates in S^{\prime} to be less precise than they could be regarding their universe. A tight embedding minimizes the loss of information.

Definition 9 (Tight Embedding) A structure $S^{\prime}=\left\langle U^{S^{\prime}}, \iota^{S^{\prime}}\right\rangle$ is a tight embedding of $S=\left\langle U^{S}, \iota^{S}\right\rangle$ if there exists a surjective function $t_{\text {_ embed }:} U^{S} \rightarrow U^{S^{\prime}}$ such that, for every $p \in \mathcal{P}$ of arity k,

$$
\iota^{S^{\prime}}(p)\left(u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right)=\bigsqcup_{\substack{\left(u_{1}, \ldots, u_{k}\right) \in\left(U^{S}\right)^{k}, \text { s.t. } \\ \\ \\ t_{-} \operatorname{embed}\left(u_{i}\right)=u_{i}^{\prime} \in U^{S^{\prime}}, 1 \leq i \leq k}}^{\iota^{S}(p)\left(u_{1}, \ldots, u_{k}\right)}
$$

and for every $u^{\prime} \in U^{S^{\prime}}$,

[^0]$$
\iota^{S^{\prime}}(s m)\left(u^{\prime}\right)=\left(\left|\left\{u \mid t_{-} \operatorname{embed}(u)=u^{\prime}\right\}\right|>1\right) \sqcup \bigsqcup_{\substack{u \in\left(U^{S}\right)^{k}, \text { s.t. } \\ t_{-} \text {embed }(u)=u^{\prime} \in U^{S^{\prime}}}} \iota^{S}(s m)(u) .
$$

Not only do the two embedding definitions define what it means for 2-valued structures to be embedded in 3 -valued structures, they also define embedding of 3 -valued structures in other 3 -valued structures. Embedding allows to define the set of 2-valued concrete structures that a 3 -valued structure represents:

$$
\gamma(S)=\left\{S^{\natural} \in 2 \text {-STRUCT }[\mathcal{P}] \mid \text { there exists a function } f \text {, s.t. } S^{\natural} \sqsubseteq^{f} S\right\} \text {. }
$$

Theorem 1 (Embedding Theorem) Let $S=\left\langle U^{S}, \iota^{S}\right\rangle$ and $S^{\prime}=\left\langle U^{S^{\prime}}, \iota^{S^{\prime}}\right\rangle$ be two structures, and let $f: U^{S} \rightarrow U^{S^{\prime}}$ be a function such that $S \sqsubseteq^{f} S^{\prime}$. Then, for every formula ϕ and complete assignment β for $\phi, \llbracket \phi \rrbracket_{3}^{S}(\beta) \sqsubseteq \llbracket \phi \rrbracket_{3}^{S}(f \circ \beta)$.

Proof:

See [SRW02].
Program analysis can benefit from this theorem. It ensures that any information extracted from an abstract 3 -valued S^{\prime} via a formula ϕ is a conservative approximation of the information extracted from any concrete 2 -valued structure S embedded in S^{\prime}. In particular, a definite value for ϕ in S^{\prime} means that ϕ yields the same definite value in all $S \in \gamma(S)$.

The number of 3 -valued structures above is still unbounded. One way of guaranteeing termination ${ }^{2}$ of a program analysis is to operate on a finite domain. Monotonicity of the updates then ensures termination.

Definition 10 (Bounded Structure) A bounded structure over vocabulary $\mathcal{P} \cup\{s m\}$ is a structure $S=\left\langle U^{S}, \iota^{S}\right\rangle$ such that for every $u_{1}, u_{2} \in U^{S}$, where $u_{1} \neq u_{2}$, there exists an abstraction predicate symbol $p \in \mathcal{A}$ such that $\iota^{S}(p)\left(u_{1}\right) \neq \iota^{S}(p)\left(u_{2}\right)$. Let B-STRUCT[P \cup $\{s m\}]$ denote the set of such structures.

This definition limits the size of the universes to $\left|U^{S}\right| \leq 3^{|\mathcal{A}|}$. Every abstraction predicate can take any of the three truth values for every individual. Canonical Abstraction is a way to obtain such bounded structures.

Definition 11 (Canonical Abstraction) The canonical abstraction of a structure S, denoted by $t_{-} \operatorname{embed}_{c}(S)$, is the tight embedding induced by the following mapping.

$$
t_{-} \operatorname{embed}_{c}(u)=u_{\left\{p \in \mathcal{A} \mid \iota^{S}(p)(u)=1\right\},\left\{p \in \mathcal{A} \mid{ }^{S}(p)(u)=0\right\}}
$$

[^1]| Predicate | Defining Formula | Intended Meaning |
| :--- | :--- | :--- |
| $i s[n](v)$ | $\exists v_{1}, v_{2} \cdot\left(v_{1} \neq v_{2} \wedge n\left(v_{1}, v\right) \wedge n\left(v_{2}, v\right)\right)$ | v is shared. |
| $c[n](v)$ | $\exists v_{1} \cdot\left(n\left(v_{1}, v\right) \wedge n^{*}\left(v_{1}, v_{2}\right)\right)$ | v resides on a cycle. |
| $r[n, x](v)$ for each | $\exists v_{1} \cdot\left(x\left(v_{1}\right) \wedge n^{*}\left(v_{1}, v\right)\right)$ | v is reachable from x via |
| $x \in \operatorname{Var}$ | | $n e x t$-fields. |

Table 2.1: Examples of Instrumentation Predicates
" $u_{\left\{p \in \mathcal{A} \mid \iota^{S}(p)(u)=1\right\},\left\{p \in \mathcal{A} \mid \iota^{S}(p)(u)=0\right\}}$ " is known as the canonical name of individual u.

Instrumentation Predicates. Instrumentation predicates can be used to improve the precision of an analysis. They are predicates defined in terms of core predicates. Core predicates are those that are used to define the semantics of statements. We call the set of core predicates \mathcal{C}. Then the set of predicates \mathcal{P} is disjointly partitioned into \mathcal{C} and the set of instrumentation predicates \mathcal{I}.

Table 2.1 shows some examples of instrumentation predicates and their defining formulae. There are several ways in which instrumentation predicates can increase the precision of an analysis:

1. Evaluating the defining formulae of instrumentation predicates may yield definite values, while the evaluation on the core predicates evaluates to $1 / 2$. In the example structure in Figure 2.6 we might ask whether everything reachable from y is also reachable from x. Without the reachability predicates this question could not be answered.
2. There are less concrete structures represented by a 3 -valued structure if instrumentation predicates have definite values. If $c[n](v)$ is false for all elements of a list, then only concrete structures with acyclic lists are represented by the structure.
3. Instrumentation predicates can be used as abstraction predicates, keeping more precise information about parts of the heap. This is also depicted in Figure 2.6. If the reachability predicates $r[n, x]$ and $r[n, y]$ were not used as abstraction predicates the two summary nodes would be collapsed.

In order to gain more precise analyses through instrumentation predicates, it is usually necessary to devise special update formulae for these predicates. A simple way of creating update-formulae is simply evaluating the defining formula on the updated core predicates. This approach may yield very imprecise answers though. Most of the times an update formula can rely on the previous value of the instrumentation predicate to achieve a more precise result. In [RSL03] an approach is presented to automatically generate precise update formulae.

Figure 2.6: Example Structure with Instrumentation Predicates

One can define a collecting semantics similar to the one for the 2 -valued semantics. This yields very imprecise analyses however. The reason for this is that the abstraction is usually not suited for the update formulae. The heap nodes manipulated are often part of summary nodes. If we wanted to update the structure shown in Figure 2.6 for the statement $\mathrm{y}=\mathrm{y}->\mathrm{n}, y$ would be indefinite and point into the summary node on the right.

Focus. The focus operation tackles this problem. The idea is to make those parts of the heap that are being manipulated concrete. Formally, the focus operation takes a set of formulae and a set of structures and returns a set of structures. The resulting set of structures should represent the same concrete structures as the input structures. In addition the set of formulae provided should evaluate to definite values on the input formulae. In general, an infinite number of structures may be necessary to fulfill this task. [SRW02] presents an algorithm that computes focus for an interesting class of formulae.

Besides implementing focus the question is which formulae to focus on. When applying an update formula, it is necessary that those parts of the heap that are manipulated have definite values. This can be characterized by the L-values of the left-hand side and the R -values of the right-hand side of a statement. For $\mathrm{y}=\mathrm{y}->\mathrm{n}$ this is $\exists v_{1}: y\left(v_{1}\right) \wedge n\left(v_{1}, v\right)$. Applying focus on the structure in Figure 2.6 yields the three structures shown in Figure 2.7.

These structures allow us to apply the update-formulae for the statement to gain more precise results than before. The results are displayed in Figure 2.8. The figure illustrates a problem arising when using working in the 3 -valued domain. It is possible to generate structures that represent no concrete structures. This is the case for the first structure. Some predicates are less precise than they could be regarding the information stored in the instrumentation predicates. The second and third structure in the figure fall into this category. We know that y is functional, that is it can only point to one heap cell at a time. We can also exclude the n-pointer from right to left in the third structure. It would imply a shared heap cell, which is not the case since $i s[n]$ is false.

Coerce. The coerce operation sharpens such structures and eliminates structures that do not represent any concrete structures. It uses compatibility constraints to do so.

Figure 2.7: Structures after Focus

Figure 2.8: Structures after Update

Figure 2.9: Structures after Coerce
Definition 12 (Compatibility Constraint) A compatibility constraint is a term of the form $\phi_{1} \triangleright \phi_{2}$, where ϕ_{1} is an arbitrary formula, and ϕ_{2} is either an atomic formula or the negation of an atomic formula. A 3-valued structure S and an assignment β satisfy $\phi_{1} \triangleright \phi_{2}$, denoted by $S, \beta \models \phi_{1} \triangleright \phi_{2}$, if whenever β is an assignment such that $\llbracket \phi_{1} \rrbracket_{3}^{S}(\beta)=1$, we also have $\llbracket \phi_{2} \rrbracket_{3}^{S}(\beta)=1$. We say that S satisfies $\phi_{1} \triangleright \phi_{2}$, denoted by $S \models \phi_{1} \triangleright \phi_{2}$, if for every β we have $S, \beta \models \phi_{1} \triangleright \phi_{2}$.

The algorithm for coerce discards the structure if ϕ_{1} evaluates to 1 while ϕ_{2} evaluates to 2. If ϕ_{2} evaluates to $1 / 2$ it changes the interpretation of the predicate in such a way that makes ϕ_{2} evaluate to 1 . When ϕ_{2} is an equality it adjusts the $s m$-predicate.

There are two sources of compatibility constraints:

1. The defining formulae of instrumentation predicates, and
2. additional formulae that formalize the properties of stores that are compatible with the semantics of C. For instance, the fact that pointer variables can point to only one heap cell.

If we apply coerce to the structures arising after applying the update-formulae (Figure 2.8) we arrive at the two structures depicted in Figure 2.9. The top-most structure was eliminated because the summary node on the right is definitely not reachable from x or y. The two other structures were sharpened.

Collecting Semantics in the 3-valued Domain. We are now ready to define an abstract semantics, which includes focus and coerce. Focus and coerce are used in the way described above.

```
StructSet \([v]=\)
```


2.2 TVLA - Three-Valued-Logic Analyzer

TVLA implements the shape analysis framework from [SRW02] described above. It was developed by Tal Lev-Ami at Tel-Aviv University for his Master's thesis [LA00, LAS00]. Since then it has been consistently extended. This includes new abstraction mechanisms, an improved focus operation that can be applied to arbitrary formulae, an enhanced version of Coerce, automatic generation of update formulae for instrumentation predicates [RSL03] by finite differencing, and the possibility of analyzing concurrent systems.

The TVLA distributions contain sample analyses dealing with singly- and doubly-linked lists, sorting programs, etc. Since the semantics of statements can be separated from the concrete programs that are analyzed, it is possible to reuse them in new analyses. This also includes instrumentation predicates, because they are only concerned with the data structures analyzed and not the specific algorithms.

3 Sets as Data Abstractions

In this chapter we would like to formally define the Abstract Data Type (ADT) Set. As a motivation, it is interesting to examine mathematical sets, because they share some key properties with the ADT we want to define.

3.1 Mathematical Sets

Ordinarily, one thinks of sets as collections of objects. The objects of a set are called members or elements. Elements of sets can be anything, letters of the alphabet, numbers, people, or sets themselves. There are different ways of describing sets:

- By listing its elements:

$$
A=\{9,16,25\}, \text { or } B=\{\{9\},\{3,7,8\}\}
$$

- By specifying a property of its elements: $C=\{x \in \mathbb{N} \mid 3 \leq x \leq 5\}$, or $D=\left\{y^{2} \mid y \in C\right\}$, or $E=\{x \in \mathbb{Z} \mid x$ is odd $\}$

The same set can be expressed in many ways. If the sets A and D are equal, we write $A=D$. The order of elements in the description or the repetition of elements have no effect: $\{4,3,5\}=\{5,4,3\}=\{3,3,3,4,4,5\}=C$. Two sets are considered equal if they have the same members. This is known as extensionality.

Set membership is symbolized by \in.

- $9 \in A$, but not $9 \in B$, written $9 \notin B$,
- $\{9\} \in B$ and blue $\notin D$.

Sets can also contain no elements at all. Such a set is called the empty set, denoted by \varnothing. The cardinality of \varnothing is 0 . In general, the cardinality of a set A is determined by the number of distinct elements of A. It is denoted by $|A|$. For example:

- $|A|=|C|=|D|=3$,
- $|B|=2$, not 4 as one could possibly think,
- $|E|=\aleph_{0}$, an example of an infinite set.

If every member of a set A is also a member of a set B, then A is said to be a subset of B, written $A \subseteq B$. This may not be confused with set membership:

- While $\{9\} \notin A$, we have $\{9\} \subseteq A$.
- On the other hand $\{9\} \in B$, but $\{9\} \nsubseteq A$,
- and $\{9\} \in\{9,\{9\}\}$ and $\{9\} \subseteq\{9,\{9\}\}$.

The empty set is a subset of every set S and every set S is a subset of itself:

- $\varnothing \subseteq S$
- $S \subseteq S$

One can construct new sets by combining existing sets by union and intersection. The union of two sets A, B, denoted by $A \cup B$, contains exactly the elements of A and B. The intersection of two sets $A, B, A \cap B$, consists of the elements that A and B have in common. For example:

- $A \cap B=\varnothing, A \cup B=\{9,16,25,\{9\},\{3,7,8\}\}$,
- $E \cap A=\{9,25\}, E \cup A=\{x \in \mathbb{Z} \mid x=16$ or x is odd $\}$.

The view of sets presented above stems from the work of Cantor in the 19th century. It is now called Naïve Set Theory. The intuitive ideas behind it are still present, though. The possibility to specify sets by a property of their elements led to contradictions. In 1901, Bertrand Russell discovered what is now known as Russell's paradox: Consider the set R to be "the set of all sets that do not contain themselves". Formally:

$$
R=\{E \mid E \notin E\}
$$

Then, we can ask whether R is an element of itself. If $R \in R$, then by definition of R we have $R \notin R$. If we assume $R \notin R$, then $R \in R$ by definition.

There were efforts to overcome this problem and other contradictions. Today, the ZermeloFraenkel axioms of set theory ($Z F$) are the standard axioms of axiomatic set theory, which forms the basis of all ordinary mathematics. An alternative axiom system is the Von Neumann-Bernays-Gödel set theory ($N B G$) which is a conservative extension of ZF [Ebb94, Obe94].

Russell and Whitehead also proposed a solution in their Principia Mathematica introducing Type Theory. A hierarchy of types ensured that contradictions were prevented. Whenever set inclusions of the form $A \in B$ occurred in the definitions of sets, the type of A has to be "smaller" than the type of B. This prohibits circular inclusion relations, especially the primitive case $E \in E$. The approach was not considered flexible enough for set theory in that it constrained the definition of sets too strongly. Type theory found practical applications in programming languages, however. For the ADT Set Russell and Whitehead's system seems appropriate though. When using sets as data abstractions it is sensible to only store elements of one particular type in a set.

3.2 Abstract Data Type Set

We now go on to define what we consider to be the Abstract Data Type (ADT) Set. It will serve as a reference for the implementations introduced later. The definition should be independent of possible implementations. Notice that a concrete implementation would also constitute a formal specification. It would however contain many design decisions that are not specific to the data type itself.

A method widely used for the specification of data types is known as Algebraic Specification of Data Types [EM85, EM90, LEW97]. Here, a specification consists of a signature and axioms. The signature introduces operations on the data type, while the axioms capture the meaning of the given operations. Data Types defined in this way are often called Abstract Data Types. This is for three reasons:

- The specification is concerned with the data type itself as an abstract mathematical object and not with its implementation by a concrete program in a particular programming language.
- Specifications may be incomplete by only partially specifying the meaning of operations.
- They maybe defined in terms of other data types that serve as parameters. This is also called generic specification.

A typical first example of this kind of specification is the ADT Stack. Its signature contains four functions and one predicate. We use the notation of $\left[\mathrm{BRS}^{+} 00\right]$.

constants	EmptyStack	$:$					
functions	Push	$:$	stack	\times	element	\rightarrow	set
	Pop	$:$	stack			\rightarrow	stack
	Top	$:$	stack			\rightarrow	element
predicates	IsEmpty	$:$	stack			\rightarrow	Bool

To give meaning to these symbols axioms are provided:

$$
\begin{array}{lc}
\text { variables } & s: \text { stack } \\
& a: \text { element } \\
\text { axioms } & \text { IsEmpty }(\text { EmptyStack })=\text { True, }, \\
& \operatorname{IsEmpty}(\operatorname{Push}(\text { s,a) })=\text { False, } \\
& \operatorname{Pop}(\operatorname{Push}(s, a))=s, \\
& \operatorname{Top}(\operatorname{Push}(s, a))=a .
\end{array}
$$

Note that this example covers all aspects of abstraction described above. It abstracts from implementation issues. Its specification is in fact incomplete: Neither Pop(EmptyStack) nor Top(EmptyStack) are constrained by the axioms. The definition depends on a parameter type element. The axioms make use of equality on that type in the last axiom.

While we easily grasp an intuitive meaning of these specifications, it is of course profitable to give a formalization of the concept. We will not go into detail about this since we do not rely on the precise definitions in the following chapters. The semantics of such a specification is a set of many-sorted algebras. An algebra belongs to this set if it is a model of the axioms of the specification. The axioms are implicitly universally quantified. Usually, there are many non-isomorphic models of a given specification reflecting the incompleteness of the definition. The interested reader may consult [EM85] and [LEW97] for an in-depth treatment of the topic.

We are now ready to specify the ADT Set in these terms. The full specification is displayed in Table 3.1. Our specification is parameterized by an element type. This could also be instantiated with a set itself, building sets of sets of some primitive type, and so on. We are assuming an existing specification of the natural numbers nat.

The empty set is provided as a constant. Other sets can be constructed by inserting and removing elements using .insert (\cdot) and .remove (\cdot). The . selectAndRemove function returns an element and removes it from the set. It can be used to iterate over a set. The . sizeOf function returns the cardinality of the set as a natural number. The \in predicate allows to test set membership. \subseteq and $=$ correspond to subset and equality of sets.

Most of the axioms are straightforward. We distinguish equality on sets =, equality on elements $=e l$, and equality on natural numbers $=_{n a t}$. Axiom (1) assures that every possible set can be constructed by applications of \varnothing and .insert. In axiom (5) we only have an implication because the .selectAndRemove function chooses an element nondeterministically. Axioms (6) and (7) correspond to the extensionality axiom of set theory. Axioms (8)-(13) deal with the cardinality of sets. The axioms are complete in the sense that the meaning of arbitrary formulae over the given alphabet (the functions and predicates of the ADT specification) can be derived.

```
set \(=\)
begin generic specification
    parameter elemen
    using nat
    sorts set
    constants \(\quad \varnothing\) set
    functions \(\quad . \operatorname{insert}(\cdot) \quad\) set \(\times\) element \(\rightarrow\) set
                        ..remove (.) : set \(\times\) element \(\rightarrow\) set
                        \(\cdot\).selectAndRemove : set \(\quad \rightarrow\) element \(\times\) set
                        \(\cdot\).size0f : set \(\rightarrow\) nat
    predicates
\begin{tabular}{ccccc}
\(\cdot \in\). & \(:\) & element & \(\times\) & set \\
\(\cdot \subseteq\) & \(:\) & set & \(\times\) & set
\end{tabular}
    variables
        \(s, s^{\prime} \quad: \quad\) set
                                \(a, b \quad: \quad\) element
axioms set generated by \(\varnothing\), insert;
\[
\begin{equation*}
\neg(a \in \varnothing), \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
a \in s . \operatorname{insert}(b) \leftrightarrow a={ }_{e l} b \vee a \in s, \tag{2}
\end{equation*}
\]
\[
\begin{equation*}
a \in s . \operatorname{remove}(b) \leftrightarrow a \neq e l b \wedge a \in s \tag{4}
\end{equation*}
\]
\(\left(a, s^{\prime}\right)=s\).selectAndRemove \(\rightarrow a \in s \wedge a \notin s^{\prime} \wedge s^{\prime}\). \(\operatorname{insert}(a)=s\),
\(s \subseteq s^{\prime} \leftrightarrow a \in s \rightarrow a \in s^{\prime}\),
\(s=s^{\prime} \leftrightarrow s \subseteq s^{\prime} \wedge s^{\prime} \subseteq s\),
\(\varnothing\).sizeOf \(=\) nat 0 ,
\(s\).insert \((b)\).sizeOf \(=_{\text {nat }} s\). sizeOf \(\leftrightarrow b \in s\),
\(s . \operatorname{insert}(b)\).sizeOf \(={ }_{n a t} s\). sizeOf \(+1 \leftrightarrow \neg(b \in s)\),
\(s\). remove \((b)\).sizeOf \(={ }_{n a t} s\). sizeOf \(\leftrightarrow \neg(b \in s)\),
\(s\). remove \((b)\).sizeOf \(={ }_{\text {nat }} s\). sizeOf \(-1 \leftrightarrow b \in s\), \(\left(a, s^{\prime}\right)=s\). selectAndRemove \(\rightarrow s^{\prime}\). sizeOf \(={ }_{n a t} s\). sizeOf -1.
end generic specification
```

Table 3.1: ADT Set

4 Shape Analysis of Implementations

In this chapter we analyze two prototypical C implementations of the ADT Set. One implementation is based on singly-linked lists, the other on binary trees. After briefly introducing parts of the two implementations, we proceed to describe our analyses. The main goal of the analyses is to prove that the implementations comply with the ADT specification given in Chapter 3. The implementations each contain the two methods, insertElement, removeElement and the function isElement. They implement the $\cdot . \operatorname{insert}(\cdot), \cdot \operatorname{remove}(\cdot)$ functions and the $\cdot \epsilon \cdot$ predicate, respectively. We chose to show the following two axioms, since they capture the most important aspects of the ADT Set:

$$
\begin{align*}
& a \in s . \operatorname{insert}(b) \leftrightarrow a=_{e l} b \vee a \in s, \tag{3}\\
& a \in s . \operatorname{remove}(b) \leftrightarrow a \neq e l \tag{4}\\
& b \wedge a \in s
\end{align*}
$$

Our analyses are conducted using TVLA [LAS00] and are based on previous analyses on lists and trees contained in the TVLA 2 distribution.

4.1 List-based Implementation

```
typedef struct List
{
    void* data;
    struct List* next;
} List;
typedef struct Set
{
    List* list;
    int (seompare)(voidt, voidt);
    int size;
} Set;
```

```
int isElement(Set* set, void* element)
{
    List* list = set->list;
    while (list != 0)
    {
        if (compare(list->data, element) == 0)
            return 1;
        list = list->next;
    }
    return 0;
}
```

(a)
(b)

Figure 4.1: C structure declarations for Lists and Sets and C source of membership test
Our first set implementation uses singly-linked lists to store the elements. It also maintains the size of the current set. The structure declarations are visible in Figure 4.1. When allocating such a set, a compare-function has to be given, that establishes an equivalence
relation on the data elements.

Figure 4.1 also shows the code for testing set membership. The method simply iterates over the list, comparing each item with the element that is tested for set membership.

```
void insertElement(Set* set, void* element)
{
    List* list = set->list;
    List* prev = 0;
    while (list != 0)
    {
        if (compare(list->data, element) == 0)
                return;
        prev = list;
        list = list->next;
    }
    List* newList = (List*)malloc(sizeof(List));
    newList->data = element;
    newList->next = 0;
    set->size++;
    if (prev == 0) //list is empty
    {
        set->list = newList;
    }
    else //append item to list
    {
    { prev->next = newList;
    }
}
    {
(a)
```

```
void* removeElement(Set* set, void* element)
```

void* removeElement(Set* set, void* element)
{
{
List* temp;
List* temp;
List* list = set->list;
List* list = set->list;
if (list == 0)
if (list == 0)
return;
return;
*
*
if (compare(list->data, element) == 0)
if (compare(list->data, element) == 0)
{
{
set->size--;
set->size--;
set->list = list->next;
set->list = list->next;
free(list);
free(list);
}
}
else
else
while (list->next != 0)
while (list->next != 0)
{
{
{
{
void* deletedElement = list->next->data;
void* deletedElement = list->next->data;
set->size--;
set->size--;
temp = list->next->next;
temp = list->next->next;
free(list->next);
free(list->next);
list->next = temp;
list->next = temp;
return deletedElement;
return deletedElement;
}
}
list = list->next;
list = list->next;
}
}
}
}
(b)

```
```

 ist* temp;
    ```
    ist* temp;
        if (compare(list->next->data, element) == 0)
```

 if (compare(list->next->data, element) == 0)
    ```

Figure 4.2: C source of Insertion and Removal methods
Figure 4.2 shows the implementations of the insertion and removal methods. The insertion method iterates over the list until it either finds the element or reaches the final element of the list, indicated by a null-pointer in the next-field. If the element was not found it is appended at the end. Removal works similarly. When the element is found, it is decoupled from the list and the memory is freed.

\subsection*{4.1.1 Data Structure Invariants}

Our analyses rely on a number of data structure invariants at entrance to the methods. Showing their maintenance is part of the proof. By data structure invariants we mean invariants that are related directly to the concrete data structure employed to implement the ADT Set. In this case properties of singly-linked lists:
- The list is acyclic
- The list does not contain any duplicate elements

We use instrumentation predicates to capture these properties formally using first-order logic.

\subsection*{4.2 Tree-based Implementation}

As in the list-based case, a compare-function is needed. This time it has to implement a reflexive total order. This is necessary, to build an ordered tree. Figure 4.3 shows the structure declarations. Every node in the tree stores one of the set elements and maintains pointers to two children nodes left and right.
```

typedef struct Tree
{
void* data;
struct Tree* left;
struct Tree* right;
} Tree;
typedef struct Set
{
Tree* tree;
int (*compare)(void*, void*);
int size;
} Set;

```
```

int isElement(Set* set, void* element)
{
Tree* tree = set->tree;
while (tree != 0)
{
if (compare(tree->data, element) == 0)
return 1;
else if (compare(tree->data, element) < 0)
tree = tree->left;
else
tree = tree->right;
}
return 0;
}

```
(a)
(b)

Figure 4.3: C structure declarations for Trees and Sets and C source of isElement test
Figure 4.3 also contains the source of the set membership test. The method simply traverses the tree until it either finds the element or reaches a leaf node. The source of the insertion and removal methods on trees can be found in the appendix, since it is too large to be dealt with here. We restrict ourselves to mentioning the main ideas of the two algorithms. New elements are always inserted as new leaf nodes, by traversing the tree to the correct position. While insertion of elements if fairly easy and quite similar to its list pendant, removal of elements is a non-trivial task. Figure 4.4 illustrates this. Removing elements that are stored in leaf nodes is simple (left). They can simply be decoupled from their respective parent nodes. If the node has one child, we can connect this child at the place of the node to its former parent node (middle). The most complicated case arises when the particular node has two child nodes (right). In this case, we have to find another node in the tree to replace the element node. This node has to be smaller than all nodes on the right and greater than all nodes on the left. There are two ways to find such an element. Either one can take the right-most element of the left subtree or the left-most


Figure 4.4: Removal from Ordered Tree
element of the right subtree. We chose to always take the right-most element of the left subtree. In addition, there are some special cases of the latter case. For instance, if the root of the left subtree is already the right-most element of the left subtree.

\subsection*{4.2.1 Data Structure Invariants}

In order to prove our ADT Set axioms we need to maintain two data structure invariants:
- The structure representing the set is a tree

Out of many equivalent definitions for "binary treeness", we chose the following: Whenever an element is reachable from the left child of a node in the structure, then it is not reachable from the right child, and vice versa.
- The tree is ordered

Every element reachable from the left child is smaller and every element reachable from the right child is greater. This implies that the tree does not contain duplicate elements. It also implies the first data structure invariant. It is still useful to consider the first invariant, because it may help in proving this one.

Again, we used instrumentation predicates to formalize the two invariants using first-order logic. Proving the latter proved to be quite difficult. It is a global property, i.e. it does relate elements in the tree that are not directly connected. We will go into more detail about this in the analysis section.

\subsection*{4.3 Shape Analysis}

To prove the ADT Set axioms we perform three analyses for each implementation. The analyses of the insertion methods prove the following:
\[
\text { isElement }(a, s . \text { insertElement }(b)) \leftrightarrow a==_{e l} b \vee i s E l e m e n t(a, s)
\]

Notice the difference compared with the corresponding axiom (3). The instrumentation predicate isElement replaces the \(\cdot \in \cdot\) predicate. That is we prove the property of the insertion method in terms of an instrumentation predicate. The same holds for the removal methods and axiom (4). There, we prove:
\[
i s E l e m e n t(a, s . r e m o v e E l e m e n t ~(b)) \leftrightarrow a \neq{ }_{e l} b \wedge i s E l e m e n t(a, s)
\]

To conclude the proofs we show that the isElement functions in both implementations are equivalent to the instrumentation predicate isElement:
\[
i s E l e m e n t(a, s) \leftrightarrow s . i s E l e m e n t(a)
\]

Combining this equivalence with the two preceding proofs yields:
\[
\begin{aligned}
& s . \operatorname{insertElement}(b) . \operatorname{isElement}(a) \leftrightarrow a=_{e l} b \vee s \text {.isElement }(a) \\
& s . r e m o v e E l e m e n t ~ \\
& (b) . \operatorname{isElement}(a) \leftrightarrow a \neq e l b \wedge s \text {.isElement }(a)
\end{aligned}
\]

These two equivalences correspond directly to axioms (3) and (4).

\subsection*{4.3.1 Shape Analysis of List-based Implementation}

Our analysis is based on existing analyses on lists and trees. We borrowed the concrete semantics of most of the statements from these. The following table shows how we represent the state by logical predicates.
\begin{tabular}{|l|l|}
\hline Predicate & Intended Meaning \\
\hline \hline\(x(v)\) for each \(x \in\) Var & Pointer variable \(x\) points to heap cell \(v\). \\
\(n\left(v_{1}, v_{2}\right)\) & The next selector of \(v_{1}\) points to \(v_{2}\). \\
\(d e q\left(v_{1}, v_{2}\right)\) & The data-fields of \(v_{1}\) and \(v_{2}\) are equal. \\
\hline\(i s S e t(v)\) & \(v\) represents a set. \\
\(\operatorname{or}[n, x](v)\) for each \(x \in \operatorname{Var}\) & \(v\) was reachable from \(x\) via next-fields. \\
\hline
\end{tabular}

As depicted, pointer variables are represented by unary predicates. The next-field is modeled by a binary predicate. Since we can only model the structure of the heap by these predicates, primitive values have to be dealt with differently. Abstracting from the concrete values of the data-fields, we capture the equivalence relation between data-fields by the binary predicate deq. This corresponds to the compare-function needed in the implementation. To differentiate between set locations and other locations in the heap, the isSet
predicate is used. To be able to relate elements contained in the list before the execution of one of our procedures with their output structures, we mark elements reachable from \(x\) via next-fields using the or \([n, x]\) predicate.

While the above core predicates suffice to define the concrete semantics of all the statements, we need additional instrumentation predicates to gain precision.
\begin{tabular}{|c|c|c|}
\hline Predicate & Defining Formula & Intended Meaning \\
\hline \[
\begin{aligned}
& \hline i s[n](v) \\
& c[n](v) \\
& t[n]\left(v_{1}, v_{2}\right) \\
& \\
& r[n, x](v) \text { for each } \\
& x \in \operatorname{Var}
\end{aligned}
\] & \[
\begin{aligned}
& \exists v_{1}, v_{2} \cdot\left(v_{1} \neq v_{2} \wedge n\left(v_{1}, v\right) \wedge n\left(v_{2}, v\right)\right) \\
& \exists v_{1} \cdot\left(n\left(v_{1}, v\right) \wedge n^{*}\left(v_{1}, v_{2}\right)\right) \\
& n^{*}\left(v_{1}, v_{2}\right) \\
& \exists v_{1} \cdot\left(x\left(v_{1}\right) \wedge t[n]\left[v_{1}, v\right)\right)
\end{aligned}
\] & \begin{tabular}{l}
\(v\) is shared. \\
\(v\) resides on a cycle. \\
Transitive reflexive closure of next. \\
\(v\) is reachable from \(x\) via next-fields.
\end{tabular} \\
\hline noeq \([\) deq, \(n\) ] (v) & \[
\begin{aligned}
& \forall v_{1} \cdot\left(\left(\left(t[n]\left(v_{1}, v\right) \vee t[n]\left(v, v_{1}\right)\right) \wedge v_{1} \neq v\right) \rightarrow\right. \\
& \left.\left(\neg \operatorname{deq}\left(v_{1}, v\right) \wedge \neg \operatorname{deq}\left(v, v_{1}\right)\right)\right)
\end{aligned}
\] & The data-field of \(v\) is different from the data-fields of locations that can reach \(v\) and that are reachable from \(v\). \\
\hline \begin{tabular}{l}
validSet( \(v\) ) \\
isElement \(\left(v_{1}, v_{2}\right)\)
\end{tabular} & \[
\begin{aligned}
& i s S e t(v) \wedge \operatorname{noeq}[\operatorname{deq}, n](v) \\
& \operatorname{isSet}\left(v_{2}\right) \wedge \exists v \cdot\left(t[n]\left(v_{2}, v\right) \wedge \operatorname{deq}\left(v_{1}, v\right) \wedge v \neq\right. \\
& \left.v_{2}\right)
\end{aligned}
\] & \begin{tabular}{l}
\(v\) represents a valid set (no duplicate entries). \\
\(v_{1}\) is an element of set \(v_{2}\).
\end{tabular} \\
\hline
\end{tabular}

The first four of these instrumentation predicates capture general properties of the shape of the heap. They have been used in previous analyses of list-manipulating programs. \(c[n]\) covers the acyclicity data structure invariant mentioned in the implementation section.

The noeq \([d e q, n]\) predicate is tailored specifically to the current task. It expresses that no two elements in the list have equal data-fields. The definition comprises both directions, i.e. both elements reachable from \(v\) and elements from which \(v\) is reachable. This actually makes it easier to reestablish the property when manipulating the list. It is a formalization of the second data structure invariant for lists. validSet does not help to increase precision. It only increases the readability of the output structures.

To capture our notion of set membership we define the isElement-predicate. \(v_{1}\) is an element of set \(v_{2}\) if its data-field is equal to one of the nodes reachable from \(v_{2}\). Our analysis shows that the effect of the insertion and removal methods on set membership, expressed by isElement conforms to the ADT Set axioms.

Our input structures cover all possible lists representing sets pointed to by set. element points to the element that shall be inserted into the set. Figure 4.5 displays these structures. In (a) set is empty. In (b) set is non-empty and set membership of element is
unknown, isElement's value is indefinite for the nodes pointed to by element and set.


Figure 4.5: Input Structures for List-based Insertion and Removal

\section*{Insertion}

Running the analysis for insertion yields three output structures that are shown in Figure 4.6. All of the resulting structures fulfill the data structure invariants, i.e. noeq[deq, \(n\) ] is true for the set and \(c[n]\) is false everywhere. Also, isElement is true for the nodes pointed to by element and set. In addition, the or \([n\), set \(]\)-predicate indicates that elements which were formerly reachable from set are still reachable after the execution of setInsert.

Looking at the structures one can identify the different cases that the insertion method has to deal with. Structure (a) corresponds to the empty set as input structure. In structure (b) a new element had to be appended to the list, because the data-field of element is not equal to any of the original elements of the list (the deq predicate is false). In structure (c) element was already contained in the list, indicated by the isElement-predicate.

\section*{Removal}

When translating the C code into a Control Flow Graph in TVLA, we omitted the deallocation of the element in the list. This is only for illustration purposes.

Running setRemove results in four output structures displayed in Figure 4.7. Again, the maintenance of the data structure invariants is proven: noeq \([d e q, n]\) is true and \(c[n]\) is false


Figure 4.6: Output Structures for List-based Insertion
everywhere. The element has indeed been removed from the list. This can be observed by the isElement-predicate. Other elements of the set are still contained, as indicated by the or \([n, s e t]\)-predicate.

Structures (a) and (c) correspond to the case where element was not contained in the set before. The two other structures (a) and (d) reflect the case where element was indeed part of the set. The abstraction also distinguishes between empty (c and d) and non-empty sets ( a and b).

\section*{Membership Test}

We omit to display the output structures of this analysis, since the routine is not manipulating the heap at all. The analysis checked that our isElement function returns true if and only if the isElement-predicate holds. This is done by separating the structures into those that reach a point where true is returned and those structures that reach a point where false is returned. By this, we establish a connection between the different analyses. The two other analyses on list insertion and removal only proved correctness in terms of the isElement-predicate. The current analysis shows that this was just.

\subsection*{4.3.2 Shape Analysis of Tree-based Implementation}

The domain is represented in a similar way as in the list-based case. Instead of having a next-predicate, left- and right-predicates are used to model the left- and right-fields in the tree. The left-predicate is also used to model the tree-field in the set structure to minimize the number of predicates. The tree-field only occurs at most once in all of the structures.


Figure 4.7: Output Structures for List-based Removal
\begin{tabular}{|l|l|}
\hline Predicate & Intended Meaning \\
\hline \hline\(x(v)\) for each \(x \in\) Var & Pointer variable \(x\) points to heap cell \(v\). \\
\(\operatorname{sel}\left(v_{1}, v_{2}\right)\) for each sel \(\in\{\) left,right \(\}\) & The left (right) selector of \(v_{1}\) points to \(v_{2}\). \\
dle \(\left(v_{1}, v_{2}\right)\) & \(v_{1}->\) data \(\leq v_{2}->\) data.. \\
\hline or \([x](v)\) for each \(x \in\) Var & \(v\) was reachable from \(x\) via left- and right-fields. \\
isSet \((v)\) & \(v\) represents a set. \\
\hline
\end{tabular}

As noted in the implementation section, an ordering relation is needed here. It is modeled by the dle-predicate, which is assumed to be reflexive and transitive during the analysis. or \([x]\) and \(i s S e t\) have the same meaning as before.

While the core predicates used to model the domain were very similar to the list-based case, the choice of instrumentation predicates was quite different. We separate them into two parts. One is solely concerned with the structure of the trees. The other also deals with ordering.
\begin{tabular}{|c|c|c|}
\hline Predicate & Defining Formula & Intended Meaning \\
\hline down( \(v_{1}, v_{2}\) ) & \(\operatorname{left}\left(v_{1}, v_{2}\right) \vee \operatorname{right}\left(v_{1}, v_{2}\right)\) & The union of the two selector predicates left and right. \\
\hline downStar \(\left(v_{1}, v_{2}\right)\) & down \({ }^{*}\left(v_{1}, v_{2}\right)\) & Records reachability between tree nodes. \\
\hline \begin{tabular}{l}
downStar \([\operatorname{sel}]\left(v_{1}, v_{2}\right)\) \\
for each sel \(\in\) \\
\{left, right \(\}\)
\end{tabular} & \(\exists v .\left(\operatorname{sel}\left(v_{1}, v\right) \wedge \operatorname{down}^{*}\left(v, v_{2}\right)\right)\) & Remembers the first selector needed to reach \(v_{2}\) from \(v_{1}\). \\
\hline \(r[x](v)\) for each \(x \in\) Var & \(\exists v_{1} \cdot\left(x\left(v_{1}\right) \wedge\right.\) downStar \(\left.\left(v_{1}, v\right)\right)\) & \(v\) is transitively reachable from \(x\). \\
\hline treeNess & \[
\begin{array}{ll}
\forall v_{1}, v_{2}, v \cdot\left(\left(\text { downStar }[\text { left }]\left(v, v_{1}\right) \wedge\right.\right. \\
\text { downStar } \left.[\text { right }]\left(v, v_{2}\right)\right) & \Rightarrow \\
\left(\neg \text { downStar }\left(v_{1}, v_{2}\right)\right. & \wedge \\
\left.\left.\neg \text { downStar }\left(v_{2}, v_{1}\right)\right)\right) & \wedge
\end{array}
\] & The heap consists of trees. \\
\hline
\end{tabular}

The two downStar \([\) sel \(]\)-predicates record reachability between tree-nodes, where the first selector on the path is sel. In ordered trees this determines the relation between the elements in the tree. To be able to check whether the ordering is maintained, it is important to keep this relation precise for elements that are manipulated. treeNess records the first data structure invariant mentioned in the implementation section. We decided to make treeNess a global nullary predicate to reduce the size of the domain. There is a drawback to this approach however. It is nearly impossible to reestablish the property once it is violated, because we lose information about parts of the heap that still satisfy the property. A unary treeNess predicate would be able to capture local violations and make it easier to reestablish the property after it was temporarily destroyed. The methods that we checked maintain treeNess in the entire heap permanently allowing to use the nullary predicate.
\begin{tabular}{|c|c|c|}
\hline Predicate & Defining Formula & Intended Meaning \\
\hline \[
\begin{array}{ll}
\hline \hline d l e[x, l e f t](v) & \text { for } \\
\text { each } x \in \text { Var } &
\end{array}
\] & \[
\left.\begin{array}{l}
\hline \exists v_{1} \cdot\left(x\left(v_{1}\right)\right. \\
\left.\neg \text { dle }\left(v_{1}, v\right)\right)
\end{array}\right) \quad \text { dle }\left(v, v_{1}\right) \quad \wedge
\] & The data-field of \(v\) is less than the data-field of \(v_{1}\), where \(v_{1}\) is pointed to by \(x\). \\
\hline \(d l e[x, r i g h t](v) \quad\) for each \(x \in\) Var & \[
\begin{aligned}
& \exists v_{1} \cdot\left(x\left(v_{1}\right)\right. \\
& \left.\operatorname{dle}\left(v_{1}, v\right)\right)
\end{aligned} \wedge \quad \neg \operatorname{dle}\left(v, v_{1}\right) \quad \wedge
\] & The data-field of \(v\) is greater than the datafield of \(v_{1}\), where \(v_{1}\) is pointed to by \(x\). \\
\hline inOrder[dle] & \(\forall v_{2}, v_{4} \cdot\left(\right.\) downStar \([l e f t]\left(v_{2}, v_{4}\right) \Rightarrow\) \(\left.\left(\operatorname{dle}\left(v_{4}, v_{2}\right) \wedge \neg \operatorname{dle}\left(v_{2}, v_{4}\right)\right)\right) \wedge\) \(\forall v_{2}, v_{4} \cdot\left(\right.\) downStar \([\) right \(]\left(v_{2}, v_{4}\right) \Rightarrow\) \(\left.\left(\neg d l e\left(v_{4}, v_{2}\right) \wedge d l e\left(v_{2}, v_{4}\right)\right)\right)\) & All the trees in the heap are in order. \\
\hline isElement ( \(v_{1}, v_{2}\) ) & \[
\begin{aligned}
& \operatorname{isSet}\left(v_{2}\right) \\
& \exists v_{\text {equal }} .\left(\text { downStar }\left(v_{2}, v_{\text {equal }}\right)\right. \\
& \operatorname{dle}\left(v_{\text {equal }}, v_{1}\right) \wedge \operatorname{dle}\left(v_{1}, v_{\text {equal }}\right) \wedge \\
& v_{\text {equal }} \neq v_{2}
\end{aligned}
\] & \(v_{1}\) is an element of set \(v_{2}\). \\
\hline
\end{tabular}

The dle[x,sel] captures the relation between the node pointed to by \(x\) and other heap nodes. These predicates are used to partition the heap into elements less than the node pointed to by \(x\) and those that are greater. Being unary predicates they can be used as abstraction predicates. This could be called a "pseudo-binary abstraction", since parts of the binary predicate dle are taken to form several unary predicates.
inOrder[dle] formalizes the second data structure invariant for ordered trees. It requires elements in the left subtree of a node to be smaller and elements in the right subtree to be greater than the node itself. Smaller and greater are expressed in terms of dle.

The set membership property isElement is formalized similarly to the list-based case. \(v_{1}\) is an element of set \(v_{2}\) if its data-field is equal to one of the nodes reachable from \(v_{2}\), where equal can be formulated in terms of dle.

Figure 4.8 displays the input structures for our analysis of the insertion and removal methods. In the following we omitted several predicates to make the visualizations more readable. The predicates that we left our were left, right, down, downStar. Again, we want to cover all possible sets by these abstract structures. In structure (a) set is empty and thus element is not an element of set. Structure (b) represents non-empty sets. element might be part of the set, indicated by the dotted isElement-predicate and the dotted \(d l e\)-predicate between element and the contents of set. We also had to assign a value to the dle-predicate for set which does not have a data-field. Its data-field is assumed to be greater than all other data-fields. Elements that were originally reachable from set are marked with or \([s e t]\) as in the list-based case.


Figure 4.8: Input Structures for Tree-based Insertion and Removal

\section*{Insertion}

Running the analysis for set insertion yields 21 structures at exit. Most of them concern special cases where the element had to be inserted in the left- or right-most position of the tree or where the left or the right subtree of the root was empty. All resulting structures fulfilled the data structure invariants and element had been inserted into set. We picked two structures that represent the most general cases. They can be seen in Figure 4.9.

Due to the number of binary predicates involved in the analysis the output structures are hard to read. Also, the visualization engine does not know our intuition behind the different predicates, which could help to generate more readable output. In structure (a) the algorithm found a node in the tree that is equal to element. The three summary nodes make up the rest of the tree. The summary node to the right represents the subtree of the node that was found. The other two summary nodes partition the parents and neighbors into those that have a smaller data-field and those that have a greater data-field. For this particular case the partitioning of the set is not important. For structure (b) however it is the key to proving that the ordering is preserved. Here, no node in the tree was found that was equal to element. Therefore a new heap node was allocated and inserted into the tree, preserving the ordering. This is were the partition into smaller and larger elements becomes important. Nodes that are greater than the new node can only reach it via a path that starts by going left: downStar \([l e f t]\) is indefinite and downStar \([r i g h t]\) is false. Nodes with a smaller data-field can in turn only reach it via a path that starts with a right-edge \((\) downStar \([\) right \(]=1 / 2\) and downStar \([\) left \(]=0)\).


Figure 4.9: Sample Output Structures for Tree-based Insertion

\section*{Removal}

As noticed in the implementation section, tree-based removal was the most complicated routine that we analyzed. Its size and complexity led to very time-consuming analyses that did not allow a trial and error approach when choosing the abstraction predicates. We used the same predicates as in the analysis of the insertion algorithm. They were developed for this method though and proved to work for the simpler insertion routine, too.

Proving that element is not a member of set after the analysis was simple, once the data structure invariants could be established. The ordering property ensures that every element only occurs once in the tree. Showing that the ordering data structure invariant was maintained was more difficult. The key predicates involved in proving this were dle \([x, s e l]\) and downStar \([\) sel \(]\). The use of these predicates in the insertion routine already hints at why they are useful for removal. Figure 4.4 illustrates the different possibilities when removing an element from the tree. As the algorithm keeps track of the relevant nodes (those represented by circles in the figure) in the graph through pointer variables, \(d l e[x, s e l]\) delivers the necessary partition to keep relevant ordering information. In addition downStar[sel] captures the important first selectors on paths between these parts of the tree.

To cope with the long analysis times we decomposed the problem into smaller ones first:
- Finding the element to delete.
- The element has one or no children.
- The element has two children, the most difficult case.

In the end we put everything together.
Again, we decided to present only two representative output structures out of overall eight. They are shown in Figure 4.10. Both structures satisfy the two data structure invariants modeled by inOrder[dle] and treeNess. In structure (a) element was contained in set and therefore removed from it. For demonstration purposes we did not free the element taken from the tree. One can see that the tree has been partitioned into nodes with a greater data-field and nodes with a smaller data-field than element. The same holds for structure (b). In this case element was not contained in set at the invocation of the routine. No node was removed from the tree.

\section*{Membership Test}

Again, we omit to display the output structures. It is quite obvious that the analysis succeeds, because the tree traversal analyzed is part of the insertion and removal methods as well, which were analyzed before.


Figure 4.10: Sample Output Structures for Tree-based Removal
\(\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline \text { Analysis } & \begin{array}{l}\text { \#locations } \\ \text { in CFG }\end{array} & \begin{array}{l}\text { \#unary } \\ \text { predi- } \\ \text { cates }\end{array} & \begin{array}{l}\text { \#binary } \\ \text { predi- } \\ \text { cates }\end{array} & \text { \#structures } & \begin{array}{l}\text { average } \\ \text { \#structs }\end{array} & \begin{array}{l}\text { maximal } \\ \text { \#structs } \\ \text { per } \\ \text { per }\end{array} & \text { time } \\ \text { location }\end{array}\right]\)

Table 4.1: Empirical Results

\subsection*{4.3.3 Empirical Results}

Table 4.1 presents some data about the four analyses. The analysis of the insertion, removal and membership test methods of our list-based implementation resulted in a similar number of structures and relatively short analysis times. In the tree-based case, however, the difference was considerable. This can probably be explained with the higher number of unary predicates in the removal analysis, which led to more structures per location. The worst-case complexity of the analysis is doubly-exponential in the number of abstraction predicates. Additionally, the control flow graph (see Figure 4.11) for removal contains more than three times as many locations as the CFG for insertion.

\subsection*{4.3.4 Discussion}

We managed to show interesting properties of list- and tree-based set implementations. Our analyses assumes data structure invariants specific to the respective implementation to hold at the entrance. The maintenance of these invariants throughout the execution of the routines is established. Using these invariants our analysis was able to prove that the effect of the insertion and removal methods complies with axioms of the ADT Set. The nature of the shape analysis framework limited our proofs to partial correctness.

We used the isElement-predicate to relate different analyses. While the insertion and removal methods were proved correct in terms of isElement, the analysis of the set mem-


Figure 4.11: CFG for Tree Removal
bership routine showed the equivalence of this routine with isElement. This approach loosely corresponds to the abstraction mechanism used in [LKR04]. They use sets to abstract from more complex data structures, which limits them to statically allocated data structures. Our use of isElement on the other hand allows to handle dynamically allocated sets.

Choosing the right instrumentation predicates required a thorough understanding of the data structures involved. For trees this meant identifying that reachability alone is not very interesting, but that the first edge on a path from one node to another is important. However, the predicates are not tailored to specific algorithms, but to the underlying data structures. They might prove useful for other algorithms on trees and lists as well.

\subsection*{4.3.5 Abstraction Expressions}

The need to partition the trees into smaller and larger elements led to the introduction of the \(d l e[x\), sel \(]\)-predicate family. The effect of these unary predicates on the abstraction could also be achieved by using the binary dle-predicate in the abstraction process. Here, individuals should only be joined if they have the same canonical name and if they agree on binary abstraction predicates to other canonical names. This is illustrated in Figure 4.12. The tree on the left is supposed to be in order. The ordering predicate is not visualized to make it more readable. Canonical Abstraction would collapse all the nodes not pointed to by \(x\) (a). The relation between the resulting summary node and the node pointed to by \(x\) would be indefinite. Additionally abstracting from dle would instead create two summary nodes and keep ordering information definite. Of course, the proposed abstraction can also be achieved using a number of unary abstraction predicates. The number of predicates needed for this is linear in the number of abstraction predicates though, to cover all canonical names.

We propose to specify the abstraction through Abstraction Expressions:
Definition 13 (Syntax of Abstraction Expressions) The set of Abstraction Expressions over a set of unary predicates \(U\) and a set of binary predicates \(B\) is defined inductively


Figure 4.12: Abstraction Expressions
as follows:
- \(\left\{u_{1}, \ldots, u_{n}\right\}\) is an abstraction expression if \(\left\{u_{1}, \ldots, u_{n}\right\} \subseteq U\),
- \(A E_{1} \wedge A E_{2}\) is an abstraction expression if \(A E_{1}\) and \(A E_{2}\) are abstraction expressions,
- \(A E \triangleright\left\{b_{1}, \ldots, b_{n}\right\}\) is an abstraction expression if \(A E\) is an abstraction expression and \(\left\{b_{1}, \ldots, b_{n}\right\} \subseteq B\).

We define the semantics of Abstraction Expressions by giving an associated equivalence relation. The equivalence relation determines which nodes are to be merged.

Definition 14 (Semantics of Abstraction Expressions) The associated equivalence relation \(\sim_{A E}\) to an Abstraction Expression \(A E\) is defined inductively as follows:
- \(x \sim_{\left\{u_{1}, \ldots, u_{n}\right\}} y: \Leftrightarrow \bigwedge_{u \in\left\{u_{1}, \ldots, u_{n}\right\}} u(x)=u(y)\),
- \(x \sim_{A E_{1} \wedge A E_{2}} y: \Leftrightarrow x \sim_{A E_{1}} y \wedge x \sim_{A E_{2}} y\),
- \(\left.x \sim_{A E \triangleright\left\{b_{1}, \ldots, b_{n}\right\}} y: \Leftrightarrow x \sim_{A E} y \wedge \bigwedge_{b \in\left\{b_{1}, \ldots, b_{n}\right\}}^{\forall z .\left(\bigsqcup_{\left\{w \mid w \sim \sim_{A E} z\right\}}\right.} b(x, w)=\bigsqcup_{\left\{w \mid w \sim_{A E}\right\}} b(y, w)\right)\).

The Abstraction Expression \(\left\{u_{1}, \ldots, u_{n}\right\}\) is equivalent to Canonical Abstraction over \(\left\{u_{1}, \ldots, u_{n}\right\}\). The abstraction depicted in case (b) of Figure 4.12 can be specified using the Abstraction Expression \(\{x\} \triangleright\{d l e\}\). It will be interesting to see whether there are more applications, where abstraction can be specified more easily using such expressions than by plain Canonical Abstraction.

\subsection*{4.3.6 Future Work}

Future work might try to deal with recursive implementations, following the approach presented in [RS01]. Another challenge are balanced search trees such as red-black trees or AVL trees, which have more complicated data structure invariants. The ADT Set specified also contained axioms dealing with the size of the sets. Analyzing these properties seems quite difficult using the current shape analysis framework. Integer values can be represented by list structures (by a zero node and successor nodes in the sense of the Peano axioms). Computation on them not very efficient though.

Splitting the current analysis into two phases could increase efficiency. The first phase could be solely devoted to proving the maintenance of the data structure invariants. The second could then rely on them and concentrate on the property originally desired to show.

\section*{Dead Predicates}

To speed up the analyses we included additional actions in the control flow graphs of the tree-based programs. These actions nullified certain variables and allowed the engine to collapse structures that were otherwise isomorphic. This was only done for unary predicates representing dead variables, i.e. predicates that further steps of the analysis did not rely on. These predicates could be called dead predicates. A similar effect could have been achieved by marking these predicates as non-abstraction predicates locally. This approach was previously described in Roman Manevich's Master Thesis [Man03]. These dead predicates could be determined by a preceding static analysis. At the time the analyses were conducted it had not been integrated into TVLA yet. We believe that it may dramatically increase the performance of analyses in larger programs that contain many loosely coupled sections. Unfortunately, we cannot give experimental results about the magnitude of the effect. Our analysis for the tree-based removal method did not terminate within days without this optimization. Of course, the optimization could also decrease precision, because more structures are collapsed, possibly losing relevant information. However, in such a case it seems that the wrong abstraction is used, but the analysis succeeds by coincidence.

\section*{5 RESET - An imperative language with sets as primitives}

In this section, we introduce RESET, an imperative language with sets as primitives. We give two semantics for RESET. Semantics I provides an idealized view of an implementation of the ADT Set defined in Chapter 3. Semantics II comes a little closer to the set implementations seen in Chapter 4. The difference between the semantics lies in the way sets are represented. In this respect, Semantics II is somewhere in between Semantics I and the implementations. We will compare the two semantics and show how they can be related formally.

\subsection*{5.1 Syntax}

The syntax of RESET is given in \(\mathrm{BNF}^{1}\) in Figure 5.2. It contains the common control structures such as a conditional statement and a while loop. In addition to the typical constructs of an imperative language, we include expressions to test for set membership and set inclusion as well as two statements to allow for insertion and deletion of elements. The .selectAndRemove statement nondeterministically selects one of the elements of the set and assigns it to the given variable. This allows to perform some action on every element of a set. Pointer expressions are limited to \(x\) and \(x\).sel in order to simplify the specification of the semantics. Of course, it is still possible to access elements deeper in the heap by using temporary pointer variables.

Figure 5.3 shows a simple example RESET program. It computes the intersection of the two input sets \(X\) and \(Y\). The references to the contents of \(X\) are first copied into


Figure 5.1: Complexity of Domains


Figure 5.2: Syntactical Domains of RESET
the temporary variable Temp. Temp is used to iterate over the contents of \(X\) without destroying \(X\) itself. For every element of \(X\) we check whether it is also an element of \(Y\). In this case it is inserted into \(Z\). In the end, \(Z\) contains the intersection of \(X\) and \(Y\).

\subsection*{5.2 Static Semantics}

A type system is specified in Figure 5.5. It restricts all the elements of one set to be of the same type. The syntax did not put any limitations on the sets and would for instance allow a single set to contain pointers as well as sets of pointers. This might actually be desirable since it resembles mathematical sets more closely. However it does raise problems in the second semantics that will be presented later. We assume variables and selectors to have a preassigned type. They are given by the function \(\theta:(\operatorname{Var} \rightarrow\) dataT \() \cup(S e l \rightarrow d a t a T)\). Types are solely based on selectors because we do not distinguish between different pointer types. Possible types are specified in Figure 5.4. A program is correctly typed if we can derive the type comm for it using the given inference rules.
```

void intersection(Set X, Set Y) {
Temp := malloc set;
Temp := X;
Z := malloc set;
while (Temp != Empty)
{
p := Temp.selectAndRemove;
if (p G Y)
Z.insert(p);
}
p := NULL;
Temp := NULL;
}

```

Figure 5.3: RESET Program Computing the Intersection
\begin{tabular}{rrl|l|} 
type & \(::=\) & dataT & comm \\
\(t \in\) dataT & \(::=\) & bool & int \\
& & loc & dataT set \\
\hline
\end{tabular}

Figure 5.4: Types

\subsection*{5.3 Dynamic Semantics I}

We give a nondeterministic structural operational semantics. Inference rules specify the semantics of the statements. They relate configurations which are pairs of statements and states. A state consists of three components, the stack, the heap and the set heap. Stack and heap cells may contain four different types of elements: booleans, integers, locations and set locations. The set heap stores sets. They are referenced by set locations. Sets are stored in single cells of the set heap (see Figure 5.7 for the details of the semantic domains). The definition of Set allows arbitrary nesting of sets and also different types of elements in one set. However, this is restricted by the type system of Figure 5.5.

Valuation functions like \(\mathcal{X}\) and \(\mathcal{B}\) are used to evaluate the meaning of expressions in the context of the state. They are shown in Figure 5.8. It is possible to give the semantics of expressions in this way, because expressions do not have any side-effects, i.e. they do not change the state. Their definitions are omitted for the most part, because they are mostly straight-forward. The evaluation of set membership ( \(q \in p\) ) and set inclusion \((q \subseteq p)\) is
\[
\begin{array}{cc}
\text { true : bool } & \text { false : bool } \\
\frac{b: \text { bool }}{\neg b: \text { bool }} & \frac{b_{1}: \text { bool } b_{2}: \text { bool }}{b_{1} o p_{b} b_{2}: \text { bool }} \\
\frac{a_{1}: \text { int } a_{2}: \text { int }}{a_{1} o p_{r} a_{2}: \text { bool }} & \frac{a_{1}: \text { int } a_{2}: \text { int }}{a_{1} o p_{a} a_{2}: \text { int }} \\
\frac{t=\theta(x)}{x: t} & \frac{x: \text { loc } t=\theta(\text { sel })}{x . s e l: t} \\
\frac{a: t p: t \text { set }}{a \in p: \text { bool }} & \frac{q: t \text { set } p: t \text { set }}{q \subseteq p: \text { bool }}
\end{array}
\]
skip : comm
\(\frac{S_{1}: \text { comm } \quad S_{2}: \text { comm }}{S_{1} ; S_{2}: \text { comm }}\)
2-
\(\frac{b: \text { bool } S_{1}: \text { comm } S_{2}: \text { comm }}{\text { if } b \text { then } S_{1} \text { else } S_{2}: \text { comm }}\)
\[
\text { if } b \text { then } S_{1} \text { else } S_{2}: \text { comm }
\]
\(b\) : bool \(S\) : comm
while \(b\) do \(S\) : comm
\[
\frac{p: \mathrm{loc}}{p:=\text { malloc }: \text { comm }}
\]
\(\frac{p: t \text { set } a: t}{p . \text { insert }(a): \text { comm }}\)
\[
p: t \mathrm{set}
\]
\[
p:=\text { malloc set }: \text { comm }
\]
\(p: t\) set \(a: t\)
\(a:=p\). selectAndRemove : comm
\[
\frac{p: t \quad s: t}{p:=s: \text { comm }}
\]
\[
\frac{p: t \text { set } a: t}{p . \operatorname{remove}(a): \operatorname{comm}}
\]

Figure 5.5: Type System


Figure 5.6: Example State in Semantics I
probably most interesting here. Since sets are completely stored in single cells, set inclusion translates to the common mathematical set inclusion. The same holds for set membership, where we have to look at two cases. Either \(p\) is a set of sets or it is just a set of primitive values or locations. In the former case we have to check for set membership of the referenced set by \(p\) and not of its location. This will be more complicated in the Semantics II.

The inference rules which define the semantics of statements are displayed in Figure 5.9. The non-standard part of the inference rules are again the rules concerning sets. The same case distinction as in the test of set membership also applies for the inference rules concerning assignments. When assigning sets we do not assign its location but its contents. Being able to assign set locations would introduce aliasing problems, which we want to avoid. \(p:=\) malloc set stores a new set location at \(p\) and initializes the set heap at the new location with an empty set. This could not be done using a malloc set-expression plus assignment, since it is not possible to assign set locations. The statements for element insertion and removal also have to deal with these two cases. Otherwise, they translate to set insertion and removal respectively. The same holds for the .selectAndRemove-statement. You may have wondered why it is a nondeterministic semantics. The nondeterminism is introduced by the .selectAndRemove-statement, since it nondeterministically selects one of the elements of the specified set. All other statements are deterministic.

The semantics of a program can be seen as the finite and infinite sequences of states that follow its execution. More formally: \(\llbracket \operatorname{Prog} \rrbracket \ni\left\langle\operatorname{Prog}_{1},\left(\sigma_{1}, \eta_{1}\right)\right\rangle\left\langle\operatorname{Prog}_{2},\left(\sigma_{2}, \eta_{2}\right)\right\rangle \ldots\) where \(\operatorname{Prog}_{1}=\operatorname{Prog}\) and \(\left\langle\operatorname{Prog}_{i},\left(\sigma_{i}, \eta_{i}\right)\right\rangle \triangleright\left\langle\operatorname{Prog}_{i+1},\left(\sigma_{i+1}, \eta_{i+1}\right)\right\rangle\) for all \(i\).


Figure 5.7: Semantic Domains
\[
\begin{aligned}
& \mathcal{P} \llbracket x \rrbracket(\sigma, \eta, \varsigma)=\sigma(x) \\
& \mathcal{P} \llbracket x . s e l \rrbracket(\sigma, \eta, \varsigma)=\eta(\sigma(x), \text { sel }) \\
& \mathcal{B} \llbracket q \in p \rrbracket(\sigma, \eta, \varsigma)=\left\{\begin{array}{l}
\varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \in \varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma)), \text { if } \mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \in \text { SetLoc } \\
\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \in \varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma)), \text { otherwise }
\end{array}\right. \\
& \mathcal{B} \llbracket q \subseteq p \rrbracket(\sigma, \eta, \varsigma)=\varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \subseteq \varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma)) \\
& \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)=\left\{\begin{array}{l}
\mathcal{P} \llbracket s \rrbracket(\sigma, \eta, \varsigma), \text { if } s \in \text { PExp }, \\
\mathcal{A} \llbracket s \rrbracket(\sigma, \eta, \varsigma), \text { if } s \in A E x p, \\
\mathcal{B} \llbracket s \rrbracket(\sigma, \eta, \varsigma), \text { if } s \in B E x p
\end{array}\right.
\end{aligned}
\]

Figure 5.8: Exemplary Semantics of Expressions
```

 \langlex:=s,(\sigma,\eta,\varsigma)\rangle\triangleright\langle\mathrm{ skip, (}\sigma[x\mapsto\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)],\eta,\varsigma)\rangle
 if \mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)\in(Item\SetLoc)
 \langlex:=s,(\sigma,\eta,\varsigma)\rangle\triangleright\langleskip,(\sigma,\eta,\varsigma[\sigma(x)\mapsto\varsigma(\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma))])\rangle
 if \mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)\inSetLoc
 \langlex.sel := s, (\sigma,\eta,\varsigma)\rangle\triangleright\langleskip, (\sigma,\eta[(\sigma(x),sel)\mapsto\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)],\varsigma)\rangle
 if \mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)\in(Item\SetLoc)
 <x.sel :=s,(\sigma,\eta,\varsigma)\rangle\triangleright\langle\mathrm{ skip, (}\sigma,\eta,\varsigma[\eta(\sigma(x),sel)\mapsto\varsigma(\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma))])\rangle
 if \mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)\inSetLoc
 <skip; S,(\sigma,\eta,\varsigma)\rangle\triangleright\langleS,(\sigma,\eta,\varsigma)\rangle
 \langle\mp@subsup{S}{1}{},(\mp@subsup{\sigma}{1}{},\mp@subsup{\eta}{1}{},\mp@subsup{\varsigma}{1}{})\rangle\triangleright\langle\mp@subsup{S}{2}{},(\mp@subsup{\sigma}{2}{},\mp@subsup{\eta}{2}{},\mp@subsup{\varsigma}{2}{})\rangle
 <if b then S S else S}\mp@subsup{S}{2}{},(\sigma,\eta,\varsigma)\rangle\triangleright\langle\mp@subsup{S}{1}{},(\sigma,\eta,\varsigma)\rangle where \mathcal{B}\llbracketb\rrbracket(\sigma,\eta,\varsigma)=
    ```

```

 <while b do }S,(\sigma,\eta,\varsigma)\rangle\triangleright\langleS; while b do S,(\sigma,\eta,\varsigma)\rangle where \mathcal{B}\llbracketb\rrbracket(\sigma,\eta,\varsigma)=
 \langlewhile b do S, (\sigma,\eta,\varsigma)\rangle\triangleright\langle\mathrm{ skip, (}\sigma,\eta,\varsigma)\rangle where \mathcal{B}\llbracketb\rrbracket(\sigma,\eta,\varsigma)=\mathbf{0}
 \langlex:= malloc, (\sigma,\eta,\varsigma)\rangle\triangleright\langleskip, (\sigma[x\mapsto\xi],\eta,\varsigma)\rangle
 where }\xi\inLoc\mathrm{ and }\xi\not\in(im(\sigma)\cup\operatorname{dom}(\eta)\cupim(\eta)\cup\bigcupim(\varsigma)
 <x.sel := malloc, (}\sigma,\eta,\varsigma)\rangle\triangleright\langle\mathrm{ skip, (}\sigma,\eta[(\sigma(x),\mathrm{ sel)}\mapsto\xi],\varsigma)
 where }\xi\inLoc\mathrm{ and }\xi\not\in(im(\sigma)\cup\operatorname{dom}(\eta)\cupim(\eta)\cup\bigcupim(\varsigma)
 \langlex:= malloc set, (\sigma,\eta,\varsigma)\rangle\triangleright\langle\mathrm{ skip, (}\sigma[x\mapsto\psi],\eta,\varsigma[\psi\mapsto\emptyset])\rangle
 where \psi\inSetLoc and \psi}\not\in(im(\sigma)\cupim(\eta)\cup\operatorname{dom}(\varsigma)
 \langlex.sel := malloc set, (\sigma,\eta,\varsigma)\rangle\triangleright\langle\mathrm{ skip, (}\sigma,\eta[(\sigma(x),\mathrm{ sel) }\mapsto\psi],\varsigma[\psi\mapsto\emptyset])\rangle
 where }\psi\in\operatorname{SetLoc and }\psi\not\in(im(\sigma)\cupim(\eta)\cup\operatorname{dom}(\varsigma)
 <x.insert (s), (\sigma,\eta,\varsigma)\rangle\triangleright\langleskip, (\sigma,\eta,\varsigma[\sigma(x)\mapsto(\varsigma(\sigma(x))\cup{i})])\rangle
 where i}={\begin{array}{l}{\varsigma(\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)),\mathrm{ if }\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)\inSetLoc}\\{\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma),otherwise}
 <x.remove(s), (\sigma,\eta,\varsigma)\rangle\triangleright \skip, (\sigma,\eta,\varsigma[\sigma(x)\mapsto(\varsigma(\sigma(x))\{i})])\rangle
 where i}={\begin{array}{l}{\varsigma(\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)),\mathrm{ if }\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma)\inSetLoc}\\{\mathcal{X}\llbrackets\rrbracket(\sigma,\eta,\varsigma),\mathrm{ otherwise }}
    ```
```

\langlex:=y.selectAndRemove, (\sigma,\eta,\varsigma)\rangle\triangleright\langleskip, (\sigma[x\mapstoel],\eta,\varsigma[\sigma(y)\mapsto(\varsigma(\sigma(y))\{el})])\rangle

```
\langlex:=y.selectAndRemove, (\sigma,\eta,\varsigma)\rangle\triangleright\langleskip, (\sigma[x\mapstoel],\eta,\varsigma[\sigma(y)\mapsto(\varsigma(\sigma(y))\{el})])\rangle
            where el }\in\varsigma(\sigma(y))\mathrm{ and el }\in(\mathrm{ Item \SetLoc)
            where el }\in\varsigma(\sigma(y))\mathrm{ and el }\in(\mathrm{ Item \SetLoc)
\langlex:= y.selectAndRemove, (\sigma,\eta,\varsigma)\rangle\triangleright\langleskip, (\sigma,\eta,\varsigma[\sigma(y)\mapsto(\varsigma(\sigma(y))\{el})][\sigma(x)\mapstoel])\rangle\quad[Set-SelectRemove-Set]
\langlex:= y.selectAndRemove, (\sigma,\eta,\varsigma)\rangle\triangleright\langleskip, (\sigma,\eta,\varsigma[\sigma(y)\mapsto(\varsigma(\sigma(y))\{el})][\sigma(x)\mapstoel])\rangle\quad[Set-SelectRemove-Set]
                        where el }\in\varsigma(\sigma(y))\mathrm{ and el }\inSe
```

 where el }\in\varsigma(\sigma(y))\mathrm{ and el }\inSe
    ```

Figure 5.9: Structural Operational Semantics

\subsection*{5.4 Semantics II}

We give an alternative semantics that is somewhat closer to implementations of sets. In contrast to the first semantics sets of sets are not stored in a single set heap cell. They are spread over the set heap via set locations. The domain Set is in fact the only difference in the domains of the two semantics (see Figure 5.11). Figure 5.10 displays the same state as Figure 5.6.

Spreading sets over the heap introduces some problems that have to be dealt with in the semantics of set expressions and the inference rules. Comparing two sets becomes more complicated in this case. If we compare the two sets \(\left\{\psi^{\prime}\right\}\) and \(\left\{\psi^{\prime \prime}\right\}\) for instance, where \(\psi^{\prime}\) and \(\psi^{\prime \prime}\) are set locations, we have to compare \(\varsigma^{\prime}\left(\psi^{\prime}\right)\) and \(\varsigma^{\prime}\left(\psi^{\prime \prime}\right)\) with each other. These might contain other set locations again... The predicate \(\approx\) is introduced for this purpose. It descends into the heap until reaching primitive values or locations. \(\approx\) is well-defined. This is ensured by the type system. It prevents cyclic set relations and ensures that \(\approx\) will eventually reach some base case. Without the type system this acyclicity property would have to be ensured by the semantics itself making it much more complicated.

The semantics of set expressions is defined in terms of \(\approx . q\) is an element of set \(p\) if the set referenced by \(p\) contains some element that is equal to \(q\) in the sense of \(\approx\). Notice the similarity to the definition of the isElement instrumentation predicates in the two set implementations of Chapter 4. Set inclusion is handled similarly as can be seen in Figure 5.12.

Figure 5.13 shows the inference rules that differ. The two inference rules for malloc set differ only marginally. Set locations introduced by these statements may not occur in the image of the set heap. In the first semantics, the set heap could not contain set locations making this condition superfluous there. When inserting elements into sets the inference rule makes sure that we do not insert duplicate elements. In the first semantics this was ensured by the nature of mathematical sets. As we have seen, different set locations may represent equal sets in this case. Again, \(\approx\) is utilized to deal with this problem. The same is done for element removal.

Only one of the two inference rules for . selectAndRemove differs from the original ones. If the statement is applied to sets of sets, it should return a set. However, in contrast to the first semantics, the set contains set locations. So we return the set at that set location.

\subsection*{5.5 Comparison}

The main difference between the two semantics is the handling of set elements that are themselves sets. While Semantics I stores entire sets within a single heap cell, Semantics II spreads the set contents over the heap by just inserting set locations. The latter corresponds more closely to set implementations in imperative languages without sets as


Figure 5.10: Example State in Semantics II
primitives. In set implementations the data structures that are used to represent the set are spread over the heap in a similar way. Also, elements may be more complex than just primitive values.

Comparing sets and testing set membership become more complicated in the alternative case. Two sets may be equal, but their elements may be at different locations in the heap. Another implication of spreading sets over the heap is aliasing, which allows elements to be manipulated after insertion and thus yielding unexpected results.

Without the type system both semantics allow to insert a set into itself or into one of its constituents. In the first semantics this would not cause any problems, since the contents of the set are copied completely. Semantics II would allow to create circular set definitions without the restriction of the type system though. The relation between the two options roughly corresponds to deep vs. shallow copying (just for elements that are sets, not for other pointers).

We would now like to formally relate the two given semantics, to which we will refer to as Semantics I and Semantics II. For this purpose we define a relation between the domains of the two semantics.

Definition 15 (Heap Correspondence Relation) A relation \(\equiv\) is called a Heap Correspondence Relation on \((\eta, \varsigma) \in\) Heap \(\times \operatorname{SetHeap},\left(\eta^{\prime}, \varsigma^{\prime}\right) \in\) Heap \(^{\prime} \times \operatorname{SetHeap}\), iff
\[
\equiv \stackrel{\text { def }}{=} \equiv_{s s} \cup \equiv_{s l s l} \cup \equiv_{s s l} \cup \equiv_{l l} \cup \equiv_{b b} \cup \equiv_{z z}
\]
with


Figure 5.11: Semantic Domains II
\[
\begin{aligned}
& \left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)=\left\{\begin{array}{l}
i^{\prime}=j^{\prime}, \text { if } i^{\prime}, j^{\prime} \in \mathbb{B} \cup \mathbb{Z} \cup \text { Loc }^{\prime} \\
\left(\varsigma^{\prime}\left(i^{\prime}\right) \approx \varsigma^{\prime}\left(j^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right), \text { if } i^{\prime}, j^{\prime} \in \operatorname{SetLoc}{ }^{\prime} \\
\left(i^{\prime} \approx \varsigma^{\prime}\left(j^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right), \text { if } i^{\prime} \in \text { Set } t^{\prime}, j^{\prime} \in \operatorname{SetLoc} c^{\prime} \\
\left(\forall x \in i^{\prime} \cdot \exists z \in j^{\prime} .(z \approx x)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \\
\wedge\left(\forall x \in j^{\prime} \cdot \exists z \in i^{\prime} .(z \approx x)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right), \text { if } i^{\prime}, j^{\prime} \in S e t^{\prime}
\end{array}\right. \\
& \mathcal{B}^{\prime} \llbracket q \in p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)=\exists z .\left(z \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \wedge\left(z \approx \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \\
& \mathcal{B}^{\prime} \llbracket q \subseteq p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \quad=\quad \forall x \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) . \exists z \cdot(z \approx x)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \wedge\left(z \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\right. \\
& \mathcal{B}^{\prime} \llbracket q=p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)=\left(\mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \approx \mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)
\end{aligned}
\]

Figure 5.12: Differences in the Semantics of Expressions
```

 \langlex:= malloc set, (}\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})\rangle\mp@subsup{\triangleright}{}{\prime}\langle\mathrm{ skip, (}\mp@subsup{\sigma}{}{\prime}[x\mapsto\mp@subsup{\psi}{}{\prime}],\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime}[\mp@subsup{\psi}{}{\prime}\mapsto\emptyset])
 where }\mp@subsup{\psi}{}{\prime}\in\operatorname{SetLoc}'\mathrm{ and }\mp@subsup{\psi}{}{\prime}\not\in(im(\mp@subsup{\sigma}{}{\prime})\cupim(\mp@subsup{\eta}{}{\prime})\cup\operatorname{dom}(\mp@subsup{\varsigma}{}{\prime})\cup\bigcupim(\mp@subsup{\varsigma}{}{\prime})
 \langlex.sel := malloc set, (}\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})\rangle\mp@subsup{\triangleright}{}{\prime}\langle\mathrm{ skip, (}\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime}[(\mp@subsup{\sigma}{}{\prime}(x),\mathrm{ sel)}\mapsto\mp@subsup{\psi}{}{\prime}],\mp@subsup{\varsigma}{}{\prime}[\mp@subsup{\psi}{}{\prime}\mapsto\emptyset])\rangle\quad[Malloc-Set-Heap'
 where \psi}\mp@subsup{\psi}{}{\prime}\in\operatorname{SetLoc}'\mathrm{ and }\mp@subsup{\psi}{}{\prime}\not\in(im(\mp@subsup{\sigma}{}{\prime})\cupim(\mp@subsup{\eta}{}{\prime})\cup\operatorname{dom}(\mp@subsup{\varsigma}{}{\prime})\cup\bigcupim(\mp@subsup{\varsigma}{}{\prime})
 <x.insert (s), (\sigma', \mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})\rangle\mp@subsup{\triangleright}{}{\prime}\langle\mathrm{ skip, (}\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime}[\mp@subsup{\sigma}{}{\prime}(x)\mapstoi])\rangle
 [Malloc-Set']
 [Set-Insert']
 where }\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(x))\mathrm{ def. and }i={\begin{array}{l}{\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(x)),\mathrm{ if }\existsz.z\in\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(x))\wedge(z\approx\mathcal{X}\{s\rrbracket(\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime}))(\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})}\\{\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(x))\cup{\mathcal{X}\\llbracket\\rrbracket(\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})},otherwise}
 \langlex.remove(s), (\sigma', \mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})\rangle\mp@subsup{\triangleright}{}{\prime}\langle\mathrm{ skip, (}\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime}[\mp@subsup{\sigma}{}{\prime}(x)\mapstoi])\rangle
 [Set-Remove']
 where }\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(x))\mathrm{ def. and }i={j|j\in\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(x))\wedge\neg(j\approx\mathcal{X}\{s\rrbracket(\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime}))(\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})
 \langlex:= y.selectAndRemove, (}\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})\rangle\mp@subsup{\triangleright}{}{\prime}\langle\mathrm{ skip, (}\mp@subsup{\sigma}{}{\prime}[x\mapstoel\mp@subsup{l}{}{\prime}],\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime}[\mp@subsup{\sigma}{}{\prime}(y)\mapsto(\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(y))\{e\mp@subsup{l}{}{\prime}})])\rangle\quad[Set-SelectRemove'
 where el' }\in\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(y))\mathrm{ and el' }\in(Ite\mp@subsup{m}{}{\prime}\\mathrm{ SetLoc')
 \langlex:= y.selectAndRemove, (}\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime})\rangle\mp@subsup{\triangleright}{}{\prime}\langle\mathrm{ skip, (}\mp@subsup{\sigma}{}{\prime},\mp@subsup{\eta}{}{\prime},\mp@subsup{\varsigma}{}{\prime}[\mp@subsup{\sigma}{}{\prime}(y)\mapsto(\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(y))\{e\mp@subsup{l}{}{\prime}})][\mp@subsup{\sigma}{}{\prime}(x)\mapsto\mp@subsup{\varsigma}{}{\prime}(e\mp@subsup{l}{}{\prime})])\rangle\quad[\mathrm{ Set-SelectRemove-Set']
where el'}\in\mp@subsup{\varsigma}{}{\prime}(\mp@subsup{\sigma}{}{\prime}(y))\mathrm{ and el' }\in\mathrm{ SetLoc'

```

Figure 5.13: Differences in Structural Operational Semantics
- \(\equiv_{b b} \subseteq \mathbb{B} \times \mathbb{B}\)
\(b_{1} \equiv_{b b} b_{2} \Leftrightarrow\left(b_{1} \Leftrightarrow b_{2}\right)\)
- \(\equiv_{z z} \subseteq \mathbb{Z} \times \mathbb{Z}\)
\(z_{1} \equiv_{z z} z_{2} \Leftrightarrow\left(z_{1}=z_{2}\right)\)
- \(\equiv_{l l} \subseteq \operatorname{Loc} \times \operatorname{Loc}^{\prime}\)
\(\xi \equiv_{l l} \xi^{\prime} \Rightarrow\left(\forall s e l \in \pi_{2}(\operatorname{dom}(\eta)) \cdot\left(\eta(\xi\right.\right.\), sel \() \equiv \eta^{\prime}\left(\xi^{\prime}\right.\), sel \()\)
\(\vee\left(\eta(\xi\right.\), sel \()\) undef. \(\wedge \eta^{\prime}\left(\xi^{\prime}\right.\), sel \()\) undef. \(\left.)\right) \wedge \forall \xi^{\prime \prime} .\left(\xi \equiv_{l l} \xi^{\prime \prime} \Rightarrow \xi^{\prime}=\xi^{\prime \prime}\right) \wedge \forall \xi^{\prime \prime} \cdot\left(\xi^{\prime \prime} \equiv_{l l} \xi^{\prime} \Rightarrow\right.\) \(\left.\xi=\xi^{\prime \prime}\right)\) )
- \(\equiv_{s l s l} \subseteq\) SetLoc \(\times\) SetLoc \(^{\prime}\)
\(\psi \equiv_{s l s l} \psi^{\prime} \Leftrightarrow \varsigma(\psi) \equiv_{s s} \varsigma^{\prime}\left(\psi^{\prime}\right)\)
- \(\equiv_{s s l} \subseteq\) Set \(\times\) SetLoc \(^{\prime}\)
\(s \equiv_{s s l} \psi^{\prime} \Leftrightarrow s \equiv_{s s} \varsigma^{\prime}\left(\psi^{\prime}\right)\)
- \(\equiv_{s s} \subseteq \operatorname{Set} \times\) Set \(^{\prime}\)
\(s \equiv_{s s} s^{\prime} \Leftrightarrow\left(\forall i \in s . \exists i^{\prime} \in s^{\prime} . i \equiv i^{\prime} \wedge \forall i^{\prime} \in s^{\prime} . \exists i \in s . i \equiv i^{\prime}\right)\)
The conditions for \(\equiv_{b b}\) and \(\equiv_{z z}\) require the \(\equiv\)-relation to follow the usual semantics of equality for boolean and integer values. If locations correspond with respect to \(\equiv\), their selector-fields also have to correspond. This requires the second heap \(\eta^{\prime}\) to be homomorphic to the first heap \(\eta\). The condition for \(\equiv_{s s}\) is probably the most interesting, since it relates sets, which are represented differently in the two semantics. Elements of sets which are sets themselves need to have a corresponding set location in the other heap. Figure 5.14

Heap and Set Heap: Heap and Set Heap:


Figure 5.14: Example of Heap Correspondence Relation
gives an example of a Heap Correspondence Relation. We omitted the \(\equiv_{z z}\) part to make it more readable.

Lemma 1 (Heap Correspondence Relation Stability) If \(\equiv\) is a Heap Correspondence Relation on \((\eta, \varsigma)\) and \(\left(\eta^{\prime}, \varsigma^{\prime}\right)\) and \(\psi \in \operatorname{SetLoc}, \psi^{\prime} \in \operatorname{SetLoc}^{\prime}\) and \(\psi \notin(i m(\sigma) \cup\) \(i m(\eta) \cup \operatorname{dom}(\varsigma)), \psi^{\prime} \notin\left(\operatorname{im}\left(\sigma^{\prime}\right) \cup i m\left(\eta^{\prime}\right) \cup \operatorname{dom}\left(\varsigma^{\prime}\right) \cup \bigcup \operatorname{im}\left(\varsigma^{\prime}\right)\right)\) and \(i \in \operatorname{Item}, i^{\prime} \in\) Item \(^{\prime}\) with \(i \neq \psi, i \neq \psi^{\prime}, i \equiv i^{\prime}\) and \(x \in \operatorname{Set}, x^{\prime} \in \operatorname{Set}^{\prime}\),
then there exist Heap Correspondence Relations \(\equiv^{\prime}\) and \(\equiv^{\prime \prime}\) with
\[
(\eta, \varsigma[\psi \mapsto x]) \equiv \equiv^{\prime}\left(\eta^{\prime}, \varsigma^{\prime}\right) \text { and } i \equiv^{\prime} i^{\prime}
\]
and
\[
(\eta, \varsigma) \equiv \equiv^{\prime \prime}\left(\eta^{\prime}, \varsigma^{\prime}\left[\psi^{\prime} \mapsto x^{\prime}\right]\right) \text { and } i \equiv^{\prime \prime} i^{\prime}
\]

This expresses that we can change unaliased locations of the set heap without losing the fact that a Heap Correspondence Relation exists. In addition, the relation between other items is preserved. We will refer to this lemma as the Stability Lemma.

\section*{Proof Sketch:}

Give a new Heap Correspondence Relation by adding and removing appropriate elements from the previous relation. For the full proof see Appendix A.

Now we can go on to define correspondence of states.

Definition 16 (Corresponding States) Two states \((\sigma, \eta, \varsigma) \in \operatorname{State},\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \in \operatorname{State}^{\prime}\) are called corresponding, denoted by \((\sigma, \eta, \varsigma) \cong\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\), iff there exists a Heap Correspondence Relation \(\equiv\) on \((\eta, \varsigma),\left(\eta^{\prime}, \varsigma^{\prime}\right)\) with
\[
\sigma(x) \equiv \sigma^{\prime}(x) \vee\left(\sigma(x) \text { undef. } \wedge \sigma^{\prime}(x) \text { undef. }\right) \text { for all } x \in \operatorname{dom}(\sigma)
\]

The stack serves as an anchor to connect the two states. The existence of a Heap Correspondence Relation then requires the reachable part of the heap and the set heap of the first state to be homomorphically represented by the second state.

Lemma 2 (Set Injectivity) If \(i, j \in \operatorname{Set}, i^{\prime} \in \operatorname{Set}^{\prime}\) then
\[
i \equiv i^{\prime} \wedge j \equiv i^{\prime} \Rightarrow i=j
\]

That is, sets are unique in Semantics I. For a proof see Appendix A.
The following lemma proves two properties of the relation between a Heap Correspondence Relation and the \(\approx\)-predicate defined in Figure 5.12. It will help in the proof of the Expressions Coincide Lemma.

Lemma 3 ( \(\equiv / \approx\) Relation) Let \(\equiv\) be a Heap Correspondence Relation on \((\eta, \varsigma),\left(\eta^{\prime}, \varsigma^{\prime}\right)\) and let \(\sigma, \sigma^{\prime}\) be arbitrary stacks. Then the following holds
\[
\text { 1. } i \equiv i^{\prime} \wedge i \equiv j^{\prime} \Rightarrow\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)
\]
and
\[
\text { 2. } i \equiv i^{\prime} \wedge\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow i \equiv j^{\prime}
\]

That is the following diagram commutes:
\[
\begin{aligned}
i & \equiv i^{\prime} \\
& \equiv \quad 2 \\
& j^{\prime}
\end{aligned}
\]

\section*{Proof Sketch:}

Proof by case distinction on the type of \(i, i^{\prime}, j^{\prime}\). Induction where \(i \in\) Set.
The full proof is in the Appendix A.
Theorem 2 (Expressions Coincide) If two states correspond by the previous definition, then all expressions evaluate to equivalent values in both semantics:
\[
\begin{gathered}
(\sigma, \eta, \varsigma) \cong\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow \\
\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \equiv \mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \vee\left(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \text { undef. } \wedge \mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \text { undef. }\right)
\end{gathered}
\]

For boolean and integer expressions this means that they evaluate to the same value, since \(z_{1} \equiv z_{2} \Leftrightarrow z_{1} \equiv_{z z} z_{2} \Leftrightarrow z_{1}=z_{2}\) and \(b_{1} \equiv b_{2} \Leftrightarrow b_{1} \equiv_{b b} b_{2} \Leftrightarrow\left(b_{1} \Leftrightarrow b_{2}\right)\).
The result will be used in the proof of the Simulation Lemma. In addition it shows that the definition of corresponding states is sensible.
Proof Sketch:
Proof by induction over the structure of the formula. Use the definition of a Heap Correspondence Relation and the previous lemma for most of the base cases. The step cases are trivial.
See Appendix A for a proof.
Definition 17 (Corresponding Statements) Two statements \(S_{1}, S_{2}\) correspond, \(S_{1} \sim\) \(S_{2}\), iff \(S_{2}=T\left(S_{1}\right)\), where the transformation \(T:\) Stmt \(\rightarrow\) Stmt is defined as follows:


Before altering sets, they are being copied to a new location. This is to remedy the effects of aliasing that may occur in Semantics II. When inserting a set \(A\) into another set \(B\) only its set location is inserted. Changing set \(A\) would then also alter set \(B\), which is not desired and different from Semantics I.

Definition 18 (Corresponding Configurations) Two configurations correspond, iff their statements and their states correspond:
\[
\begin{gathered}
\left\langle S_{1},\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle \simeq\left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle \\
: \Leftrightarrow \\
S_{1} \sim S_{2} \wedge\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right) \cong\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)
\end{gathered}
\]

Semantics II allows aliasing. In order to establish a simulation relation between the two semantics, we need to be able to eliminate aliasing where desired. The following lemma shows how this can be achieved.

Lemma 4 (Aliasing Lemma) Let \((\sigma, \eta, \varsigma) \cong\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).
If \(\left\langle x_{\text {temp }}:=\right.\) malloc set \(; x_{\text {temp }}:=x ; x:=\) malloc set; \(\left.x:=x_{\text {temp }} ; S^{\prime},\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle \triangleright^{\prime *}\left\langle S^{\prime},\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\) then
\[
(\sigma, \eta, \varsigma) \cong\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)
\]
and
\[
\sigma_{2}^{\prime}(x) \notin\left(i m\left(\sigma_{2}^{\prime}[x \mapsto \text { undef. }]\right) \cup i m\left(\eta_{2}^{\prime}\right) \cup \bigcup i m\left(\varsigma_{2}^{\prime}\right)\right)
\]

This means that executing the series of statements \(x_{\text {temp }}:=\) malloc set; \(x_{\text {temp }}:=x\); \(x:=\) malloc set \(; x:=x_{\text {temp }}\) on a state \(\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) that is corresponding to \((\sigma, \eta, \varsigma)\) will preserve this correspondence, i.e. \((\sigma, \eta, \varsigma) \cong\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\). In addition the set location of \(x\) is not aliased in the new state \(\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\).

For a proof see Appendix A.
Lemma 5 (Simulation Lemma) The Simulation Lemma expresses that Semantics II can mimic the behaviour of Semantics I.

If \(\left\langle S_{1},\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle \simeq\left\langle S_{1}^{\prime},\left(\sigma_{1}^{\prime}, \eta_{1}^{\prime}, \varsigma_{1}^{\prime}\right)\right\rangle\) and \(\left\langle S_{1},\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle \triangleright\left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle\) then there exists \(a\left\langle S_{2}^{\prime},\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\) with \(\left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle \simeq\left\langle S_{2}^{\prime},\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\) and \(\left\langle S_{1}^{\prime},\left(\sigma_{1}^{\prime}, \eta_{1}^{\prime}, \varsigma_{1}^{\prime}\right)\right\rangle \triangleright^{\prime *}\left\langle S_{2}^{\prime},\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\)

This is illustrated by the following diagram:
\[
\begin{array}{ccc}
\left\langle S_{1},\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle & \triangleright & \left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle \\
& & \simeq \\
\left\langle S_{1}^{\prime},\left(\sigma_{1}^{\prime}, \eta_{1}^{\prime}, \varsigma_{1}^{\prime}\right)\right\rangle & \triangleright^{\prime *} & \left\langle S_{2}^{\prime},\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle
\end{array}
\]

Any \(\triangleright-\) step in Semantics I can be simulated in Semantics II by making one or possibly more steps.

\section*{Proof Sketch:}

For every inference rule in Semantics I show that there are inference rules in Semantics II with an equivalent effect. The applicability of most of the corresponding rules follows from the Expressions Coincide Theorem. Use the Aliasing Lemma to show that the execution of the commands preceding set operations remove aliases. For a full proof see Appendix A.

We define sensible initial states for both semantics:
Definition 19 (Initial States) An initial state ( \(\sigma, \eta, \varsigma\) ) of the first semantics has the following properties:
\begin{tabular}{|ccl|}
\hline\(\sigma(x)\) & \(=\) & 0 \\
\(\sigma(x)\) & if \(x:\) int \\
\(\sigma(x)\) & undef. & 0 \\
if \(x:\) bool \(x: \operatorname{loc}\) or \(x: t\) set \\
\(\eta(\xi\), sel \()\) & undef. & \(\forall \xi \in\) Loc. \(\forall\) sel \(\in\) Sel \\
\(\varsigma(\psi)\) & undef. & \(\forall \psi \in \operatorname{SetLoc}\) \\
\hline
\end{tabular}

An initial state \(\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) in Semantics II is defined similarly, exchanging \(\sigma, \eta, \varsigma, \xi, \psi\) with their respective primed versions.

Building on the Simulation Lemma and the preceding definition we are now ready to proof the main theorem of this chapter.

Theorem 3 (Simulation Theorem) Initial states of both semantics correspond and Semantics II can mimic the behaviour of Semantics I.

If \((\sigma, \eta, \varsigma)\) and \(\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) are initial states, then \((\sigma, \eta, \varsigma) \cong\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\). If \(\left\langle S_{1},\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle \simeq\) \(\left\langle S_{1}^{\prime},\left(\sigma_{1}^{\prime}, \eta_{1}^{\prime}, \varsigma_{1}^{\prime}\right)\right\rangle\) and \(\left\langle S_{1},\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle \triangleright\left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle\) then there exists a \(\left\langle S_{2}^{\prime},\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\) with \(\left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle \simeq\left\langle S_{2}^{\prime},\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\) and \(\left\langle S_{1}^{\prime},\left(\sigma_{1}^{\prime}, \eta_{1}^{\prime}, \varsigma_{1}^{\prime}\right)\right\rangle \triangleright^{\prime *}\left\langle S_{2}^{\prime},\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\)

\section*{Proof:}

The second part of the theorem is proven by the Simulation Lemma. It remains to show that initial states correspond. Obviously, a Heap Correspondence Relation \(\equiv\) for \((\eta, \varsigma)\) and \(\left(\eta^{\prime}, \varsigma^{\prime}\right)\) exists, since both \(\eta, \eta^{\prime}\) and \(\varsigma, \varsigma^{\prime}\) are completely undefined, thus putting no restrictions on \(\equiv\). We also have \(0 \equiv 0\) and \(\mathbf{0} \equiv \mathbf{0}\) since this is required by the definition of a Heap Correspondence Relation. So, \(\sigma(x)=0 \equiv_{z z} 0=\sigma^{\prime}(x)\) for \(x\) : int and \(\sigma(x)=\mathbf{0} \equiv_{b b} \mathbf{0}=\sigma^{\prime}(x)\) for \(x\) : bool. Also, \(\sigma(x)\) undef. and \(\sigma^{\prime}(x)\) undef. for \(x:\) loc or \(x: t\) set.

\section*{6 Shape Analysis of RESET}

To create a shape analysis for our Semantics II we perform two abstraction steps. The first step solely abstracts from values, i.e. booleans and integers. Only the structure of the heap (the shape) is preserved and represented by 2 -valued logical structures. Using logical structures allows us to make another abstraction to a representation by 3 -valued logical structures which makes our analysis computable since the domain will be finite. Our analysis fits into the framework of [SRW02] introduced in Chapter 2 and is implemented in TVLA. The following diagram illustrates the relations between the different semantics and our analysis:


\subsection*{6.1 Shape Analysis 2-valued}

The 2-valued semantics abstracts from values, i.e. booleans and integers. It does however remain concrete for the structure of the heap and the set heap, since this is what we want to analyze in a Shape Analysis. The universe \(U\) comprises both locations in the heap and in the set heap. Alternatively, one could have two disjoint universes. In our case this would only complicate the definitions \({ }^{1}\).

\footnotetext{
\({ }^{1}\) We would need two predicates to represent the set heap, one for sets of locations and one for sets of sets, yielding even more predicate-update formulae.
}
\begin{tabular}{|l|l|l|}
\hline Predicate & Type & Intended Meaning \\
\hline \hline\(x(v)\) for each \(x \in\) Var & \(U \rightarrow \mathbb{B}\) & Pointer variable \(x\) points to heap cell \(v\). \\
\(\operatorname{sel}\left(v_{1}, v_{2}\right)\) for each sel \(\in\) Sel & \(U \times U \rightarrow \mathbb{B}\) & The sel selector of \(v_{1}\) points to \(v_{2}\). \\
isSet \((v)\) & \(U \rightarrow \mathbb{B}\) & \(v\) represents a set. \\
isIn \(\left(v_{1}, v_{2}\right)\) & \(U \times U \rightarrow \mathbb{B}\) & \(v_{1}\) is in set \(v_{2}\). \\
\hline leq \(\left(v_{1}, v_{2}\right)\) & \(U \times U \rightarrow \mathbb{B}\) & An ordering relation on heap cells. \\
selected \((v)\) & \(U \times U \rightarrow \mathbb{B}\) & \(v\) has been selected for removal or allocation. \\
unallocated \((v)\) & \(U \rightarrow \mathbb{B}\) & \(v\) has not been allocated yet. \\
\hline
\end{tabular}

Figure 6.1: Representation of the State by Predicates

\subsection*{6.1.1 Domains}

Unary and binary predicates are used to represent the state. These predicates are shown in Figure 6.1. For every variable a unary predicate is introduced that is true for the element of the heap or set heap it points to. This set of unary predicates corresponds to what was called the stack in the Semantics II. To distinguish between locations and set locations the unary predicate isSet is used. The heap is modeled by a collection of binary predicates, one for each selector. Such a predicate is true if the selector field of the first operand points to the second. Finally, the set heap is modeled by the binary predicate \(\operatorname{isIn}\left(v_{1}, v_{2}\right)\) which is true if \(v_{1}\) is contained in \(v_{2}\). Notice the subtle difference between the relation isIn and set membership. A set \(v\) can also be an element of a set \(v_{\text {set }}\) if it is equal to another set \(v_{e l}\) such that \(\operatorname{isIn}\left(v_{e l}, v_{s e t}\right)\), but not \(i \sin \left(v, v_{s e t}\right)\). Membership is determined by equality, not by identity. For sets of locations the two notions coincide, however, because equality on locations is identity.

Three more predicates are used, namely leq, selected, and unallocated, that are not directly connected to any of the constructs in the Semantics II. Previously, the \(x:=y\).selectAndRemovestatement was the source of nondeterminism. Our framework does not allow us to specify nondeterministic update formulae, though. To determinize this operation the predicate leq is introduced. It imposes a total ordering on the heap and the set heap. This allows us to deterministically select the "smallest" element of a set. The predicate selected will be explained in the section about the predicate-update formulae. Since we use a constant domain, all heap cells that will eventually be used have to be present right away. unallocated keeps track of the heap cells that have not yet been allocated or that have been released again.
\begin{tabular}{|l|l|l|}
\hline Expression \(\exp\) & Type & Condition \(\operatorname{cond}(\exp )\) \\
\hline \hline\(x_{1}=x_{2}\) & \(x_{1}, x_{2}: \mathrm{loc}\) & \(\forall v \cdot\left(x_{1}(v) \Leftrightarrow x_{2}(v)\right)\) \\
\hline true & & \(\mathbf{1}\) \\
\hline false & & \(\mathbf{0}\) \\
\hline\(\neg e x p_{1}\) & & \(\neg \operatorname{cond}\left(\exp _{1}\right)\) \\
\hline \(\exp _{1} \wedge e x p_{2}\) & & \(\operatorname{cond}\left(\exp _{1}\right) \wedge \operatorname{cond}\left(\exp _{2}\right)\) \\
\hline \(\exp _{1} \vee e x p_{2}\) & & \(\operatorname{cond}\left(\exp _{1}\right) \vee \operatorname{cond}\left(\exp _{2}\right)\) \\
\hline
\end{tabular}

Figure 6.2: Semantics of Expressions

\subsection*{6.1.2 Semantics of Expressions}

The conditional statement and the while-loop require the evaluation of boolean expressions. Since we abstract from values, only expressions concerning locations or set locations have to be considered here. Equality of pointer variables is straightforward. It translates to equivalence of the two predicates representing the variables. Boolean combinations of expressions can also be handled easily. See Figure 6.2.

For sets, equality is more complicated. Two sets can be equal although they are stored at different locations in the set heap. In the Semantics II of the previous chapter this was handled by \(\approx\), which recursively descended into the set heap. The following definition of predicate \(e q\) would be analogous.
\[
\begin{aligned}
e q\left(v_{1}, v_{2}\right) & =\left(\left(\forall v_{3} \cdot i \operatorname{isIn}\left(v_{3}, v_{1}\right) \Rightarrow \exists v_{4} \cdot\left(i \operatorname{sIn}\left(v_{4}, v_{2}\right) \wedge e q\left(v_{3}, v_{4}\right)\right)\right) \wedge i \operatorname{sict}\left(v_{1}\right)\right. \\
& \left.\wedge\left(\forall v_{4} \cdot i \operatorname{sIn}\left(v_{4}, v_{2}\right) \Rightarrow \exists v_{3} \cdot\left(i \operatorname{SIn}\left(v_{3}, v_{1}\right) \wedge e q\left(v_{3}, v_{4}\right)\right)\right) \wedge i \operatorname{Set}\left(v_{2}\right)\right) \\
& \vee\left(v_{1}=v_{2}\right)
\end{aligned}
\]

Here however, we need to give an equivalent formula explicitly. It does not seem possible though for the general case of set equality using first-order logic. Fortunately, the maximal depth of sets can be determined statically by the type system. This allows us to expand the recursive definition sufficiently often. The equal-predicate is serving this purpose:
\[
\begin{aligned}
& \operatorname{equal}_{1}\left(v_{1}, v_{2}\right)=\left(\left(\forall v_{3} . i \operatorname{sIn}\left(v_{3}, v_{1}\right) \Rightarrow \exists v_{4} \cdot\left(i \sin \left(v_{4}, v_{2}\right) \wedge v_{3}=v_{4}\right)\right) \wedge i s \operatorname{Set}\left(v_{1}\right)\right. \\
& \left.\wedge\left(\forall v_{4} \cdot i \operatorname{SIn}\left(v_{4}, v_{2}\right) \Rightarrow \exists v_{3} .\left(\operatorname{isIn}\left(v_{3}, v_{1}\right) \wedge v_{3}=v_{4}\right)\right) \wedge \operatorname{isSet}\left(v_{2}\right)\right) \\
& \vee \quad\left(v_{1}=v_{2}\right) \\
& \operatorname{equal}_{n+1}\left(v_{1}, v_{2}\right)=\left(\left(\forall v_{3} . i \operatorname{isIn}\left(v_{3}, v_{1}\right) \Rightarrow \exists v_{4} \cdot\left(i s \operatorname{In}\left(v_{4}, v_{2}\right) \wedge \operatorname{equal}_{n}\left(v_{3}, v_{4}\right)\right)\right) \wedge i s \operatorname{Set}\left(v_{1}\right)\right) \\
& \left.\wedge\left(\forall v_{4} . \operatorname{isIn}\left(v_{4}, v_{2}\right) \Rightarrow \exists v_{3} .\left(i \operatorname{sIn}\left(v_{3}, v_{1}\right) \wedge \operatorname{equal}_{n}\left(v_{3}, v_{4}\right)\right)\right) \wedge \operatorname{isSet}\left(v_{2}\right)\right) \\
& \vee \quad\left(v_{1}=v_{2}\right) \\
& \operatorname{equal}\left(v_{1}, v_{2}\right)=\text { equal }_{n}\left(v_{1}, v_{2}\right) \text {, where } \mathrm{n} \text { is the maximal nesting depth of sets in the program. }
\end{aligned}
\]

The extra \(\left(v_{1}=v_{2}\right)\) in each definition of equal \({ }_{i}\) acts as a shortcut. It allows equal \({ }_{i}\) to be used for sets of depth \(i\) or less. Using equal we can now go on to define the conditions for all the expressions concerning sets:
\begin{tabular}{|l|l|l|}
\hline Expression \(\exp\) & Type & Condition \(\operatorname{cond}(\exp )\) \\
\hline \hline\(x_{1}=x_{2}\) & \(x_{1}, x_{2}: t\) set & \(\exists v_{1} \cdot \exists v_{2} \cdot\left(x_{1}\left(v_{1}\right) \wedge x_{2}\left(v_{2}\right) \wedge \operatorname{equal}\left(v_{1}, v_{2}\right)\right)\) \\
\hline\(x_{1} \in x_{2}\) & & \(\exists v_{1} \cdot \exists v_{2} \cdot\left(x_{1}\left(v_{1}\right) \wedge x_{2}\left(v_{2}\right) \wedge \exists v_{e l} \cdot\left(\operatorname{isIn}\left(v_{e l}, v_{2}\right) \wedge \operatorname{equal}\left(v_{1}, v_{e l}\right)\right)\right)\) \\
\hline\(x_{1} \subseteq x_{2}\) & & \(\exists v_{1} \cdot \exists v_{2} \cdot\left(x_{1}\left(v_{1}\right) \wedge x_{2}\left(v_{2}\right) \wedge \forall v_{e l 1} \cdot\left(i \operatorname{isIn}\left(v_{e l 1}, v_{1}\right)\right.\right.\) \\
& & \(\left.\left.\Rightarrow \exists v_{e l 2} \cdot\left(i \sin \left(v_{e l 2}, v_{2}\right) \wedge \operatorname{equal}\left(v_{e l 1}, v_{e l 2}\right)\right)\right)\right)\) \\
\hline
\end{tabular}

\subsection*{6.1.3 Semantics of Statements}

The effect of statements is modeled by predicate-update formulae. These specify how the interpretation of the predicate symbols is altered by the execution of the particular statement. We only give update formulae for predicates that are changed by the respective statement, i.e. formulae that simply copy the previous interpretation are omitted.

The following table displays the predicate-update formulae for statements manipulating the heap. They are similar to those given in [SRW02].
\begin{tabular}{|l|l|l|}
\hline Statement & Type & Predicate-update formula \\
\hline \hline\(x:=y\) & \(x: 1 \mathrm{loc}\) & \(x^{\prime}(v)=y(v)\) \\
\hline\(x . \operatorname{sel}:=y\) & \(x . \operatorname{sel}: \mathrm{loc}\) & \(\operatorname{sel}^{\prime}\left(v_{1}, v_{2}\right)=\left(\operatorname{sel}\left(v_{1}, v_{2}\right) \wedge \neg x\left(v_{1}\right)\right) \vee\left(x\left(v_{1}\right) \wedge y\left(v_{2}\right)\right)\) \\
\hline\(x:=y . \operatorname{sel}\) & \(x:\) loc & \(x^{\prime}(v)=\exists v_{1} \cdot\left(y\left(v_{1}\right) \wedge \operatorname{sel}\left(v_{1}, v\right)\right)\) \\
\hline
\end{tabular}

We also split the handling of malloc-statements into two phases. In the first phase the heap cell to be allocated is selected. The selected-predicate is used to mark this heap cell. The smallest unallocated heap cell is chosen. The second update-formula is then responsible for assigning that heap cell and for removing it from the unallocated-predicate.
\begin{tabular}{|c|c|c|}
\hline Statement & Type & Predicate-update formula \\
\hline \(x:=\) malloc or & & selected' \((v)=\) unallocated ( \(v\) ) \\
\hline x.sel \(:=\) malloc - (1) & & \(\wedge \forall v_{1} .\left(\right.\) unallocated \(\left.\left(v_{1}\right) \Rightarrow \operatorname{leq}\left(v, v_{1}\right)\right)\) \\
\hline \(x:=\) malloc set or & & selected' \((v)=\operatorname{isSet}(v) \wedge\) unallocated ( \(v\) ) \\
\hline x.sel \(:=\) malloc set - (1) & & \(\wedge \forall v_{1} \cdot\left(\left(\operatorname{isSet}(v) \wedge \operatorname{unallocated}\left(v_{1}\right)\right) \Rightarrow \operatorname{leq}\left(v, v_{1}\right)\right)\) \\
\hline \[
\begin{aligned}
& x:=\text { malloc or } \\
& x:=\text { malloc set }-(2)
\end{aligned}
\] & & \[
\begin{aligned}
& \text { unallocated }(v)=\text { unallocated }(v) \wedge \neg \text { selected }(v) \\
& x^{\prime}(v)=\text { selected }(v) \\
& \text { selected }^{\prime}(v)=\mathbf{0} \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { x.sel }:=\text { malloc or } \\
& \text { x.sel }:=\text { malloc set }-(2)
\end{aligned}
\] & & \[
\begin{aligned}
& \text { unallocated }^{\prime}(v)=\text { unallocated }(v) \wedge \neg \text { selected }(v) \\
& \operatorname{sel}^{\prime}\left(v_{1}, v_{2}\right)=\left(\neg x\left(v_{1}\right) \wedge \operatorname{sel}\left(v_{1}, v_{2}\right)\right) \\
& \vee\left(x\left(v_{1}\right) \wedge \operatorname{selected}\left(v_{2}\right)\right) \\
& \text { selected }^{\prime}(v)=\mathbf{0} \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

The following table shows the update formulae for statements manipulating sets. In these cases only the isIn predicate is changed. As in the Semantics II, assignments copy the contents of sets. Elements are inserted into a set if there is no other equal element already contained in it. When removing an element, all elements equal to it are removed from the set.
\begin{tabular}{|c|c|c|}
\hline Statement & Type & Predicate-update formula \\
\hline \(x:=y\) & \(x: t\) set & \[
\begin{aligned}
& \hline i s I n^{\prime}\left(v_{1}, v_{2}\right)=\neg x\left(v_{2}\right) \wedge i \sin \left(v_{1}, v_{2}\right) \\
& \vee x\left(v_{2}\right) \wedge \exists v_{3} .\left(y\left(v_{3}\right) \wedge i \operatorname{In}\left(v_{1}, v_{3}\right)\right)
\end{aligned}
\] \\
\hline x.sel \(:=y\) & \(x . s e l: t\) set & \[
\begin{aligned}
& i \operatorname{sIn}\left(v_{1}, v_{2}\right) \neg \exists v_{3} \cdot\left(x\left(v_{3}\right) \wedge \operatorname{sel}\left(v_{3}, v_{2}\right)\right) \wedge \operatorname{isIn}\left(v_{1}, v_{2}\right) \\
& \quad \vee \exists v_{3} \cdot\left(x\left(v_{3}\right) \wedge \operatorname{sel}\left(v_{3}, v_{2}\right)\right) \wedge \exists v_{4} \cdot\left(y\left(v_{4}\right) \wedge \operatorname{isIn}\left(v_{1}, v_{4}\right)\right)
\end{aligned}
\] \\
\hline \(x:=y . s e l\) & \(x: t\) set & \[
\begin{aligned}
& \operatorname{isIn}^{\prime}\left(v_{1}, v_{2}=\neg x\left(v_{2}\right) \wedge i \operatorname{sIn}\left(v_{1}, v_{2}\right)\right. \\
& \quad \vee x\left(v_{2}\right) \wedge \exists v_{3} .\left(y\left(v_{3}\right) \wedge \exists v_{4} .\left(\operatorname{sel}\left(v_{3}, v_{4}\right) \wedge i \sin \left(v_{1}, v_{4}\right)\right)\right)
\end{aligned}
\] \\
\hline \(x\).insert ( \(y\) ) & & \[
\begin{aligned}
& i s I n^{\prime}\left(v_{1}, v_{2}\right)=\operatorname{isIn}\left(v_{1}, v_{2}\right) \\
& \quad \vee y\left(v_{1}\right) \wedge x\left(v_{2}\right) \wedge \neg \exists v_{3} .\left(i s \operatorname{In}\left(v_{3}, v_{2}\right) \wedge \operatorname{equal}\left(v_{3}, v_{1}\right)\right)
\end{aligned}
\] \\
\hline \(x\).remove ( \(y\) ) & & \[
\left.\left.\begin{array}{l}
i s \operatorname{In}^{\prime}\left(v_{1}, v_{2}\right)=\operatorname{isIn}\left(v_{1}, v_{2}\right) \\
\wedge \neg\left(x\left(v_{2}\right)\right.
\end{array}\right) \exists v_{3} .\left(y\left(v_{3}\right) \wedge \operatorname{equal}\left(v_{1}, v_{3}\right)\right)\right) .
\] \\
\hline
\end{tabular}

We split the \(x:=y\).selectAndRemove-statement into two steps to simplify the formulae. The first step selects the element while the second step actually removes it from \(y\) and assigns it to \(x\). As mentioned before, we use the ordering relation leq to determinize the statement, by choosing the smallest element with respect to leq. This is done in the first step, by setting the selected-predicate to true for this element. Two different formulae are used for the second step depending on the type of set. When dealing with sets of locations we have to alter the stack. In the other case, only the set heap, represented by \(i s I n\), is changed. In both cases selected is reset to be universally false.
\begin{tabular}{|c|c|c|}
\hline Statement & Type & Predicate-update formula \\
\hline \begin{tabular}{l}
\(x:=y\).selectAndRemove \\
- (1)
\end{tabular} & & \[
\begin{gathered}
\hline \text { selected' }(v)=\exists v_{\text {set }} \cdot\left(y\left(v_{\text {set }}\right) \wedge \text { isIn }\left(v, v_{\text {set }}\right)\right. \\
\left.\wedge \forall v_{\text {el }} \cdot\left(i s I n\left(v_{e l}, v_{\text {set }}\right) \Rightarrow l \text { leq }\left(v, v_{\text {el }}\right)\right)\right)
\end{gathered}
\] \\
\hline \(x:=y\).selectAndRemove
\[
-(2)
\] & \(x: 10 c\) & \[
\begin{aligned}
& x^{\prime}(v)=\operatorname{selected}(v) \\
& i s I n^{\prime}\left(v_{e l}, v_{\text {set }}\right)=i \operatorname{isIn}\left(v_{e l}, v_{\text {set }}\right) \wedge \neg\left(y\left(v_{\text {set }}\right) \wedge \text { selected }\left(v_{e l}\right)\right) \\
& \text { selected }^{\prime}(v)=\mathbf{0}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\(x:=y\).selectAndRemove \\
- (2)
\end{tabular} & \(x: t\) set & \[
\begin{aligned}
& i s I n^{\prime}\left(v_{\text {el }}, v_{\text {set }}\right)=\left(i s I n\left(v_{\text {el }}, v_{\text {set }}\right)\right. \\
& \left.\vee\left(x\left(v_{\text {set }}\right) \wedge \exists v_{\text {sel }} .\left(\operatorname{selectec}\left(v_{\text {sel }}\right) \wedge i \operatorname{sIn}\left(v_{e l}, v_{\text {sel }}\right)\right)\right)\right) \\
& \wedge \neg\left(y\left(v_{\text {set }}\right) \wedge \exists \exists v_{\text {sel }} .\left(\operatorname{selected}\left(v_{\text {sel }}\right) \wedge \text { equal }\left(v_{\text {sel }} v_{\text {sel }}\right)\right)\right) \\
& \operatorname{selected}^{\prime}(v)=\mathbf{0}
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{6.2 Shape Analysis 3-valued}

We could use the above predicates and predicate-update formulae directly to generate a 3 -valued shape analysis using TVLA. In order to gain additional precision it is however necessary to add instrumentation predicates.

For our small case study we used three instrumentation predicates. See Figure 6.3 for their definition and intended meaning. We did not need to specify update formulae for these predicates. TVLA generated them automatically through finite differencing [RSL03]. This greatly reduced the burden on us. The in \([x]\) predicates are used as abstraction predicates. They serve a similar purpose as the \(d l e[x, s e l]\) predicate family in Chapter 4 and may thus serve as a motivation for the Abstraction Expressions presented there.
\begin{tabular}{|l|l|l|}
\hline Predicate & Defining Formula & Intended Meaning \\
\hline \hline isElement \(\left(v_{1}, v_{2}\right)\) & \(\exists v .\left(\operatorname{isIn}\left(v, v_{2}\right) \wedge \operatorname{equal}\left(v_{1}, v\right)\right)\) & \(v_{1}\) is an element of set \(v_{2}\). \\
\hline \(\left.\operatorname{isSubset}\left(v_{1}, v_{2}\right)\right)\) & \begin{tabular}{l} 
isSet \(\left(v_{1}\right) \wedge\) isSet \(\left(v_{2}\right) \wedge\) \\
\(\forall v .(i s E l e m e n t\) \\
\(i s E l e m e n t\) \\
\(\left.\left.i s, v_{2}\right)\right)\)
\end{tabular} & \(v_{1}\) is a subset of \(v_{2}\). \\
\hline \(\operatorname{in}[x](v)\) for each \(x \in \operatorname{Var}\) & \(\exists v_{1} \cdot\left(x\left(v_{1}\right) \wedge\right.\) isElement \(\left.\left.\left(v, v_{1}\right)\right)\right)\) & \begin{tabular}{l}
\(v\) is an element of the \\
set pointed to by \(x\).
\end{tabular} \\
\hline
\end{tabular}

Figure 6.3: Instrumentation Predicates

For our case study these predicates were sufficient. Many other useful predicates are conceivable. For instance:
- Ternary predicates isElementOfUnion, isElementOf Intersection. Such predicates would be hard to visualize though.
- Alternatively, one could introduce unary predicates that represent the union or intersection of two specific sets. These could be visualized by additional nodes that are connecting the two sets to the elements.

\subsection*{6.3 Case Study - Intersection Program}

To demonstrate that our shape analysis works in practice we conducted a case study. The task was to analyze the intersection program introduced in Chapter 5, which computes the intersection of two sets. Using the instrumentation predicates \(i n[X], i n[Y]\) and \(i n[Z]\) we can formalize the property we want to prove in the following way:
\[
\forall v .((i n[X](v) \wedge i n[Y](v)) \Leftrightarrow i n[Z](v)) .
\]

An object \(v\) is a member of \(Z\) if and only if it is a member of both \(X\) and \(Y\).
Figure 6.4 shows the source code of the program. The references to the contents of \(X\) are first copied into the temporary variable Temp. Temp is used to iterate over the contents of \(X\) without destroying \(X\) itself. For every element of \(X\) we check whether it is also an element of \(Y\). In this case it is inserted into \(Z\).

We chose one three-valued input structure depicted in Figure 6.5 as input. An empty set pointed to by empty is kept to be able to check whether a set is empty by comparison. Unallocated sets are empty. The elements of \(X\) and \(Y\) are partitioned through the in \(n x]\) predicates into those that are only contained in \(X\), those only contained in \(Y\) and those contained in both \(X\) and \(Y\).

Only one output structure is generated for this input. It is displayed in Figure 6.6. The only difference compared to the input structure is that elements that are contained in both
```

void intersection(Set X, Set Y)
{
Temp := malloc set;
Temp := X;
Z := malloc set;
while (Temp != Empty)
{
p := Temp.selectAndRemove;
if (p \in Y)
Z.insert(p);
}
p := NULL;
Temp := NULL;
}

```

Figure 6.4: RESET Program Computing the Intersection


Figure 6.5: Input for Intersection Program
\(X\) and \(Y\) are now also contained in \(Z\). So the program really computes the intersection of \(X\) and \(Y\), the property is proven.


Figure 6.6: Output of Intersection Program

\section*{7 Modular Analysis}

In this chapter we discuss modularity and modular analysis. We show its benefits, but also obstacles on the way to modularity. After describing techniques to overcome these obstacles we briefly investigate modular shape analysis.

\subsection*{7.1 Modularity}

Modularity is an important concept in software engineering. Some of the advantages that a modular approach yields in the design process also translate to advantages of modular analyses. That is why it is useful to investigate what is meant by modularity in a more general sense before dealing with modular analysis.

According to Bertrand Meyer [Mey88] there are five essential criteria for a modular design method:
- Decomposability

Large problems maybe decomposed into several less complex subproblems, connected by a simple structure, independent enough to be worked on concurrently.
- Composability

Software elements can be composed to perform a desired task together. This is also related to reusability.
- Understandability

A method favors modular understandability if it helps to produce modules that can be separately understood by a human reader.
- Continuity

Small changes in the problem (specification) lead to small changes in the program in one or just few modules.
- Protection

The effect of defects occurring at run-time remains confined to the module were it occurred. Errors should not propagate too far.

Meyer also names five rules for modularity that should be followed to achieve modularity as it is described above. We will list two of them that are related to modular analysis.
- Information Hiding

Only a part of every module should be visible to the outside. This part is called the interface. Implementation details should be hidden. This rule follows primarily from the Protection aspect.
- Few Interfaces

Every module should communicate with as few others as possible. Changes do not affect many other modules. This favors Continuity and Protection.

Object-oriented languages like Eiffel, C++, or Java allow to follow a modular design process. To a certain extent this is also possible in imperative languages.

\subsection*{7.2 Benefits of Modular Analysis}

Modular analyses exploit the modular structure of programs to be analyzed. Figure 7.1 illustrates a possible modular structure of a program. The modules each follow some specification. A modular analysis would analyze each of the modules against its specification using only the specification of the modules it is using. This is depicted by the dashed arrows. An analysis of module \(C\) for instance, would prove its specification on the basis of the specifications of \(E\) and \(F\). It would be independent of the concrete implementations of \(E\) and \(F\).


Figure 7.1: Sample Modular Structure
This separation into several analyses is related to the Protection and the Understandability criteria. Modules that are separately understandable by humans lend themselves naturally
to an analysis following this structure. Errors in the implementation of modules that remain confined to the module where they occurred will likely be discovered in the analysis of the specific module, allowing the user to localize the problem. A modular analysis can also profit from the Continuity and the Composability aspects of modularity. A change in the implementation of one module only requires to reanalyze that particular module. The rest of the analysis remains valid as long as the specification does not change. Modules that are frequently reused have to be analyzed against their specification only once. This could be especially useful for widely used libraries.

In addition to these rather qualitative advantages, modular analyses are usually much faster than whole-program analyses. The simplicity of the specifications compared to their implementations results in smaller domains and thus earlier termination of the analysis algorithms.

\subsection*{7.3 Aliasing}

Unfortunately, it is not always possible to perform modular analyses. Problems arise, where modules are not completely separated from each other. A modular view requires that changes to the state of a module can only be made by calls to the interface. This corresponds to the Information Hiding rule. However, this can usually not be guaranteed by the constructs of the programming language. When a memory location is reachable through different access paths, this is called aliasing. Aliasing allows to manipulate the heap at one place, causing problems at another. Figure 7.2 gives a simple example of this. \(x\) and \(y\) point to the same memory cell. If we manipulate \(y\).next this also has an impact on \(x\).next. Aliasing only becomes a problem in conjunction with mutable locations.


Figure 7.2: Simple Aliasing Example
If we have a notion of what is inside and what is outside of a module, we can distinguish two types of aliasing. Figure 7.3 gives an example involving a tree-based set module. The boundary of the set is marked by a rectangle, the interface by dots on the boundary. In this


Figure 7.3: Representation Exposure and Outgoing References
example the data-elements of the set are considered to be outside. They are accessed by pointers from the tree structure. These pointers are called Outgoing References. Possibly, there are also paths leading into the module that are not passing through the interface. Such pointers, that are crossing the boundary from outside to inside are called Incoming References. Sometimes the inside of a module is called its representation. Then Incoming References are also referred to as Representation Exposure [Cla01].

Incoming references allow to manipulate the internal structure of the module. They could be used to destroy the tree structure or the ordering invariant. On the other hand such references may be useful. For instance, one might want to create an iterator. It would need to have read access to the internal structure to perform its task. Outgoing references are also problematic. In our example we could manipulate one of the data elements. This would in most cases violate the ordering invariant. Figure 7.4 shows the effect of manipulating set elements in a tree-based implementation (a), a list-based implementation (b) and in Semantics II (c) of Chapter 5. In all of the three cases set membership is changed and the data structure invariants are broken. The extent of the anomalies differs though:
- In the tree-based case the change of a data element can cause parts of the tree to become "invisible". A binary search in the tree would not discover the elements 7 and 8. The ordering invariant is broken. There are smaller elements than 11 in the right subtree.
- The list implementation is not as heavily damaged by changing one of its elements. In terms of set membership only the manipulated element is affected. In addition, the data structure invariant guaranteeing no duplicate elements is violated. This invariant could however be relaxed, for it is not necessary for a correct list-based implementation.
- Even if sets are primitives problems may arise. We are dealing with the Semantics II of Chapter 5. It is only possible to construct such a violation in the context of sets of sets though. This is because we are not able to manipulate primitive elements of sets. Two identical elements are created, both containing the 7 only (see Figure 7.4). In fact this corresponds exactly to the difference between the two semantics that we studied earlier.

The extent of the anomalies seems to be related to the complexity of the implementation. The more sophisticated the implementation, the greater the problems, as depicted in Figure 7.5. A modular analysis could follow two different approaches. It could either try to model these anomalies and internalize them, or it could rely on some mechanism to prevent the "bad" things from happening. We will continue to discuss the latter approach.

\subsection*{7.4 Ways to deal with Aliasing}

One possibility is to prevent aliasing altogether. This can be achieved by introducing constructs that guarantee static checkability by compilers and program analyzers. However, static checkability requires very conservative definitions. These constructs seem to impair the programmer too much \(\left[\mathrm{HLW}^{+} 92\right]\). An example of such constructs is a swap statement that replaces normal assignment statements. In addition, many data structures rely on aliasing like doubly-linked lists.

Another rather basic approach is to allow aliases, but disallow the mutation of aliased objects. The transformation that we gave to generate equivalent programs in our set language is an example of alias prevention (Definition 17). Whenever we want to manipulate a set we would make a copy of it first and manipulate the copy instead.

More sophisticated methods have been developed to limit aliasing in such a way that anomalies are prevented, at the same time being flexible enough to allow common programming patterns to be employed. Examples are Islands [Hog91], Balloon Types [Alm97], Ownership Types [CNP01, BLS03] and Universes [MPH01]. These methods all establish some sort of encapsulation. What is encapsulation?
"Encapsulation refers to building a capsule, in the case a conceptual barrier, around some collection of things." [WBWW90]

When talking about incoming and outgoing references we already had a notion of objects being inside or outside a module. This is formalized in different ways here. Constraints can then be imposed on references crossing the encapsulation boundaries. We may forbid write access or even read access to objects via access paths that cross the boundary. The difficulty is to provide a flexible yet statically checkable encapsulation scheme.


Figure 7.4: Anomalies through Outgoing References


Figure 7.5: Extent of Anomalies
Noble et. al. [ \(\left.\mathrm{NBT}^{+} 03\right]\) introduce a model of encapsulation to be able to compare different approaches. We give a short overview of the different approaches that partially stems from \(\left[\mathrm{NBT}^{+} 03\right]\). All of the attempts allow a nesting of encapsulation, so we will usually only discuss the basic case.
- Islands was the first such protection scheme. It provides full encapsulation, i.e. everything reachable from so-called bridges belongs to the island. References into the island that do not originate from the bridge are not allowed. References leaving the island are also prohibited. The island may only be accessed through its bridge. Aliasing is only allowed within the island.

- Balloons is quite similar to Islands. It also provides full encapsulation. In contrast to Islands the entry to the balloon may not be aliased. The advantage of Balloons is that it needs less syntactic overhead than Islands to achieve encapsulation. It relies on an Abstract Interpretation to check whether the constraints imposed are met.

- Ownership Types do not necessarily enforce full encapsulation. An ownership relation owner between objects is established that forms a tree. Owners serve as entry points to the elements they encapsulate. In contrast to the full encapsulation schemes references may cross the boundaries from inside to outside. Entrance is still restricted to owners. Let ownedby be the transitive closure of the inverse of the owner relation. Then we can formalize this in the following way:
\[
s \longrightarrow t \Rightarrow s \text { ownedby owner }(t)
\]


The additional flexibility gained by this is quite useful. For instance, it is now possible to differentiate between arguments and representation. Consider an unsorted linkedlist. We are able to distinguish between elements stored in the list and the connecting structure. We can thus shield the structure, while keeping the elements available outside of it. For our set implementations this is not advisable as we have seen before. Our data structure invariants depend on the elements.
- Universes is similar to Ownership Types. It provides a little more flexibility by using read-only references. These may cross arbitrarily cross boundaries. Important programming patterns like iterators for existing containers can be created using readonly references. This was not possible with Ownership Types.

\subsection*{7.5 Modular Shape Analysis}

We now want to informally explore how a modular shape analysis could look like and how our previous analyses relate to this.

An important question is how to express module specifications. On the one hand we need to be able to check that a module complies to its specification. On the other hand we want to use the specification as the basis for the analysis of programs that are using the module. It seems useful to specify the modules in the same language as the conventional shape analyses. This way we do not have to bridge an additional gap. In the shape analysis framework of [SRW02] first-order logic is used for this purpose. In this domain a module specification would consist of a number of predicates representing the state of the module and predicateupdate formulae that model the effect of the module's methods. A disadvantage of this approach is that it is harder to write such specifications compared to algebraic specification

How would such a specification look like for a set module? In fact, the shape analysis developed in Chapter 6 contains predicates solely devoted to representing sets and predicate-update formulae to model the effect of the set methods. They may well serve as an example for a module specification. Using such a module specification in an analysis is easy. We replace the predicates used for the concrete implementation of the module by the predicates of the specification. Calls to module methods are interpreted by the predicate-update formulae of the specification instead of applying the methods of the implementation. In our set example an analysis can greatly benefit from this: The domain is reduced by using a smaller number of predicates. The effect of set methods can be computed by applying single predicate-update formulae. As we have seen in Chapter 4, a single invocation of the remove method could previously result in an analysis taking several hours.

Using a module specification requires that we have proven that the concrete implementation actually complies with it. For this purpose we have to somehow relate the domains of the implementation and the specification. Since both domains are specified using first-order logic, we define the predicates of the specification domain by formulae over the predicates used in the implementation. This resembles the definition of instrumentation predicates. We used the following two predicates to represent sets primitively (Chapter 6):
\begin{tabular}{|l|l|l|}
\hline Predicate & Type & Intended Meaning \\
\hline \hline\(i \operatorname{SSet}(v)\) & \(U \rightarrow \mathbb{B}\) & \(v\) represents a set. \\
\(\operatorname{iSIn}\left(v_{1}, v_{2}\right)\) & \(U \times U \rightarrow \mathbb{B}\) & \(v_{1}\) is in set \(v_{2}\). \\
\hline
\end{tabular}

We can relate these predicates to the tree-based implementation like this:
\begin{tabular}{|l|l|}
\hline Predicate & Related Tree-based Expression \\
\hline \hline\(i s S e t(v)\) & \(i s \operatorname{Set}(v) \wedge \operatorname{tree}\) Ness \(\wedge\) inOrder \\
\(\operatorname{isIn}\left(v_{1}, v_{2}\right)\) & \(\operatorname{downStar}\left(v_{1}, v_{2}\right)\) \\
\hline
\end{tabular}


Figure 7.6: Does this constitute a sound Modular Shape Analysis?
where treeNess and inOrder capture the two data structure invariants for ordered trees and where downStar \(\left(v_{1}, v_{2}\right)\) is defined as follows
\begin{tabular}{|l|l|}
\hline Predicate & Defining Formula \\
\hline \hline down \(\left(v_{1}, v_{2}\right)\) & \(\operatorname{left}\left(v_{1}, v_{2}\right) \vee \operatorname{right}\left(v_{1}, v_{2}\right)\) \\
downStar \(\left(v_{1}, v_{2}\right)\) & \(\operatorname{down}^{*}\left(v_{1}, v_{2}\right)\) \\
\hline
\end{tabular}

Interestingly, our TVLA analysis already used the instrumentation predicate downStar which directly corresponds to isIn. After relating the domains we have to prove that the effect of the set methods in the implementation and the specification on related structures results in related structures again. In addition, we have to show that other operations cannot effect the structures in the implementation. We believe that these tasks should be dealt with separately. The former task could possibly be performed by a shape analysis similar to the one described in Chapter 4. The latter could be taken care of by employing an alias protection scheme like Islands. As we have seen in Figure 7.5 the primitive semantics was affected differently by aliasing than the implementations. So such a protection scheme is necessary.

Let us summarize how the analyses in Chapters 4 and 6 fit in here. In Chapter 4 we partially proved the conformance of list- and tree-based set implementations to the specification of the ADT Set defined in Chapter 3. Later we defined a semantics of an imperative language that contains sets as primitives. The definition was specifically designed to conform with the ADT Set specification. In Chapter 6 we created a shape analysis for this semantics and successfully applied it to a simple program. Although we took the detour via the ADT Set specification the resulting shape analysis seems to constitute a specification of the set implementations. We have not proven this though. Figure 7.6 illustrates this.

\subsection*{7.6 Assume/Guarantee Reasoning}

While the approaches above try to prevent the negative effects of aliasing, another possibility would be to internalize these effects into the analysis. Such analyses are not really modular, but they might still help to make shape analysis algorithms scale better and they put less of a burden on the programmer to enter specifications.

In Assume/Guarantee Reasoning [YRS04, YSRS05] the effect of procedures on the heap is symbolically characterized. The programmer has to provide the precondition of procedures. Through abstract interpretation and the use of a theorem prover a precise symbolic representation of the effect of the procedure is then inferred. Inputs and outputs are connected in such a formula by using primed and unprimed versions of the predicates. When analyzing a program that uses such a procedure, the validity of the precondition is checked first. Then the precomputed effect is applied on the current state. Both steps involve the use of theorem provers. This limits the application to decidable logics. By staying in the domain of the implementation aliasing effects can be modeled without problems.

\section*{8 Conclusion}

In this chapter we want to briefly recapitulate our contributions and discuss possible future work on that basis.

\subsection*{8.1 Contributions}

We created a precise shape analysis for programs that are manipulating ordered trees. It is particularly tailored to invariants of the tree data structure. Choosing the right instrumentation predicates required a thorough understanding of the data structures involved. This meant identifying that reachability alone is not very interesting, but that the first edge on a path from one node to another is important. We implemented the analysis in TVLA [LA00, LAS00] and successfully applied it to methods of the tree-based set implementation. The analysis proved that the implementation complies to the axioms (3) and (4) of the ADT Set specification.
\[
\begin{align*}
& a \in s . \operatorname{insert}(b) \leftrightarrow a=_{e l} b \vee a \in s,  \tag{3}\\
& a \in s . \operatorname{remove}(b) \leftrightarrow a \neq e l  \tag{4}\\
& b \wedge a \in s
\end{align*}
\]

We used the isElement-predicate to relate different analyses. Our analyses of the insertion and removal methods established the two axioms in terms of isElement. Another analysis then established the equivalence between isElement and the set membership method \(\cdot\).insert \((\cdot)\). Adapting existing analyses for singly-linked lists allowed us to show the same property for our list-based set implementation.

Inspired by a family of instrumentation predicates used in our tree analysis, we propose a new way of specifying abstractions by so-called "Abstraction Expressions". These expressions allow to not only use unary but also binary predicates in the abstraction specification. "Abstraction Expressions" have the same expressive power as Canonical Abstraction. However, we need a smaller number of predicates to express certain abstractions.

We also investigated the relation between the complexity of the domains of implementations and the extent of anomalies caused by aliasing. We found that the extent of anomalies rises with the complexity of the domains. Figure 8.1 illustrates this. Even the Semantics II of our RESET language shows some aliasing problems, although its domain is very simple. Problems occur only with sets of sets though.

We formally related Semantics I and Semantics II to identify where problems occur exactly. Relating the two semantics also hints at one way of overcoming aliasing problems, a technique known as alias prevention.


Figure 8.1: Extent of Anomalies

\subsection*{8.2 Future Work}

In Chapter 4, we successfully analyzed a tree-based set implementation. Since the analysis is tailored to the underlying data structure and not to the specific algorithms employed, it might be possible to analyze other algorithms working on trees using the same abstraction.

The tree structure lends itself naturally to recursion. We could possibly combine recent work on interprocedural shape analysis [RS01] with our abstractions to be able to analyze recursive implementations. Modern data structure libraries usually contain more efficient set implementations using balanced trees, like AVL or red-black trees. They maintain even more complicated data structure invariants than the unbalanced tree implementation we analyzed. Algorithms on these structures can usually be implemented more easily using recursion, too. Extending our analysis to cope with the invariants of balanced trees might make such algorithms amenable as well.

Abstraction Expressions seem useful where we want to distinguish individuals if they differ by binary predicates originating from individuals that we distinguish. In our tree-based analysis, we could separate smaller and larger tree elements. In the shape analysis for RESET, we could use the set membership relation to separate individuals in terms of the sets they belong to. An implementation of the concept would allow deeper insight into the
usefulness of the approach.
In Chapter 7 we discussed modular analysis. Aliasing was identified as an obstacle on the way to modular analyses. Different encapsulation schemes were briefly introduced that limit aliasing. It would be interesting to investigate such protection mechanism even further. How much do the constructs of the scheme constrain our design? Do the guarantees given by the encapsulation scheme suffice to perform sound modular shape analyses?

Modular Analysis requires module specifications. We started out using algebraic specification to specify the ADT Set. The technique proved convenient as a specification mechanism. However, formally relating implementations to algebraic specifications is not so easy. It is also not obvious how to base a shape analysis on such a specification. In Chapter 7 we proposed to stay in the first-order logic domain for the specification. This makes it easier to analyze programs on the basis of the specification. Figure 8.2 illustrates the situation. Can other specification techniques better cover the triangle? Can we possibly transform algebraic specifications into the domain of the analyses? Maybe we can automatically generate obligations for shape analysis that are necessary to show the compliance of implementations to algebraic specifications.


Figure 8.2: Properties of Specifications for Modular Analysis

\section*{List of Figures}
1.1 Modular Analysis ..... 12
1.2 Complexity of Domains ..... 13
1.3 Structure of Thesis ..... 14
2.1 2-valued logical structures representing lists of length \(l\), with \(1 \leq l \leq 3\) ..... 18
2.2 C program and corresponding Control Flow Graph ..... 20
2.3 The semi-bilattice of 3 -valued logic ..... 21
2.4 Meaning of \(\wedge\) and \(\vee\) in the 3 -valued domain ..... 21
2.53 -valued logical structures representing the 2-valued structures of Figure 2.1 ..... 22
2.6 Example Structure with Instrumentation Predicates ..... 25
2.7 Structures after Focus ..... 26
2.8 Structures after Update ..... 26
2.9 Structures after Coerce ..... 27
4.1 C structure declarations for Lists and Sets and C source of membership test ..... 35
4.2 C source of Insertion and Removal methods ..... 36
4.3 C structure declarations for Trees and Sets and C source of isElement test ..... 37
4.4 Removal from Ordered Tree ..... 38
4.5 Input Structures for List-based Insertion and Removal ..... 41
4.6 Output Structures for List-based Insertion ..... 42
4.7 Output Structures for List-based Removal ..... 43
4.8 Input Structures for Tree-based Insertion and Removal ..... 46
4.9 Sample Output Structures for Tree-based Insertion ..... 47
4.10 Sample Output Structures for Tree-based Removal ..... 49
4.11 CFG for Tree Removal ..... 51
4.12 Abstraction Expressions ..... 52
5.1 Complexity of Domains ..... 55
5.2 Syntactical Domains of RESET ..... 56
5.3 RESET Program Computing the Intersection ..... 57
5.4 Types ..... 57
5.5 Type System ..... 58
5.6 Example State in Semantics I ..... 59
5.7 Semantic Domains ..... 60
5.8 Exemplary Semantics of Expressions ..... 60
5.9 Structural Operational Semantics ..... 61
5.10 Example State in Semantics II ..... 63
5.11 Semantic Domains II ..... 64
5.12 Differences in the Semantics of Expressions ..... 64
5.13 Differences in Structural Operational Semantics ..... 65
5.14 Example of Heap Correspondence Relation ..... 66
6.1 Representation of the State by Predicates ..... 72
6.2 Semantics of Expressions ..... 73
6.3 Instrumentation Predicates ..... 76
6.4 RESET Program Computing the Intersection ..... 77
6.5 Input for Intersection Program ..... 77
6.6 Output of Intersection Program ..... 78
7.1 Sample Modular Structure ..... 80
7.2 Simple Aliasing Example ..... 81
7.3 Representation Exposure and Outgoing References ..... 82
7.4 Anomalies through Outgoing References ..... 84
7.5 Extent of Anomalies ..... 85
7.6 Does this constitute a sound Modular Shape Analysis? ..... 88
8.1 Extent of Anomalies ..... 92
8.2 Properties of Specifications for Modular Analysis ..... 93

\section*{Bibliography}
[Alm97] Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data types. In Proceedings ECOOP'97, volume 1241 of LNCS, pages 32-59. Springer-Verlag, June 1997.
[BLS03] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object encapsulation. In ACM Symposium on Principles of Programming Languages (POPL), New Orleans, Louisiana, January 2003.
\(\left[\mathrm{BRS}^{+} 00\right]\) Michael Balser, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel, and Andreas Thums. A Practical Course on KIV, 2000.
[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In POPL, pages 238-252, 1977.
[Cla01] David Clarke. Object Ownership and Containment. PhD thesis, University of New South Wales, Australia, July 2001.
[CNP01] David G. Clarke, James Noble, and John Potter. Simple ownership types for object containment. In ECOOP '01: Proceedings of the 15th European Conference on Object-Oriented Programming, pages 53-76, London, UK, 2001. Springer-Verlag.
[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and structures. In PLDI '90: Proceedings of the ACM SIGPLAN 1990 conference on Programming language design and implementation, pages 296-310, New York, NY, USA, 1990. ACM Press.
[DF04] Robert DeLine and Manuel Fahndrich. Typestates for objects, 2004.
[Ebb94] Heinz-Dieter Ebbinghaus. Einführung in die Mengenlehre. BI Wissenschaftsverlag, 3., vollst. überarb. und erweiterte auflage edition, 1994.
[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification I. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1985.
[EM90] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and Constraints. Springer-Verlag New York, Inc., New York, NY, USA, 1990.
[GH96] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a dag, or a cyclic graph? a shape analysis for heap-directed pointers in c. In POPL '96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 1-15, New York, NY, USA, 1996. ACM Press.
[HLW \(\left.{ }^{+} 92\right]\) John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard Holt. The geneva convention on the treatment of object aliasing. SIGPLAN OOPS Mess., 3(2):11-16, 1992.
[Hog91] John Hogg. Islands: aliasing protection in object-oriented languages. In OOPSLA '91: Conference proceedings on Object-oriented programming systems, languages, and applications, pages 271-285, New York, NY, USA, 1991. ACM Press.
[LA00] Tal Lev-Ami. TVLA: A framework for kleene based static analysis. Master's thesis, Tel-Aviv University, Tel-Aviv, Israel, 2000.
[LARSW00] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Putting static analysis to work for verification: A case study. In ISSTA '00: Proceedings of the 2000 ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 26-38, New York, NY, USA, 2000. ACM Press.
[LAS00] Tal Lev-Ami and Mooly Sagiv. TVLA: A system for implementing static analyses. In SAS '00: Proceedings of the 7th International Symposium on Static Analysis, pages 280-301, London, UK, 2000. Springer-Verlag.
[LEW97] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of abstract data types. John Wiley \& Sons, Inc., New York, NY, USA, 1997.
[LKR04] Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate checking using set interfaces and pluggable analyses, 2004.
[Man03] Roman Manevich. Data structures and algorithms for efficient shape analysis. Master's thesis, Tel-Aviv University, School of Computer Science, Tel-Aviv, Israel, January 2003. Available at www.cs.tau.ac.il/rumster/msc_thesis.pdf.
[Mey88] Bertrand Meyer. Object-Oriented Software Construction, volume - of Prentice Hall International Series in Computer Science. Prentice Hall, New York London - Toronto, 1988.
[Mic04] Sun Microsystems. Java 2 platform standard edition 5.0 api specification, 2004. Available at http://java.sun.com/j2se/1.5.0/docs/api/.
[MN99] Kurt Mehlhorn and Stefan Näher. LEDA - A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge, 1999.
[MPH01] Peter Müller and Arnd Poetzsch-Heffter. Universes: A type system for alias and dependency control. Technical Report 279, Fernuniversität Hagen, 2001.
[MS96] David R. Musser and Atul Saini. STL tutorial and reference guide, volume of Addison-Wesley professional computing ser. Addison-Wesley, 1996.
[ \(\left.\mathrm{NBT}^{+} 03\right]\) James Noble, Robert Biddle, Ewan Tempero, Alex Potanin, and Dave Clarke. Towards a model of encapsulation. In International Workshop on Aliasing, Confinement, and Ownership (IWACO), Darmstadt, Germany, July 2003.
[NN92] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: A Formal Introduction. John Wiley \& Sons, Inc., New York, NY, USA, 1992.
[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.
[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP '98: Proceedings of the 12th European Conference on ObjectOriented Programming, pages 158-185, London, UK, 1998. Springer-Verlag.
[Obe94] Arnold Oberschelp. Allgemeine Mengenlehre. BI Wissenschaftsverlag, 1994.
[RS01] Noam Rinetzky and Mooly Sagiv. Interprocedural shape analysis for recursive programs. Lecture Notes in Computer Science, 2027:133-149, 2001.
[RSL03] Thomas Reps, Shmuel Sagiv, and Alexey Loginov. Finite differencing of logical formulas for static analysis. In ESOP, pages 380-398, 2003.
[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued logic. In Symposium on Principles of Programming Languages, pages 105-118, 1999.
[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst., 24(3):217-298, 2002.
[Wac05] Björn Wachter. Checking universally quantified temporal properties with three-valued analysis. Master's thesis, Universität des Saarlandes, March 2005.
[WBWW90] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Software. Prentice Hall, Englewood Cliffs, New Jersey, 1990.
[Win93] Glynn Winskel. The Formal Semantics of Programming Languages - An Introduction. MIT Press, Cambridge, MA, USA, 1993.
[YRS04] Greta Yorsh, Thomas W. Reps, and Shmuel Sagiv. Symbolically computing most-precise abstract operations for shape analysis. In TACAS, pages 530545, 2004.
[YSRS05] Greta Yorsh, Alexey Skidanov, Thomas Reps, and Mooly Sagiv. Automatic assume/guarantee reasoning for heap-manipulating programs (ongoing work), 2005.

\section*{A Proofs}

\section*{Lemma 1:}

\section*{Proof:}

We will prove this constructively: \(\equiv=\bar{\equiv}^{\prime} \backslash(\{\psi\} \times \operatorname{Set} \operatorname{Loc}) \cup\left\{\left(\psi, s^{\prime}\right) \mid\left(\forall i \in x . \exists i^{\prime} \in x^{\prime} . i \equiv\right.\right.\) \(\left.\left.i^{\prime} \wedge \forall i^{\prime} \in s^{\prime} . \exists i \in x . i \equiv i^{\prime}\right)\right\}\). Since \(\psi \notin(\operatorname{im}(\sigma) \cup i m(\eta) \cup \operatorname{dom}(\varsigma)), \psi\) does not occur in any of the requirements for \(\equiv_{l l}^{\prime}, \equiv_{s s l}^{\prime}, \equiv_{s s}^{\prime}\). This means that all elements of \(\equiv_{l l}, \equiv_{s s l}\) and \(\equiv_{s s}\) remain correct after changing \(\varsigma . \equiv_{b b}^{\prime}\) and \(\equiv_{z z}^{\prime}\) are the same in any Heap Correspondence Relation, so we are left with \(\equiv_{\text {slsl }}^{\prime}\). The pairs with \(\psi\) in the first component have to be adjusted. This is achieved by the removal of all existing pairs and the addition of pairs according to the definition. No pairs regarding \(i\) or \(i^{\prime}\) are removed either, proving the second part of the conjunction.

The proof for \(\equiv{ }^{\prime \prime}\) is analogous.

Lemma 2:

\section*{Proof:}

Proof by induction over the type of set that \(i, j\) and \(i^{\prime}\) represent.
- Base case: \(i, j, i^{\prime}\) represent sets of primitive values \((\mathbb{B}, \mathbb{Z})\)

The definition of \(\equiv\) can be simplified to plain set equality in this case.
\(i \equiv i^{\prime} \Rightarrow i \equiv_{s s} i^{\prime} \Rightarrow i=i^{\prime}\) and \(j \equiv i^{\prime} \Rightarrow j \equiv_{s s} i^{\prime} \Rightarrow j=i^{\prime}\).
So \(i=j\).
- Base case: \(i, j, i^{\prime}\) represent sets of locations.

We prove \(i \subseteq j\) and \(j \subseteq i\) :
\(-e \in i \Rightarrow \exists e^{\prime} \in i^{\prime} . e \equiv_{l l} e^{\prime}\)
\(e^{\prime} \in i^{\prime} \Rightarrow \exists e^{\prime \prime} \in j \cdot e^{\prime \prime} \equiv_{l l} e^{\prime}\)
Since \(\equiv_{l l}\) is by definition injective, \(e=e^{\prime \prime}\).
- Completely analogous exchanging \(i\) and \(j\).
- Step case: \(i, j, i^{\prime}\) represent sets of sets.

Again, we prove \(i \subseteq j\) and \(j \subseteq i\) :
\(-e \in i \Rightarrow \exists e^{\prime} \in i^{\prime} . e \equiv_{s s l} e^{\prime} \Rightarrow e \equiv_{s s} \varsigma^{\prime}\left(e^{\prime}\right)\)
\(e^{\prime} \in i \Rightarrow \exists e^{\prime \prime} \in j . e^{\prime \prime} \equiv_{s s l} e^{\prime} \Rightarrow e^{\prime \prime} \equiv_{s s} \varsigma^{\prime}\left(e^{\prime}\right)\)
By induction hypothesis \(e=e^{\prime \prime}\), so \(e \in j\).
- Completely analogous exchanging \(i\) and \(j\).

Lemma 3:

\section*{Proof:}
- Case 1: \(i, i^{\prime}, j^{\prime} \in \mathbb{B}\)
\(i \equiv i^{\prime} \Rightarrow i \equiv_{b b} i^{\prime} \Rightarrow\left(i \Leftrightarrow i^{\prime}\right)\)
\(i \equiv j^{\prime} \Rightarrow i \equiv_{b b} j^{\prime} \Rightarrow\left(i \Leftrightarrow j^{\prime}\right)\)
\(\left(\left(i \Leftrightarrow i^{\prime}\right) \wedge\left(i \Leftrightarrow j^{\prime}\right)\right) \Rightarrow\left(i^{\prime} \Leftrightarrow j^{\prime}\right) \Rightarrow\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
- Case 2: \(i, i^{\prime}, j^{\prime} \in \mathbb{Z}\)

Analogous to previous case.
- Case 3: \(i \in L o c, i^{\prime}, j^{\prime} \in L o c^{\prime}\)
\(i \equiv i^{\prime} \Rightarrow i \equiv_{l l} i^{\prime} \Rightarrow \forall i^{\prime \prime} .\left(i \equiv_{l l} i^{\prime \prime} \Rightarrow i^{\prime}=i^{\prime \prime}\right)\)
\(i \equiv j^{\prime} \Rightarrow i \equiv_{l l} j^{\prime} \Rightarrow i^{\prime}=j^{\prime} \Rightarrow\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
- Case 4: \(i \in \operatorname{Set}, i^{\prime}, j^{\prime} \in \operatorname{Set} L o c^{\prime}\)

Proof by induction over the type of set represented by \(i\).
- Base case: \(i\) represents a set of locations or of primitive values

It is sufficient to show that \(\varsigma^{\prime}\left(i^{\prime}\right)=\varsigma^{\prime}\left(j^{\prime}\right)\), because this entails \(\left(i^{\prime} \approx\right.\) \(\left.j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).
* \(\varsigma^{\prime}\left(i^{\prime}\right) \subseteq \varsigma^{\prime}\left(j^{\prime}\right)\) :
\(e^{\prime} \in \varsigma^{\prime}\left(i^{\prime}\right) \Rightarrow \exists e \in i . e \equiv e^{\prime}\)
\(e \in i \Rightarrow \exists e^{\prime \prime} \in \varsigma^{\prime}\left(j^{\prime}\right) . e \equiv e^{\prime \prime}\)
For \(\mathbb{B}, \mathbb{Z}\) and \(L O C \equiv\) is functional, that is \(e\) is related to at most one element, so \(e^{\prime}=e^{\prime \prime}\) and \(\left(e^{\prime} \approx e^{\prime \prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).
\(* \varsigma^{\prime}\left(j^{\prime}\right) \subseteq \varsigma^{\prime}\left(i^{\prime}\right):\)
Analogous to previous case.
- Step case: \(i\) is a set of sets.

We have to prove \(\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)=\left(\forall x \in \varsigma^{\prime}\left(i^{\prime}\right) \cdot \exists z \in \varsigma^{\prime}\left(j^{\prime}\right) \cdot(z \approx\right.\) \(\left.x)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \wedge\left(\forall x \in \varsigma^{\prime}\left(j^{\prime}\right) \cdot \exists z \in \varsigma^{\prime}\left(i^{\prime}\right) \cdot(z \approx x)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\). We will first prove the first part of the conjunction. The second part is analogous.
\(* \forall x \in \varsigma^{\prime}\left(i^{\prime}\right) \cdot \exists z \in \varsigma^{\prime}\left(j^{\prime}\right) \cdot(z \approx x)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
\(i \equiv i^{\prime} \Rightarrow\left(e^{\prime} \in \varsigma^{\prime}\left(i^{\prime}\right) \Rightarrow \exists e \in i . e \equiv_{s s l} e^{\prime}\right)\)
\(i \equiv j^{\prime} \Rightarrow\left(e \in i \Rightarrow \exists e^{\prime \prime} \in \varsigma^{\prime}\left(j^{\prime}\right) \cdot e \equiv{ }_{s s l} e^{\prime \prime}\right)\)
By induction hypothesis we can infer \(\left(e^{\prime} \approx e^{\prime \prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\). Since \(e^{\prime \prime} \in j^{\prime}\) we have found a corresponding element for \(e^{\prime}\).
\(* \forall x \in \varsigma^{\prime}\left(j^{\prime}\right) \cdot \exists z \in \varsigma^{\prime}\left(i^{\prime}\right) \cdot(z \approx x)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
Analogous to first part.
- Case 5: \(i \in S e t, i^{\prime}, j^{\prime} \in S e t^{\prime}\)

We have to prove \(\left(\forall e^{\prime} \in i^{\prime} . \exists e^{\prime \prime} \in j^{\prime} .\left(e^{\prime} \approx e^{\prime \prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \wedge\left(\forall e^{\prime \prime} \in j^{\prime} . \exists e^{\prime} \in i^{\prime} .\left(e^{\prime} \approx\right.\right.\) \(\left.\left.e^{\prime \prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\). We will separately prove the two parts of the conjunction.
\(-\forall e^{\prime} \in i^{\prime} . \exists e^{\prime \prime} \in j^{\prime} . e^{\prime} \equiv e^{\prime \prime}\)
\(e^{\prime} \in i^{\prime} \Rightarrow \exists e \in i . e \equiv e^{\prime}\) and
\(e^{\prime} \in i \Rightarrow \exists e^{\prime \prime} \in j^{\prime} . e \equiv e^{\prime \prime}\).
Using the previous cases we can infer \(\left(e^{\prime} \approx e^{\prime \prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).
\(-\forall e^{\prime \prime} \in j^{\prime} . \exists e^{\prime} \in i^{\prime} . e^{\prime} \equiv e^{\prime \prime}\)
Analogous to previous case.
- Case 6: \(i \in \operatorname{SetLoc}, i^{\prime}, j^{\prime} \in \operatorname{SetLoc}{ }^{\prime}\)
\(i \equiv_{\text {slsl }} i^{\prime} \Rightarrow \varsigma(i) \equiv_{s s} \varsigma^{\prime}\left(i^{\prime}\right)\) and
\(i \equiv_{s l s l} j^{\prime} \Rightarrow \varsigma(i) \equiv_{s s} \varsigma^{\prime}\left(j^{\prime}\right)\)
By case 5 we can infer \(\left(\varsigma^{\prime}\left(i^{\prime}\right) \approx \varsigma^{\prime}\left(j^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\). By definition of \(\approx\) this is equivalent to \(\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).
2. - Case 1: \(i, i^{\prime}, j^{\prime} \in \mathbb{B}\)
\(i \equiv i^{\prime} \Rightarrow\left(i \Leftrightarrow i^{\prime}\right)\)
\(\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow\left(i^{\prime} \Leftrightarrow j^{\prime}\right)\)
\(\left(\left(i \Leftrightarrow i^{\prime}\right) \wedge\left(i^{\prime} \Leftrightarrow j^{\prime}\right)\right) \Rightarrow\left(i \Leftrightarrow j^{\prime}\right) \Rightarrow\left(i \equiv j^{\prime \prime}\right)\)
- Case 2: \(i, i^{\prime}, j^{\prime} \in \mathbb{Z}\)

Analogous to previous case.
- Case 3: \(i \in L o c, i^{\prime}, j^{\prime} \in L o c^{\prime}\) \(\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow i^{\prime}=j^{\prime}\)
\(\left(i \equiv i^{\prime} \wedge i^{\prime}=j^{\prime}\right) \Rightarrow\left(i \equiv j^{\prime}\right)\)
- Case 4: \(i \in\) Set, \(i^{\prime}, j^{\prime} \in\) SetLoc \({ }^{\prime}\)

Proof by induction over the type of set represented by \(i\).
- Base case: \(i\) represents a set of locations or of primitive values

Here, \(\approx\) simplifies to set equality of the referenced sets.
\(\left(\varsigma^{\prime}\left(i^{\prime}\right) \approx \varsigma^{\prime}\left(j^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow \varsigma^{\prime}\left(i^{\prime}\right)=\varsigma^{\prime}\left(j^{\prime}\right) . i \equiv_{s s l} i^{\prime}\) is equivalent to \(i \equiv_{s s}\) \(\varsigma^{\prime}\left(i^{\prime}\right)\). By the previous equality we get \(i \equiv\) ss \(\varsigma\left(j^{\prime}\right)\) which is again equivalent to \(i \equiv_{\text {ssl }} j^{\prime}\).
- Step case: \(i\) represents a set of sets.

We have to prove \(i \equiv j^{\prime} \Leftrightarrow i \equiv\) ss \(\varsigma^{\prime}\left(j^{\prime}\right) \Leftrightarrow\left(\forall e \in i . \exists e^{\prime \prime} \in \varsigma^{\prime}\left(j^{\prime}\right) \cdot e \equiv\right.\) \(\left.e^{\prime \prime} \wedge \forall e^{\prime \prime} \in \varsigma^{\prime}\left(j^{\prime}\right) . \exists e \in i . e \equiv e^{\prime \prime}\right)\) We will separately prove the two parts of the conjunction.
\[
\begin{aligned}
* & \forall e \in i \cdot \exists e^{\prime \prime} \in \varsigma^{\prime}\left(j^{\prime}\right) \cdot e \equiv e^{\prime \prime} \\
& e \in i \Rightarrow \exists e^{\prime} \in \varsigma^{\prime}\left(i^{\prime}\right) \cdot e \equiv_{s s l} e^{\prime} \text { and } \\
& e^{\prime} \in \varsigma^{\prime}\left(i^{\prime}\right) \Rightarrow \exists e^{\prime \prime} \in \varsigma^{\prime}\left(j^{\prime}\right) \cdot\left(e^{\prime} \approx e^{\prime \prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) .
\end{aligned}
\]

By induction hypothesis we can infer \(e \equiv e^{\prime \prime}\).
* \(\forall e^{\prime \prime} \in \varsigma^{\prime}\left(j^{\prime}\right) . \exists e \in i . e \equiv e^{\prime \prime}\)

Analogous to previous case.
- Case 5: \(i \in S e t, i^{\prime}, j^{\prime} \in S e t^{\prime}\)

We have to prove \(i \equiv j^{\prime} \Leftrightarrow\left(\forall i \in s . \exists i^{\prime} \in s^{\prime} . i \equiv i^{\prime} \wedge \forall i^{\prime} \in s^{\prime} . \exists i \in s . i \equiv i^{\prime}\right)\).
We will separately prove the two parts of the conjunction.
\(-\forall e \in i . \exists e^{\prime \prime} \in j^{\prime} . e \equiv e^{\prime \prime}\)
\(e \in i \Rightarrow \exists e^{\prime} \in i^{\prime} . e \equiv e^{\prime}\) and
\(e^{\prime} \in i^{\prime} \Rightarrow \exists e^{\prime \prime} \in j^{\prime} .\left(e^{\prime} \approx e^{\prime \prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).
Using the previous cases we can infer \(e \equiv e^{\prime \prime}\).
\(-\forall e^{\prime \prime} \in j^{\prime} . \exists e \in i . e \equiv e^{\prime \prime}\)
Analogous to previous case.
- Case 6: \(i \in\) SetLoc, \(i^{\prime}, j^{\prime} \in \operatorname{SetLoc}{ }^{\prime}\)
\(i \equiv_{s l s l} i^{\prime} \Rightarrow \varsigma(i) \equiv_{s s} \varsigma^{\prime}\left(i^{\prime}\right)\) and
\(\left(i^{\prime} \approx j^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow\left(\varsigma^{\prime}\left(i^{\prime}\right) \approx \varsigma^{\prime}\left(j^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).
By case 5 we can follow \(\varsigma(i) \equiv_{s s} \varsigma^{\prime}\left(j^{\prime}\right)\) which implies \(i \equiv_{s l s l} j^{\prime}\).

\section*{Theorem 2:}

\section*{Proof:}

Proof by induction over the structure of the formula.
- Base cases: \(s=\) Num and \(s=\) true and \(s=\) false

Trivial.
- Base case: \(s=x\)

By definition \(\sigma(x) \equiv \sigma^{\prime}(x)\) or \(\sigma(x)\) and \(\sigma^{\prime}(x)\) are undefined.
In the former case \(\mathcal{X} \llbracket x \rrbracket(\sigma, \eta, \varsigma)=\sigma(x) \equiv \sigma^{\prime}(x)=\mathcal{X}^{\prime} \llbracket x \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\). If both values are undefined our condition is also fulfilled.
- Base case: \(s=x\).sel

Again \(\sigma(x)\) and \(\sigma^{\prime}(x)\) maybe undefined. Then the condition is trivially true. Otherwise, by definition \(\sigma(x) \equiv \sigma^{\prime}(x)\) implies \(\sigma(x) \equiv_{l l} \sigma^{\prime}(x)\). This implies \(\eta(\sigma(x)\), sel \() \equiv\) \(\eta^{\prime}\left(\sigma^{\prime}(x)\right.\), sel \() \vee\left(\eta(\sigma(x)\right.\), sel \()\) undef. \(\wedge \eta^{\prime}\left(\sigma^{\prime}(x)\right.\), sel \()\) undef. \()\).
- Case 1: \(\eta(\sigma(x)\), sel \()\) defined: \(\mathcal{X} \llbracket x\).sel \(\rrbracket(\sigma, \eta, \varsigma)=\mathcal{P} \llbracket x . s e l \rrbracket(\sigma, \eta, \varsigma)=\eta(\sigma(x)\), sel \()=\) \(\eta^{\prime}\left(\sigma^{\prime}(x)\right.\), sel \()=\mathcal{P}^{\prime} \llbracket x . \operatorname{sel} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)=\mathcal{X}^{\prime} \llbracket x . s e l \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
- Case 2: \(\eta(\sigma(x)\), sel) undef:: \(\mathcal{X} \llbracket x . s e l \rrbracket(\sigma, \eta, \varsigma)=\mathcal{P} \llbracket x . s e l \rrbracket(\sigma, \eta, \varsigma)=\) undef. \(=\) undef. \(=\mathcal{P}^{\prime} \llbracket x . s e l \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)=\mathcal{X}^{\prime} \llbracket x . s e l \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)

By the previous two cases we know that either \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) or \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)\) and \(\mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) are both undefined. In the latter case also the expression \(s\) will be undefined in both cases. Thus, we will only deal with the case that the values are defined in the sequel. This also holds for \(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma)\) and \(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\). Since \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) also \(\varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \equiv \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)(*)\).
For the same reason \(\varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma)) \equiv \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)(* *)\).
- Base case: \(s=q \in p\)

We will separately look at two cases:
1. \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \in S e t L o c\), that is \(q\) represents a set.
2. \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \notin \operatorname{SetLoc}, q\) represents some primitive value or a location.
1. Proof of " \(\Rightarrow\) ":
\[
\begin{aligned}
& \mathcal{X} \llbracket q \in p \rrbracket(\sigma, \eta, \varsigma) \Rightarrow \varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \in \varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma)) \\
& \left.(* *) \Rightarrow \exists z \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \cdot \varsigma \mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)\right) \equiv_{s s l} z \Rightarrow \\
& \varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \equiv_{s s} \varsigma^{\prime}(z) \Rightarrow \mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv_{s l s l} z
\end{aligned}
\]
\[
\text { By } \mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv_{s l s l} \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \text { and the previous lemma: }
\]
\[
\left(z \approx \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) . \text { So } \mathcal{X}^{\prime} \llbracket q \in p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)
\]

Proof of " \(\Leftarrow\) ":
\(\mathcal{X}^{\prime} \llbracket q \in p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow \exists z \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) .\left(z \approx \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).
Since \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv_{s l s l} \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) and by the previous lemma:
\(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv_{s l s l} z \Rightarrow \varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \equiv_{s s} \varsigma^{\prime}(z)\).
\((* *) \Rightarrow \exists y \in \varsigma(\mathcal{X} \llbracket p \rrbracket(\sigma, \eta, \varsigma)) \cdot y \equiv_{s s l} z \Rightarrow y \equiv_{s s} \varsigma^{\prime}(z)\). By the Set Injectivity Lemma we infer that \(y=\varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma))\) and thus \(\varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \in\) \(\varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma))\), so \(\mathcal{X} \llbracket q \in p \rrbracket(\sigma, \eta, \varsigma)\).
2. Here, \(\mathcal{X}^{\prime} \llbracket q \in p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) simplifies to \(\mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\).

Proof of " \(\Rightarrow\) ":
\(\mathcal{X} \llbracket q \in p \rrbracket(\sigma, \eta, \varsigma) \Rightarrow \mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \in \varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma))\)
\((* *) \Rightarrow \exists z \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) . \mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv z\)
Since we also know that \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) we can infer by the previous lemma, that \(\left(z \approx \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) and therefore \(\mathcal{X}^{\prime} \llbracket q \in\) \(p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\).

Proof of " \(\Leftarrow\) ":
\(\mathcal{X}^{\prime} \llbracket q \in p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\)
\((* *) \Rightarrow \exists z \in \varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma)) . z \equiv \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\). By the injectivity of \(\equiv\) on \(\mathbb{B}, \mathbb{Z}\) and Loc and the fact \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma) \equiv \mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) we infer \(z=\) \(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)\). So \(\mathcal{X} \llbracket q \in p \rrbracket(\sigma, \eta, \varsigma)\).
- Base case: \(s=q \subseteq p\)

Proof of " \(\Rightarrow\) ":
\(\mathcal{X} \llbracket q \in p \rrbracket(\sigma, \eta, \varsigma) \Rightarrow \varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \subseteq \varsigma(\mathcal{P} \llbracket p \rrbracket(\sigma, \eta, \varsigma))\)
\(\left(x \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \wedge(*)\right) \Rightarrow \exists z \in \varsigma(\mathcal{P} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) . z \equiv x \Rightarrow\)
\((z \in \varsigma(\mathcal{A} \llbracket p \rrbracket(\sigma, \eta, \varsigma)) \wedge(* *)) \Rightarrow \exists z^{\prime} \in \mathcal{A}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) . z \equiv z^{\prime}\).
By the previous lemma: \(\left(x \approx z^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\). Thus, \(\mathcal{X}^{\prime} \llbracket q \in p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
Proof of " \(\Leftarrow\) ":
\(\mathcal{X}^{\prime} \llbracket q \in p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \Rightarrow \forall x \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) . \exists z \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \cdot(z \approx\) \(x)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
\((x \in \varsigma(\mathcal{A} \llbracket q \rrbracket(\sigma, \eta, \varsigma)) \wedge(*)) \Rightarrow \exists z \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket q \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \cdot x \equiv z\).
\(\mathcal{X}^{\prime} \llbracket q \in p \rrbracket\left((\sigma, \eta, \varsigma) \Rightarrow \exists z^{\prime} \in \varsigma^{\prime}\left(\mathcal{P}^{\prime} \llbracket p \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right) \cdot\left(z \approx z^{\prime}\right)\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right.\)
By the previous lemma \(x \equiv z^{\prime} .(* *) \Rightarrow \exists x^{\prime} \in \varsigma(\mathcal{A} \llbracket p \rrbracket(\sigma, \eta, \varsigma)) \cdot x^{\prime} \equiv z^{\prime}\)
Case distinction depending on type of \(x\) :
\(-x \in(\mathbb{B} \cup \mathbb{Z} \cup L o c)\) :
\(\equiv\) is by definition injective on these values, so \(x=x^{\prime}\)
\(-x \in\) Set:
Then \(x \equiv z^{\prime} \Rightarrow x \equiv_{\text {ssl }} z^{\prime} \Rightarrow x \equiv_{\text {ss }} \varsigma^{\prime}\left(z^{\prime}\right)\) and
\(x^{\prime} \equiv z^{\prime} \Rightarrow x^{\prime} \equiv_{s s l} z^{\prime} \Rightarrow x^{\prime} \equiv_{s s} \varsigma^{\prime}\left(z^{\prime}\right)\). By the Set Injectivity Lemma \(x=x^{\prime}\).
So, \(\mathcal{X} \llbracket q \in p \rrbracket(\sigma, \eta, \varsigma)\).
- Step case: \(s=\neg b_{1}\)

Again, either \(\mathcal{B} \llbracket b_{1} \rrbracket(\sigma, \eta, \varsigma)\) and \(\mathcal{B}^{\prime} \llbracket b_{1} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) are undefined (then also \(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)\) and \(\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, s^{\prime}\right)\) are undefined) or the following holds:
\(\mathcal{X} \llbracket \neg b_{1} \rrbracket(\sigma, \eta, \varsigma)=\operatorname{not} \mathcal{B} \llbracket b_{1} \rrbracket(\sigma, \eta, \varsigma) \underset{I . H .}{\Leftrightarrow} \operatorname{not} \mathcal{B}^{\prime} \llbracket b_{1} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)=\mathcal{X}^{\prime} \llbracket \neg b_{1} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
- Step case: \(s=a_{1} o p_{a} a_{2}\)

If \(\mathcal{A} \llbracket a_{1} \rrbracket(\sigma, \eta, \varsigma)\) or \(\mathcal{A} \llbracket a_{2} \rrbracket(\sigma, \eta, \varsigma)\) are undefined, then also their counterparts are undefined and thus both \(\mathcal{X} \llbracket a_{1}\) op \(a_{a} a_{2} \rrbracket(\sigma, \eta, \varsigma)\) and \(\mathcal{X}^{\prime} \llbracket a_{1}\) opa \(a_{2} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) are undefined. Otherwise, by induction hypothesis:
\(\mathcal{A} \llbracket a_{1} \rrbracket(\sigma, \eta, \varsigma)=\mathcal{A}^{\prime} \llbracket a_{1} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) and \(\mathcal{A} \llbracket a_{2} \rrbracket(\sigma, \eta, \varsigma)=\mathcal{A}^{\prime} \llbracket a_{2} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
\(\mathcal{X} \llbracket a_{1} \quad o p_{a} a_{2} \rrbracket(\sigma, \eta, \varsigma)=\)
\(\mathcal{A} \llbracket a_{1} \rrbracket(\sigma, \eta, \varsigma) \mathbf{o p}_{\mathbf{a}} \mathcal{A} \llbracket a_{2} \rrbracket(\sigma, \eta, \varsigma)=\mathcal{A}^{\prime} \llbracket a_{1} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \mathbf{o p}_{\mathbf{a}} \mathcal{A}^{\prime} \llbracket a_{2} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)=\)
\(\mathcal{X}^{\prime} \llbracket a_{1} \quad o p_{a} a_{2} \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\)
- Step cases: \(s=a_{1} o p_{r} a_{2}\) and \(s=b_{1} o p_{b} b_{2}\)

Analogous to previous case.

\section*{Lemma 4:}

\section*{Proof:}

We prove the two claims separately.
- \((\sigma, \eta, \varsigma) \cong\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\)

Let \(\equiv\) be the Heap Correspondence Relation on \((\eta, \varsigma)\) and ( \(\eta^{\prime}, \varsigma^{\prime}\) ). We need to prove that there exists a Heap Correspondence Relation \(\equiv^{\prime}\) for \((\eta, \varsigma)\) and ( \(\eta_{2}^{\prime}, \varsigma_{2}^{\prime}\) ) and that \(\sigma(y) \equiv \equiv_{2}^{\prime}(y)\) for all \(y \in \operatorname{dom}(\sigma)\). By the Stability Lemma we easily infer that there exists a \(\equiv^{\prime}\) with \((\eta, s) \equiv^{\prime}\left(\eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\). The two malloc set statements introduce unaliased set locations, which are then manipulated. For all variables \(y \in\left(\operatorname{dom}(\sigma) \backslash\{x\}\right.\) we know that \(\sigma_{2}^{\prime}(y) \neq \sigma_{2}^{\prime}(x)\) by the condition for [Malloc-Set']. Again we can use the Stability Lemma to find that \(\sigma(y) \equiv^{\prime} \sigma_{2}^{\prime}(y)\). So it only remains to show that \(\sigma(x) \equiv^{\prime} \sigma_{2}^{\prime}(x)\).

One easily sees that \(\varsigma^{\prime}\left(\sigma^{\prime}(x)\right)=\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right)\). By the fact that \((\sigma, \eta, \varsigma) \cong\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) we know that \(\sigma(x) \equiv \sigma^{\prime}(x)\) and thus \(\varsigma(\sigma(x)) \equiv \varsigma^{\prime}\left(\sigma^{\prime}(x)\right)\). Since \(\varsigma^{\prime}\left(\sigma^{\prime}(x)\right) \neq \sigma_{2}^{\prime}(x)\) we infer by the Stability Lemma \(\varsigma(\sigma(x)) \equiv^{\prime} \varsigma^{\prime}\left(\sigma^{\prime}(x)\right)\). From this and the previous fact we conclude \(\varsigma(\sigma(x)) \equiv \equiv^{\prime} \varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right)\) which is by definition equivalent to \(\sigma(x) \equiv \sigma_{2}^{\prime}(x)\).
- \(\sigma_{2}^{\prime}(x) \notin\left(i m\left(\sigma_{2}^{\prime}[x \mapsto u n d e f].\right) \cup i m\left(\eta_{2}^{\prime}\right) \cup \bigcup i m\left(\varsigma_{2}^{\prime}\right)\right) \sigma_{2}^{\prime}(x)=\psi_{2}^{\prime}\). The inference rule [Malloc-Set] ensures that \(\psi_{2}^{\prime}\) does not occur in the state also [Assignment-Set] does only change the contents of \(\varsigma\left(\psi_{2}^{\prime}\right)\) which proves the claim.

Lemma 5:

\section*{Proof:}

We will show that whenever an inference rule in Semantics I applies, there are inference rules in Semantics II that will have an equivalent effect. The proof is by induction over the structure of the statements.

The following inference rules do not manipulate the state, hence the Heap Correspondence Relation that is valid before the step remains valid after it.
- \(\langle\) skip \(; S,(\sigma, \eta, \varsigma)\rangle \triangleright\langle S,(\sigma, \eta, \varsigma)\rangle \quad\) [Skip-Elimination]

Let \(\langle\) skip \(; S,(\sigma, \eta, \varsigma)\rangle \simeq\left\langle\right.\) skip \(\left.; T(S),\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\). Then [Skip-Elimination'] applies and we get \(\langle S,(\sigma, \eta, \varsigma)\rangle \simeq\left\langle T(S),\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\).
- \(\left\langle\right.\) if \(b\) then \(S_{1}\) else \(\left.S_{2},(\sigma, \eta, \varsigma)\right\rangle \triangleright\left\langle S_{1},(\sigma, \eta, \varsigma)\right\rangle\) where \(\mathcal{B} \llbracket b \rrbracket(\sigma, \eta, \varsigma)=1 \quad\) [If-True] Let \(\left\langle\right.\) if \(b\) then \(S_{1}\) else \(\left.S_{2},(\sigma, \eta, \varsigma)\right\rangle \simeq\left\langle\right.\) if \(b\) then \(T\left(S_{1}\right)\) else \(\left.T\left(S_{2}\right),\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\). By the Expressions Coincide Lemma \(\mathcal{B} \llbracket b \rrbracket(\sigma, \eta, \varsigma)=\mathcal{B}^{\prime} \llbracket b \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\). So [If-True’] also applies in Semantics II and we get \(\left\langle S_{1},(\sigma, \eta, \varsigma)\right\rangle \simeq\left\langle T\left(S_{1}\right),\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\).
- \(\left\langle\right.\) if \(b\) then \(S_{1}\) else \(\left.S_{2},(\sigma, \eta, \varsigma)\right\rangle \triangleright\left\langle S_{2},(\sigma, \eta, \varsigma)\right\rangle\) where \(\mathcal{B} \llbracket b \rrbracket(\sigma, \eta, \varsigma)=\mathbf{0} \quad\) [If-False] Analogous to previous case.
- \(\quad\langle\) while \(b\) do \(S,(\sigma, \eta, \varsigma)\rangle \triangleright\langle S\); while \(b\) do \(S,(\sigma, \eta, \varsigma)\rangle \quad\) where \(\mathcal{B} \llbracket b \rrbracket(\sigma, \eta, \varsigma)=\mathbf{1} \quad\) [While-True] Analogous to [If-True] case.
- \(\langle\) while \(b\) do \(S,(\sigma, \eta, \varsigma)\rangle \triangleright\langle\) skip, \((\sigma, \eta, \varsigma)\rangle \quad\) where \(\mathcal{B} \llbracket b \rrbracket(\sigma, \eta, \varsigma)=\mathbf{0} \quad\) [While-False] Analogous to [If-True] case.

The following inference rules change the state. Therefore we need to show that the resulting states still correspond. Either by showing that the previous Heap Correspondence Relation is still valid or by giving an adjusted version.
\(\langle x:=s,(\sigma, \eta, \varsigma)\rangle \triangleright\langle\) skip, \((\sigma[x \mapsto \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)], \eta, \varsigma)\rangle \quad[\) Assignment \(]\)
if \(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \in(\) Item \(\backslash\) SetLoc \()\)
Let \(\langle x:=s,(\sigma, \eta, \varsigma)\rangle \simeq\left\langle x:=s,\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\). Then [Assignment'] applies for \(\left\langle x:=s,\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\). We need to show that \(\langle\) skip, \((\sigma[x \mapsto \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)], \eta, \varsigma)\rangle \simeq\) \(\left\langle\right.\) skip, \(\left.\left(\sigma^{\prime}\left[x \mapsto \mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right], \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\) The previous Heap Correspondence Relation remains valid. Heap and Set heap are not changed by the inference and \(\sigma(x) \equiv \sigma^{\prime}(x) \Leftrightarrow \mathcal{X} \llbracket s \rrbracket \equiv \mathcal{X}^{\prime} \llbracket s \rrbracket\) by the Expressions Coincide Lemma.
\[
\langle x . s e l:=s,(\sigma, \eta, \varsigma)\rangle \triangleright\langle\text { skip },(\sigma, \eta[(\sigma(x), \text { sel }) \mapsto \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)], \varsigma)\rangle \quad[\text { Assignment-Heap] }
\]
\[
\text { if } \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \in(I t e m \backslash S e t L o c)
\]

Again the corresponding rule [Assignment-Heap'] applies and the Heap Correspondence Relation remains valid. \(\eta(\sigma(x)\), sel \()\) and \(\eta^{\prime}\left(\sigma^{\prime}(x)\right.\), sel) have been changed. We have to verify that \(\sigma(x) \equiv_{l l} \sigma^{\prime}(x)\), which was true before the inference step by definition, i.e. all selector-fields agreed or were undefined. By Expressions Coincide Lemma \(\mathcal{X} \llbracket s \rrbracket \equiv \mathcal{X}^{\prime} \llbracket s \rrbracket\) and so \(\eta\left(\sigma(x)\right.\), sel) and \(\eta^{\prime}\left(\sigma^{\prime}(x)\right.\), sel) after the inference step.
- \(\langle x:=s,(\sigma, \eta, \varsigma)\rangle \triangleright\langle\) skip, \((\sigma, \eta, \varsigma[\sigma(x) \mapsto \varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma))])\rangle \quad[\) Assignment-Set] if \(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \in S e t L o c\)
The configuration corresponding to \(\langle x:=s,(\sigma, \eta, \varsigma)\rangle\) is of the form \(\langle x:=\) malloc set; \(x:=\) \(\left.s,\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\). Application of [Seq. Composition'] with [Malloc-Set'] and [AssignmentSet'] result in the configuration \(\left\langle\right.\) skip, \(\left.\left.\sigma^{\prime}\left[x \mapsto \psi^{\prime}\right], \eta^{\prime}, \varsigma^{\prime}\left[\psi^{\prime} \mapsto \varsigma^{\prime}\left(\mathcal{\mathcal { X } ^ { \prime }} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\right]\right)\right\rangle\). We can use the Stability Lemma to prove that there exists a Heap Correspondence Relation \(\equiv^{\prime}\) for \((\eta, \varsigma[\sigma(x) \mapsto \varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma))])\) and \(\left(\eta^{\prime}, \varsigma^{\prime}\left[\psi^{\prime} \mapsto \varsigma^{\prime}\left(\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\right]\right)\), since \(\psi^{\prime}\) which was introduced by malloc set is not aliased. The Stability Lemma also gives us \(\sigma(y) \equiv^{\prime} \sigma^{\prime}\left[x \mapsto \psi^{\prime}\right](y)\) because \(\sigma^{\prime}\left[x \mapsto \psi^{\prime}\right](y) \neq \psi^{\prime}\) and \(\sigma(y) \neq \sigma(x)\) (aliasing is impossible in the first semantics).
So it remains to show \(\sigma(x) \equiv^{\prime} \sigma^{\prime}\left[x \mapsto \psi^{\prime}\right](x)=\psi^{\prime}\). The requirements for a Heap Correspondence Relation give us \(\sigma(x) \equiv^{\prime} \psi^{\prime} \Leftrightarrow \varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma))=\varsigma[\sigma(x) \mapsto\) \(\varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma))](\sigma(x)) \equiv \varsigma^{\prime} \varsigma^{\prime}\left[\psi^{\prime} \mapsto \varsigma^{\prime}\left(\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\right]\left(\psi^{\prime}\right)=\varsigma^{\prime}\left(\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\). By the Expressions Coincide Lemma \(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \equiv \mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) . \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \neq\) \(\sigma(x)\) and \(\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right) \neq \psi^{\prime}\) so also \(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \equiv^{\prime} \mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\) by the Stability Lemma. The conditions for \(\equiv^{\prime}\) finally give us \(\varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)) \equiv^{\prime} \varsigma^{\prime}\left(\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right)\) which is equivalent to \(\sigma(x) \equiv^{\prime} \sigma^{\prime}\left[x \mapsto \psi^{\prime}\right](x)\).
\(\langle x\).sel \(:=s,(\sigma, \eta, \varsigma)\rangle \triangleright\langle\) skip,\((\sigma, \eta, \varsigma[\eta(\sigma(x), s e l) \mapsto \varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma))])\rangle \quad[\) Assignment-Heap-Set] if \(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \in S e t L o c\)
Similar to proof of [Assignment-Set].
\[
\langle x:=\operatorname{malloc},(\sigma, \eta, \varsigma)\rangle \triangleright\langle\text { skip },(\sigma[x \mapsto \xi], \eta, \varsigma)\rangle \quad[\text { Malloc }]
\]
where \(\xi \in L o c\) and \(\xi \notin(i m(\sigma) \cup \operatorname{dom}(\eta) \cup i m(\eta) \cup \bigcup i m(\varsigma))\)
The same inference rule can be used in Semantics II. Let \(\equiv\) be the Heap Correspondence Relation between the two states prior to the execution of the rule and let \(\xi\)
and \(\xi^{\prime}\) be the two new locations introduced. Then \(\equiv^{\prime}=\equiv \cup\left(\xi, \xi^{\prime}\right)\) is a Heap Correspondence Relation for the resulting states. Since \(\xi\) and \(\xi^{\prime}\) are new locations they do not occur in \(\equiv\) and thus do not violate any of rules involving other elements. The requirement for \(\xi \equiv_{l l} \xi^{\prime}\) is also fulfilled, since all selector-fields are undefined. Finally, \(\psi=\sigma(x) \equiv^{\prime} \sigma^{\prime}(x)=\psi^{\prime}\), so the resulting states are corresponding.
\[
\langle x . \text { sel }:=\operatorname{malloc},(\sigma, \eta, \varsigma)\rangle \triangleright\langle\text { skip },(\sigma, \eta[(\sigma(x), \text { sel }) \mapsto \xi], \varsigma)\rangle \quad[\text { Malloc-Heap }]
\]
where \(\xi \in \operatorname{Loc}\) and \(\xi \notin(i m(\sigma) \cup \operatorname{dom}(\eta) \cup i m(\eta) \cup \bigcup i m(\varsigma))\)
Analogous to the previous case.
- \(\langle x:=\) malloc set, \((\sigma, \eta, \varsigma)\rangle \triangleright\langle\operatorname{skip},(\sigma[x \mapsto \psi], \eta, \varsigma[\psi \mapsto \emptyset])\rangle \quad\) [Malloc-Set]
where \(\psi \in \operatorname{SetLoc}\) and \(\psi \notin(i m(\sigma) \cup i m(\eta) \cup \operatorname{dom}(\varsigma))\)
The corresponding inference rule [Malloc-Set'] applies, so it remains to show that \((\sigma[x \mapsto \psi], \eta, \varsigma[\psi \mapsto \emptyset]) \cong\left(\sigma^{\prime}\left[x \mapsto \psi^{\prime}\right], \eta^{\prime}, \varsigma^{\prime}\left[\psi^{\prime} \mapsto \emptyset\right]\right)\). The Stability Lemma can be applied to infer the existence of \(\equiv^{\prime}\) for \((\eta, \varsigma[\psi \mapsto \emptyset])\) and \(\left.\eta^{\prime}, \varsigma^{\prime}\left[\psi^{\prime} \mapsto \emptyset\right]\right)\). By the Stability Lemma we can also follow that \(\sigma[x \mapsto \psi](y) \equiv \equiv^{\prime} \sigma\left[x \mapsto \psi^{\prime}\right](y)\) for \(y \in(\operatorname{dom}(\sigma[x \mapsto \psi]) \backslash\{x\})\), since \(\sigma[x \mapsto \psi](y) \neq \psi\) and \(\sigma^{\prime}\left[x \mapsto \psi^{\prime}\right](y) \neq \psi^{\prime}\). Finally, \(\sigma[x \mapsto \psi](x)=\psi \equiv^{\prime} \psi^{\prime}=\sigma^{\prime}\left[x \mapsto \psi^{\prime}\right](x)\) because \(\varsigma[\psi \mapsto \emptyset](\psi)=\emptyset \equiv_{s s} \emptyset=\) \(\varsigma^{\prime}\left[\psi^{\prime} \mapsto \emptyset\right]\left(\psi^{\prime}\right)\).
- \(\langle x\). sel \(:=\) malloc set, \((\sigma, \eta, \varsigma)\rangle \triangleright\langle\) skip, \((\sigma, \eta[(\sigma(x)\), sel \() \mapsto \psi], \varsigma[\psi \mapsto \emptyset])\rangle\)
[Malloc-Set-Heap]
where \(\psi \in \operatorname{SetLoc}\) and \(\psi \notin(i m(\sigma) \cup i m(\eta) \cup \operatorname{dom}(\varsigma))\)
Analogous to previous case.
\[
\langle x \text {.insert }(s),(\sigma, \eta, \varsigma)\rangle \triangleright\langle\text { skip },(\sigma, \eta, \varsigma[\sigma(x) \mapsto(\varsigma(\sigma(x)) \cup\{i\})])\rangle \quad[\text { Set-Insert }]
\]
- where \(i=\left\{\begin{array}{l}\varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)), \text { if } \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \in \text { SetLoc } \\ \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma), \text { otherwise }\end{array}\right.\)

The configuration corresponding to \(\langle x\).insert \((s),(\sigma, \eta, \varsigma)\rangle\) is \(\left\langle x_{\text {temp }}:=\right.\) malloc set; \(x_{\text {temp }}:=x ; x:=\) malloc set \(; x:=x_{\text {temp }} ; x\).insert \(\left.(s),\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\).
By the Aliasing Lemma we can execute the first four commands of the sequence and get a new configuration \(\left\langle x\right.\).insert \(\left.(s),\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\), where \((\sigma, \eta, \varsigma) \cong\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\) and \(\sigma_{2}^{\prime}(x)\) is not aliased.

For the resulting configuration [Set-Insert'] is applicable. We distinguish two cases:
1. \(\exists z . z \in \varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right) \wedge\left(z \approx \mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right)\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right):\)

Take such a \(z\). Since \(\sigma(x) \equiv \sigma_{2}^{\prime}(x)\) we have \(\varsigma(\sigma(x)) \equiv_{s s} \varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right)\), which implies \(\exists x \in \varsigma(\sigma(x)) . x \equiv z\).
Because of \(\left(z \approx \mathcal{X}^{\prime} \llbracket s \rrbracket\right)\) and the \(\equiv / \approx\) Relation Lemma we get \(x \equiv \mathcal{X}^{\prime} \llbracket s \rrbracket\).
By the Expressions Coincide Lemma \(\mathcal{X} \llbracket s \rrbracket \equiv \mathcal{X}^{\prime} \llbracket s \rrbracket\). We have to look at two cases here:
\(-\mathcal{X}^{\prime} \llbracket s \rrbracket \in \operatorname{Set}\) Loc \({ }^{\prime}\) From \(\mathcal{X} \llbracket s \rrbracket \equiv_{s l s l} \mathcal{X}^{\prime} \llbracket s \rrbracket\) we can follow \(\varsigma(\mathcal{X} \llbracket s \rrbracket) \equiv_{s s} \varsigma_{2}^{\prime}\left(\mathcal{X}^{\prime} \llbracket s \rrbracket\right)\) and from \(z \equiv_{s s l} \mathcal{X}^{\prime} \llbracket s \rrbracket\) we follow \(z \equiv_{s s} \varsigma_{2}^{\prime}\left(\mathcal{X}^{\prime} \llbracket s \rrbracket\right)\). By injectivity of \(\equiv_{s s}\) we
infer \(z=\varsigma(\mathcal{X} \llbracket s \rrbracket)\). That is \(\varsigma(\mathcal{X} \llbracket s \rrbracket)\) is already part of the set and [SetInsert] has no effect on the state.
- \(\mathcal{X}^{\prime} \llbracket s \rrbracket \notin S e t L o c^{\prime}\)

Since \(\equiv \backslash \equiv_{s l s l}\) is injective (by Set Injectivity Lemma for \(\equiv_{s s}\) and trivially for the other parts of the relation) we get \(x=\mathcal{X} \llbracket s \rrbracket\).
This means that [Set-Insert] has no effect, since \(x\) is already an element of the set.
[Set-Insert'] does not change the state either in this case. Thus, the existing Heap Correspondence Relation remains valid.
2. \(\neg \exists z . z \in \varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right) \wedge\left(z \approx \mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right)\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\) :

In this case the elements are not part of the sets before and will be inserted. By the Stability Lemma there exists a Heap Correspondence Relation \(\equiv^{\prime}\) for \((\eta, \varsigma[\sigma(x) \mapsto(\varsigma(\sigma(x)) \cup\{i\})])\) and \(\left(\eta_{2}^{\prime}, \varsigma_{2}^{\prime}\left[\sigma_{2}^{\prime}(x) \mapsto\left(\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right) \cup\right.\right.\right.\) \(\left.\left.\left\{\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\}\right) \rrbracket\right)\) where \(i=\left\{\begin{array}{l}\varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)) \text {, if } \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \in \text { SetLoc } \\ \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma), \text { otherwise }\end{array}\right.\).
The application of the Stability Lemma is possible because \(\sigma_{2}^{\prime}(x)\) and \(\sigma(x)\) are not aliased. As in the previous proofs we need to show that \(\sigma(y) \equiv^{\prime} \sigma_{2}^{\prime}(y)\) for all \(y \in \operatorname{dom}(\sigma)\). For \(y \in(\operatorname{dom}(\sigma) \backslash\{x\})\) this also follows from the Stability Lemma as \(\sigma(y) \neq \sigma(x)\) and \(\sigma_{2}^{\prime}(y) \neq \sigma_{2}^{\prime}(x)\). This leaves us with \(\sigma(x) \equiv^{\prime} \sigma_{2}^{\prime}(x)\) to prove. This is by definition equivalent to \((\varsigma(\sigma(x)) \cup\{i\})=\varsigma[\sigma(x) \mapsto\) \((\varsigma(\sigma(x)) \cup\{i\})](\sigma(x)) \equiv_{s s}^{\prime} \varsigma_{2}^{\prime}\left[\sigma_{2}^{\prime}(x) \mapsto\left(\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right) \cup\left\{\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\}\right)\right]\left(\sigma_{2}^{\prime}(x)\right)=\) \(\left(\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right) \cup\left\{\mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\}\right)\). We know that \(\varsigma(\sigma(x)) \equiv_{s s}^{\prime} \varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(x)\right)\). So showing \(i \equiv \mathcal{X}^{\prime} \llbracket s \rrbracket\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\) suffices to close the proof. In fact, this follows from the Expressions Coincide Theorem, since \(i\) is either \(\varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma))\) or \(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)\).
\(\langle x . \operatorname{remove}(s),(\sigma, \eta, \varsigma)\rangle \triangleright\langle\) skip, \((\sigma, \eta, \varsigma[\sigma(x) \mapsto(\varsigma(\sigma(x)) \backslash\{i\})])\rangle \quad\) [Set-Remove]
- where \(i=\left\{\begin{array}{l}\varsigma(\mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma)), \text { if } \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma) \in \text { SetLoc } \\ \mathcal{X} \llbracket s \rrbracket(\sigma, \eta, \varsigma), \text { otherwise }\end{array}\right.\)

Analogous to previous case replacing \(\cup\) with \(\backslash\).
- \(\langle x:=y\).selectAndRemove, \((\sigma, \eta, \varsigma)\rangle \triangleright\langle\) skip, \((\sigma, \eta, \varsigma[\sigma(y) \mapsto(\varsigma(\sigma(y)) \backslash\{e l\})][\sigma(x) \mapsto e l])\rangle \quad\) [Set-SelectRemove-Set] where el \(\in \varsigma(\sigma(y))\) and \(e l \in\) Set
The configuration corresponding to \(\langle x:=y\).selectAndRemove, \((\sigma, \eta, \varsigma)\rangle\) is \(\left\langle y_{\text {temp }}:=\right.\) malloc set; \(y_{\text {temp }}:=y ; y:=\) malloc set; \(y:=y_{\text {tem }} ; x:=\) malloc set; \(x:=y\).selectAndRemove, \(\left.\left(\sigma^{\prime}, \eta^{\prime}, \varsigma^{\prime}\right)\right\rangle\). By the Aliasing Lemma we can execute the first four statements of the series to obtain a new configuration \(\left\langle x:=\right.\) malloc set; \(x:=y\).selectAndRemove, \(\left.\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\) with \((\sigma, \eta, \varsigma) \cong\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\) and \(\sigma_{2}^{\prime}(y)\) not aliased. Combining the effects of [Malloc-Set'] and [Set-SelectRemoveSet'] we get \(\left\langle\right.\) skip, \(\left.\left(\sigma_{2}^{\prime}\left[x \mapsto \psi^{\prime}\right], \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\left[\sigma_{2}^{\prime}(y) \mapsto\left(\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(y)\right) \backslash\left\{e l^{\prime}\right\}\right)\right]\left[\psi^{\prime} \mapsto \varsigma_{2}^{\prime}\left(e l^{\prime}\right)\right]\right)\right\rangle\), where \(e l^{\prime} \in \varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(y)\right)\) and \(\psi^{\prime} \notin\left(i m\left(\sigma_{2}^{\prime}\right) \cup i m\left(\eta_{2}^{\prime}\right) \cup \operatorname{dom}\left(\varsigma_{2}^{\prime}\right) \cup \bigcup i m\left(\varsigma_{2}^{\prime}\right)\right)\). By the fact that \((\sigma, \eta, \varsigma) \cong\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\) we conclude that \(\varsigma(\sigma(y)) \equiv_{s s} \varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(y)\right)\). We assume that \(e l \equiv e l^{\prime}\) in the following. This is possible due to the nondeterminism of the
[Set-SelectRemove-Set'] rule.
We need to prove that the resulting configurations correspond. The statements skip and skip obviously correspond. By the Stability Lemma and the fact that \(\sigma(x), \sigma(y), \sigma_{2}^{\prime}(x)\) and \(\sigma_{2}^{\prime}(y)\) are not aliased we infer that there exists a Heap Correspondence Relation \(\equiv^{\prime}\) for ( \(\eta, \varsigma[\sigma(y) \mapsto(\varsigma(\sigma(y)) \backslash\{e l\})][\sigma(x) \mapsto\) el]) and \(\left(\eta_{2}^{\prime}, \varsigma_{2}^{\prime}\left[\sigma_{2}^{\prime}(y) \mapsto\left(\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(y)\right) \backslash\left\{e l^{\prime}\right\}\right)\right]\left[\psi^{\prime} \mapsto \varsigma_{2}^{\prime}\left(e l^{\prime}\right)\right]\right)\). The Stability Lemma also allows us to infer \(\sigma(z) \equiv^{\prime} \sigma_{2}^{\prime}\left[x \mapsto \psi^{\prime}\right](z)\) for \(z \in(\operatorname{dom}(\sigma) \backslash\{x, y\})\). We still need to prove \(\sigma(x) \equiv^{\prime} \sigma_{2}^{\prime}\left[x \mapsto \psi^{\prime}\right](x)=\psi^{\prime}\) and \(\sigma(y) \equiv^{\prime} \sigma_{2}^{\prime}\left[x \mapsto \psi^{\prime}\right](y)\). We know that \(e l \equiv^{\prime} e l^{\prime}\) and that \(\varsigma[\sigma(y) \mapsto(\varsigma(\sigma(y)) \backslash\{e l\})][\sigma(x) \mapsto e l](\sigma(x))=e l\) and \(\varsigma_{2}^{\prime}\left[\sigma_{2}^{\prime}(y) \mapsto\right.\) \(\left.\left(\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(y)\right) \backslash\left\{e l^{\prime}\right\}\right)\right]\left[\psi^{\prime} \mapsto \varsigma_{2}^{\prime}\left(e l^{\prime}\right)\right]\left(\sigma_{2}^{\prime}(x)\right)=e l^{\prime}\) which proves \(\sigma(x) \equiv^{\prime} \sigma_{2}^{\prime}\left[x \mapsto \psi^{\prime}\right](x)\). \(\sigma(y) \equiv^{\prime} \sigma_{2}^{\prime}\left[x \mapsto \psi^{\prime}\right](y)\) is equivalent to \((\varsigma(\sigma(y)) \backslash\{e l\}) \equiv_{s s}^{\prime}\left(\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(y)\right) \backslash\left\{e l^{\prime}\right\}\right)\). We know that \(\varsigma(\sigma(y)) \equiv_{s s}^{\prime} \varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(y)\right)\) and \(e l \equiv e l^{\prime}\) which obviously implies \((\varsigma(\sigma(y)) \backslash\) \(\{e l\}) \equiv_{s s}^{\prime}\left(\varsigma_{2}^{\prime}\left(\sigma_{2}^{\prime}(y)\right) \backslash\left\{e l^{\prime}\right\}\right)\).
- \(\langle x:=y\).selectAndRemove, \((\sigma, \eta, \varsigma)\rangle \triangleright\langle\) skip, \((\sigma[x \mapsto e l], \eta, \varsigma[\sigma(y) \mapsto(\varsigma(\sigma(y)) \backslash\{e l\})])\rangle \quad\) [Set-SelectRemove]
\[
\text { where el } \in \varsigma(\sigma(y)) \text { and el } \in(\text { Item } \backslash \text { SetLoc })
\]

Analogous to previous case.

The last missing inference rule is [Seq. Composition]. This is the only "real" step case of the proof, i.e. the only case that relies on the induction hypothesis.
- \(\frac{\left\langle S_{1},\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle \triangleright\left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle}{\left\langle S_{1} ; S,\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle \triangleright\left\langle S_{2} ; S,\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle} \quad\) [Seq. Composition]

By induction hypothesis we know that if \(\left\langle S_{1},(\sigma, \eta, \varsigma)\right\rangle \triangleright\left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle\) and \(\left\langle S_{1},\left(\sigma_{1}, \eta_{1}, \varsigma_{1}\right)\right\rangle \simeq\) \(\left\langle T\left(S_{1}\right),\left(\sigma_{1}^{\prime}, \eta_{1}^{\prime}, \varsigma_{1}^{\prime}\right)\right\rangle\) then there exists some \(\left\langle S_{2},\left(\sigma_{2}, \eta_{2}, \varsigma_{2}\right)\right\rangle \simeq\left\langle T\left(S_{2}\right),\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\) with \(\left\langle T\left(S_{1}\right),\left(\sigma_{1}^{\prime}, \eta_{1}^{\prime}, \varsigma_{1}^{\prime}\right)\right\rangle \triangleright^{*}\left\langle T\left(S_{2}\right),\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\).
For every inference step from the series of inferences from the induction hypothesis we can apply the [Seq. Composition']-rule. This yields \(\left\langle T\left(S_{1}\right) ; T(S),\left(\sigma_{1}^{\prime}, \eta_{1}^{\prime}, \varsigma_{1}^{\prime}\right)\right\rangle \triangleright^{*}\) \(\left\langle T\left(S_{2}\right) ; T(S),\left(\sigma_{2}^{\prime}, \eta_{2}^{\prime}, \varsigma_{2}^{\prime}\right)\right\rangle\).

\section*{B Source Code}

\section*{B. 1 C Implementations}

\section*{B.1.1 List-based Implementation}

\section*{Structure Declarations}
```

typedef struct List
{
void* data;
struct List* next;
} List;
typedef struct Set
{
List* list;
int (*compare)(void*, void*);
int size;
} Set;

```
Set* emptySet (int (*comp) (void*, void*)) ;
    //comp should return 0 iff the parameters have the same value
void insertElement (Set* set, void* element);
void* removeElement (Set* set, void* element);
int isElement (Set* set, void* element);
void addSet (Set* set1, Set* set2);
void subSet (Set* set1, Set* set2);
int isSubset (Set* set1, Set* set2);
Set* copySet(Set* set);
int sizeOf(Set* set);

\section*{Implementation}
```

\#include <stdio.h>
\#include "set.h"
Set* emptySet(int (*comp)(void*, void*))

```
```

{
Set* emptySet;
emptySet = (Set*)malloc(sizeof(Set));
emptySet->compare = comp;
emptySet->list = 0;
emptySet->size = 0;
return emptySet;
}
int isEmpty(Set* set)
{
return (set->list == 0);
}
void insertElement(Set* set, void* element)
{
List* list = set->list;
List* prev = 0;
while (list != 0)
{
if (compare(list->data, element) == 0)
return;
prev = list;
list = list->next;
}
List* newList = (List*)malloc(sizeof(List));
newList->data = element;
newList->next = 0;
set->size++;
if (prev == 0) //list is empty
{
set->list = newList;
}
else //append item to list
{
prev->next = newList;
}
}

```
```

void* removeElement(Set* set, void* element)
{
List* temp;
List* list = set->list;
if (list == 0)
return;
if (compare(list->data, element) == 0)
{
set->size--;
set->list = list->next;
free(list);
}
else
while (list->next != 0)
{
if (compare(list->next->data, element) == 0)
{
void* deletedElement = list->next->data;
set->Size--;
temp = list->next->next;
free(list->next);
list->next = temp;
return deletedElement;
}
list = list->next;
}
}
int isElement(Set* set, void* element)
{
List* list = set->list;
while (list != 0)
{
if (compare(list->data, element) == 0)
return 1;
list = list->next;
}
return 0;

```
```

}
void addSet(Set* set1, Set* set2)
{
List* list = set2->list;
while (list != 0)
{
insertElement(set1, list->data);
list = list->next;
}
}
void subSet(Set* set1, Set* set2)
{
List* list = set2->list;
while (list != 0)
{
removeElement(set1, list->data);
list = list->next;
}
}
int isSubset(Set* set1, Set* set2)
{
List* list = set1->list;
while (list != 0)
{
if (!isElement(set2, list->data))
return 0;
list = list->next;
}
return 1;
}
Set* copySet(Set* set2)
{
Set* newset = emptySet(set2->compare);
addSet(newset, set2);
return newset;
}
int sizeOf(Set* set)
{
return set->size;

```
```

}
int compare(void* a, void* b)
{
return (*((int*)a) - *((int*)b));
}

```
int main(int argc, char** argv)
\{
    Set* mySet, *mySet2;
    mySet = emptySet (\&compare);
    mySet2 = emptySet(\&compare);
    int \(\mathrm{a}, \mathrm{b}, \mathrm{c}\);
    \(\mathrm{a}=34\);
    b = 344;
    c = 3423;
    insertElement(mySet2, \&b);
    insertElement(mySet, \&a);
    insertElement(mySet, \&a);
    insertElement(mySet, \&b);
    insertElement(mySet, \&c);
    removeElement(mySet, \&a);
    if (isElement(mySet, \&a))
        printf("a in mySet \(\backslash \mathrm{n}\) ");
    else
        printf("a not in mySet \(\backslash n\) ");
    if (isElement(mySet, \&b))
        printf("b in mySet \(\backslash n\) ");
    else
        printf("b not in mySet \(\backslash n\) ");
    if (isSubset (mySet2, mySet))
        printf("mySet2 is subset of mySet\n");
    else
        printf("mySet2 is not subset of mySet\n");
    if (isSubset(copySet(mySet), mySet))
        printf("mySet is subset of mySet\n");
```

 else
 printf("mySet is not subset of mySet\n");
 printf("Size of mySet: %i\n", sizeOf(mySet));
 printf("Size of mySet2: %i\n", sizeOf(mySet2));
 free(mySet);
 free(mySet2);
 return 1;
 }

```

\section*{B.1.2 Tree-based Implementation}

\section*{Structure Declarations}
```

typedef struct Tree
{
void* data;
struct Tree* left;
struct Tree* right;
} Tree;
typedef struct Set
{
Tree* tree;
int (*compare)(void*, void*);
int size;
} Set;
Set* emptySet(int (*comp)(void*, void*));
//comp should return O iff the parameters have the same value
int isEmpty(Set* set);
void insertElement(Set* set, void* element);
void removeElement(Set* set, void* element);
int isElement(Set* set, void* element);
void addSet(Set* set1, Set* set2);
void subSet(Set* set1, Set* set2);
int isSubset(Set* set1, Set* set2);
Set* copySet(Set* set);
int sizeOf(Set* set);

```

\section*{Implementation}
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "set.h"
Set* emptySet(int (*comp)(void*, void*))
{
Set* emptySet;
emptySet = (Set*)malloc(sizeof(Set));
emptySet->compare = comp;
emptySet->size = 0;
return emptySet;
}
int isEmpty(Set* set)
{
return (set->tree == 0);
}
void insertElement(Set* set, void* element)
{
if (!isElement(set, element))
{
set->size++;
Tree* tree = set->tree;
Tree* previous = tree;
int compresult;
while (tree != 0) //find suitable position for new element
{
previous = tree;
compresult = compare(tree->data, element);
if (compresult < 0)
tree = tree->left;
else if (compresult > 0)
tree = tree->right;
}
tree = (Tree*)malloc(sizeof(tree));
tree->data = element;
tree->left = 0;
tree->right = 0;

```
```

 if (previous == 0) //first element to be inserted...
 {
 set->tree = tree;
 }
 else
 {
 if (compresult < 0)
 previous->left = tree;
 else if (compresult > 0)
 previous->right = tree;
 }
 }
 }
void removeElement(Set* set, void* element)
{
Tree* tree = set->tree;
Tree* previous = 0;
int oldcompresult = 0;
while (tree != 0) //find element...
{
int compresult = compare(tree->data, element);
if (compresult == 0) //we found the element.
{
set->size--;
if ((tree->right == 0) \&\& (tree->left == 0)) //it had not successors
{
if (previous == 0)
set->tree = 0;
else if (previous->left == tree)
previous->left = 0;
else
previous->right = 0;
}
else if (tree->right == 0) //only one successor
{
if (previous == 0)
set->tree = tree->left;
else if (previous->left == tree)
previous->left = tree->left;
else
previous->right = tree->left;
}
else if (tree->left == 0) //only one successor

```
```

 {
 if (previous == 0)
 set->tree = tree->right;
 else if (previous->left == tree)
 previous->left = tree->right;
 else
 previous->right = tree->right;
 }
 else
 { //position has two subtrees: either find largest element to the left
 //or smallest to the right; i chose left here
 Tree* subtree = tree->left;
 Tree* previous2 = 0;
 while (subtree->right != 0) //finding largest element to the
 //left of the element that is being removed
 {
 previous2 = subtree;
 subtree = subtree->right;
 }
 if (previous2 != 0) //remove element from predecessor
 previous2->right = 0;
 subtree->left = tree->left; //attach former subtrees of removed element
 subtree->right = tree->right;
 if (subtree->left == subtree) //otherwise we would introduce a cycle
 subtree->left = 0;
 if (previous == 0) //link it to predecessor of removed element
 set->tree = subtree;
 else if (previous->left == tree)
 previous->left = subtree;
 else
 previous->right = subtree;
 }
 free(tree);
 return;
 }
previous = tree;
if (compresult < 0) //traversing the tree in search of the element.
tree = tree->left;

```
```

 else
 tree = tree->right;
 }
 }
int isElement(Set* set, void* element)
{
Tree* tree = set->tree;
int depth = 0;
while (tree != 0)
{
if (compare(tree->data, element) == 0)
return 1;
else if (compare(tree->data, element) < 0)
tree = tree->left;
else
tree = tree->right;
}
return 0;
}
void addTree(Tree* tree, Set* set) //adds the contents of the tree to the set recursively
{
if (tree != 0)
{
insertElement(set, tree->data);
addTree(tree->left, set);
addTree(tree->right, set);
}
}
void addSet(Set* set1, Set* set2)
{
addTree(set1->tree, set2);
}
int isSubsetTree(Tree* tree, Set* set) //checks whether elements of the tree
//are contained in the set
{
if (tree != 0)

```
```

 {
 if (!isElement(set, tree->data))
 return 0;
 printf("tada\n");
 return (isSubsetTree(tree->left, set) && isSubsetTree(tree->right, set));
 }
    ```
```

 return 1;
    ```
        return 1;
}
int isSubset(Set* set1, Set* set2)
{
    return isSubsetTree(set1->tree, set2);
}
Set* copySet(Set* set2) //copies a set (shallow copy)
{
    Set* newset = emptySet(set2->compare);
    addSet(newset, set2);
    return newset;
}
int sizeOf(Set* set)
{
    return set->size;
}
int compare(void* a, void* b)
{
    return -(*((int*)a) - *((int*)b));
}
void printDepth(char* text, Set* set, void* element) //help method for debugging
{
    int result = isElement(set, element);
    if (result)
        {
            printf(text);
            printf(" holds in depth ");
            printf("%i\n", result);
```

```
        }
    else
    {
        printf(text);
        printf(" does not hold\n");
    }
}
void printSubset(char* text, Set* set1, Set* set2)
{
    int result = isSubset(set1, set2);
    if (result)
        {
            printf(text);
            printf(" holds");
        }
    else
    {
        printf(text);
        printf(" does not hold\n");
    }
}
```

int drawTreeLayer(Tree* tree, int layer) //draws parts of the tree that have same depth
\{
if (tree == 0)
return 0;
if (layer == 0)
\{
printf("\%i ", *(int*)tree->data);
return 1;
\}
return (drawTreeLayer (tree->left, layer-1) + drawTreeLayer(tree->right, layer-1));
\}
void drawTree(Tree* tree, char* text)
\{
printf(text);
printf("\n");
int layer = 0;
while (drawTreeLayer(tree, layer) != 0)

```
        {
            layer++;
            printf("\n");
        }
    printf("\n");
}
int main(int argc, char** argv)
{
    int a, b, c, d;
    a = 34;
    b = 344;
    c = 23;
    d = 333;
    Set* mySet, *mySet2;
    mySet = emptySet(&compare);
    mySet2 = emptySet(&compare);
    isSubset(mySet, mySet2);
    printf("tada\n");
    insertElement(mySet2, &d);
    insertElement(mySet, &a);
    insertElement(mySet, &a);
    insertElement(mySet, &c);
    insertElement(mySet, &b);
    drawTree(mySet->tree, "mySet->tree:");
    addSet(mySet, mySet2);
    drawTree(mySet2->tree, "mySet2->tree:");
    removeElement(mySet, &a);
    insertElement(mySet, &a);
    printDepth("a in mySet", mySet, &a);
    printDepth("b in mySet", mySet, &b);
    printDepth("c in mySet", mySet, &c);
    printSubset("mySet subset of mySet2", mySet, mySet2);
    printSubset("mySet2 subset of mySet", mySet2, mySet);
    printSubset("mySet subset of mySet", mySet, mySet);
    printSubset("mySet2 subset of mySet2", mySet2, mySet2);
```

```
    drawTree(mySet->tree, "mySet->tree:");
    srand(time());
    Set* randomSet = emptySet(&compare); //creating random binary tree
    int i;
    for (i = 0; i < 1000; i++)
        {
            int* randomNumber;
            randomNumber = (int*)malloc(sizeof(int));
            *randomNumber = rand()/10000000;
            insertElement(randomSet, randomNumber);
    }
    drawTree(randomSet->tree, "randomSet->tree:");
    /* if (isSubset(copySet(mySet), mySet))
        printf("mySet is subset of mySet\n");
    else
printf("mySet is not subset of mySet\n");*/
printf("Size of mySet: %i\n", sizeOf(mySet));
printf("Size of mySet2: %i\n", sizeOf(mySet2));
printf("Size of randomSet: %i\n", sizeOf(randomSet));
free(mySet);
free(mySet2);
free(randomSet);
return 1;
}
```


B. 2 TVLA Analyses

B.2.1 List-based Implementation

Predicates

//////////////////
 // Core Predicates

// For every program variable z there is a unary predicate that holds for // list elements pointed by z.
// The unique property is used to convey the fact that the predicate can hold // for at most one individual.

```
// The pointer property is a visualization hint for graphical renderers.
foreach (z in PVar) {
    %p z(v_1) unique pointer
}
// The predicate isSet is true for heap cells that represent sets
%p isSet(v)
```

// The predicate next represents the n field of the list data type.
\%p n(v_1, v_2) function
// The predicate deq represents the equality of the data fields of the two list elements
$\%$ p deq(v_1, v_2) reflexive transitive symmetric

//
 // Instrumentation (i.e., derived) predicates

// The is [n] predicate holds for list elements pointed by two different
// list elements.
\%i is [n] (v) = E(v_1, v_2) (v_1 != v_2 \& n(v_1, v) \& n(v_2, v))
// The c[v] predicate holds for elements that reside on a cycle
// along the n field.
\%ic[n] (v) = E(v_1) (n(v_1, v) \& n*(v, v_1))
// The t[n] predicate records transitive reflexive reachability between
// list elements along the n field.

// Integrity constraints for transitive reachability
$\% \mathrm{r}!\mathrm{t}[\mathrm{n}]\left(\mathrm{v} _1, \mathrm{v}_{-} 2\right)==>$!n(v_1, v_2)
\%r ! t [n] (v_1, v_2) ==> v_1 != v_2
\%r E(v_1) (t[n] (v_1, v_2) \& $\left.t[n]\left(v_{-} 1, v_{-} 3\right) \&!t[n]\left(v_{-} 2, v_{-} 3\right)\right)==>t[n]\left(v_{-} 3, v_{-} 2\right)$
// For every program variable z the predicate $r[n, z]$ holds for individual
// v when v is reachable from variable z along the n field (more formally,
// the corresponding list element is reachable from z).
foreach (z in PVar) \{
\%ir $r n, z](v)=E\left(v_{-} 1\right)\left(z\left(v_{-} 1\right) \& t[n]\left(v_{-} 1, v\right)\right)$
$\% r\left(r[n, z]\left(v_{-}\right) \& r[n, z]\left(v_{_} 2\right) \&!t[n]\left(v_{-} 1, v_{-} 2\right)\right)==>t[n]\left(v_{_} 2, v_{-} 1\right)$
\}
//The noeq[deq] predicate expresses that an element is different from all the //other elements that can be reached by a sequence of next-pointers (forward or backward) $\%$ i noeq[deq, $n](v)=A\left(v_{-} 1\right)\left(\left(\left(t[n]\left(v_{-} 1, v\right) \mid t[n]\left(v, v_{-} 1\right)\right) \& v_{-} 1!=v\right)\right.$
-> (!deq(v_1, v) \& !deq(v, v_1)))
\%r ((t[n] (v_1, v_2) |t[n](v_2,v_1)) \& v_1 != v_2 \& noeq[deq, n] (v_2)) ==> !deq(v_2, v_1)
\%r ((t[n] (v_1,v_2) |t[n](v_2,v_1)) \& $\left.v_{-} 1 ~!=v_{-} 2 \& n o e q[d e q, n]\left(v_{-} 2\right)\right)==>$!deq(v_1, v_2)
$\% r\left(t[n]\left(v_{-} 1, v_{-} 2\right) \&\right.$ noeq[deq, $\left.\left.n\right]\left(v _2\right)\right)==>$ noeq[deq, n] (v_1)
$\% r\left(t[n]\left(v_{-} 2, v _1\right) \& n o e q[d e q, n]\left(v _2\right)\right)==>n o e q[d e q, n]\left(v _1\right)$
\%r A(v) ((t[n] (v,v_1) \& v != v_1) -> !deq(v,v_1)) ==> noeq[deq,n] (v_1)
\%r A(v) ((t [n] (v_1,v) \& v != v_1) -> !deq(v,v_1)) ==> noeq[deq, n] (v_1)
\%r (noeq[deq, $\left.n](v) \& d e q\left(v _1, v\right) \& v \quad!=v_{-} 1\right)==>!t[n]\left(v _1, v\right)$
// The predicate validSet is true for heap cells that represent valid sets $\%$ i validSet (v) = isSet(v) \& noeq[deq, n] (v)
//The binary predicate isElement expresses that v_1 is element of set v_2 $\% i \operatorname{isElement}\left(v_{-} 1, v_{-} 2\right)=i s S e t\left(v_{-} 2\right) \& E(v)\left(t[n]\left(v_{-} 2, v\right) \& \operatorname{deq}\left(v_{-} 1, v\right) \& v \quad!=v_{-} 2\right)$
\% r t [n] (v,v_2) \& isSet(v) \& v != v_2 ==> isElement(v_2, v)
// The predicate or $[n, z, 1]$ is used to take a snapshot of the part of the
// heap reachable from pointer variable z via dereferences of field n
// when the program reaches the program label 1.
// (See Copy_Reach_L in actions.tvp.)
foreach (z in PVar) \{
$\%$ or $[n, z]$ (v)
\}

Actions

```
%action uninterpreted() {
    %t "uninterpreted"
}
%action skip() {
    %t "skip"
}
%action Copy_Reach_L(lhs) {
    %t "storeReach(" + lhs + ")"
    {
        or[n,lhs](v) = r[n,lhs](v)
```

```
    }
}
///////////////////////////////////////////////////////////////////////
// Actions for statements manipulating pointer variables and pointer fields
%action Set_Null_L(lhs) {
    %t lhs + " = NULL"
    {
        lhs(v) = 0
    }
}
%action Copy_Var_L(lhs, rhs) {
    %t lhs + " = " + rhs
    %f {rhs(v) }
    {
        lhs(v) = rhs(v)
    }
}
%action Malloc_L(lhs) {
    %t lhs + " = (L) malloc(sizeof(struct node)) "
    %new
    {
        lhs(v) = isNew(v)
        t[n](v_1, v_2) = (isNew(v_1) ? v_1 == v_2 : t [n] (v_1, v_2))
        r[n, lhs](v) = isNew(v)
        foreach(z in PVar-{lhs}) {
            r[n,z](v) = r[n,z](v)
        }
        is[n](v) = is[n](v)
        c[n](v) = c[n](v)
        deq(v_1, v_2) = (isNew(v_1) & isNew(v_2)) | //reflexive...
                            (v_1 != v_2 & (isNew(v_1) | isNew(v_2))? 1/2 : deq(v_1, v_2))
        noeq[deq,n](v) = (isNew(v) ? 1 : noeq[deq,n](v))
        isElement(v_1,v_2) = (isNew(v_1) ? 1/2 : isElement(v_1,v_2))
        validSet(v) = (isNew(v) ? 0 : validSet(v))
    }
```


\}

```
%action Free_L(lhs) {
```

 \%t "free(" + lhs + ")"
 \(\%\) \{ lhs(v) \}
 \%message (E(v, v_1) lhs(v) \& \(n\left(v, v_{-} 1\right)\)) ->
 "Internal Error! " + lhs + "->" + n + " != NULL"
 \{
 \(c[n](v)=c[n](v)\)
 \(\mathrm{t}[\mathrm{n}]\left(\mathrm{v}_{-} 1, \mathrm{v}_{-} 2\right)=\mathrm{t}[\mathrm{n}]\left(\mathrm{v}_{-} 1, \mathrm{v}_{-} 2\right)\)
 \(r[n, \operatorname{lhs}](v)=r[n, l h s](v)\)
 foreach(z in PVar) \{
 \(r[n, z](v)=r[n, z](v)\)
 \}
 is [n] (v) \(=\) is[n] (v)
 noeq[deq, n (v) = noeq[deq, n\(](\mathrm{v})\)
 isElement(v_1, v_2) = isElement(v_1,v_2)
 validSet(v) = validSet(v)
 \}
 \%retain ! lhs(v)
 \}
\%action Get_Next_L(lhs, rhs) \{
\%t lhs + " = " + rhs + "->" + n
\%f \{ E(v_1, v_2) rhs(v_1) \& n(v_1, v_2) \& $\left.t[n]\left(v _2, ~ v\right)\right\}$
\%message (!E(v) rhs(v)) ->
"Illegal dereference to\n" + n + " component of " + rhs
\{
lhs (v) = E(v_1) rhs(v_1) \& n(v_1, v)
$r[n, 1 h s](v)=r[n, r h s](v) \&(c[n](v) \mid \quad!r h s(v))$
\}
\}
\%action Set_Data_L(lhs, rhs) \{
$\%$ lhs + "->data $=$ " + rhs + "->data"
$\%$ \{ lhs(v) \}
\%message (!E(v) rhs(v)) ->
"Illegal dereference to\n" + data + " component of " + rhs
\%message (!E(v) lhs(v)) ->
"Illegal dereference to\n" + data + " component of " + lhs
\{

| (lhs(v_2) \& E(v)(rhs(v) \& deq(v_1, v))) //comp. x->data with s.th.
| (!1hs(v_1) \& ! $1 \mathrm{hs}\left(\mathrm{v}_{-} 2\right) \& \operatorname{deq}\left(\mathrm{v}_{-} 1, \mathrm{v}_{\mathrm{L}} 2\right)$)
\}

```
}
%action Set_Next_Null_L(lhs) {
    %t lhs + "->" + n + " = NULL"
    %f {
            lhs(v),
            // optimized change-formula for t[n] update-formula
            E(v_1, v_2) lhs(v_1) & n(v_1, v_2) & t[n](v_2, v)
        }
    %message (!E(v) lhs(v)) -> "Illegal dereference to\n" +
                                    n + " component of " + lhs
    {
        n(v_1, v_2) = n(v_1, v_2) & !lhs(v_1)
        r[n,lhs](v) = lhs(v)
        foreach(z in PVar-{lhs}) {
            r[n,z](v) = (c[n](v) & r[n,lhs] (v)?
                            z(v) | E(v_1) z(v_1) & TC (v_1, v) (v_3, v_4) (n(v_3, v_4) & !lhs(v_3)) :
                            r[n,z](v) & ! (E(v_1) r[n,z](v_1) & lhs(v_1) & r[n,lhs](v) & !lhs(v)))
        }
        c[n](v) = c[n](v) & ! (E( v_1) lhs(v_1) & c[n](v_1) & r[n,lhs](v))
    }
}
%action Set_Next_L(lhs, rhs) {
    %t lhs + "->" + n + " = " + rhs
    %f {
            lhs(v), rhs(v),
            // optimized change-formula for t[n] upate-formula
            E(v_4) rhs(v_4) & t[n](v_4, v_2)
        }
    %message (E(v_1, v_2) lhs(v_1) & n(v_1, v_2)) ->
                "Internal Error! " + lhs + "->" + n + " != NULL"
    %message (E(v_1, v_2) lhs(v_1) & rhs(v_2) & t[n](v_2, v_1)) ->
                "A cycle may be introduced\nby assignment " + lhs + "->" + n + "=" + rhs
    {
        n(v_1, v_2) = n(v_1, v_2) | lhs(v_1) & rhs(v_2)
        foreach(z in PVar) {
            r[n,z](v) = r[n,z](v) | E(v_1) r[n,z](v_1) & lhs(v_1) & r[n,rhs](v)
        }
        c[n](v) = c[n](v) | (E(v_1) lhs(v_1) & r[n,rhs](v_1) & r[n,rhs](v))
    }
}
```

```
/////////////////////////////////////////////////////////////////
// Actions needed to simulate program conditions involving pointer
// equality tests.
%action Is_Not_Null_Var(lhs) {
    %t lhs + " != NULL"
    %f { lhs(v) }
    %p E(v) lhs(v)
}
%action Is_Null_Var(lhs) {
    %t lhs + " == NULL"
    %f { lhs(v) }
    %p !(E(v) lhs(v))
}
%action Is_Eq_Var(lhs, rhs) {
    %t lhs + " == " + rhs
    %f { lhs(v), rhs(v) }
    %p A(v) lhs(v) <-> rhs(v)
}
%action Is_Not_Eq_Var(lhs, rhs) {
    %t lhs + " != " + rhs
    %f { lhs(v), rhs(v) }
    %p !A(v) lhs(v) <-> rhs(v)
}
////////////////////////////////////////////////////////////////
// Actions needed to simulate program conditions involving comparisons
// of data elements.
%action Data_Eq(lhs, rhs) {
    %t lhs + ".data == " + rhs + ".data"
    %f { lhs(v_1) & rhs(v_2) & deq(v_1, v_2) }
    %p E(v_1, v_2) (lhs(v_1) & rhs(v_2) & deq(v_1, v_2))
    {
        // deq(v_1,v_2) = (((lhs(v_1) & rhs(v_2)) | (rhs(v_1) & lhs(v_2))) ? 1 : deq(v_1, v_2))
        deq(v_1, v_2) = ((lhs(v_1) & rhs(v_2)) | (rhs(v_1) & lhs(v_2)))
            | (lhs(v_1) & deq(v_1,v_2) & E(v)(rhs(v) & deq(v,v_2)))
            | (lhs(v_2) & deq(v_1,v_2) & E(v)(rhs(v) & deq(v_1,v)))
            | (rhs(v_1) & deq(v_1,v_2) & E(v)(lhs(v) & deq(v,v_2)))
            | (rhs(v_2) & deq(v_1,v_2) & E(v)(lhs(v) & deq(v_1,v)))
            | (v_1 == v_2)
    }
```

```
}
%action Data_Not_Eq(lhs, rhs) {
    %t lhs + ".data != " + rhs + ".data"
    %f { lhs(v_1) & rhs(v_2) & deq(v_1, v_2) }
    %p !E(v_1, v_2) (lhs(v_1) & rhs(v_2) & deq(v_1, v_2))
    {
        deq(v_1,v_2) = (((lhs(v_1) & rhs(v_2)) | (rhs(v_1) & lhs(v_2))) ? 0 : deq(v_1, v_2))
    }
}
///////////////////////////////////////
// Actions for testing various properties
%action Assert_ListInvariants(lhs) {
    %t "AssertListInvariants(" + lhs + ")"
    %f { lhs(v) }
    %p E(v)(r[n,lhs](v) & (c[n](v) | !noeq[deq,n](v)))
    %message ( E(v)(r[n,lhs](v) & (c[n](v) | !noeq[deq,n](v))) ) ->
                            "The list pointed by " + lhs + " may be cyclic or may contain duplicates!"
}
%action Assert_No_Leak(lhs) {
    %t "assertNoLeak(" + lhs + ")"
    %f { lhs(v) }
    %p E(v) !r[n,lhs](v) & !(E(v1) element(v1) & deq(v, v1))
    %message ( E(v) !r[n,lhs](v) & !(E(v1)element(v1) & deq(v, v1)) ) -> //only the element
                                    //that is to be inserted/removed should not be reachable.
                                    "There may be a list element not reachable from variable " + lhs + "!"
}
%action Assert_Permutation_L(lhs) {
    %t "AssertPermutation(" + lhs + ")"
    %p !(A(v) (newList(v) | E(v1)(element(v1) & deq(v, v1))
            | (r[n,lhs](v) <-> or[n,1hs](v))))
            //either it used to be here before or it is the newly inserted element
    %message !(A(v) (newList(v) | E(v1)(element(v1) & deq(v, v1)) | (r[n,lhs](v)
                                    <-> or[n,lhs](v)))) ->
            "Unable to prove that the list pointed-to by " + lhs +
            "is a permutation of the original list "
}
%action Assert_Element_Removed(set, element) {
    %t "AssertElementRemoved(" + set + ", " + element + ")"
    %p E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))
```

```
    %message (E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))) ->
            "Element " + element + " has not been removed from set " + set + "."
}
%action Assert_Element_Inserted(set, element) {
    %t "AssertElementInserted(" + set + ", " + element + ")"
    %p E(vel, vset)(element(vel) & set(vset) & !isElement(vel, vset))
    %message (E(vel, vset)(element(vel) & set(vset) & !isElement(vel, vset))) ->
            "Element " + element + " has not been inserted into set " + set + "."
}
%action Is_Not_Element(element, set) {
    %t "Is_Not_Element(" + set + ", " + element + ")"
    %p !E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))
    %message (!E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))) ->
            "Element " + element + " is not element of set " + set + "."
}
%action Is_Element(element, set) {
    %t "Is_Element(" + set + ", " + element + ")"
    %p E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))
    %message (E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))) ->
        "Element " + element + " is element of set " + set + "."
}
```


Input Structures

```
// An empty list (x points to NULL).
%n = {setstart, el}
%p = {
    deq = {el->el, setstart->setstart}
    noeq[deq, n] = {setstart, el}
    set = {setstart}
    element = {el}
    t[n] = {setstart->setstart, el->el}
    r[n,set] = {setstart}
    r[n,element] = {el}
    isSet = {setstart}
    validSet = {setstart}
}
```

// An acyclic singly-linked list with a single element pointed by set.
$\% \mathrm{n}=\{$ setstart, head, el\}

```
%p={
    n = {setstart->head}
    deq = {setstart->setstart, head->head, el->el, head->el:1/2, el->head:1/2}
    noeq[deq,n] = {setstart, head, el}
    set = {setstart}
    element = {el}
    t[n] = {el->el, setstart->setstart, setstart->head, head->head}
    r[n,set] = {setstart, head}
    r[n,element] = {el}
    isSet = {setstart}
    validSet = {setstart}
    isElement = {head->setstart, el->setstart:1/2}
}
// An acyclic singly-linked list with two or more elements pointed by program set.
%n = {setstart, head, tail, el}
%p={
    sm = {tail:1/2}
    n = {setstart->head, head->tail:1/2, tail->tail:1/2}
    deq = {el->el, setstart->setstart, head->head, tail->tail:1/2 , el->head:1/2,
        head->el:1/2, el->tail:1/2, tail->el:1/2}
    noeq[deq,n] = {setstart, head, tail, el}
    set = {setstart}
    element = {el}
    t[n] = {el->el, setstart->setstart, setstart->head, setstart->tail, head->head,
        head->tail, tail->tail:1/2}
    r[n,set] = {setstart, head, tail}
    r[n,element] = {el}
    isSet = {setstart}
    validSet = {setstart}
    isElement = {head->setstart, tail->setstart, el->setstart:1/2}
}
```


Insertion

```
/*
#include <stdio.h>
#include "set.h"
void insertElement(Set* set, void* element)
{
```

```
    List* list = set->list;
    List* prev = 0;
    while (list != 0)
    {
            if (compare(list->data, element) == 0)
                return;
            prev = list;
            list = list->next;
    }
    List* newList = (List*)malloc(sizeof(List));
    newList->data = element;
    newList->next = 0;
    set->size++;
    if (prev == 0) //list is empty
    {
        set->list = newList;
    }
    else //append item to list
    {
        prev->next = newList;
    }
}
*/
///////
// Sets
%s PVar {set, list, prev, newList, element, temp}
#include "predicates.tvp"
%%
#include "actions.tvp"
%%
```

///
// Transition system for a function that creates an element with a specified // value and inserts it at the end of the list if it is not already contained in the list.

```
//including data field...
L0 Copy_Reach_L(set) L1
L1 Get_Next_L(list, set) L2
L2 Set_Null_L(prev) L3
L3 Is_Not_Null_Var(list) L4
L3 Is_Null_Var(list) L12
L4 Data_Eq(list, element) exit
L4 Data_Not_Eq(list, element) L8
L8 Copy_Var_L(prev, list) L9
L9 Get_Next_L(temp, list) L10
L10 Copy_Var_L(list, temp) L11
L11 Set_Null_L(temp) L3
L12 Malloc_L(newList) L13
L13 Set_Data_L(newList, element) L14
L14 Set_Next_Null_L(newList) L15
L15 Is_Null_Var(prev) L16
L15 Is_Not_Null_Var(prev) L17
L16 Set_Next_L(set, newList) exit
L17 Set_Next_L(prev, newList) exit
exit Set_Null_L(prev) exit2
exit2 Set_Null_L(list) exitfinal
exitfinal Assert_Permutation_L(set) error
exitfinal Assert_ListInvariants(list) error
exitfinal Assert_No_Leak(set) error
exitfinal Assert_Element_Inserted(set, element) error
%% LO, exitfinal, error
```


Removal

```
/*
void* removeElement(Set* set, void* element)
{
    List* list = set->list;
    List* prev = 0;
    List* temp;
```

```
    while (list != 0)
    {
        if (compare(list->data, element) == 0)
        {
            set->size--;
            void* deletedElement = list->data;
            if (prev == 0)
                    set->list = list->next;
            else
                prev->next = list->next;
            free(list);
            return deletedElement;
        }
        prev = list;
        list = list->next;
    }
}
*/
///////
// Sets
```

\%s PVar \{set, list, prev, element, newList, temp\}
\#include "predicates.tvp"
\% \%
\#include "actions.tvp"
\% \%
///
// Transition system for a function that creates an element with a specified
// value and inserts it at the end of the list if it is not already contained in the list.
L0 Copy_Reach_L(set) L1
L1 Get_Next_L(list, set) L2
L2 Set_Null_L(prev) L3
// List* list = set->list;
// List* prev = 0;
L3 Is_Not_Null_Var(list) L4
// while (list != 0)
L3 Is_Null_Var(list) exit
//
L4 Data_Eq(list, element) L5 // if (compare(list, element) == 0)
L4 Data_Not_Eq(list, element) L14 //

```
L5 Get_Next_L(temp, list)
L6 Is_Null_Var(prev)
L6 Is_Not_Null_Var(prev)
L7 Set_Next_Null_L(set) L8
L8 Set_Next_L(set, temp)
L9 Set_Next_Null_L(prev)
L10 Set_Next_L(prev, temp)
L11 Set_Null_L(temp)
L12 Set_Next_Null_L(list)
L13 skip()
L14 Copy_Var_L(prev, list)
L15 Get_Next_L(temp, list)
L16 Copy_Var_L(list, temp)
L17 Set_Null_L(temp) L3
L6
L7
L9
L8
L10
L11
L12
exit Set_Null_L(prev)
exit Set_Null_L(prev)
    exit2
    //temp = list->next;
    //if (prev == 0)
    //else
    //set->list = 0;
    //set->list = temp (==list->next);
    //prev->next = 0;
    //prev->next = temp (==list->next);
    //temp = 0;
    //list->next = 0;
    //free(list) omitted for demonstration purpose
    L13
    exit
    L15 // prev = list;
    L16 // temp = list->next;
    L17 // list = temp;
    // temp = 0;
    exitfinal
```

```
exitfinal Assert_Permutation_L(set)
    error
exitfinal Assert_ListInvariants(list)
    error
exitfinal Assert_No_Leak(set)
    error
exitfinal Assert_Element_Removed(set, element) error
```

$\%$ LO, exitfinal, error

Membership Test

```
///////
// Sets
%s PVar {set, list, element}
#include "predicates.tvp"
%%
#include "actions.tvp"
%%
/*
int isElement(Set* set, void* element)
{
    List* list = set->list;
```

```
    while (list != 0)
    {
        if (compare(list->data, element) == 0)
            return 1;
        list = list->next;
    }
    return 0;
}
*/
//including data field...
L0 Copy_Reach_L(set) L1
L1 Get_Next_L(list, set) L2 // List* list = set->list;
L2 Is_Not_Null_Var(list) L3 // while (list != 0)
L2 Is_Null_Var(list)
L3 Data_Eq(list, element) exitfound // if (compare(list, element) == 0)
L3 Data_Not_Eq(list, element) L4 // (else)
L4 Get_Next_L(list, list) L2 // list = list->next;
exitfound Is_Not_Element(element, set) exitfounderror
exitnotfound Is_Element(element, set) exitnotfounderror
```

\%\% LO, exitfound, exitnotfound, exitfounderror, exitnotfounderror

B.2.2 Tree-based Implementation

Predicates

```
#include "pred_tree.tvp"
```


$/ * * * * * * * * * * * * * * *$ Core Predicates $* * * * * * * * * * * * * /$
\%p dle(v_1, v_2) transitive reflexive
$\% \mathrm{p}$ isSet(v)


```
%i cmp[dle,left](v_1, v_2) = dle(v_2, v_1) & !dle(v_1, v_2) {}
%i cmp[dle,right](v_1, v_2) = dle(v_1, v_2) & !dle(v_2, v_1) {}
foreach (x in TRVar) {
    %i dle[x,left](v) = E(v1) (x(v1) & dle(v, v1) & !dle(v1, v))
    %i dle[x,right](v) = E(v1) (x(v1) & !dle(v, v1) & dle(v1, v))
}
%i inOrder[dle]() = A(v2, v4)(downStar[left](v2, v4)) -> (dle(v4, v2) & !dle(v2, v4))
    & A(v2, v4)(downStar[right](v2, v4)) -> (dle(v2, v4) & !dle(v4, v2)) {}
```

```
//v1 is element of set v2
```

//v1 is element of set v2
%i isElement(v1, v2) = isSet(v2) \& E(vequal)(downStar(v2, vequal)
%i isElement(v1, v2) = isSet(v2) \& E(vequal)(downStar(v2, vequal)
\& dle(vequal, v1) \& dle(v1, vequal) \& vequal != v2)
\& dle(vequal, v1) \& dle(v1, vequal) \& vequal != v2)
/***/
/***/
/***/
/**************** Consistency Rules **************/
/**************** Consistency Rules **************/
/**************** Consistency Rules **************/
%r !dle(v_1, v_2) ==> dle(v_2, v_1)
%r !dle(v_1, v_2) ==> dle(v_2, v_1)
foreach (x in TRVar) {
%r dle[x,left](v) \& x(v1) ==> !dle(v1, v)
%r dle[x,right](v) \& x(v1) ==> !dle(v, v1)
}
/*%r !deq(v1, v2) \& dle(v1, v2) ==> !dle(v2, v1)
%r E(v) deq(v1, v) \& !dle(v, v2) ==> !dle(v1, v2)
%r E(v) deq(v1, v) \& !dle(v2, v) ==> !dle(v2, v1)*/
%r dle(v1, v2) \& dle(v2, v1) \& dle(v1, v3) ==> dle(v2, v3)
%r dle(v1, v2) \& dle(v2, v1) \& dle(v3, v1) ==> dle(v3, v2)
%r E(v1)(!dle(v, v1) \& dle(v2, v1)) ==> !dle(v, v2)
%r E(v1)(!dle(v1, v) \& dle(v1, v2)) ==> !dle(v2, v)
%r isSet(v) \& downStar(v, v1) \& v1 != v ==> isElement(v1, v)
foreach (x in {element}) {
%r dle[x,left](v) \& x(v1) ==> dle(v, v1)
%r dle[x,left](v) \& x(v1) ==> !dle(v1, v)
%r dle[x,right](v) \& x(v1) ==> !dle(v, v1)
%r dle[x,right](v) \& x(v1) ==> dle(v1, v)
}

```
```

%r E(v1)(dle(v1, v2) \& dle(v2, v1) \& !dle(v1, v3)) ==> !dle(v2, v3)
%r inOrder[dle]() \& downStar[right](v2, v4) ==> !dle(v4, v2)
%r inOrder[dle]() \& downStar[left](v2, v4) ==> !dle(v2, v4)
//%r inOrder[dle]() \& r[set](v1) \& r[set](v2) \& v1 != v2 ==> !deq(v1, v2)
%r inOrder[dle]() \& E(v2) !dle(vel, v1) \& downStar[left](v1, v2) ==> !dle(vel, v2)
%r inOrder[dle]() \& E(v2) !dle(v1, vel) \& downStar[right](v1, v2) ==> !dle(v2, vel)
%r treeNess() \& downStar(v, v1) \& !downStar[left](v, v1) \& v != v1
==> downStar[right](v, v1)
%r treeNess() \& downStar(v, v1) \& !downStar[right](v, v1) \& v != v1
==> downStar[left](v, v1)

```

\section*{/////////////////}
```

// Core Predicates
// For every program variable z there is a unary predicate that holds for
// list elements pointed by z.
// The unique property is used to convey the fact that the predicate can hold
// for at most one individual.
// The pointer property is a visualization hint for graphical renderers.
foreach (z in PVar) {
%p(v_1) unique pointer
}
// For every field there is a corresponding binary predicate.
foreach (sel in TSel) {
%p sel(v_1, v_2) function {}
}
// This predicate stores the original reachability of nodes.
foreach (z in PVar) {
%p or [z](v)
}
////////////////////////////
// Instrumentation Predicates
// The down predicate represents the union of selector predicates.
$\%$ i down(v1, v2) $=1 /\{$ sel(v1, v2) : sel in TSel \} \{\}
// The downStar predicate records reflexive transitive reachability
// between tree nodes along the union of the selector fields.

```
```

%i downStar(v1, v2) = down*(v1, v2) transitive reflexive {}
foreach (sel in TSel) {
%i downStar[sel](v1, v2) = E(v)(sel(v1, v) \& down*(v, v2)) transitive
}
// For every program variable z the predicate r[z] holds for individual
// v when v is reachable from variable z along the selector fields.
foreach (x in PVar) {
%i r[x](v) = E(v1) (x(v1) \& downStar(v1, v))
}
%i treeNess() = A(v1, v2, v)((downStar[left](v,v1) \& downStar[right](v,v2))
-> (!downStar(v1, v2) \& !downStar(v2, v1))) {}

```

\section*{////////////////////////////////////////////////////////////}
```

// Additional integrity constraints
// down predicate
foreach (sel in TSel) {
%r !down(v_1, v_2) ==> !sel(v_1, v_2)
}
// Binary reachability (downStar predicate)
%r !downStar(v_1, v_2) ==> !down(v_1, v_2)
%r (E(v_1) downStar(v_1, v_2) \& !downStar(v_1, v_3)) ==> !downStar(v_2, v_3)
// Unary reachability (r[z] predicates)
foreach (x in PVar) {
%r r[x](v_1) \& !r[x](v_2) ==> !downStar(v_1, v_2)
%r r[x](v_1) \& !r[x](v_2) ==> !down(v_1, v_2)
}
// The treeness conditions
foreach (sel in TSel) {
foreach (complementSel in TSel- {sel}) {
// %r (E(v_1, v_2, v_3) sel(v_1, v_2)\& complementSel(v_1, v_3) \&
// downStar(v_2, v_4) \& downStar(v_3, v_5)) ==> v_4 != v_5
// commented-out for efficiency
// Useful consequences of the above rule which TVLA did not generate
/* %r (E(v_2, v_4) treeNess() \& sel(v_1, v_2) \& downStar(v_2, v_4) \& downStar(v_3, v_4))
==> !complementSel(v_1, v_3)

```
```

 %r (E(v_2) treeNess() & sel(v_1, v_2) & downStar(v_2, v_3))
 ==> !complementSel(v_1, v_3)*/
 %r (E(v_4) treeNess() & downStar[sel](v_1, v_4) & downStar(v_3, v_4))
 ==> !downStar[complementSel](v_1, v_3)
 %r treeNess() & downStar[sel](v1, v2) & downStar[complementSel](v1, v3) ==> v2 != v3
 %r treeNess() & sel(v_1, v_2) ==> !complementSel(v_1, v_2)
 %r treeNess() & downStar[sel](v_1, v_2) ==> !downStar[complementSel](v_1, v_2)
 }
 %r (E(v_1, v_2) treeNess() \& sel(v_1, v_2) \& downStar(v_2, v_3) \&
downStar(v_1, v_4) \& v_4 != v_1 \& !downStar(v_2, v_4))
==> !downStar(v_4, v_3)
%r (E(v_1, v_2) treeNess() \& sel(v_1, v_2) \& downStar(v_2, v_3) \&
downStar(v_1, v_4) \& v_4 != v_1 \& !downStar(v_2, v_4))
==> !downStar(v_3, v_4)
}
// consequences of the acyclicity assumption
%r downStar(v_1, v_2) ==> !down(v_2, v_1)
foreach (sel in TSel) {
%r sel(v_1, v_2) ==> !downStar(v_2, v_1)
foreach (complementSel in TSel- {sel}) {
%r sel(v_1, v_2) ==> !complementSel(v_2, v_1)
}
}

```

\section*{Actions}
```

// Binary-search Tree Actions

```
\%action uninterpreted () \{
    \%t "uninterpreted"
\}
\%action skip() \{
    \%t "skip"
\}
\%action Copy_Reach_T(lhs) \{
    \%t "storeReach(" + lhs + ")"
    \{
        or [lhs] (v) \(=r[1 h s](v)\)
    \}

\section*{\}}
//////////////////////////////////////////////////////
// Actions encoding program statements that involve boolean // program variables.
```

%action Is_True(x1) {

```
\(\% \mathrm{t} \times 1\)
\%px1()
\}
\%action Is_False(x1) \{
\(\% t\) "!" \(+x 1\)
\%p !x1()
\}
\%action Set_True(x1) \{
\(\% \mathrm{t}\) x1 + " = true"
\{
\(x 1()=1\)
\}
\}
\%action Set_False(x1) \{
\(\% \mathrm{x} 1+\mathrm{n}=\mathrm{false}\) "
\{ \(x 1()=0\)
\}
\}
/////////////////////////////////////////////////////////////////
// Actions encoding program conditions involving pointer equality.
\%action Is_Not_Null_Var(x1) \{
\(\%\) x \(1+\) " ! = null"
\%f \{ x1(v) \}
\%p E(v) x1(v)
\}
\%action Is_Null_Var(x1) \{
\(\%\) x1 + " == null"
\%f \{ x1(v) \}
\(\%\) ! (E(v) x1(v))
```

}
%action Is_Eq_Var(x1, x2) {
%t x1 + " == " + x2
%f { x1(v), x2(v) }
%p A(v) x1(v) <-> x2(v)
}
%action Is_Not_Eq_Var(x1, x2) {
%t x1 + " != " + x2
%f { x1(v), x2(v) }
%p !A(v) x1(v) <-> x2(v)
}

```
/////////////////////////////////////////////////////////////// // Actions encoding program statements that involve comparisons // of the data fields.
\%action Greater_Data_T(x1, x2) \{
    \(\%\) x 1 + "->data > " + x2 + "->data"
    \%f \{ x1(v_1) \& x2(v_2) \& dle(v_1, v_2) \}
    \%p ! \(E\left(v_{-} 1, v_{-} 2\right) x 1\left(v_{-} 1\right) \& x 2\left(v_{-} 2\right) \& d l e\left(v_{-} 1, v_{-} 2\right)\)
\}
\%action Less_Equal_Data_T(x1, x2) \{
    \%t x1 + "->data <= " + x2 + "->data"
    \%f \{ x1(v_1) \& x2(v_2) \& dle(v_1, v_2) \}
    \% \(\mathrm{E}\left(\mathrm{v}\right.\) _1, v_2) \(\mathrm{x} 1(\mathrm{v}-1)\) \& \(\mathrm{x} 2\left(\mathrm{v}_{-} 2\right)\) \& dle(v_1, v_2)
\}
\%action Greater_Equal_Data_T(x1, x2) \{
    \(\% \mathrm{t}\) x1 + "->data \(>=\) " + x2 + "->data"
    \%f \(\left\{x 1\left(v_{-} 1\right) \& x 2\left(v_{-} 2\right) \& d l e\left(v_{-} 2, v_{-} 1\right)\right\}\)
    \% \(\mathrm{E}\left(\mathrm{v}\right.\) _1, \(\left.\mathrm{v}_{2} 2\right) \mathrm{x} 1\left(\mathrm{v}_{-} 1\right)\) \& \(\mathrm{x} 2\left(\mathrm{v}_{-} 2\right)\) \& dle(v_2, v_1)
\}
\%action Less_Data_T(x1, x2) \{
    \%t x1 + "->data < " + x2 + "->data"
    \%f \{ x1(v_1) \& x2(v_2) \& dle(v_2, v_1) \}
    \%p !E(v_1, v_2) x1(v_1) \& x2(v_2) \& dle(v_2, v_1)
\}
\%action Equal_Data_T(x1, x2) \{
    \%t x1 + "->data == " + x2 + "->data"
```

 %f { x1(v_1) & x2(v_2) & dle(v_2, v_1) & dle(v_1, v_2) }
 %p E(v_1, v_2) x1(v_1) & x2(v_2) & dle(v_2, v_1) & dle(v_1, v_2)
 }
%action Not_Equal_Data_T(x1, x2) {
%t x1 + "->data != " + x2 + "->data"
%f { x1(v_1) \& x2(v_2) \& dle(v_2, v_1) \& dle(v_1, v_2) }
%p !E(v_1, v_2) x1(v_1) \& x2(v_2) \& dle(v_2, v_1) \& dle(v_1, v_2)
}
///
// Actions encoding program statements that manipulate pointer
// variables and pointer fields.
// x1 = (Tree) malloc(sizeof(struct node))
%action Malloc_T(x1) {
%t x1 + " = (Tree) malloc(sizeof(struct node)) "
%new
{
x1(v) = isNew(v)
r[x1](v) = isNew(v)
foreach (x in PVar-{x1}) {
r[x](v) = (isNew(v) ? 0 : r[x](v))
}
down(v1, v2) = ((isNew(v1) | isNew(v2)) ? 0 : down(v1, v2))
downStar(v1, v2) = downStar(v1, v2) | (isNew(v1) \& v1 == v2)
foreach (sel in TSel) {
downStar[sel](v1, v2) = downStar[sel](v1, v2)
}
dle(v_1, v_2) =
(v_1 == v_2) |
(v_1 != v_2 \& (isNew(v_1) | isNew(v_2))? 1/2: dle(v_1, v_2))
foreach (var in TRVar-{x1}) {
dle[var, left](v) = (isNew(v) ? 1/2 : dle[var, left](v))
dle[var, right](v) = (isNew(v) ? 1/2 : dle[var, right](v))
}
foreach (var in TRVar - (TRVar-{x1})) {
dle[x1, left](v) = (isNew(v) ? 0 : 1/2)
dle[x1, right](v) = (isNew(v) ? 0 : 1/2)
}
foreach (sel in TSel) {
cmp[dle,sel](v_1, v_2) =
!(isNew(v_1) \& isNew(v_2)) \&
(v_1 != v_2 \& (isNew(v_1) | isNew(v_2))? 1/2: cmp[dle,sel](v_1, v_2))

```
```

 sel(v1, v2) = ((isNew(v1) | isNew(v2)) ? 0 : sel(v1, v2))
 }
 isElement(v1, v2) = (isNew(v2) ? 0 : (isNew(v1) & isSet(v2) ? 1/2
 : isElement(v1, v2)))
inOrder[dle]() = inOrder[dle]()
treeNess() = treeNess()
}
}
// x1 = NULL
%action Set_Null_T(x1) {
%t x1 + " =(T) NULL"
{
x1(v) = 0
r[x1](v) = 0
inOrder[dle]() = inOrder[dle]()
treeNess() = treeNess()
}
}
// x1 = x2
%action Copy_Var_T(x1, x2) {
%t x1 + " = (T)" + x2
%f { x2(v), r[x2](v) }
{
x1(v) = x2(v)
r[x1](v) = r[x2](v)
inOrder[dle]() = inOrder[dle]()
treeNess() = treeNess()
}
}
// x1 = x2->sel
%action Get_Sel_T(x1, x2, sel) {
%t x1 + " = (T)" + x2 + "->" + sel
%f {
E(v_1, v_2) x2(v_1) \& sel(v_1, v_2) \& downStar(v_2, v),
E(v_1) x2(v_1) \& left(v_1, v),
E(v_1) x2(v_1) \& right(v_1, v)
}
%message !(E(v) x2(v)) -> "a possibly illegal dereference to ->" + sel

```
```

 + " component of " + x2 + "\n"
 {
 x1(v) = E(v1) x2(v1) & sel(v1, v)
 r[x1](v) = E(v_1,v_2) x2(v_1) & sel(v_1, v_2) &
 downStar(v_2, v)
 inOrder[dle]() = inOrder[dle]()
 treeNess() = treeNess()
 }
 }
// x1->sel = NULL
%action Set_Sel_Null_T(x1, sel) {
%t x1 + "->" + sel + " = (T) NULL"
%f { x1(v), // change-formula for sel(v_1, v_2)
E(v_1) x1(v_1) \& sel(v_1, v_2),
E(v_1, v_2) x1(v_1) \& sel(v_1, v_2) \& downStar(v_2, v)
// for reachability and downStar
}
%message !(E(v) x1(v)) -> "a possibly illegal dereference to ->" + sel
+ " component of " + x1 + "\n"
{
sel(v_1, v_2) = sel(v_1, v_2) \& !x1(v_1)
down(v_1, v_2) = ((x1(v_1) \& sel(v_1, v_2)) ? O : down(v_1, v_2))
downStar(v_1, v_2) =
((downStar(v_1, v_2) \&
E(v_3, v_4) downStar(v_1, v_3) \& x1(v_3) \& sel(v_3, v_4) \& downStar(v_4, v_2))?
0 : downStar(v_1, v_2))
foreach (s in TSel - {sel}) {
downStar[s](v_1, v_2) = ((downStar[s](v_1, v_2) \&
E(v_3, v_4) downStar[s](v_1, v_3) \& x1(v_3) \& sel(v_3, v_4)
\& downStar(v_4, v_2)) ? 0 : downStar[s](v_1, v_2))
}
downStar[sel](v_1, v_2) = ((downStar[sel](v_1, v_2) \&
E(v_3, v_4) (downStar[sel](v_1, v_3) | v_1 == v_3) \& x1(v_3) \& sel(v_3, v_4)
\& downStar(v_4, v_2)) ? 0 : downStar[sel](v_1, v_2))
r[x1](v) = r[x1](v) \& !(E(v_1, v_2) x1(v_1) \& sel(v_1, v_2) \& downStar(v_2, v))
foreach (x2 in PVar - {x1}) {
r[x2](v) = r[x2](v) \& !(E(v_1, v_2)(x1(v_1) \& r[x2](v_1) \&

```
```

 sel(v_1, v_2) & downStar(v_2, v)))
 }
 inOrder[dle]() = inOrder[dle]()
 treeNess() = treeNess()
 }
 }
// assert(x1->sel==NULL); x1->sel = x2
%action Set_Sel_T(x1, sel, x2) {
%t x1 + "->" + sel + " = (T)" + x2
%f { x1(v), x2(v),
E(v_4) x2(v_4) \& downStar(v_4, v_2)
}
%message !(E(v) x1(v)) -> "a possibly illegal dereference to ->" + sel
+ " component of " + x1 + "\n"
%message (E(v_1, v_2) x1(v_1) \& sel(v_1, v_2)) -> "an internal error assuming "
+ x1 + "->" + sel + "==NULL\n"
// Checks for creation of a cycle.
%message (E(v_1, v_2)
x1(v_1) \& x2(v_2) \& downStar(v_2, v_1)) ->
"A cycle may be introduced by assignment " + x1 + "->" + sel + "=" + x2 + "\n"
{
sel(v_1, v_2) = sel(v_1, v_2) | x1(v_1) \& x2(v_2)
down(v_1, v_2) = down(v_1, v_2) | x1(v_1) \& x2(v_2)
foreach (x3 in PVar) {
r[x3](v) = r[x3](v) | E(v_1) x1(v_1) \& r[x3](v_1) \& r[x2](v)
}
treeNess() = treeNess() \& !E(v1, v2)(x2(v2) \& downStar(v1, v2) \& v1 != v2)
downStar(v_1, v_2) =
(E(v_3, v_4) x1(v_3) \& x2(v_4) \& downStar(v_1, v_3) \&
downStar(v_4, v_2) ? 1: downStar(v_1, v_2))
foreach (s in TSel - {sel}) {
downStar[s](v_1, v_2) =
(E(v_3, v_4) x1(v_3) \& x2(v_4) \& downStar[s](v_1, v_3) \&
downStar(v_4, v_2) ? 1: downStar[s](v_1, v_2))
}
downStar[sel](v_1, v_2) =
(E(v_3, v_4) x1(v_3) \& x2(v_4) \& (downStar[sel] (v_1, v_3) | v_1 == v_3) \&
downStar(v_4, v_2) ? 1: downStar[sel](v_1, v_2))

```
```

 inOrder[dle]() = inOrder[dle]() & A(v1, v2, v3)((x1(v1) & x2(v2) & downStar(v2, v3))
 -> (cmp[dle, sel](v1,v3)
 & A(v)((downStar[left](v, v1) -> (dle(v3, v) & !dle(v, v3)))
 & (downStar[right](v, v1) -> (!dle(v3, v) & dle(v, v3))))))
 }
 }
// free(x1)
%action Free_T(x1) {
%t "free(" + x1 + ") "
%f { x1(v) }
%message (E(v_1, v_2) x1(v_1) \& (|/{ sel(v_1, v_2) : sel in TSel })) ->
"Internal Error! assume that the selectors of " + x1 + "are all NULL"
%retain !x1(v)
}
%action Set_Data_T(lhs, rhs) {
%t lhs + "->data = " + rhs + "->data"
%f { lhs(v) }
%message (!E(v) rhs(v)) ->
"Illegal dereference to\n" + data + " component of " + rhs
%message (!E(v) lhs(v)) ->
"Illegal dereference to\n" + data + " component of " + lhs
{
dle(v_1, v_2) = (lhs(v_1) \& E(v)(rhs(v) \& dle(v, v_2))) //comp. x->data with
| (lhs(v_2) \& E(v)(rhs(v) \& dle(v_1, v))) //comp. x->data with
| (!lhs(v_1) \& !lhs(v_2) \& dle(v_1, v_2))
inOrder[dle]() = inOrder[dle]() \& A(v1, v2)((lhs(v1) \& rhs(v2)) -> (
A(v3)(downStar[left](v1, v3) -> (dle(v3, v2) \& !dle(v2, v3)))
//nodes reachable from lhs are in order with the new value of lhs which is in
\& A(v3)(downStar[right](v1, v3) -> (!dle(v3, v2) \& dle(v2, v3)))
\& A(v)((downStar[left](v, v1) -> (dle(v2, v) \& !dle(v, v2)))
//nodes reaching lhs are still in order
\& (downStar[right](v, v1) -> (!dle(v2, v) \& dle(v, v2))))))
treeNess() = treeNess()
}
}

```
//////////////////////////////////////
// Actions for testing various properties.
\%action Is_Sorted_Data_T() \{
```

 %t "Is Data in tree " + root + " in ascending order?"
 %p A(v) inOrder[dle]()
 }
%action Is_Not_Sorted_Data_T() {
%t "Is Data in tree NOT in ascending order?"
%p !inOrder[dle]()
%message !inOrder[dle]() ->
"Unable to prove that the tree is still in order"
}
%action Is_Element(el, s) {
%t "Is " + el + " an element of set " + s + "?"
%p E(v1, v2)(el(v1) \& s(v2) \& isElement(v1,v2))
%message (E(v1, v2)(el(v1) \& s(v2) \& isElement(v1,v2))) ->
"Unable to prove that " + el +
" is not an element of " + set
}
%action Is_Not_Element(el, s) {
%t "Is " + el + " not an element of set " + s + "?"
%p !(E(v1, v2)(el(v1) \& s(v2) \& isElement(v1,v2)))
%message !(E(v1, v2)(el(v1) \& s(v2) \& isElement(v1,v2))) ->
"Unable to prove that " + el +
" is an element of " + set
}
%action Assert_Permutation_T(set, element) {
%t "AssertPermutation(" + set + ", " + element + ")"
%p !(A(v) ((E(vel) dle(v, vel) \& dle(vel, v) \& element(vel))
| (r[set](v) <-> or[set](v))))
%message !(A(v) ((E(vel) dle(v, vel) \& dle(vel, v) \& element(vel))
| (r[set](v) <-> or[set](v)))) ->
"Unable to prove that the tree pointed-to by " + set +
" is a permutation of the original tree "
}

```

\section*{Input Structures}
```

//an empty set
%n = {setstart, el}
%p = {
set = {setstart}
element = {el}

```
```

 downStar = {el->el, setstart->setstart}
 r[set] = {setstart}
 r[element] = {el}
 inOrder[dle] = 1
 treeNess = 1
 dle = {setstart->setstart, el->setstart, el->el}
 dle[element, right] = {setstart}
 cmp[dle,right] = {el->setstart}
 cmp[dle,left] = {setstart->el}
 isSet = {setstart}
 }
//a one-elementary set
%n = {setstart, u, el}
%p = {
set = {setstart}
element = {el}
left = {setstart->u}
down = {setstart->u}
downStar = {u->u, el->el, setstart->setstart, setstart->u}
downStar[left] = {setstart->u}
r[set] = {setstart, u}
r[element] = {el}
inOrder[dle] = 1
treeNess = 1
dle = {setstart->setstart, u->setstart, el->setstart,
u->u, el->el, el->u:1/2, u->el:1/2}
dle[element, left] = {u:1/2}
dle[element, right] = {setstart, u:1/2}
cmp[dle,right] = {u->setstart, el->setstart, el->u:1/2, u->el:1/2}
cmp[dle,left] = {setstart->u, setstart->el, el->u:1/2, u->el:1/2}

```
```

 isSet = {setstart}
 isElement = {u->setstart, el->setstart:1/2}
 }
//a non-empty set
%n = {setstart, u, us, el}
%p = {
sm = {us:1/2}
set = {setstart}
element = {el}
left = {u->us:1/2, us->us:1/2, setstart->u}
right = {u->us:1/2, us->us:1/2}
down = {setstart->u, u->us:1/2,us->us:1/2}
downStar = {u->u, u->us, us->us:1/2, el->el,
setstart->setstart, setstart->u, setstart->us}
downStar[left] = {setstart->u, setstart->us, u->us:1/2, us->us:1/2}
downStar[right] = {u->us:1/2, us->us:1/2}
r[set] = {setstart, u, us}
r[element] = {el}
inOrder[dle] = 1
treeNess = 1
dle = {setstart->setstart, u->setstart, us->setstart, el->setstart,
u->u, u->us:1/2, us->u:1/2, us->us:1/2,
el->el, el->u:1/2, el->us:1/2, u->el:1/2, us->el:1/2}
dle[element, left] = {u:1/2, us:1/2}
dle[element, right] = {setstart, u:1/2, us:1/2}
cmp[dle,right] = {u->setstart, us->setstart, el->setstart,
u->us:1/2, us->u:1/2, us->us:1/2,
el->u:1/2, el->us:1/2, u->el:1/2, us->el:1/2}
cmp[dle,left] = {setstart->u, setstart->us, setstart->el,
u->us:1/2, us->u:1/2, us->us:1/2,
el->u:1/2, el->us:1/2, u->el:1/2, us->el:1/2}
isSet = {setstart}
isElement = {u->setstart, us->setstart, el->setstart:1/2}
}

```

\section*{Insertion}
```

%s PVar {set, tree, previous, element, root}
%s TRVar {element}
%s TSel {left, right}
\#include "pred_sort.tvp"
%%
\#include "actions_sort.tvp"
%%
/*
void insertElement(Set* set, void* element)
{
Tree* tree = set->tree;
Tree* previous = tree;
while (tree != 0) //find suitable position for new element
{
previous = tree;
if (compare(tree->data, element->data) < 0)
tree = tree->left;
else if (compare(tree->data, element->data) > 0)
tree = tree->right;
else if (compare(tree->data, element->data) == 0) //element is already contained...
return;
}
set->size++;
tree = (Tree*)malloc(sizeof(tree));
tree->data = element;
tree->left = 0;
tree->right = 0;
if (previous == 0) //first element to be inserted... (tree was empty)
{
set->tree = tree;
}
else
{
if (compare(previous->data, element->data) < 0)
previous->left = tree;
else if (compare(previous->data, element->data) > 0)
previous->right = tree;
}
}

```

```

// set->size++;

```
L81 Set_Null_T(tree) L8
L8 Malloc_T(tree) L9 // tree = (Tree*)malloc(sizeof(tree));
L9 Set_Data_T(tree, element) L10 // tree->data = element->data
L10 Set_Sel_Null_T(tree, left) L11 // tree->left = 0;
L11 Set_Sel_Null_T(tree, right) L12 // tree->right = 0;
L12 Is_Null_Var(previous) L13 // if (previous == 0)
L12 Is_Not_Null_Var(previous) L15 // else
L13 Set_Sel_Null_T(set, left) L14 // set->tree = 0;
L14 Set_Sel_T(set, left, tree) exit1 // set->tree = tree;
L15 Greater_Data_T(previous, element) L16a //if (compare(previous->data, element->data)<0)
L15 Less_Data_T(previous, element) L17a //if (compare(previous->data, element->data) >0)
L16a Set_Sel_Null_T(previous, left) L16b // previous->left = 0;
L16b Set_Sel_T(previous, left, tree) exit1 // previous->left = tree;
L17a Set_Sel_Null_T(previous, right) L17b // previous->right = tree;
L17b Set_Sel_T(previous, right, tree) exit1 // previous->right = tree;
exit Set_Null_T(tree)
exit1 Set_Null_T(previous)
exit1 // tree = 0
exit2 // previous = 0;
error
```

exit2 Is_Not_Sorted_Data_T() error
exit2 Assert_Permutation_T(set, element) error
%% L1, exit2, error

```

\section*{Removal}
\%s PVar \{root, set, tree, treeRight, treeLeft, following, previous, previous2, element, temp, subtree\}
\%s TRVar \{element\}
\%s TSel \{left, right\}
\#include "pred_sort.tvp"
\%\%
\#include "actions_sort.tvp"
\% \%
```

/*
void removeElement(Set* set, void* element)
{
Tree* treeRight = 0;
Tree* treeLeft = 0;
Tree* following = 0;
Tree* tree = set->tree;
Tree* previous = 0;
Tree* previous2 = 0;
Tree* temp = 0;
Tree* subtree = 0;
while (tree != 0) //find element...
{
if (compare(tree->data, element) == 0) //we found the element.
{
treeLeft = tree->left;
treeRight = tree->right;
tree->left = 0;
tree->right = 0;
set->Size--;
if ((treeRight == 0) \&\& (treeLeft == 0))
following = 0;
else if (treeRight == 0)
following = treeLeft;
else if (treeLeft == 0)
following = treeRight;

```
```

if ((treeRight == 0) || (treeLeft == 0))
{
if (previous == 0)
set->tree = following;
else
{
temp = previous->left;
if (temp == tree)
previous->left = following;
else
previous->right = following;
temp = 0;
}
}
following = 0;
if ((treeRight != 0) \&\& (treeLeft != 0))
{ //position has two subtrees: either find largest element to the left
//or smallest to the right; i chose left here
subtree = treeLeft;
previous2 = 0;
temp = subtree->right;
while (temp != 0) //finding largest element to the left of the element that
//is being removed
{
previous2 = subtree;
subtree = temp;
temp = subtree->right;
}
temp = 0;
if (previous2 != 0) //remove element from predecessor
{
temp = subtree->left;
subtree->left = 0;
previous2->right = 0;
previous2->right = temp;
temp = 0;
}
subtree->right = 0;
if (treeLeft != subtree) //otherwise we would introduce a cycle
subtree->left = treeLeft; //attach former subtrees of removed element

```
```

 subtree->right = treeRight;
 if (previous == 0) //link it to predecessor of removed element
 set->tree = subtree;
 else
 {
 temp = previous->left;
 if (temp == tree)
 previous->left = subtree;
 else
 previous->right = subtree;
 temp = 0;
 }
 }
 free(tree);
 return;
 }
 previous = tree;
 if (compare(tree->data, element) < 0) //traversing the tree in search of the element
 tree = tree->left;
 else
 tree = tree->right;
 }
 }
*/
/*
*/
//including data field...
L0 Copy_Reach_T(set) Lentry1
Lentry1 Set_Null_T(treeRight) Lentry2 // Tree* treeRight = 0;
Lentry2 Set_Null_T(treeLeft) Lentry3 // Tree* treeLeft = 0;
Lentry3 Set_Null_T(following) Lentry4 // Tree* following = 0;
Lentry4 Get_Sel_T(tree, set, left) Lentry5 // Tree* tree = set->tree;
//left denotes tree for sets... a new selection predicate would make things way more complica
Lentry5 Set_Null_T(previous) Lentry6 // Tree* previous = 0;

```


\begin{tabular}{|c|c|c|c|}
\hline LfR2 & Is_Null_Var(treeLeft) & exit & // else \\
\hline LfRin & Copy_Var_T(subtree, treeLeft) & LfRin2 & // subtree = treeLeft; \\
\hline LfRin2 & Set_Null_T (previous2) & LfRin3 & // previous2 = 0; \\
\hline LfRin3 & Get_Sel_T(temp, subtree, right) & Lwhile2 & // temp = subtree->right; \\
\hline Lwhile2 & Is_Not_Null_Var (temp) & Lw2body & // while (temp != 0) \\
\hline Lwhile2 & Is_Null_Var (temp) & Lf bodyend & // else \\
\hline Lw2body & Copy_Var_T(previous2, subtree) & Lw22 & // previous2 = subtree; \\
\hline Lw22 & Copy_Var_T (subtree, temp) & Lw23 & // subtree = temp; \\
\hline Lw23 & Get_Sel_T(temp, subtree, right) & Lwhile2 & // temp = subtree->right; \\
\hline Lf bodyend & Set_Null_T(temp) & Lfb2 & // temp = 0; \\
\hline Lfb2 & Is_Not_Null_Var(previous2) & Lf b3 & // if (previous2 != 0) \\
\hline Lf b2 & Is_Null_Var(previous2) & Lf b5 & // else \\
\hline Lfb3 & Get_Sel_T(temp, subtree, left) & Lfb3aa & // temp = subtree->left; \\
\hline Lfb3aa & Set_Sel_Null_T(subtree, left) & Lfb3a & // subtree->left = 0; \\
\hline Lfb3a & Set_Sel_Null_T (previous2, right) & Lfb3b & // previous2->right = 0; \\
\hline Lfb3b & Set_Sel_T (previous2, right, temp) & Lfb3c & // previous2->right = temp; \\
\hline Lfb3c & Set_Null_T (temp) & Lf b5 & // temp = 0; \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Lfb5 & Set_Sel_Null_T(subtree, right) & Lfb6 & // subtree->right = 0; \\
Lfb6 & Is_Not_Eq_Var(treeLeft, subtree) & Lfb7 & // if (treeLeft != subtree) \\
Lfb6 & Is_Eq_Var(treeLeft, subtree) & Lfb8 & // else \\
Lfb7 & Set_Sel_T(subtree, left, treeLeft) & Lfb8 & // subtree->left = treeLeft; \\
Lfb8 & Set_Sel_T(subtree, right, treeRight) & Lfb9 & // subtree->right = treeRight;
\end{tabular}
\begin{tabular}{llll} 
Lfb9 & Is_Null_Var(previous) & Lfb10 & // if (previous == 0) \\
Lfb9 & Is_Not_Null_Var(previous) & Lfb12 & // else \\
Lfb10 & Set_Sel_Null_T(set, left) & Lfb11 & // set->tree = 0; \\
Lfb11 & Set_Sel_T(set, left, subtree) & exit & // set->tree = subtree; \\
Lfb12 & Get_Sel_T(temp, previous, left) & Lfb13 & // temp = previous->left; \\
Lfb13 & Is_Eq_Var(temp, tree) & Lfb14 & // if (previous == 0) \\
Lfb13 & Is_Not_Eq_Var(temp, tree) & Lfb15 & // else \\
Lfb14 & Set_Sel_Null_T(previous, left) & Lfb14a & // previous->left = 0; \\
Lfb14a & Set_Sel_T(previous, left, subtree) & Lfbt & // previous->left = subtree; \\
Lfb15 & Set_Sel_Null_T(previous, right) & Lfb15a & // previous->right = 0; \\
Lfb15a & Set_Sel_T(previous, right, subtree) & Lfbt & // previous->right = subtree; \\
Lfbt & Set_Null_T(temp) & exit & // temp = 0;
\end{tabular}
\begin{tabular}{ll} 
Lnotfound & Copy_Var_T(previous, tree) \\
Lnf2 & Less_Data_T(tree, element) \\
Lnf2 & Greater_Data_T(tree, element) \\
Lnf3 & Get_Sel_T (tree, tree, left) \\
Lnf4 & Get_Sel_T(tree, tree, right)
\end{tabular}
```

exit Set_Null_T(treeLeft)

```
exit0 Set_Null_T(treeRight)
exitr Set_Null_T(tree)
exit1 Set_Null_T(previous)
exit2 Set_Null_T(previous2)
exit3 Set_Null_T (subtree)
exit4 Set_Null_T (temp)
exit5 Set_Null_T(following)
exit6 Is_Element (element, set)
exit6 Is_Not_Sorted_Data_T()
exit6 Assert_Permutation_T(set, element)
\%\% Lentry1, exit6, error
Lnf2 // previous = tree;
Lnf4 // if (compare (tree->data, element) < 0)
Lnf3 // else
Lwhile // tree = tree->left;
Lwhile // tree = tree->right;
exit0 // treeLeft = 0;
exitr // treeRight = 0;
exit1 // tree = 0
exit2 // previous \(=0\);
exit3 // previous2 = 0;
exit4 // subtree = 0;
exit5 // temp = 0;
exit6 // following = 0;
error
error
error

\section*{Membership Test}
```

%s PVar {set, tree, element}
%s TRVar {element}
%s TSel {left, right}
\#include "pred_sort.tvp"
%%
\#include "actions_sort.tvp"
%%
/*
int isElement(Set* set, void* element) //returns 0 if element is not contained,
//otherwise depth starting at 1
{
Tree* tree = set->tree;
int depth = 0;
while (tree != 0)
{
depth++;
printf("%i\n",*(int*)tree->data);

```
```

 int compresult = compare(tree->data, element);
 if (compresult == 0)
 return 1; //depth;
 else if (compresult < 0)
 tree = tree->left;
 else
 tree = tree->right;
 }
 return 0;
 }
*/
L0 Copy_Reach_T(set) L1
L1 Get_Sel_T(tree, set, left) L2 // Tree* tree = set->tree;
//left denotes tree for sets... a new selection predicate would make things complicated
L2 Is_Not_Null_Var(tree) L3 // while (tree != 0)
L2 Is_Null_Var(tree)
L3 Equal_Data_T(tree, element) exitfound //if (compresult = 0) return 1;
exitnotfound
L3 Greater_Data_T(tree, element) L4 // else if (compresult < 0)
L3 Less_Data_T(tree, element) L5 // else if (compresult > 0)
L4 Get_Sel_T(tree, tree, left) L2 // tree = tree->left;
L5 Get_Sel_T(tree, tree, right) L2 // tree = tree->right;
exitfound Is_Not_Element(element, set) exitfounderror
exitnotfound Is_Element(element, set) exitnotfounderror

```
\%\% L1, exitfound, exitnotfound, exitfounderror, exitnotfounderror```


[^0]:    ${ }^{1}$ It cannot be 1 because of condition (1), since $0 \nsubseteq 1$.

[^1]:    ${ }^{2}$ One could also demand a finite height lattice, which need not be of finite size. Alternatively, widenings and narrowings can be used to ensure termination if the lattice is not of finite height.

