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Abstract
Shape Analysis is concerned with determining �shape invariants�, i.e. structural properties
of the heap, for programs that manipulate pointers and heap-allocated storage. Recently,
very precise shape analysis algorithms have been developed that are able to prove the
partial correctness of heap-manipulating programs. We explore the use of shape analysis
to analyze abstract data types (ADTs). The ADT Set shall serve as an example, as it is
widely used and can be found in most of the major data type libraries, like STL, the Java
API, or LEDA. We formalize our notion of the ADT Set by algebraic speci�cation. Two
prototypical C set implementations are presented, one based on lists, the other on trees.
We instantiate a parametric shape analysis framework to generate analyses that are able
to prove the compliance of the two implementations to their speci�cation.

The scalability of shape analysis algorithms could be improved by modular analysis. Some
types of aliasing are, however, preventing modular analysis. We investigate the negative
e�ects of aliasing on set implementations. For this purpose we introduce RESET, a lan-
guage with sets as primitives. We give two semantics for RESET that di�er in the way sets
are represented. One representation is idealized, the other makes a step towards the set
implementations. After formally relating the two semantics, we develop a shape analysis
for the second semantics of RESET. In a small case study we analyze a program that
computes the intersection of two sets.

Finally, we deal with modular analysis in a more general sense. We brie�y introduce the
concept of modularity and discuss bene�ts of modular analysis. Earlier, we observed that
aliasing can be harmful. We introduce some existing encapsulation schemes that restrict
aliasing to allow for modular analysis. On this basis we discuss modular shape analysis
and how our previous analyses relate to this.
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1 Introduction
This thesis deals with Shape Analysis and the Abstract Data Type (ADT) Set. It has two
main goals:

• To use Shape Analysis to prove that Set implementations written in C comply to an
algebraic speci�cation of the ADT Set.

• To investigate Modular Shape Analysis. Is it possible to modularly analyze programs
using set implementations? Does this depend on the speci�c implementation?

Let us go into a little more detail: Shape Analysis [CWZ90, GH96, SRW99, SRW02] is
concerned with determining �shape invariants�, i.e. structural properties of the heap, for
programs that manipulate pointers and heap-allocated storage. Formerly, it was primar-
ily used to aid compilers. Knowledge about the structure of the heap allows to carry
out several optimizations, for instance, compile-time garbage collection, better instruction
scheduling and automatic parallelization.

Recently, more precise shape analysis algorithms have been developed that are able to
prove the partial correctness of heap-manipulating programs. In [LARSW00] bubble-sort
and insertion-sort procedures are analyzed. The analyses were able to infer that the proce-
dures indeed returned sorted lists. They also successfully analyzed destructive list reversal
and the merging of two sorted lists.

The analyses of [LARSW00] and our analyses are based on the Shape Analysis Framework
presented in [SRW02]. Logical structures are used to represent the program state in this
framework. The concrete semantics is speci�ed in �rst-order logic. By interpreting the
concrete semantics in a 3-valued domain sound and precise abstractions can be extracted
automatically. We will formally describe the framework in Chapter 2.

Set implementations are widely used and can be found in most of the major data type
libraries, like STL [MS96], the Java API [Mic04], or LEDA [MN99]. The ADT Set shall
serve as an example of abstract data types. One of the main goals of this thesis is to show
the partial correctness of set implementations using Shape Analysis. For this purpose we
will formally de�ne our notion of the ADT Set. As a motivation, we will �rst examine
mathematical sets, because they share some key properties with the ADT that we want
to de�ne. Early e�orts to formalize the notion of mathematical sets, now called Naïve
Set Theory led to contradictions. The most famous of these is known as Russell's para-
dox. Several independent e�orts were undertaken to overcome these problems. Russell and
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1 Introduction

ADT Set
specification

Set
implementation

Program

uses
analyzed on
the basis of

complies to?

Figure 1.1: Modular Analysis

Whitehead proposed a solution in their Principia Mathematica introducing Type Theory.
A hierarchy of types ensured that contradictions were prevented. Interestingly, such type
restrictions are also useful when using sets as data abstractions in programming languages.

On this basis, we will go on to formally de�ne the ADT Set using the algebraic speci�cation
[EM85, EM90, LEW97]. It shall serve as a reference for the implementations described
later. Algebraic Speci�cation allows us to express the intended behaviour independently
of possible concrete implementations. Such speci�cations consist of a signature and a set
of axioms. The axioms specify the meaning of the predicate and function symbols of the
signature. The following two axioms are taken from our de�nition in Chapter 3:

a ∈ s.insert(b) ↔ a =el b ∨ a ∈ s, (3)
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s (4)

They capture the e�ect of the ·.insert(·)- and ·.remove(·)-functions on the ∈-predicate.
Notice that they do not make any statement about the concrete data structures or algo-
rithms employed.

After formally de�ning our notion of the ADT Set we will present two prototypical C
implementations. One implementation is based on singly-linked lists, the other on binary
trees. Using Shape Analysis, we will demonstrate that these implementations comply to
our speci�cation of the data type. This involves creating precise analyses using the frame-
work of [SRW02] and linking the results to the speci�cation of the ADT.

The second major question we deal with in this context is how to analyze programs us-
ing the ADT Set. Can we perform a modular analysis? What is a modular analysis?
Modularity is an important concept in software engineering. Some of the advantages that
a modular approach yields in the design process also translate to advantages of modular
analyses. Figure 1.1 illustrates the idea of modular analysis in our particular setting. A
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1.1 Overview
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Figure 1.2: Complexity of Domains

conventional analysis would analyze the program as a whole including the set implementa-
tion. In a modular analysis we would divide this into two steps. In the �rst step we would
show the compliance of the implementation to its speci�cation. Then, we could analyze the
program on the basis of the speci�cation. This has several bene�ts. Usually, a speci�cation
is much simpler than its implementation. This yields smaller domains and could thus help
to improve the scalability of shape analysis algorithms. In addition, we could then more
easily distinguish between bugs in the program and bugs in the set implementation. Other
aspects of modularity yield additional advantages that we will discuss in Chapter 7.

Unfortunately, it is not always possible to perform modular analyses. Problems arise,
where modules are not completely separated from each other. A modular view requires
that changes to the state of a module can only be made by calls to the interface. Often,
this can not be guaranteed. When a memory location is reachable through di�erent access
paths, this is called aliasing. Aliasing allows to manipulate the heap at one place, causing
problems at another. We claim that the extent of problems caused by aliasing rises with
the complexity of the data structures employed. For instance, tree data structures su�er
more than list structures. To further investigate this proposition, we create RESET, a
language with sets as primitives. We specify two semantics for this language. Semantics
I provides an idealized view of an implementation of the ADT Set de�ned in Chapter 3.
Semantics II comes a little closer to the list- and tree-based set implementations. Figure
1.2 illustrates this.

Finally, we discuss some existing approaches to control aliasing in such a way that enables
modular analysis. We also brie�y investigate how modular shape analysis could look like.

1.1 Overview
In Chapter 1 we introduce the topic and give an overview of the thesis. We then go on
to describe the foundations of the shape analysis framework underlying our analyses in
Chapter 2. Here, we also give a brief description of TVLA, a tool that implements the
framework. Chapter 3 consists of a formalization of the Abstract Data Type (ADT) Set.
It is motivated by a short introduction to Mathematical Sets and serves as a basis for the
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1.1 Overview

following work.

In Chapter 4 we present two C implementations of the ADT Set de�ned in Chapter 3. We
identify a number of data structure invariants speci�c to the implementations. Then we
go on to present a shape analysis implemented in TVLA that checks two of the axioms of
the ADT Set. The analyses rely on the data structure invariants to hold at entrance to
the analyzed methods, but also show their maintenance throughout the execution of the
methods. In Chapter 5 we introduce RESET, an imperative language with sets as prim-
itives. Two semantics are given for this language and formally related. Chapter 6 builds
on the second semantics of the previous chapter. We construct a shape analysis for it and
use it to analyze a small program. In Chapter 7 we �rst explore modularity and modular
analysis in a general sense. Then we investigate how a modular shape analysis could look
like and how our previous shape analyses relate to this. Chapter 8 brie�y summarizes the
�ndings and discusses future work. Figure 1.3 illustrates the structure of the thesis.

Appendix A contains proofs of theorems and lemmas of Chapter 5. Source �les of our
implementations and shape analyses can be found in Appendix B.
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2 Shape Analysis Foundations
2.1 Foundations of Shape Analysis
Shape Analysis is concerned with determining �shape invariants�, i.e. structural properties
of the heap, for programs that manipulate pointers and heap-allocated storage.

Our analyses �t into the Shape Analysis Framework introduced in [SRW02]. Their frame-
work allows to specify the concrete semantics in �rst-order logic. By interpreting the
concrete semantics in a 3-valued domain sound and precise abstractions can be extracted.
We will therefore recapitulate the foundations before describing our analyses. For a more
thorough treatment of these foundations consult [SRW02].

2.1.1 Concrete Semantics using 2-Valued Logic
Let P = {pa(i)

1 , . . . , p
a(n)
n } be a set of predicate symbols. The arity of predicate p

a(i)
i is a(i).

De�nition 1 (Syntax of First-Order Logic with Transitive Closure) The set of �rst-
order formulae with transitive closure over vocabulary P, denoted F (P), is de�ned induc-
tively as follows:

• 0 and 1 are atomic formulae with no free variables.

• p
a(i)
i (v1, . . . , va(i)) is an atomic formula with free variables {v1, . . . , va(i)}.

• (v1 = v2) is an atomic formula with free variables {v1, v2}
• ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2 are formulae with free variables V1, V1 ∪ V2, V1 ∪ V2, respectively,
if φ1 and φ2 are formulae with free variables V1 and V2, respectively.

• ∀v.φ1,∃v.φ1 are formulae with free variables V1 \ {v}, if φ1 is a formula that has free
variables V1.

• (TCv1, v2 : φ1)(v3, v4) is a formula with free variables (V1 \ {v1, v2})∪{v3, v4}, where
V1 are the free variables of the formula φ1 and v3, v4 /∈ V1.

De�nition 2 (2-valued Logical Structures) A 2-valued logical structure (also called
algebra) over vocabulary P is a tuple S = 〈US, ιS〉. The universe US is a set of individuals
and ιS maps each predicate symbol pk to a truth-valued function: ιS(pk) : (US)k → {0, 1}.

We denote the set of 2-valued structures over vocabulary P by 2-STRUCT(P).

17
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Logical Structure Graphical Representation

indiv. x
u1 1

n u1

u1 0 u

x

�

indiv. x
u1 1
u2 0

n u1 u2

u1 0 1
u2 0 0 u

x

u�
� �

indiv. x
u1 1
u2 0
u3 0

n u1 u2 u3

u1 0 1 0
u2 0 0 1
u3 0 0 0

u u�

x

u�
� ��

Figure 2.1: 2-valued logical structures representing lists of length l, with 1 ≤ l ≤ 3

Such logical structures are used to represent the stores arising during the execution of pro-
grams. They can be graphically represented, following the intuition that unary predicates
represent pointer variables and binary predicates represent pointer �elds in the heap. A
unary predicate is true for the particular heap cell the pointer variable points to. Binary
predicates are true for those pairs of heap cells that are linked by the pointer �eld they
represent. Figure 2.1 is an example of such a representation.

De�nition 3 (Assignment) An assignment (or valuation) β over a given structure S =
〈US, ιS〉 is a function that maps free variables to individuals: β : {v1, . . . vn} → US.

De�nition 4 (Meaning of Formulae) The 2-valued meaning of a formula φ in a struc-
ture S under assignment β, denoted by JφKS2 (β) is de�ned inductively. It yields a truth
value in {0, 1}.

J0KS2 (β) = 0 and J1KS2 (β) = 1

Jpa(i)
i (v1, . . . , va(i))KS2 (β) = ιS(p

a(i)
i )(β(v1), . . . , β(va(i)))

Jv1 = v2KS2 (β) =

{
1 β(v1) = β(v2)

0 β(v1) 6= β(v2)

J¬φ1KS2 (β) = 1− Jφ1KS2 (β)

Jφ1 ∧ φ2KS2 (β) = min(Jφ1KS2 (β), Jφ2KS2 (β))

Jφ1 ∨ φ2KS2 (β) = max(Jφ1KS2 (β), Jφ2KS2 (β))

J∀v.φ1KS2 (β) = min
u∈US

Jφ1KS2 (β[v 7→ u])

18



2.1 Foundations of Shape Analysis

J∃v.φ1KS2 (β) = max
u∈US

Jφ1KS2 (β[v 7→ u])

J(TCv1, v2 : φ1)(v3, v4)KS2 (β)
= max

n≥1,u1,...,un+1∈US ,β(v3)=u1,β(v4)=un+1

min
i∈{1,...,n}

Jφ1KS2 (β[v1 7→ ui, v2 7→ ui+1])

To express the e�ect of program statements predicate-update formulae are used. They
relate the interpretation of the predicates in P after the execution of the statement to
their interpretation before.

De�nition 5 (P Transformer) Let st be a program statement, and for every k-ary pred-
icate p in vocabulary P, let p′st be the predicate-update formula for p at statement st
over free variables x1, . . . , xk. Then the P transformer associated with st, denoted by
JstK : 2-STRUCT[P ] → 2-STRUCT[P ], is de�ned as follows.

JstK(S) = 〈US, λp.λu1, . . . , uk.Jp′stKS2 ([x1 7→ u1, . . . , xk 7→ uk])〉.

To analyze imperative programs in this setting they have to be translated into Control
Flow Graphs.

De�nition 6 (Control Flow Graph) A Control Flow Graph is
a tuple G = 〈V (G), bg(G), As(G), Id(G), E(G), T b(G), F b(G)〉, where

• V (G) denotes the set of vertices of G,

• bg(G) ∈ V (G) denotes the entrance vertex of G,

• As(G) ⊆ V (G) denotes the set of assignment statements that manipulate the state,

• Id(G) ⊆ V (G) denotes the set of statements that have no e�ect on the state as well
as unconditional branch points,

• E(G) ⊆ V (G)× V (G) denotes the set of edges of the graph,

• Tb(G) ⊆ E(G) denotes the set of edges that represents true branches,

• Fb(G) ⊆ E(G) denotes the set of edges that represents false branches.

• cond(w) denotes the formula for the program condition at w.

Figure 2.2 shows a simple C program and a graphical representation of its corresponding
Control Flow Graph.

Collecting Semantics. The goal of an analysis is to compute all possible structures
arising at a given program point. This is formalized by Collecting Semantics. Let Conc-
StructSet[v] denote the (possibly in�nite) set of structures that may arise on entry to v for

19



2 Shape Analysis Foundations

void insertElement(List* list, void* element)
{
List* prev = 0;

while (list != 0)
{

if (compare(list->data, element) == 0)
return;

prev = list;
list = list->next;

}
}

listSearch

L2

L3

prev = NULL

exit

L9

L10

temp = list->n

L11

temp = NULL

L8

prev = list

list = temp

L4

list.data == element.data list.data != element.data

list == NULL

list != NULL

Figure 2.2: C program and corresponding Control Flow Graph

the set of input structures In. Then it can be de�ned as the least �xed pointed in terms
of set inclusion of the following system of equations.

ConcStructSet[v] =



In if v = bg(G)⋃
w→v∈E(G), w∈As(G)

{Jst(w)K(S) | S ∈ ConcStructSet[w]} (1)

∪ ⋃
w→v∈E(G), w∈Id(G)

{S | S ∈ ConcStructSet[w]} (2)

∪ ⋃
w→v∈Tb(G)

{S | S ∈ ConcStructSet[w] and S |= cond(w)} (3)

∪ ⋃
w→v∈Fb(G)

{S | S ∈ ConcStructSet[w] and S |= ¬cond(w)} (4)





otherwise.

The e�ect of assignment statements is captured by (1). In (3) and (4) conditional branches
are handled by transferring the speci�c structures the structures that ful�ll the condition
associated with the edge.

2.1.2 Abstract Semantics using 3-Valued Logic
As noted before, the Collecting Semantics de�ned above can yield in�nite sets of struc-
tures. The least �xed point is not computable in general. In this section we show how
3-valued logical structures can be used to overcome this problem.

Figure 2.3 shows the semi-bilattice of 3-valued logic. In addition to the de�nite truth values
0 and 1 a third inde�nite truth value 1/2 is introduced. The information order captures
certainty of the information, i.e. 1/2 is less certain than 0 or 1. In the logical order ∧ and
∨ are meet and join of the lattice. Figure 2.4 shows how ∧ and ∨ are interpreted in the
3-valued domain.

20
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1/2

~~
~~

~~
~~

@@
@@

@@
@@

0 1

1

1/2

0

(a) Information Order (b) Logical Order

Figure 2.3: The semi-bilattice of 3-valued logic

∧ 0 1/2 1
0 0 0 0

1/2 0 1/2 1/2
1 0 1/2 1

∨ 0 1/2 1
0 0 1/2 1

1/2 1/2 1/2 1
1 1 1 1

Figure 2.4: Meaning of ∧ and ∨ in the 3-valued domain

3-valued logical structures are de�ned similarly to their 2-valued counterparts:

De�nition 7 (3-valued Logical Structures) A 3-valued logical structure (also called
algebra) over vocabulary P is a tuple S = 〈US, ιS〉. The universe US is a set of individuals
and ιS maps each predicate symbol pk to a truth-valued function:

ιS(pk) : (US)k → {0, 1, 1/2}

We denote the set of 3-valued structures over vocabulary P by 3-STRUCT(P).

We assume every 3-valued logical structures to include a unary predicate sm. sm stands
for �summary node�. These are individuals of a 3-valued structure that possibly represent
more than one individual in corresponding 2-valued structures. Using the sm predicate we
can de�ne the 3-valued meaning of formulae, denoted by JφKS3 (β). It is de�ned inductively
as in the de�nition for 2-valued structures, with the following di�erence:

Jv1 = v2KS3 (β) =





0 β(v1) 6= β(v2)

1 β(v1) = β(v1) and ιS(sm)(β(v1)) = 0

1/2 otherwise

We say that S and β potentially satisfy φ, denoted by S, β |=3 φ, if JφKS3 (β) = 1/2 or
JφKS3 (β) = 1. We write S |=3 φ if for every β we have S, β |=3 φ.
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Logical Structure Graphical Representation

indiv. x sm
u1 1 0

n u1

u1 0 u

x

�

indiv. x sm
u1 1 0
u2 0 1/2

n u1 u2

u1 0 1/2
u2 0 1/2 u

x

u�
� �

�

Figure 2.5: 3-valued logical structures representing the 2-valued structures of Figure 2.1

As in the case of 2-valued logical structures, 3-valued logical structures can be represented
graphically. Figure 2.5 illustrates this. Summary nodes are identi�ed by dashed lines.

In order to relate 2-valued and 3-valued structures we introduce the concept of embedding.

De�nition 8 (Embedding Order) Let S = 〈US, ιS〉 and S ′ = 〈US′ , ιS
′〉 be two struc-

tures, and let f : US → US′ be a surjective function. We say that f embeds S in S ′,
denoted by S vf S ′ if (1) for every predicate symbol p ∈ P ∪ {sm} of arity k and all
u1, . . . , uk ∈ US,

ιS(p)(u1, . . . , uk) v ιS
′
(p)(f(u1), . . . , f(uk))

and (2) for all u′ ∈ US′

(|{u|f(u) = u′}| > 1) v ιS
′
(sm)(u′).

Condition (2) ensures that if several individuals from US are mapped to one individual in
US′ than sm will be 1/21 in S ′ for that individual.

The de�nition of Embedding allows the predicates in S ′ to be less precise than they could
be regarding their universe. A tight embedding minimizes the loss of information.

De�nition 9 (Tight Embedding) A structure S ′ = 〈US′ , ιS
′〉 is a tight embedding of

S = 〈US, ιS〉 if there exists a surjective function t_embed : US → US′ such that, for every
p ∈ P of arity k,

ιS
′
(p)(u′1, . . . , u

′
k) =

⊔

(u1, . . . , uk) ∈ (US)k, s.t.

t_embed(ui) = u′i ∈ US′ , 1 ≤ i ≤ k

ιS(p)(u1, . . . , uk)

and for every u′ ∈ US′,
1It cannot be 1 because of condition (1), since 0 6v 1.
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ιS
′
(sm)(u′) = (|{u| t_embed(u) = u′}| > 1) t

⊔

u ∈ (US)k, s.t.

t_embed(u) = u′ ∈ US′

ιS(sm)(u).

Not only do the two embedding de�nitions de�ne what it means for 2-valued structures
to be embedded in 3-valued structures, they also de�ne embedding of 3-valued structures
in other 3-valued structures. Embedding allows to de�ne the set of 2-valued concrete
structures that a 3-valued structure represents:

γ(S) = {S\ ∈ 2-STRUCT[P ] | there exists a function f, s.t. S\ vf S}.

Theorem 1 (Embedding Theorem) Let S = 〈US, ιS〉 and S ′ = 〈US′ , ιS
′〉 be two struc-

tures, and let f : US → US′ be a function such that S vf S ′. Then, for every formula φ
and complete assignment β for φ, JφKS3 (β) v JφKS3 (f ◦ β).

Proof:

See [SRW02].

Program analysis can bene�t from this theorem. It ensures that any information extracted
from an abstract 3-valued S ′ via a formula φ is a conservative approximation of the infor-
mation extracted from any concrete 2-valued structure S embedded in S ′. In particular, a
de�nite value for φ in S ′ means that φ yields the same de�nite value in all S ∈ γ(S).

The number of 3-valued structures above is still unbounded. One way of guaranteeing
termination2 of a program analysis is to operate on a �nite domain. Monotonicity of the
updates then ensures termination.

De�nition 10 (Bounded Structure) A bounded structure over vocabulary P ∪{sm} is
a structure S = 〈US, ιS〉 such that for every u1, u2 ∈ US, where u1 6= u2, there exists an
abstraction predicate symbol p ∈ A such that ιS(p)(u1) 6= ιS(p)(u2). Let B-STRUCT[P ∪
{sm}] denote the set of such structures.

This de�nition limits the size of the universes to |US| ≤ 3|A|. Every abstraction predicate
can take any of the three truth values for every individual. Canonical Abstraction is a way
to obtain such bounded structures.

De�nition 11 (Canonical Abstraction) The canonical abstraction of a structure S,
denoted by t_embedc(S), is the tight embedding induced by the following mapping.

t_embedc(u) = u{p∈A|ιS(p)(u)=1},{p∈A|ιS(p)(u)=0}

2One could also demand a �nite height lattice, which need not be of �nite size. Alternatively, widenings
and narrowings can be used to ensure termination if the lattice is not of �nite height.
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Predicate De�ning Formula Intended Meaning
is[n](v) ∃v1, v2.(v1 6= v2 ∧ n(v1, v) ∧ n(v2, v)) v is shared.
c[n](v) ∃v1.(n(v1, v) ∧ n∗(v1, v2)) v resides on a cycle.
r[n, x](v) for each
x ∈ Var

∃v1.(x(v1) ∧ n∗(v1, v)) v is reachable from x via
next-�elds.

Table 2.1: Examples of Instrumentation Predicates

�u{p∈A|ιS(p)(u)=1},{p∈A|ιS(p)(u)=0}� is known as the canonical name of individual u.

Instrumentation Predicates. Instrumentation predicates can be used to improve the
precision of an analysis. They are predicates de�ned in terms of core predicates. Core
predicates are those that are used to de�ne the semantics of statements. We call the set
of core predicates C. Then the set of predicates P is disjointly partitioned into C and the
set of instrumentation predicates I.

Table 2.1 shows some examples of instrumentation predicates and their de�ning formulae.
There are several ways in which instrumentation predicates can increase the precision of
an analysis:

1. Evaluating the de�ning formulae of instrumentation predicates may yield de�nite
values, while the evaluation on the core predicates evaluates to 1/2. In the example
structure in Figure 2.6 we might ask whether everything reachable from y is also
reachable from x. Without the reachability predicates this question could not be
answered.

2. There are less concrete structures represented by a 3-valued structure if instrumen-
tation predicates have de�nite values. If c[n](v) is false for all elements of a list, then
only concrete structures with acyclic lists are represented by the structure.

3. Instrumentation predicates can be used as abstraction predicates, keeping more pre-
cise information about parts of the heap. This is also depicted in Figure 2.6. If the
reachability predicates r[n, x] and r[n, y] were not used as abstraction predicates the
two summary nodes would be collapsed.

In order to gain more precise analyses through instrumentation predicates, it is usually
necessary to devise special update formulae for these predicates. A simple way of creating
update-formulae is simply evaluating the de�ning formula on the updated core predicates.
This approach may yield very imprecise answers though. Most of the times an update
formula can rely on the previous value of the instrumentation predicate to achieve a more
precise result. In [RSL03] an approach is presented to automatically generate precise up-
date formulae.
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Figure 2.6: Example Structure with Instrumentation Predicates

One can de�ne a collecting semantics similar to the one for the 2-valued semantics. This
yields very imprecise analyses however. The reason for this is that the abstraction is usu-
ally not suited for the update formulae. The heap nodes manipulated are often part of
summary nodes. If we wanted to update the structure shown in Figure 2.6 for the state-
ment y = y->n, y would be inde�nite and point into the summary node on the right.

Focus. The focus operation tackles this problem. The idea is to make those parts of
the heap that are being manipulated concrete. Formally, the focus operation takes a set
of formulae and a set of structures and returns a set of structures. The resulting set of
structures should represent the same concrete structures as the input structures. In addi-
tion the set of formulae provided should evaluate to de�nite values on the input formulae.
In general, an in�nite number of structures may be necessary to ful�ll this task. [SRW02]
presents an algorithm that computes focus for an interesting class of formulae.

Besides implementing focus the question is which formulae to focus on. When applying
an update formula, it is necessary that those parts of the heap that are manipulated have
de�nite values. This can be characterized by the L-values of the left-hand side and the
R-values of the right-hand side of a statement. For y = y->n this is ∃v1 : y(v1) ∧ n(v1, v).
Applying focus on the structure in Figure 2.6 yields the three structures shown in Figure
2.7.

These structures allow us to apply the update-formulae for the statement to gain more
precise results than before. The results are displayed in Figure 2.8. The �gure illustrates
a problem arising when using working in the 3-valued domain. It is possible to generate
structures that represent no concrete structures. This is the case for the �rst structure.
Some predicates are less precise than they could be regarding the information stored in
the instrumentation predicates. The second and third structure in the �gure fall into this
category. We know that y is functional, that is it can only point to one heap cell at a time.
We can also exclude the n-pointer from right to left in the third structure. It would imply
a shared heap cell, which is not the case since is[n] is false.

Coerce. The coerce operation sharpens such structures and eliminates structures that
do not represent any concrete structures. It uses compatibility constraints to do so.
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Figure 2.7: Structures after Focus
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Figure 2.8: Structures after Update
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Figure 2.9: Structures after Coerce

De�nition 12 (Compatibility Constraint) A compatibility constraint is a term of the
form φ1 B φ2, where φ1 is an arbitrary formula, and φ2 is either an atomic formula or the
negation of an atomic formula. A 3-valued structure S and an assignment β satisfy φ1Bφ2,
denoted by S, β |= φ1 Bφ2, if whenever β is an assignment such that Jφ1KS3 (β) = 1, we also
have Jφ2KS3 (β) = 1. We say that S satis�es φ1 B φ2, denoted by S |= φ1 B φ2, if for every
β we have S, β |= φ1 B φ2.

The algorithm for coerce discards the structure if φ1 evaluates to 1 while φ2 evaluates to
2. If φ2 evaluates to 1/2 it changes the interpretation of the predicate in such a way that
makes φ2 evaluate to 1. When φ2 is an equality it adjusts the sm-predicate.

There are two sources of compatibility constraints :

1. The de�ning formulae of instrumentation predicates, and

2. additional formulae that formalize the properties of stores that are compatible with
the semantics of C. For instance, the fact that pointer variables can point to only
one heap cell.

If we apply coerce to the structures arising after applying the update-formulae (Figure
2.8) we arrive at the two structures depicted in Figure 2.9. The top-most structure was
eliminated because the summary node on the right is de�nitely not reachable from x or y.
The two other structures were sharpened.

Collecting Semantics in the 3-valued Domain. We are now ready to de�ne an
abstract semantics, which includes focus and coerce. Focus and coerce are used in the way
described above.
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StructSet[v] =



In if v = bg(G)⋃
w→v∈E(G), w∈As(G)

̂t_embedc(ĉoerce(Jŝt(w)KS3 ( ̂focusF (w)(StructSet[w]))))

∪ ⋃
w→v∈E(G), w∈Id(G)

{S | S ∈ StructSet[w]}

∪ ⋃
w→v∈Tb(G)

{
t_embedc(S) S ∈ ĉoerce( ̂focusF (w)(StructSet[w]))

and S |=3 cond(w)

}

∪ ⋃
w→v∈Fb(G)

{
t_embedc(S) S ∈ ĉoerce( ̂focusF (w)(StructSet[w]))

and S |=3 ¬cond(w)

}





otherwise.

2.2 TVLA - Three-Valued-Logic Analyzer
TVLA implements the shape analysis framework from [SRW02] described above. It was
developed by Tal Lev-Ami at Tel-Aviv University for his Master's thesis [LA00, LAS00].
Since then it has been consistently extended. This includes new abstraction mechanisms,
an improved focus operation that can be applied to arbitrary formulae, an enhanced ver-
sion of Coerce, automatic generation of update formulae for instrumentation predicates
[RSL03] by �nite di�erencing, and the possibility of analyzing concurrent systems.

The TVLA distributions contain sample analyses dealing with singly- and doubly-linked
lists, sorting programs, etc. Since the semantics of statements can be separated from the
concrete programs that are analyzed, it is possible to reuse them in new analyses. This
also includes instrumentation predicates, because they are only concerned with the data
structures analyzed and not the speci�c algorithms.
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3 Sets as Data Abstractions
In this chapter we would like to formally de�ne the Abstract Data Type (ADT) Set. As
a motivation, it is interesting to examine mathematical sets, because they share some key
properties with the ADT we want to de�ne.

3.1 Mathematical Sets
Ordinarily, one thinks of sets as collections of objects. The objects of a set are called
members or elements. Elements of sets can be anything, letters of the alphabet, numbers,
people, or sets themselves. There are di�erent ways of describing sets:

• By listing its elements:
A = {9, 16, 25}, or B = {{9}, {3, 7, 8}}

• By specifying a property of its elements:
C = {x ∈ N | 3 ≤ x ≤ 5}, or D = {y2 | y ∈ C}, or E = {x ∈ Z | x is odd}

The same set can be expressed in many ways. If the sets A and D are equal, we write
A = D. The order of elements in the description or the repetition of elements have no
e�ect: {4, 3, 5} = {5, 4, 3} = {3, 3, 3, 4, 4, 5} = C. Two sets are considered equal if they
have the same members. This is known as extensionality.

Set membership is symbolized by ∈.
• 9 ∈ A, but not 9 ∈ B, written 9 /∈ B,

• {9} ∈ B and blue /∈ D.

Sets can also contain no elements at all. Such a set is called the empty set, denoted by
∅. The cardinality of ∅ is 0. In general, the cardinality of a set A is determined by the
number of distinct elements of A. It is denoted by |A|. For example:

• |A| = |C| = |D| = 3,

• |B| = 2, not 4 as one could possibly think,

• |E| = ℵ0, an example of an in�nite set.
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If every member of a set A is also a member of a set B, then A is said to be a subset of B,
written A ⊆ B. This may not be confused with set membership:

• While {9} /∈ A, we have {9} ⊆ A.

• On the other hand {9} ∈ B, but {9} 6⊆ A,

• and {9} ∈ {9, {9}} and {9} ⊆ {9, {9}}.
The empty set is a subset of every set S and every set S is a subset of itself:

• ∅ ⊆ S

• S ⊆ S

One can construct new sets by combining existing sets by union and intersection. The
union of two sets A,B, denoted by A ∪ B, contains exactly the elements of A and B.
The intersection of two sets A,B, A ∩ B, consists of the elements that A and B have in
common. For example:

• A ∩B = ∅, A ∪B = {9, 16, 25, {9}, {3, 7, 8}},
• E ∩ A = {9, 25}, E ∪ A = {x ∈ Z | x = 16 or x is odd}.

The view of sets presented above stems from the work of Cantor in the 19th century. It is
now called Naïve Set Theory. The intuitive ideas behind it are still present, though. The
possibility to specify sets by a property of their elements led to contradictions. In 1901,
Bertrand Russell discovered what is now known as Russell's paradox: Consider the set R
to be �the set of all sets that do not contain themselves�. Formally:

R = {E | E /∈ E}
Then, we can ask whether R is an element of itself. If R ∈ R, then by de�nition of R we
have R /∈ R. If we assume R /∈ R, then R ∈ R by de�nition.

There were e�orts to overcome this problem and other contradictions. Today, the Zermelo-
Fraenkel axioms of set theory (ZF) are the standard axioms of axiomatic set theory,
which forms the basis of all ordinary mathematics. An alternative axiom system is the
Von Neumann-Bernays-Gödel set theory (NBG) which is a conservative extension of ZF
[Ebb94, Obe94].

Russell and Whitehead also proposed a solution in their Principia Mathematica introducing
Type Theory. A hierarchy of types ensured that contradictions were prevented. Whenever
set inclusions of the form A ∈ B occurred in the de�nitions of sets, the type of A has to
be �smaller� than the type of B. This prohibits circular inclusion relations, especially the
primitive case E ∈ E. The approach was not considered �exible enough for set theory in
that it constrained the de�nition of sets too strongly. Type theory found practical appli-
cations in programming languages, however. For the ADT Set Russell and Whitehead's
system seems appropriate though. When using sets as data abstractions it is sensible to
only store elements of one particular type in a set.
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3.2 Abstract Data Type Set

3.2 Abstract Data Type Set
We now go on to de�ne what we consider to be the Abstract Data Type (ADT) Set. It
will serve as a reference for the implementations introduced later. The de�nition should
be independent of possible implementations. Notice that a concrete implementation would
also constitute a formal speci�cation. It would however contain many design decisions that
are not speci�c to the data type itself.

A method widely used for the speci�cation of data types is known as Algebraic Speci�-
cation of Data Types [EM85, EM90, LEW97]. Here, a speci�cation consists of a signature
and axioms. The signature introduces operations on the data type, while the axioms cap-
ture the meaning of the given operations. Data Types de�ned in this way are often called
Abstract Data Types. This is for three reasons:

• The speci�cation is concerned with the data type itself as an abstract mathemat-
ical object and not with its implementation by a concrete program in a particular
programming language.

• Speci�cations may be incomplete by only partially specifying the meaning of opera-
tions.

• They maybe de�ned in terms of other data types that serve as parameters. This is
also called generic speci�cation.

A typical �rst example of this kind of speci�cation is the ADT Stack. Its signature contains
four functions and one predicate. We use the notation of [BRS+00].

constants EmptyStack : → stack
functions Push : stack × element → set

Pop : stack → stack
Top : stack → element

predicates IsEmpty : stack → Bool
To give meaning to these symbols axioms are provided:

variables s : stack
a : element

axioms IsEmpty(EmptyStack) = True,
IsEmpty(Push(s, a)) = False,
Pop(Push(s, a)) = s,
Top(Push(s, a)) = a.

Note that this example covers all aspects of abstraction described above. It abstracts from
implementation issues. Its speci�cation is in fact incomplete: Neither Pop(EmptyStack)
nor Top(EmptyStack) are constrained by the axioms. The de�nition depends on a para-
meter type element. The axioms make use of equality on that type in the last axiom.
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While we easily grasp an intuitive meaning of these speci�cations, it is of course prof-
itable to give a formalization of the concept. We will not go into detail about this since
we do not rely on the precise de�nitions in the following chapters. The semantics of such
a speci�cation is a set of many-sorted algebras. An algebra belongs to this set if it is a
model of the axioms of the speci�cation. The axioms are implicitly universally quanti�ed.
Usually, there are many non-isomorphic models of a given speci�cation re�ecting the in-
completeness of the de�nition. The interested reader may consult [EM85] and [LEW97]
for an in-depth treatment of the topic.

We are now ready to specify the ADT Set in these terms. The full speci�cation is displayed
in Table 3.1. Our speci�cation is parameterized by an element type. This could also be
instantiated with a set itself, building sets of sets of some primitive type, and so on. We
are assuming an existing speci�cation of the natural numbers nat.

The empty set is provided as a constant. Other sets can be constructed by inserting and
removing elements using .insert(·) and .remove(·). The .selectAndRemove function re-
turns an element and removes it from the set. It can be used to iterate over a set. The
.sizeOf function returns the cardinality of the set as a natural number. The ∈ predicate
allows to test set membership. ⊆ and = correspond to subset and equality of sets.

Most of the axioms are straightforward. We distinguish equality on sets =, equality on
elements =el, and equality on natural numbers =nat. Axiom (1) assures that every possible
set can be constructed by applications of ∅ and .insert. In axiom (5) we only have an
implication because the .selectAndRemove function chooses an element nondeterministi-
cally. Axioms (6) and (7) correspond to the extensionality axiom of set theory. Axioms
(8)-(13) deal with the cardinality of sets. The axioms are complete in the sense that the
meaning of arbitrary formulae over the given alphabet (the functions and predicates of the
ADT speci�cation) can be derived.
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set =
begin generic speci�cation

parameter element
using nat
sorts set
constants ∅ : set
functions ·.insert(·) : set × element → set

·.remove(·) : set × element → set
·.selectAndRemove : set ⇀ element × set

·.sizeOf : set → nat
predicates · ∈ · : element × set

· ⊆ · : set × set
· = · : set × set

variables s, s′ : set
a, b : element

axioms set generated by ∅, .insert; (1)
¬(a ∈ ∅), (2)
a ∈ s.insert(b) ↔ a =el b ∨ a ∈ s, (3)
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s, (4)
(a, s′) = s.selectAndRemove→ a ∈ s ∧ a /∈ s′ ∧ s′.insert(a) = s, (5)
s ⊆ s′ ↔ a ∈ s → a ∈ s′, (6)
s = s′ ↔ s ⊆ s′ ∧ s′ ⊆ s, (7)
∅.sizeOf =nat 0, (8)
s.insert(b).sizeOf =nat s.sizeOf↔ b ∈ s, (9)
s.insert(b).sizeOf =nat s.sizeOf + 1 ↔ ¬(b ∈ s), (10)
s.remove(b).sizeOf =nat s.sizeOf↔ ¬(b ∈ s), (11)
s.remove(b).sizeOf =nat s.sizeOf− 1 ↔ b ∈ s, (12)
(a, s′) = s.selectAndRemove→ s′.sizeOf =nat s.sizeOf− 1. (13)

end generic speci�cation

Table 3.1: ADT Set

33



3 Sets as Data Abstractions

34



4 Shape Analysis of Implementations
In this chapter we analyze two prototypical C implementations of the ADT Set. One
implementation is based on singly-linked lists, the other on binary trees. After brie�y in-
troducing parts of the two implementations, we proceed to describe our analyses. The main
goal of the analyses is to prove that the implementations comply with the ADT speci�cation
given in Chapter 3. The implementations each contain the two methods, insertElement,
removeElement and the function isElement. They implement the ·.insert(·), ·.remove(·)
functions and the · ∈ · predicate, respectively. We chose to show the following two axioms,
since they capture the most important aspects of the ADT Set:

a ∈ s.insert(b) ↔ a =el b ∨ a ∈ s, (3)
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s (4)

Our analyses are conducted using TVLA [LAS00] and are based on previous analyses on
lists and trees contained in the TVLA 2 distribution.

4.1 List-based Implementation

typedef struct List
{
void* data;
struct List* next;

} List;

typedef struct Set
{
List* list;
int (*compare)(void*, void*);
int size;

} Set;

int isElement(Set* set, void* element)
{
List* list = set->list;

while (list != 0)
{

if (compare(list->data, element) == 0)
return 1;

list = list->next;
}

return 0;
}

(a) (b)

Figure 4.1: C structure declarations for Lists and Sets and C source of membership test

Our �rst set implementation uses singly-linked lists to store the elements. It also main-
tains the size of the current set. The structure declarations are visible in Figure 4.1. When
allocating such a set, a compare-function has to be given, that establishes an equivalence
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relation on the data elements.

Figure 4.1 also shows the code for testing set membership. The method simply iterates
over the list, comparing each item with the element that is tested for set membership.

void insertElement(Set* set, void* element)
{
List* list = set->list;
List* prev = 0;

while (list != 0)
{

if (compare(list->data, element) == 0)
return;

prev = list;
list = list->next;

}

List* newList = (List*)malloc(sizeof(List));
newList->data = element;
newList->next = 0;
set->size++;

if (prev == 0) //list is empty
{

set->list = newList;
}
else //append item to list
{

prev->next = newList;
}

}

void* removeElement(Set* set, void* element)
{

List* temp;
List* list = set->list;

if (list == 0)
return;

if (compare(list->data, element) == 0)
{
set->size--;
set->list = list->next;
free(list);

}
else
while (list->next != 0)
{
if (compare(list->next->data, element) == 0)
{

void* deletedElement = list->next->data;
set->size--;
temp = list->next->next;
free(list->next);
list->next = temp;
return deletedElement;

}
list = list->next;

}
}

(a) (b)

Figure 4.2: C source of Insertion and Removal methods

Figure 4.2 shows the implementations of the insertion and removal methods. The insertion
method iterates over the list until it either �nds the element or reaches the �nal element
of the list, indicated by a null-pointer in the next-�eld. If the element was not found it is
appended at the end. Removal works similarly. When the element is found, it is decoupled
from the list and the memory is freed.

4.1.1 Data Structure Invariants
Our analyses rely on a number of data structure invariants at entrance to the methods.
Showing their maintenance is part of the proof. By data structure invariants we mean
invariants that are related directly to the concrete data structure employed to implement
the ADT Set. In this case properties of singly-linked lists:

• The list is acyclic
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• The list does not contain any duplicate elements

We use instrumentation predicates to capture these properties formally using �rst-order
logic.

4.2 Tree-based Implementation
As in the list-based case, a compare-function is needed. This time it has to implement
a re�exive total order. This is necessary, to build an ordered tree. Figure 4.3 shows the
structure declarations. Every node in the tree stores one of the set elements and maintains
pointers to two children nodes left and right.

typedef struct Tree
{
void* data;
struct Tree* left;
struct Tree* right;

} Tree;

typedef struct Set
{
Tree* tree;
int (*compare)(void*, void*);
int size;

} Set;

int isElement(Set* set, void* element)
{

Tree* tree = set->tree;

while (tree != 0)
{
if (compare(tree->data, element) == 0)
return 1;

else if (compare(tree->data, element) < 0)
tree = tree->left;

else
tree = tree->right;

}

return 0;
}

(a) (b)

Figure 4.3: C structure declarations for Trees and Sets and C source of isElement test

Figure 4.3 also contains the source of the set membership test. The method simply tra-
verses the tree until it either �nds the element or reaches a leaf node. The source of the
insertion and removal methods on trees can be found in the appendix, since it is too large
to be dealt with here. We restrict ourselves to mentioning the main ideas of the two al-
gorithms. New elements are always inserted as new leaf nodes, by traversing the tree to
the correct position. While insertion of elements if fairly easy and quite similar to its list
pendant, removal of elements is a non-trivial task. Figure 4.4 illustrates this. Removing
elements that are stored in leaf nodes is simple (left). They can simply be decoupled from
their respective parent nodes. If the node has one child, we can connect this child at the
place of the node to its former parent node (middle). The most complicated case arises
when the particular node has two child nodes (right). In this case, we have to �nd another
node in the tree to replace the element node. This node has to be smaller than all nodes
on the right and greater than all nodes on the left. There are two ways to �nd such an
element. Either one can take the right-most element of the left subtree or the left-most
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Figure 4.4: Removal from Ordered Tree

element of the right subtree. We chose to always take the right-most element of the left
subtree. In addition, there are some special cases of the latter case. For instance, if the
root of the left subtree is already the right-most element of the left subtree.

4.2.1 Data Structure Invariants
In order to prove our ADT Set axioms we need to maintain two data structure invariants:

• The structure representing the set is a tree
Out of many equivalent de�nitions for �binary treeness�, we chose the following:
Whenever an element is reachable from the left child of a node in the structure, then
it is not reachable from the right child, and vice versa.

• The tree is ordered
Every element reachable from the left child is smaller and every element reachable
from the right child is greater. This implies that the tree does not contain duplicate
elements. It also implies the �rst data structure invariant. It is still useful to consider
the �rst invariant, because it may help in proving this one.

Again, we used instrumentation predicates to formalize the two invariants using �rst-order
logic. Proving the latter proved to be quite di�cult. It is a global property, i.e. it does
relate elements in the tree that are not directly connected. We will go into more detail
about this in the analysis section.
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4.3 Shape Analysis
To prove the ADT Set axioms we perform three analyses for each implementation. The
analyses of the insertion methods prove the following:

isElement(a, s.insertElement(b)) ↔ a =el b ∨ isElement(a, s)

Notice the di�erence compared with the corresponding axiom (3). The instrumentation
predicate isElement replaces the · ∈ · predicate. That is we prove the property of the
insertion method in terms of an instrumentation predicate. The same holds for the removal
methods and axiom (4). There, we prove:

isElement(a, s.removeElement(b)) ↔ a 6=el b ∧ isElement(a, s)

To conclude the proofs we show that the isElement functions in both implementations are
equivalent to the instrumentation predicate isElement:

isElement(a, s) ↔ s.isElement(a)

Combining this equivalence with the two preceding proofs yields:

s.insertElement(b).isElement(a) ↔ a =el b ∨ s.isElement(a)
s.removeElement(b).isElement(a) ↔ a 6=el b ∧ s.isElement(a)

These two equivalences correspond directly to axioms (3) and (4).

4.3.1 Shape Analysis of List-based Implementation
Our analysis is based on existing analyses on lists and trees. We borrowed the concrete
semantics of most of the statements from these. The following table shows how we represent
the state by logical predicates.

Predicate Intended Meaning
x(v) for each x ∈ Var Pointer variable x points to heap cell v.
n(v1, v2) The next selector of v1 points to v2.
deq(v1, v2) The data-�elds of v1 and v2 are equal.
isSet(v) v represents a set.
or[n, x](v) for each x ∈ Var v was reachable from x via next-�elds.

As depicted, pointer variables are represented by unary predicates. The next-�eld is mod-
eled by a binary predicate. Since we can only model the structure of the heap by these
predicates, primitive values have to be dealt with di�erently. Abstracting from the con-
crete values of the data-�elds, we capture the equivalence relation between data-�elds by
the binary predicate deq. This corresponds to the compare-function needed in the imple-
mentation. To di�erentiate between set locations and other locations in the heap, the isSet
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predicate is used. To be able to relate elements contained in the list before the execution
of one of our procedures with their output structures, we mark elements reachable from x
via next-�elds using the or[n, x] predicate.

While the above core predicates su�ce to de�ne the concrete semantics of all the state-
ments, we need additional instrumentation predicates to gain precision.

Predicate De�ning Formula Intended Meaning
is[n](v) ∃v1, v2.(v1 6= v2 ∧ n(v1, v) ∧ n(v2, v)) v is shared.
c[n](v) ∃v1.(n(v1, v) ∧ n∗(v1, v2)) v resides on a cycle.
t[n](v1, v2) n∗(v1, v2) Transitive re�exive closure

of next.
r[n, x](v) for each
x ∈ Var

∃v1.(x(v1) ∧ t[n][v1, v)) v is reachable from x via
next-�elds.

noeq[deq, n](v) ∀v1.(((t[n](v1, v)∨t[n](v, v1))∧v1 6= v) →
(¬deq(v1, v) ∧ ¬deq(v, v1)))

The data-�eld of v is di�er-
ent from the data-�elds of
locations that can reach v
and that are reachable from
v.

validSet(v) isSet(v) ∧ noeq[deq, n](v) v represents a valid set (no
duplicate entries).

isElement(v1, v2) isSet(v2)∧∃v.(t[n](v2, v)∧deq(v1, v)∧v 6=
v2)

v1 is an element of set v2.

The �rst four of these instrumentation predicates capture general properties of the shape
of the heap. They have been used in previous analyses of list-manipulating programs. c[n]
covers the acyclicity data structure invariant mentioned in the implementation section.

The noeq[deq, n] predicate is tailored speci�cally to the current task. It expresses that no
two elements in the list have equal data-�elds. The de�nition comprises both directions,
i.e. both elements reachable from v and elements from which v is reachable. This actually
makes it easier to reestablish the property when manipulating the list. It is a formalization
of the second data structure invariant for lists. validSet does not help to increase precision.
It only increases the readability of the output structures.

To capture our notion of set membership we de�ne the isElement-predicate. v1 is an ele-
ment of set v2 if its data-�eld is equal to one of the nodes reachable from v2. Our analysis
shows that the e�ect of the insertion and removal methods on set membership, expressed
by isElement conforms to the ADT Set axioms.

Our input structures cover all possible lists representing sets pointed to by set. element
points to the element that shall be inserted into the set. Figure 4.5 displays these struc-
tures. In (a) set is empty. In (b) set is non-empty and set membership of element is
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unknown, isElement's value is inde�nite for the nodes pointed to by element and set.

element

noeq[deq,n]
r[n,element]

set

isSet
noeq[deq,n]

r[n,set]
validSet

deq t[n]deq t[n]

element

noeq[deq,n]
r[n,element] set

isSet
noeq[deq,n]

r[n,set]
validSet

noeq[deq,n]
r[n,set]

deq n t[n]

isElement

deq

n t[n]

deq t[n]

isElement

deq t[n]

(a) (b)

Figure 4.5: Input Structures for List-based Insertion and Removal

Insertion
Running the analysis for insertion yields three output structures that are shown in Figure
4.6. All of the resulting structures ful�ll the data structure invariants, i.e. noeq[deq, n] is
true for the set and c[n] is false everywhere. Also, isElement is true for the nodes pointed
to by element and set. In addition, the or[n, set]-predicate indicates that elements which
were formerly reachable from set are still reachable after the execution of setInsert.

Looking at the structures one can identify the di�erent cases that the insertion method has
to deal with. Structure (a) corresponds to the empty set as input structure. In structure
(b) a new element had to be appended to the list, because the data-�eld of element is not
equal to any of the original elements of the list (the deq predicate is false). In structure
(c) element was already contained in the list, indicated by the isElement-predicate.

Removal
When translating the C code into a Control Flow Graph in TVLA, we omitted the deallo-
cation of the element in the list. This is only for illustration purposes.

Running setRemove results in four output structures displayed in Figure 4.7. Again, the
maintenance of the data structure invariants is proven: noeq[deq, n] is true and c[n] is false
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Figure 4.6: Output Structures for List-based Insertion

everywhere. The element has indeed been removed from the list. This can be observed by
the isElement-predicate. Other elements of the set are still contained, as indicated by the
or[n, set]-predicate.

Structures (a) and (c) correspond to the case where element was not contained in the set
before. The two other structures (a) and (d) re�ect the case where element was indeed
part of the set. The abstraction also distinguishes between empty (c and d) and non-empty
sets (a and b).

Membership Test

We omit to display the output structures of this analysis, since the routine is not manip-
ulating the heap at all. The analysis checked that our isElement function returns true if
and only if the isElement-predicate holds. This is done by separating the structures into
those that reach a point where true is returned and those structures that reach a point
where false is returned. By this, we establish a connection between the di�erent analyses.
The two other analyses on list insertion and removal only proved correctness in terms of
the isElement-predicate. The current analysis shows that this was just.

4.3.2 Shape Analysis of Tree-based Implementation
The domain is represented in a similar way as in the list-based case. Instead of having
a next-predicate, left- and right-predicates are used to model the left- and right-�elds
in the tree. The left-predicate is also used to model the tree-�eld in the set structure to
minimize the number of predicates. The tree-�eld only occurs at most once in all of the
structures.
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Figure 4.7: Output Structures for List-based Removal
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Predicate Intended Meaning
x(v) for each x ∈ Var Pointer variable x points to heap cell v.
sel(v1, v2) for each sel ∈ {left, right} The left (right) selector of v1 points to v2.
dle(v1, v2) v1->data ≤ v2->data.
or[x](v) for each x ∈ Var v was reachable from x via left- and right-�elds.
isSet(v) v represents a set.

As noted in the implementation section, an ordering relation is needed here. It is modeled
by the dle-predicate, which is assumed to be re�exive and transitive during the analysis.
or[x] and isSet have the same meaning as before.

While the core predicates used to model the domain were very similar to the list-based
case, the choice of instrumentation predicates was quite di�erent. We separate them into
two parts. One is solely concerned with the structure of the trees. The other also deals
with ordering.

Predicate De�ning Formula Intended Meaning
down(v1, v2) left(v1, v2) ∨ right(v1, v2) The union of the two se-

lector predicates left and
right.

downStar(v1, v2) down∗(v1, v2) Records reachability be-
tween tree nodes.

downStar[sel](v1, v2)
for each sel ∈
{left, right}

∃v.(sel(v1, v) ∧ down∗(v, v2)) Remembers the �rst se-
lector needed to reach v2

from v1.
r[x](v) for each x ∈
Var

∃v1.(x(v1) ∧ downStar(v1, v)) v is transitively reachable
from x.

treeNess ∀v1, v2, v.((downStar[left](v, v1)∧
downStar[right](v, v2)) ⇒
(¬downStar(v1, v2) ∧
¬downStar(v2, v1)))

The heap consists of
trees.

The two downStar[sel]-predicates record reachability between tree-nodes, where the �rst
selector on the path is sel. In ordered trees this determines the relation between the
elements in the tree. To be able to check whether the ordering is maintained, it is important
to keep this relation precise for elements that are manipulated. treeNess records the �rst
data structure invariant mentioned in the implementation section. We decided to make
treeNess a global nullary predicate to reduce the size of the domain. There is a drawback
to this approach however. It is nearly impossible to reestablish the property once it is
violated, because we lose information about parts of the heap that still satisfy the property.
A unary treeNess predicate would be able to capture local violations and make it easier to
reestablish the property after it was temporarily destroyed. The methods that we checked
maintain treeNess in the entire heap permanently allowing to use the nullary predicate.
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Predicate De�ning Formula Intended Meaning
dle[x, left](v) for
each x ∈ Var

∃v1.(x(v1) ∧ dle(v, v1) ∧
¬dle(v1, v))

The data-�eld of v is less
than the data-�eld of v1,
where v1 is pointed to by
x.

dle[x, right](v) for
each x ∈ Var

∃v1.(x(v1) ∧ ¬dle(v, v1) ∧
dle(v1, v))

The data-�eld of v is
greater than the data-
�eld of v1, where v1 is
pointed to by x.

inOrder[dle] ∀v2, v4.(downStar[left](v2, v4) ⇒
(dle(v4, v2) ∧ ¬dle(v2, v4))) ∧
∀v2, v4.(downStar[right](v2, v4) ⇒
(¬dle(v4, v2) ∧ dle(v2, v4)))

All the trees in the heap
are in order.

isElement(v1, v2) isSet(v2) ∧
∃vequal.(downStar(v2, vequal) ∧
dle(vequal, v1) ∧ dle(v1, vequal) ∧
vequal 6= v2

v1 is an element of set v2.

The dle[x, sel] captures the relation between the node pointed to by x and other heap
nodes. These predicates are used to partition the heap into elements less than the node
pointed to by x and those that are greater. Being unary predicates they can be used as
abstraction predicates. This could be called a �pseudo-binary abstraction�, since parts of
the binary predicate dle are taken to form several unary predicates.

inOrder[dle] formalizes the second data structure invariant for ordered trees. It requires
elements in the left subtree of a node to be smaller and elements in the right subtree to be
greater than the node itself. Smaller and greater are expressed in terms of dle.

The set membership property isElement is formalized similarly to the list-based case. v1

is an element of set v2 if its data-�eld is equal to one of the nodes reachable from v2, where
equal can be formulated in terms of dle.

Figure 4.8 displays the input structures for our analysis of the insertion and removal meth-
ods. In the following we omitted several predicates to make the visualizations more read-
able. The predicates that we left our were left, right, down, downStar. Again, we want
to cover all possible sets by these abstract structures. In structure (a) set is empty and
thus element is not an element of set. Structure (b) represents non-empty sets. element
might be part of the set, indicated by the dotted isElement-predicate and the dotted
dle-predicate between element and the contents of set. We also had to assign a value to
the dle-predicate for set which does not have a data-�eld. Its data-�eld is assumed to be
greater than all other data-�elds. Elements that were originally reachable from set are
marked with or[set] as in the list-based case.
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Figure 4.8: Input Structures for Tree-based Insertion and Removal

Insertion

Running the analysis for set insertion yields 21 structures at exit. Most of them concern
special cases where the element had to be inserted in the left- or right-most position of
the tree or where the left or the right subtree of the root was empty. All resulting struc-
tures ful�lled the data structure invariants and element had been inserted into set. We
picked two structures that represent the most general cases. They can be seen in Figure 4.9.

Due to the number of binary predicates involved in the analysis the output structures
are hard to read. Also, the visualization engine does not know our intuition behind the
di�erent predicates, which could help to generate more readable output. In structure (a)
the algorithm found a node in the tree that is equal to element. The three summary nodes
make up the rest of the tree. The summary node to the right represents the subtree of the
node that was found. The other two summary nodes partition the parents and neighbors
into those that have a smaller data-�eld and those that have a greater data-�eld. For this
particular case the partitioning of the set is not important. For structure (b) however it
is the key to proving that the ordering is preserved. Here, no node in the tree was found
that was equal to element. Therefore a new heap node was allocated and inserted into the
tree, preserving the ordering. This is were the partition into smaller and larger elements
becomes important. Nodes that are greater than the new node can only reach it via a path
that starts by going left: downStar[left] is inde�nite and downStar[right] is false. Nodes
with a smaller data-�eld can in turn only reach it via a path that starts with a right-edge
(downStar[right] = 1/2 and downStar[left] = 0).
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Figure 4.9: Sample Output Structures for Tree-based Insertion
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Removal
As noticed in the implementation section, tree-based removal was the most complicated
routine that we analyzed. Its size and complexity led to very time-consuming analyses that
did not allow a trial and error approach when choosing the abstraction predicates. We used
the same predicates as in the analysis of the insertion algorithm. They were developed for
this method though and proved to work for the simpler insertion routine, too.

Proving that element is not a member of set after the analysis was simple, once the data
structure invariants could be established. The ordering property ensures that every element
only occurs once in the tree. Showing that the ordering data structure invariant was main-
tained was more di�cult. The key predicates involved in proving this were dle[x, sel] and
downStar[sel]. The use of these predicates in the insertion routine already hints at why
they are useful for removal. Figure 4.4 illustrates the di�erent possibilities when removing
an element from the tree. As the algorithm keeps track of the relevant nodes (those rep-
resented by circles in the �gure) in the graph through pointer variables, dle[x, sel] delivers
the necessary partition to keep relevant ordering information. In addition downStar[sel]
captures the important �rst selectors on paths between these parts of the tree.

To cope with the long analysis times we decomposed the problem into smaller ones �rst:

• Finding the element to delete.

• The element has one or no children.

• The element has two children, the most di�cult case.

In the end we put everything together.

Again, we decided to present only two representative output structures out of overall eight.
They are shown in Figure 4.10. Both structures satisfy the two data structure invariants
modeled by inOrder[dle] and treeNess. In structure (a) element was contained in set and
therefore removed from it. For demonstration purposes we did not free the element taken
from the tree. One can see that the tree has been partitioned into nodes with a greater
data-�eld and nodes with a smaller data-�eld than element. The same holds for structure
(b). In this case element was not contained in set at the invocation of the routine. No
node was removed from the tree.

Membership Test
Again, we omit to display the output structures. It is quite obvious that the analysis
succeeds, because the tree traversal analyzed is part of the insertion and removal methods
as well, which were analyzed before.
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dle isElement

dle

downStar[left]

downStar[left]

dle

dle

dle

dle

(b)

Figure 4.10: Sample Output Structures for Tree-based Removal
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Analysis #locations
in CFG

#unary
predi-
cates

#binary
predi-
cates

#structures average
#structs
per
location

maximal
#structs
per
location

time

Membership,
List-based

9 20 5 28 3 6 2.570s

Insertion,
List-based

19 29 5 81 4 11 2.720s

Removal,
List-based

22 29 5 124 5 11 4.050s

Membership,
Tree-based

10 18 11 84 8 19 32.84s

Insertion,
Tree-based

25 24 11 536 21 91 69.23s

Removal,
Tree-based

76 42 11 27697 364 3132 21767s

Table 4.1: Empirical Results

4.3.3 Empirical Results
Table 4.1 presents some data about the four analyses. The analysis of the insertion, re-
moval and membership test methods of our list-based implementation resulted in a similar
number of structures and relatively short analysis times. In the tree-based case, however,
the di�erence was considerable. This can probably be explained with the higher number of
unary predicates in the removal analysis, which led to more structures per location. The
worst-case complexity of the analysis is doubly-exponential in the number of abstraction
predicates. Additionally, the control �ow graph (see Figure 4.11) for removal contains more
than three times as many locations as the CFG for insertion.

4.3.4 Discussion
We managed to show interesting properties of list- and tree-based set implementations.
Our analyses assumes data structure invariants speci�c to the respective implementation
to hold at the entrance. The maintenance of these invariants throughout the execution of
the routines is established. Using these invariants our analysis was able to prove that the
e�ect of the insertion and removal methods complies with axioms of the ADT Set. The
nature of the shape analysis framework limited our proofs to partial correctness.

We used the isElement-predicate to relate di�erent analyses. While the insertion and
removal methods were proved correct in terms of isElement, the analysis of the set mem-
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Figure 4.11: CFG for Tree Removal

bership routine showed the equivalence of this routine with isElement. This approach
loosely corresponds to the abstraction mechanism used in [LKR04]. They use sets to ab-
stract from more complex data structures, which limits them to statically allocated data
structures. Our use of isElement on the other hand allows to handle dynamically allocated
sets.

Choosing the right instrumentation predicates required a thorough understanding of the
data structures involved. For trees this meant identifying that reachability alone is not
very interesting, but that the �rst edge on a path from one node to another is important.
However, the predicates are not tailored to speci�c algorithms, but to the underlying data
structures. They might prove useful for other algorithms on trees and lists as well.

4.3.5 Abstraction Expressions
The need to partition the trees into smaller and larger elements led to the introduction
of the dle[x, sel]-predicate family. The e�ect of these unary predicates on the abstraction
could also be achieved by using the binary dle-predicate in the abstraction process. Here,
individuals should only be joined if they have the same canonical name and if they agree on
binary abstraction predicates to other canonical names. This is illustrated in Figure 4.12.
The tree on the left is supposed to be in order. The ordering predicate is not visualized to
make it more readable. Canonical Abstraction would collapse all the nodes not pointed to
by x (a). The relation between the resulting summary node and the node pointed to by x
would be inde�nite. Additionally abstracting from dle would instead create two summary
nodes and keep ordering information de�nite. Of course, the proposed abstraction can also
be achieved using a number of unary abstraction predicates. The number of predicates
needed for this is linear in the number of abstraction predicates though, to cover all canon-
ical names.

We propose to specify the abstraction through Abstraction Expressions :

De�nition 13 (Syntax of Abstraction Expressions) The set of Abstraction Expres-
sions over a set of unary predicates U and a set of binary predicates B is de�ned inductively
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x

x

x a)

b)

Figure 4.12: Abstraction Expressions

as follows:

• {u1, . . . , un} is an abstraction expression if {u1, . . . , un} ⊆ U ,

• AE1 ∧AE2 is an abstraction expression if AE1 and AE2 are abstraction expressions,

• AE . {b1, . . . , bn} is an abstraction expression if AE is an abstraction expression and
{b1, . . . , bn} ⊆ B.

We de�ne the semantics of Abstraction Expressions by giving an associated equivalence
relation. The equivalence relation determines which nodes are to be merged.

De�nition 14 (Semantics of Abstraction Expressions) The associated equivalence re-
lation ∼AE to an Abstraction Expression AE is de�ned inductively as follows:

• x ∼{u1,...,un} y :⇔ ∧
u∈{u1,...,un}

u(x) = u(y),

• x ∼AE1∧AE2 y :⇔ x ∼AE1 y ∧ x ∼AE2 y,

• x ∼AE.{b1,...,bn} y :⇔ x ∼AE y ∧ ∧
b∈{b1,...,bn}

∀z.( ⊔
{w|w∼AEz}

b(x,w) =
⊔

{w|w∼AEz}
b(y, w)).

TheAbstraction Expression {u1, . . . , un} is equivalent to Canonical Abstraction over {u1, . . . , un}.
The abstraction depicted in case (b) of Figure 4.12 can be speci�ed using the Abstraction
Expression {x} . {dle}. It will be interesting to see whether there are more applications,
where abstraction can be speci�ed more easily using such expressions than by plain Canon-
ical Abstraction.
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4.3 Shape Analysis

4.3.6 Future Work
Future work might try to deal with recursive implementations, following the approach pre-
sented in [RS01]. Another challenge are balanced search trees such as red-black trees or
AVL trees, which have more complicated data structure invariants. The ADT Set speci�ed
also contained axioms dealing with the size of the sets. Analyzing these properties seems
quite di�cult using the current shape analysis framework. Integer values can be repre-
sented by list structures (by a zero node and successor nodes in the sense of the Peano
axioms). Computation on them not very e�cient though.

Splitting the current analysis into two phases could increase e�ciency. The �rst phase
could be solely devoted to proving the maintenance of the data structure invariants. The
second could then rely on them and concentrate on the property originally desired to show.

Dead Predicates
To speed up the analyses we included additional actions in the control �ow graphs of the
tree-based programs. These actions nulli�ed certain variables and allowed the engine to
collapse structures that were otherwise isomorphic. This was only done for unary predicates
representing dead variables, i.e. predicates that further steps of the analysis did not rely on.
These predicates could be called dead predicates. A similar e�ect could have been achieved
by marking these predicates as non-abstraction predicates locally. This approach was
previously described in Roman Manevich's Master Thesis [Man03]. These dead predicates
could be determined by a preceding static analysis. At the time the analyses were conducted
it had not been integrated into TVLA yet. We believe that it may dramatically increase
the performance of analyses in larger programs that contain many loosely coupled sections.
Unfortunately, we cannot give experimental results about the magnitude of the e�ect. Our
analysis for the tree-based removal method did not terminate within days without this
optimization. Of course, the optimization could also decrease precision, because more
structures are collapsed, possibly losing relevant information. However, in such a case it
seems that the wrong abstraction is used, but the analysis succeeds by coincidence.
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5 RESET - An imperative language
with sets as primitives

In this section, we introduce RESET, an imperative language with sets as primitives. We
give two semantics for RESET. Semantics I provides an idealized view of an implementa-
tion of the ADT Set de�ned in Chapter 3. Semantics II comes a little closer to the set
implementations seen in Chapter 4. The di�erence between the semantics lies in the way
sets are represented. In this respect, Semantics II is somewhere in between Semantics I
and the implementations. We will compare the two semantics and show how they can be
related formally.

5.1 Syntax
The syntax of RESET is given in BNF1 in Figure 5.2. It contains the common control
structures such as a conditional statement and a while loop. In addition to the typical con-
structs of an imperative language, we include expressions to test for set membership and
set inclusion as well as two statements to allow for insertion and deletion of elements. The
.selectAndRemove statement nondeterministically selects one of the elements of the set
and assigns it to the given variable. This allows to perform some action on every element
of a set. Pointer expressions are limited to x and x.sel in order to simplify the speci�cation
of the semantics. Of course, it is still possible to access elements deeper in the heap by
using temporary pointer variables.

Figure 5.3 shows a simple example RESET program. It computes the intersection of
the two input sets X and Y . The references to the contents of X are �rst copied into
1Backus-Naur form

Semantics I Semantics II
List-based

implementation
Tree-based

implementation

Complexity of Domains

Figure 5.1: Complexity of Domains
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5 RESET - An imperative language with sets as primitives

opa ::= + | − | ∗ | / (arithmetic op.)
opb ::= ∧ | ∨ (boolean op.)
opr ::= < | = (relational op.)

x, y ∈ Var
sel ∈ Sel
p, q ∈ PExp ::= x | x.sel (pointer expr.)

a ∈ AExp ::= p | Num | a1 opa a2 (arithmetic expr.)
b ∈ BExp ::= true | false | (boolean expr.)

¬b | b1 opb b2 | a1 opr a2 |
q ∈ p | q ⊆ p

s, t ∈ Exp ::= p | a | b (expression)
S, Prog ∈ Stmt ::= skip | p := s | S1; S2 | (statement)

if b then S1 else S2 |
while b do S |
p := malloc | p := malloc set |
x.insert(s) | x.remove(s) |
x := y.selectAndRemove

Figure 5.2: Syntactical Domains of RESET

the temporary variable Temp. Temp is used to iterate over the contents of X without
destroying X itself. For every element of X we check whether it is also an element of Y .
In this case it is inserted into Z. In the end, Z contains the intersection of X and Y .

5.2 Static Semantics

A type system is speci�ed in Figure 5.5. It restricts all the elements of one set to be of the
same type. The syntax did not put any limitations on the sets and would for instance allow
a single set to contain pointers as well as sets of pointers. This might actually be desirable
since it resembles mathematical sets more closely. However it does raise problems in the
second semantics that will be presented later. We assume variables and selectors to have
a preassigned type. They are given by the function θ : (Var → dataT ) ∪ (Sel → dataT ).
Types are solely based on selectors because we do not distinguish between di�erent pointer
types. Possible types are speci�ed in Figure 5.4. A program is correctly typed if we can
derive the type comm for it using the given inference rules.
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5.3 Dynamic Semantics I

void intersection(Set X, Set Y) {
Temp := malloc set;
Temp := X;
Z := malloc set;
while (Temp != Empty)
{

p := Temp.selectAndRemove;

if (p ∈ Y)
Z.insert(p);

}

p := NULL;
Temp := NULL;

}

Figure 5.3: RESET Program Computing the Intersection

type ::= dataT | comm

t ∈ dataT ::= bool | int

| loc | dataT set

Figure 5.4: Types

5.3 Dynamic Semantics I
We give a nondeterministic structural operational semantics. Inference rules specify the
semantics of the statements. They relate con�gurations which are pairs of statements and
states. A state consists of three components, the stack, the heap and the set heap. Stack
and heap cells may contain four di�erent types of elements: booleans, integers, locations
and set locations. The set heap stores sets. They are referenced by set locations. Sets are
stored in single cells of the set heap (see Figure 5.7 for the details of the semantic domains).
The de�nition of Set allows arbitrary nesting of sets and also di�erent types of elements in
one set. However, this is restricted by the type system of Figure 5.5.

Valuation functions like X and B are used to evaluate the meaning of expressions in the
context of the state. They are shown in Figure 5.8. It is possible to give the semantics of
expressions in this way, because expressions do not have any side-e�ects, i.e. they do not
change the state. Their de�nitions are omitted for the most part, because they are mostly
straight-forward. The evaluation of set membership (q ∈ p) and set inclusion (q ⊆ p) is
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5 RESET - An imperative language with sets as primitives

true : bool

b : bool

¬b : bool

a1 : int a2 : int

a1 opr a2 : bool

t = θ(x)

x : t

a : t p : t set

a ∈ p : bool

false : bool

b1 : bool b2 : bool

b1 opb b2 : bool

a1 : int a2 : int

a1 opa a2 : int

x : loc t = θ(sel)

x.sel : t

q : t set p : t set

q ⊆ p : bool

skip : comm

S1 : comm S2 : comm

S1; S2 : comm

b : bool S : comm

while b do S : comm

p : t set a : t

p.insert(a) : comm

p : t set a : t

a := p.selectAndRemove : comm

p : t s : t

p := s : comm

b : bool S1 : comm S2 : comm

if b then S1 else S2 : comm

p : loc

p := malloc : comm

p : t set

p := malloc set : comm

p : t set a : t

p.remove(a) : comm

Figure 5.5: Type System
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5.3 Dynamic Semantics I

x:int = 34
y:loc

v:int set set
w:int set

Stack: Heap and Set Heap:

{{2, 5}, {34, 30, 3}}

34 98

da
ta

next

da
ta

{34, 232, 42}

Figure 5.6: Example State in Semantics I

probably most interesting here. Since sets are completely stored in single cells, set inclusion
translates to the common mathematical set inclusion. The same holds for set membership,
where we have to look at two cases. Either p is a set of sets or it is just a set of primitive
values or locations. In the former case we have to check for set membership of the refer-
enced set by p and not of its location. This will be more complicated in the Semantics II.

The inference rules which de�ne the semantics of statements are displayed in Figure 5.9.
The non-standard part of the inference rules are again the rules concerning sets. The same
case distinction as in the test of set membership also applies for the inference rules concern-
ing assignments. When assigning sets we do not assign its location but its contents. Being
able to assign set locations would introduce aliasing problems, which we want to avoid.
p := malloc set stores a new set location at p and initializes the set heap at the new
location with an empty set. This could not be done using a malloc set-expression plus
assignment, since it is not possible to assign set locations. The statements for element in-
sertion and removal also have to deal with these two cases. Otherwise, they translate to set
insertion and removal respectively. The same holds for the .selectAndRemove-statement.
You may have wondered why it is a nondeterministic semantics. The nondeterminism is
introduced by the .selectAndRemove-statement, since it nondeterministically selects one
of the elements of the speci�ed set. All other statements are deterministic.

The semantics of a program can be seen as the �nite and in�nite sequences of states that
follow its execution. More formally: JProgK 3 〈Prog1, (σ1, η1)〉〈Prog2, (σ2, η2)〉 . . . where
Prog1 = Prog and 〈Progi, (σi, ηi)〉 . 〈Progi+1, (σi+1, ηi+1)〉 for all i.
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5 RESET - An imperative language with sets as primitives

ξ ∈ Loc
ψ ∈ SetLoc
b ∈ B = {0,1}
z ∈ Z = {. . . ,−1, 0, 1, . . .}
s ∈ Set =

⋃
i∈N

f i(∅) where f = λX.P(X ∪B ∪ Z ∪ Loc)

e, i, j ∈ Item = B ∪ Z ∪ Loc ∪ SetLoc
σ ∈ Stack = Var ⇀ Item
η ∈ Heap = (Loc× Sel) ⇀ Item
ς ∈ SetHeap = SetLoc ⇀ Set

(σ, η, ς) ∈ State = Stack× Heap× SetHeap
〈S, (σ, η, ς)〉 ∈ Con�guration = Stmt× State

A : AExp→ State ⇀ Item
P : PExp→ State ⇀ Item
B : BExp→ State ⇀ B

N : Num→ Z

X : Exp→ State ⇀ Item

. . . ⊆ Con�guration× Con�guration

J.K : Prog→ P(Con�guration∗ ∪ Con�gurationω)

Figure 5.7: Semantic Domains

PJxK(σ, η, ς) = σ(x)
PJx.selK(σ, η, ς) = η(σ(x), sel)

BJq ∈ pK(σ, η, ς) =

{
ς(PJqK(σ, η, ς)) ∈ ς(PJpK(σ, η, ς)), if PJqK(σ, η, ς) ∈ SetLoc
PJqK(σ, η, ς) ∈ ς(PJpK(σ, η, ς)), otherwise

BJq ⊆ pK(σ, η, ς) = ς(PJqK(σ, η, ς)) ⊆ ς(PJpK(σ, η, ς))

X JsK(σ, η, ς) =





PJsK(σ, η, ς), if s ∈ PExp,
AJsK(σ, η, ς), if s ∈ AExp,
BJsK(σ, η, ς), if s ∈ BExp

Figure 5.8: Exemplary Semantics of Expressions
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5.3 Dynamic Semantics I

〈x := s, (σ, η, ς)〉 . 〈skip, (σ[x 7→ X JsK(σ, η, ς)], η, ς)〉 [Assignment]
if X JsK(σ, η, ς) ∈ (Item \ SetLoc)

〈x := s, (σ, η, ς)〉 . 〈skip, (σ, η, ς[σ(x) 7→ ς(X JsK(σ, η, ς))])〉 [Assignment-Set]
if X JsK(σ, η, ς) ∈ SetLoc

〈x.sel := s, (σ, η, ς)〉 . 〈skip, (σ, η[(σ(x), sel) 7→ X JsK(σ, η, ς)], ς)〉 [Assignment-Heap]
if X JsK(σ, η, ς) ∈ (Item \ SetLoc)

〈x.sel := s, (σ, η, ς)〉 . 〈skip, (σ, η, ς[η(σ(x), sel) 7→ ς(X JsK(σ, η, ς))])〉 [Assignment-Heap-Set]
if X JsK(σ, η, ς) ∈ SetLoc

〈skip; S, (σ, η, ς)〉 . 〈S, (σ, η, ς)〉 [Skip-Elimination]

〈S1, (σ1, η1, ς1)〉 . 〈S2, (σ2, η2, ς2)〉
〈S1; S, (σ1, η1, ς1)〉 . 〈S2; S, (σ2, η2, ς2)〉 [Seq. Composition]

〈if b then S1 else S2, (σ, η, ς)〉 . 〈S1, (σ, η, ς)〉 where BJbK(σ, η, ς) = 1 [If-True]

〈if b then S1 else S2, (σ, η, ς)〉 . 〈S2, (σ, η, ς)〉 where BJbK(σ, η, ς) = 0 [If-False]

〈while b do S, (σ, η, ς)〉 . 〈S; while b do S, (σ, η, ς)〉 where BJbK(σ, η, ς) = 1 [While-True]

〈while b do S, (σ, η, ς)〉 . 〈skip, (σ, η, ς)〉 where BJbK(σ, η, ς) = 0 [While-False]

〈x := malloc, (σ, η, ς)〉 . 〈skip, (σ[x 7→ ξ], η, ς)〉 [Malloc]
where ξ ∈ Loc and ξ /∈ (im(σ) ∪ dom(η) ∪ im(η) ∪⋃

im(ς))

〈x.sel := malloc, (σ, η, ς)〉 . 〈skip, (σ, η[(σ(x), sel) 7→ ξ], ς)〉 [Malloc-Heap]
where ξ ∈ Loc and ξ /∈ (im(σ) ∪ dom(η) ∪ im(η) ∪⋃

im(ς))

〈x := malloc set, (σ, η, ς)〉 . 〈skip, (σ[x 7→ ψ], η, ς [ψ 7→ ∅])〉 [Malloc-Set]
where ψ ∈ SetLoc and ψ /∈ (im(σ) ∪ im(η) ∪ dom(ς))

〈x.sel := malloc set, (σ, η, ς)〉 . 〈skip, (σ, η[(σ(x), sel) 7→ ψ], ς[ψ 7→ ∅])〉 [Malloc-Set-Heap]
where ψ ∈ SetLoc and ψ /∈ (im(σ) ∪ im(η) ∪ dom(ς))

〈x.insert(s), (σ, η, ς)〉 . 〈skip, (σ, η, ς [σ(x) 7→ (ς(σ(x)) ∪ {i})])〉 [Set-Insert]

where i =

{
ς(X JsK(σ, η, ς)), if X JsK(σ, η, ς) ∈ SetLoc
X JsK(σ, η, ς), otherwise

〈x.remove(s), (σ, η, ς)〉 . 〈skip, (σ, η, ς[σ(x) 7→ (ς(σ(x)) \ {i})])〉 [Set-Remove]

where i =

{
ς(X JsK(σ, η, ς)), if X JsK(σ, η, ς) ∈ SetLoc
X JsK(σ, η, ς), otherwise

〈x := y.selectAndRemove, (σ, η, ς)〉 . 〈skip, (σ[x 7→ el], η, ς[σ(y) 7→ (ς(σ(y)) \ {el})])〉 [Set-SelectRemove]
where el ∈ ς(σ(y)) and el ∈ (Item \ SetLoc)

〈x := y.selectAndRemove, (σ, η, ς)〉 . 〈skip, (σ, η, ς[σ(y) 7→ (ς(σ(y)) \ {el})][σ(x) 7→ el])〉 [Set-SelectRemove-Set]
where el ∈ ς(σ(y)) and el ∈ Set

Figure 5.9: Structural Operational Semantics
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5 RESET - An imperative language with sets as primitives

5.4 Semantics II
We give an alternative semantics that is somewhat closer to implementations of sets. In
contrast to the �rst semantics sets of sets are not stored in a single set heap cell. They are
spread over the set heap via set locations. The domain Set is in fact the only di�erence in
the domains of the two semantics (see Figure 5.11). Figure 5.10 displays the same state as
Figure 5.6.

Spreading sets over the heap introduces some problems that have to be dealt with in the
semantics of set expressions and the inference rules. Comparing two sets becomes more
complicated in this case. If we compare the two sets {ψ′} and {ψ′′} for instance, where
ψ′ and ψ′′ are set locations, we have to compare ς ′(ψ′) and ς ′(ψ′′) with each other. These
might contain other set locations again... The predicate ≈ is introduced for this purpose.
It descends into the heap until reaching primitive values or locations. ≈ is well-de�ned.
This is ensured by the type system. It prevents cyclic set relations and ensures that ≈ will
eventually reach some base case. Without the type system this acyclicity property would
have to be ensured by the semantics itself making it much more complicated.

The semantics of set expressions is de�ned in terms of ≈. q is an element of set p if the
set referenced by p contains some element that is equal to q in the sense of ≈. Notice the
similarity to the de�nition of the isElement instrumentation predicates in the two set im-
plementations of Chapter 4. Set inclusion is handled similarly as can be seen in Figure 5.12.

Figure 5.13 shows the inference rules that di�er. The two inference rules for malloc set
di�er only marginally. Set locations introduced by these statements may not occur in the
image of the set heap. In the �rst semantics, the set heap could not contain set locations
making this condition super�uous there. When inserting elements into sets the inference
rule makes sure that we do not insert duplicate elements. In the �rst semantics this was
ensured by the nature of mathematical sets. As we have seen, di�erent set locations may
represent equal sets in this case. Again, ≈ is utilized to deal with this problem. The same
is done for element removal.

Only one of the two inference rules for .selectAndRemove di�ers from the original ones.
If the statement is applied to sets of sets, it should return a set. However, in contrast to
the �rst semantics, the set contains set locations. So we return the set at that set location.

5.5 Comparison
The main di�erence between the two semantics is the handling of set elements that are
themselves sets. While Semantics I stores entire sets within a single heap cell, Seman-
tics II spreads the set contents over the heap by just inserting set locations. The latter
corresponds more closely to set implementations in imperative languages without sets as
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5.5 Comparison

x:int = 34
y:loc

v:int set set
w:int set

Stack: Heap and Set Heap:

{   ,   }

34 98

da
ta

next

da
ta

{34, 232, 42}

{2, 5} {34, 30, 3}

Figure 5.10: Example State in Semantics II

primitives. In set implementations the data structures that are used to represent the set
are spread over the heap in a similar way. Also, elements may be more complex than just
primitive values.

Comparing sets and testing set membership become more complicated in the alternative
case. Two sets may be equal, but their elements may be at di�erent locations in the heap.
Another implication of spreading sets over the heap is aliasing, which allows elements to
be manipulated after insertion and thus yielding unexpected results.

Without the type system both semantics allow to insert a set into itself or into one of
its constituents. In the �rst semantics this would not cause any problems, since the con-
tents of the set are copied completely. Semantics II would allow to create circular set
de�nitions without the restriction of the type system though. The relation between the
two options roughly corresponds to deep vs. shallow copying (just for elements that are
sets, not for other pointers).

We would now like to formally relate the two given semantics, to which we will refer to as
Semantics I and Semantics II. For this purpose we de�ne a relation between the domains
of the two semantics.

De�nition 15 (Heap Correspondence Relation) A relation ≡ is called a Heap Cor-
respondence Relation on (η, ς) ∈ Heap× SetHeap, (η′, ς ′) ∈ Heap′ × SetHeap′, i�

≡ def
= ≡ss ∪ ≡slsl ∪ ≡ssl ∪ ≡ll ∪ ≡bb ∪ ≡zz

with
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5 RESET - An imperative language with sets as primitives

ξ′ ∈ Loc′
ψ′ ∈ SetLoc′
b ∈ B = {0,1}
z ∈ Z = {. . . ,−1, 0, 1, . . .}

e′, i′, j′ ∈ Item′ = B ∪ Z ∪ Loc′ ∪ SetLoc′
s′ ∈ Set′ = P(Item′)
σ′ ∈ Stack′ = Var ⇀ Item′

η′ ∈ Heap′ = (Loc′ × Sel) ⇀ Item′

ς ′ ∈ SetHeap′ = SetLoc′ ⇀ Set′
(σ′, η′, ς ′) ∈ State′ = Stack′ × Heap′ × SetHeap′

〈S ′, (σ′, η′, ς ′)〉 ∈ Con�guration′ = Stmt× State′

. ≈ .. : ((Item′ ∪ Set′)× (Item′ ∪ Set′)) → State′ ⇀ B

A′ : AExp→ State′ ⇀ Item′

P ′ : PExp→ State′ ⇀ Item′

B′ : BExp→ State′ ⇀ B

N ′ : Num→ Z

X ′ : Exp→ State′ ⇀ Item′

. .′ . ⊆ Con�guration′ × Con�guration′

J.K′ : Prog→ P(Con�guration′∗ ∪ Con�guration′ω)

Figure 5.11: Semantic Domains II

(i′ ≈ j′)(σ′, η′, ς ′) =





i′ = j′, if i′, j′ ∈ B ∪ Z ∪ Loc′

(ς ′(i′) ≈ ς ′(j′))(σ′, η′, ς ′), if i′, j′ ∈ SetLoc′

(i′ ≈ ς ′(j′))(σ′, η′, ς ′), if i′ ∈ Set′, j′ ∈ SetLoc′

(∀x ∈ i′.∃z ∈ j′.(z ≈ x)(σ′, η′, ς ′))

∧(∀x ∈ j′.∃z ∈ i′.(z ≈ x)(σ′, η′, ς ′)), if i′, j′ ∈ Set′
B′Jq ∈ pK(σ′, η′, ς ′) = ∃z.(z ∈ ς ′(P ′JpK(σ′, η′, ς ′)) ∧ (z ≈ P ′JqK(σ′, η′, ς ′))(σ′, η′, ς ′))
B′Jq ⊆ pK(σ′, η′, ς ′) = ∀x ∈ ς ′(P ′JqK(σ′, η′, ς ′)).∃z.(z ≈ x)(σ′, η′, ς ′) ∧ (z ∈ ς ′(P ′JpK(σ′, η′, ς ′))
B′Jq = pK(σ′, η′, ς ′) = (P ′JqK(σ′, η′, ς ′) ≈ P ′JpK(σ′, η′, ς ′))(σ′, η′, ς ′)

Figure 5.12: Di�erences in the Semantics of Expressions
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5.5 Comparison

〈x := malloc set, (σ′, η′, ς ′)〉 .′ 〈skip, (σ′[x 7→ ψ′], η′, ς ′[ψ′ 7→ ∅])〉 [Malloc-Set']
where ψ′ ∈ SetLoc′ and ψ′ /∈ (im(σ′) ∪ im(η′) ∪ dom(ς ′) ∪⋃

im(ς ′))

〈x.sel := malloc set, (σ′, η′, ς ′)〉 .′ 〈skip, (σ′, η′[(σ′(x), sel) 7→ ψ′], ς ′[ψ′ 7→ ∅])〉 [Malloc-Set-Heap']
where ψ′ ∈ SetLoc′ and ψ′ /∈ (im(σ′) ∪ im(η′) ∪ dom(ς ′) ∪⋃

im(ς ′))

〈x.insert(s), (σ′, η′, ς ′)〉 .′ 〈skip, (σ′, η′, ς ′[σ′(x) 7→ i])〉 [Set-Insert']

where ς ′(σ′(x)) def. and i =

{
ς ′(σ′(x)), if ∃z.z ∈ ς ′(σ′(x)) ∧ (z ≈ X ′JsK(σ′, η′, ς ′))(σ′, η′, ς ′)
ς ′(σ′(x)) ∪ {X ′JsK(σ′, η′, ς ′)}, otherwise

〈x.remove(s), (σ′, η′, ς ′)〉 .′ 〈skip, (σ′, η′, ς ′[σ′(x) 7→ i])〉 [Set-Remove']
where ς ′(σ′(x)) def. and i = {j | j ∈ ς ′(σ′(x)) ∧ ¬(j ≈ X ′JsK(σ′, η′, ς ′))(σ′, η′, ς ′)}

〈x := y.selectAndRemove, (σ′, η′, ς ′)〉 .′ 〈skip, (σ′[x 7→ el′], η′, ς ′[σ′(y) 7→ (ς ′(σ′(y)) \ {el′})])〉 [Set-SelectRemove']
where el′ ∈ ς ′(σ′(y)) and el′ ∈ (Item′ \ SetLoc′)

〈x := y.selectAndRemove, (σ′, η′, ς ′)〉 .′ 〈skip, (σ′, η′, ς ′[σ′(y) 7→ (ς ′(σ′(y)) \ {el′})][σ′(x) 7→ ς ′(el′)])〉 [Set-SelectRemove-Set']
where el′ ∈ ς ′(σ′(y)) and el′ ∈ SetLoc′

Figure 5.13: Di�erences in Structural Operational Semantics

• ≡bb⊆ B×B
b1 ≡bb b2 ⇔ (b1 ⇔ b2)

• ≡zz⊆ Z× Z
z1 ≡zz z2 ⇔ (z1 = z2)

• ≡ll⊆ Loc× Loc′
ξ ≡ll ξ′ ⇒ (∀sel ∈ π2(dom(η)).(η(ξ, sel) ≡ η′(ξ′, sel)
∨ (η(ξ, sel) undef. ∧ η′(ξ′, sel) undef.)) ∧ ∀ξ′′.(ξ ≡ll ξ′′ ⇒ ξ′ = ξ′′) ∧ ∀ξ′′.(ξ′′ ≡ll ξ′ ⇒
ξ = ξ′′))

• ≡slsl⊆ SetLoc× SetLoc′
ψ ≡slsl ψ′ ⇔ ς(ψ) ≡ss ς ′(ψ′)

• ≡ssl⊆ Set× SetLoc′
s ≡ssl ψ′ ⇔ s ≡ss ς ′(ψ′)

• ≡ss⊆ Set× Set′
s ≡ss s′ ⇔ (∀i ∈ s.∃i′ ∈ s′.i ≡ i′ ∧ ∀i′ ∈ s′.∃i ∈ s.i ≡ i′)

The conditions for ≡bb and ≡zz require the ≡-relation to follow the usual semantics of
equality for boolean and integer values. If locations correspond with respect to ≡, their
selector-�elds also have to correspond. This requires the second heap η′ to be homomorphic
to the �rst heap η. The condition for ≡ss is probably the most interesting, since it relates
sets, which are represented di�erently in the two semantics. Elements of sets which are
sets themselves need to have a corresponding set location in the other heap. Figure 5.14
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5 RESET - An imperative language with sets as primitives

Heap and Set Heap:

{   ,   }

34 98

da
ta

next

da
ta

{34, 232, 42}

{2, 5} {34, 30, 3}

Heap and Set Heap:

{{2, 5}, {34, 30, 3}}

34 98

da
ta

next

da
ta

{34, 232, 42}

Figure 5.14: Example of Heap Correspondence Relation

gives an example of a Heap Correspondence Relation. We omitted the ≡zz part to make it
more readable.

Lemma 1 (Heap Correspondence Relation Stability) If ≡ is a Heap Correspon-
dence Relation on (η, ς) and (η′, ς ′) and ψ ∈ SetLoc, ψ′ ∈ SetLoc′ and ψ /∈ (im(σ) ∪
im(η) ∪ dom(ς)), ψ′ /∈ (im(σ′) ∪ im(η′) ∪ dom(ς ′) ∪⋃

im(ς ′)) and i ∈ Item, i′ ∈ Item′ with
i 6= ψ, i 6= ψ′, i ≡ i′ and x ∈ Set, x′ ∈ Set′,
then there exist Heap Correspondence Relations ≡′ and ≡′′ with

(η, ς[ψ 7→ x]) ≡′ (η′, ς ′) and i ≡′ i′

and
(η, ς) ≡′′ (η′, ς ′[ψ′ 7→ x′]) and i ≡′′ i′

This expresses that we can change unaliased locations of the set heap without losing the
fact that a Heap Correspondence Relation exists. In addition, the relation between other
items is preserved. We will refer to this lemma as the Stability Lemma.

Proof Sketch:

Give a new Heap Correspondence Relation by adding and removing appropriate ele-
ments from the previous relation. For the full proof see Appendix A.

Now we can go on to de�ne correspondence of states.
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5.5 Comparison

De�nition 16 (Corresponding States) Two states (σ, η, ς) ∈ State, (σ′, η′, ς ′) ∈ State′
are called corresponding, denoted by (σ, η, ς) ∼= (σ′, η′, ς ′), i� there exists a Heap Corre-
spondence Relation ≡ on (η, ς), (η′, ς ′) with

σ(x) ≡ σ′(x) ∨ (σ(x) undef. ∧ σ′(x) undef.) for all x ∈ dom(σ)

The stack serves as an anchor to connect the two states. The existence of a Heap Corre-
spondence Relation then requires the reachable part of the heap and the set heap of the
�rst state to be homomorphically represented by the second state.

Lemma 2 (Set Injectivity) If i, j ∈ Set, i′ ∈ Set′ then

i ≡ i′ ∧ j ≡ i′ ⇒ i = j

That is, sets are unique in Semantics I. For a proof see Appendix A.

The following lemma proves two properties of the relation between a Heap Correspondence
Relation and the ≈-predicate de�ned in Figure 5.12. It will help in the proof of the
Expressions Coincide Lemma.

Lemma 3 (≡ / ≈ Relation) Let ≡ be a Heap Correspondence Relation on (η, ς), (η′, ς ′)
and let σ, σ′ be arbitrary stacks. Then the following holds

1. i ≡ i′ ∧ i ≡ j′ ⇒ (i′ ≈ j′)(σ′, η′, ς ′)

and
2. i ≡ i′ ∧ (i′ ≈ j′)(σ′, η′, ς ′) ⇒ i ≡ j′

That is the following diagram commutes:

i ≡ i′

≡ ≈

j′

Proof Sketch:

Proof by case distinction on the type of i, i′, j′. Induction where i ∈ Set.
The full proof is in the Appendix A.

Theorem 2 (Expressions Coincide) If two states correspond by the previous de�nition,
then all expressions evaluate to equivalent values in both semantics:

(σ, η, ς) ∼= (σ′, η′, ς ′) ⇒
X JsK(σ, η, ς) ≡ X ′JsK(σ′, η′, ς ′) ∨ (X JsK(σ, η, ς) undef. ∧ X ′JsK(σ′, η′, ς ′) undef.)
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5 RESET - An imperative language with sets as primitives

For boolean and integer expressions this means that they evaluate to the same value, since
z1 ≡ z2 ⇔ z1 ≡zz z2 ⇔ z1 = z2 and b1 ≡ b2 ⇔ b1 ≡bb b2 ⇔ (b1 ⇔ b2).
The result will be used in the proof of the Simulation Lemma. In addition it shows that
the de�nition of corresponding states is sensible.
Proof Sketch:

Proof by induction over the structure of the formula. Use the de�nition of a Heap
Correspondence Relation and the previous lemma for most of the base cases. The
step cases are trivial.
See Appendix A for a proof.

De�nition 17 (Corresponding Statements) Two statements S1, S2 correspond, S1 ∼
S2, i� S2 = T (S1), where the transformation T : Stmt→ Stmt is de�ned as follows:

skip 7→ skip

p := s 7→ p := malloc set; p := s if p : t set
p := s 7→ p := s otherwise
S1; S2 7→ T (S1); T (S2)

if b then S1 else S2 7→ if b then T (S1) else T (S2)
while b do S 7→ while b do T (S)
p := malloc 7→ p := malloc

p := malloc set 7→ p := malloc set

x.insert(p) 7→ xtemp := malloc set; xtemp := x; x := malloc set;
x := xtemp; x.insert(p)

x.remove(p) 7→ xtemp := malloc set; xtemp := x; x := malloc set;
x := xtemp; x.remove(p)

x := y.selectAndRemove 7→ ytemp := malloc set; ytemp := y; y := malloc set; if x : t set
y := ytemp; x := malloc set; x := y.selectAndRemove

x := y.selectAndRemove 7→ ytemp := malloc set; ytemp := y; y := malloc set; otherwise
y := ytemp; x := y.selectAndRemove

Before altering sets, they are being copied to a new location. This is to remedy the e�ects
of aliasing that may occur in Semantics II. When inserting a set A into another set B
only its set location is inserted. Changing set A would then also alter set B, which is not
desired and di�erent from Semantics I.

De�nition 18 (Corresponding Con�gurations) Two con�gurations correspond, i� their
statements and their states correspond:

〈S1, (σ1, η1, ς1)〉 ' 〈S2, (σ2, η2, ς2)〉
:⇔

S1 ∼ S2 ∧ (σ1, η1, ς1) ∼= (σ2, η2, ς2)

Semantics II allows aliasing. In order to establish a simulation relation between the two
semantics, we need to be able to eliminate aliasing where desired. The following lemma
shows how this can be achieved.
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5.5 Comparison

Lemma 4 (Aliasing Lemma) Let (σ, η, ς) ∼= (σ′, η′, ς ′).
If 〈xtemp := malloc set; xtemp := x; x := malloc set; x := xtemp; S ′, (σ′, η′, ς ′)〉.′∗〈S ′, (σ′2, η′2, ς ′2)〉
then

(σ, η, ς) ∼= (σ′2, η
′
2, ς

′
2)

and
σ′2(x) /∈ (im(σ′2[x 7→ undef.]) ∪ im(η′2) ∪

⋃
im(ς ′2))

This means that executing the series of statements xtemp := malloc set; xtemp := x;
x := malloc set; x := xtemp on a state (σ′, η′, ς ′) that is corresponding to (σ, η, ς) will
preserve this correspondence, i.e. (σ, η, ς) ∼= (σ′2, η

′
2, ς

′
2). In addition the set location of x is

not aliased in the new state (σ2, η2, ς2).

For a proof see Appendix A.

Lemma 5 (Simulation Lemma) The Simulation Lemma expresses that Semantics II
can mimic the behaviour of Semantics I.

If 〈S1, (σ1, η1, ς1)〉 ' 〈S ′1, (σ′1, η′1, ς ′1)〉 and 〈S1, (σ1, η1, ς1)〉 . 〈S2, (σ2, η2, ς2)〉 then there exists
a 〈S ′2, (σ′2, η′2, ς ′2)〉 with 〈S2, (σ2, η2, ς2)〉 ' 〈S ′2, (σ′2, η′2, ς ′2)〉 and 〈S ′1, (σ′1, η′1, ς ′1)〉 .′∗ 〈S ′2, (σ′2, η′2, ς ′2)〉

This is illustrated by the following diagram:

〈S1, (σ1, η1, ς1)〉 . 〈S2, (σ2, η2, ς2)〉
' '

〈S ′1, (σ′1, η′1, ς ′1)〉 .′∗ 〈S ′2, (σ′2, η′2, ς ′2)〉

Any .−step in Semantics I can be simulated in Semantics II by making one or possibly
more steps.

Proof Sketch:

For every inference rule in Semantics I show that there are inference rules in Semantics
II with an equivalent e�ect. The applicability of most of the corresponding rules
follows from the Expressions Coincide Theorem. Use the Aliasing Lemma to show
that the execution of the commands preceding set operations remove aliases.
For a full proof see Appendix A.

We de�ne sensible initial states for both semantics:

De�nition 19 (Initial States) An initial state (σ, η, ς) of the �rst semantics has the
following properties:
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σ(x) = 0 if x : int
σ(x) = 0 if x : bool
σ(x) undef. if x : loc or x : t set

η(ξ, sel) undef. ∀ξ ∈ Loc.∀sel ∈ Sel

ς(ψ) undef. ∀ψ ∈ SetLoc

An initial state (σ′, η′, ς ′) in Semantics II is de�ned similarly, exchanging σ, η, ς, ξ, ψ with
their respective primed versions.

Building on the Simulation Lemma and the preceding de�nition we are now ready to proof
the main theorem of this chapter.

Theorem 3 (Simulation Theorem) Initial states of both semantics correspond and Se-
mantics II can mimic the behaviour of Semantics I.

If (σ, η, ς) and (σ′, η′, ς ′) are initial states, then (σ, η, ς) ∼= (σ′, η′, ς ′). If 〈S1, (σ1, η1, ς1)〉 '
〈S ′1, (σ′1, η′1, ς ′1)〉 and 〈S1, (σ1, η1, ς1)〉 . 〈S2, (σ2, η2, ς2)〉 then there exists a 〈S ′2, (σ′2, η′2, ς ′2)〉
with 〈S2, (σ2, η2, ς2)〉 ' 〈S ′2, (σ′2, η′2, ς ′2)〉 and 〈S ′1, (σ′1, η′1, ς ′1)〉 .′∗ 〈S ′2, (σ′2, η′2, ς ′2)〉

Proof:

The second part of the theorem is proven by the Simulation Lemma. It remains to
show that initial states correspond. Obviously, a Heap Correspondence Relation ≡ for
(η, ς) and (η′, ς ′) exists, since both η, η′ and ς, ς ′ are completely unde�ned, thus putting
no restrictions on ≡. We also have 0 ≡ 0 and 0 ≡ 0 since this is required by the
de�nition of a Heap Correspondence Relation. So, σ(x) = 0 ≡zz 0 = σ′(x) for x : int
and σ(x) = 0 ≡bb 0 = σ′(x) for x : bool. Also, σ(x) undef. and σ′(x) undef. for
x : loc or x : t set.
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6 Shape Analysis of RESET
To create a shape analysis for our Semantics II we perform two abstraction steps. The
�rst step solely abstracts from values, i.e. booleans and integers. Only the structure of
the heap (the shape) is preserved and represented by 2-valued logical structures. Using
logical structures allows us to make another abstraction to a representation by 3-valued
logical structures which makes our analysis computable since the domain will be �nite. Our
analysis �ts into the framework of [SRW02] introduced in Chapter 2 and is implemented
in TVLA. The following diagram illustrates the relations between the di�erent semantics
and our analysis:

Semantics I

Semantics II

simulates

Shape Analysis
2-valued

abstracts from

Shape Analysis
3-valued

abstracts from

TVLA
Analysis

implemented by

Deterministic
Semantics II

determinizes

6.1 Shape Analysis 2-valued
The 2-valued semantics abstracts from values, i.e. booleans and integers. It does however
remain concrete for the structure of the heap and the set heap, since this is what we want
to analyze in a Shape Analysis. The universe U comprises both locations in the heap and
in the set heap. Alternatively, one could have two disjoint universes. In our case this would
only complicate the de�nitions1.
1We would need two predicates to represent the set heap, one for sets of locations and one for sets of
sets, yielding even more predicate-update formulae.
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Predicate Type Intended Meaning
x(v) for each x ∈ Var U → B Pointer variable x points to heap cell v.
sel(v1, v2) for each sel ∈ Sel U × U → B The sel selector of v1 points to v2.
isSet(v) U → B v represents a set.
isIn(v1, v2) U × U → B v1 is in set v2.
leq(v1, v2) U × U → B An ordering relation on heap cells.
selected(v) U × U → B v has been selected for removal or allocation.
unallocated(v) U → B v has not been allocated yet.

Figure 6.1: Representation of the State by Predicates

6.1.1 Domains

Unary and binary predicates are used to represent the state. These predicates are shown in
Figure 6.1. For every variable a unary predicate is introduced that is true for the element
of the heap or set heap it points to. This set of unary predicates corresponds to what was
called the stack in the Semantics II. To distinguish between locations and set locations the
unary predicate isSet is used. The heap is modeled by a collection of binary predicates,
one for each selector. Such a predicate is true if the selector �eld of the �rst operand points
to the second. Finally, the set heap is modeled by the binary predicate isIn(v1, v2) which
is true if v1 is contained in v2. Notice the subtle di�erence between the relation isIn and
set membership. A set v can also be an element of a set vset if it is equal to another set
vel such that isIn(vel, vset), but not isIn(v, vset). Membership is determined by equality,
not by identity. For sets of locations the two notions coincide, however, because equality
on locations is identity.

Three more predicates are used, namely leq, selected, and unallocated, that are not directly
connected to any of the constructs in the Semantics II. Previously, the x := y.selectAndRemove-
statement was the source of nondeterminism. Our framework does not allow us to specify
nondeterministic update formulae, though. To determinize this operation the predicate leq
is introduced. It imposes a total ordering on the heap and the set heap. This allows us
to deterministically select the �smallest� element of a set. The predicate selected will be
explained in the section about the predicate-update formulae. Since we use a constant do-
main, all heap cells that will eventually be used have to be present right away. unallocated
keeps track of the heap cells that have not yet been allocated or that have been released
again.
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6.1 Shape Analysis 2-valued

Expression exp Type Condition cond(exp)

x1 = x2 x1, x2 : loc ∀v.(x1(v) ⇔ x2(v))
true 1
false 0
¬exp1 ¬cond(exp1)
exp1 ∧ exp2 cond(exp1) ∧ cond(exp2)
exp1 ∨ exp2 cond(exp1) ∨ cond(exp2)

Figure 6.2: Semantics of Expressions

6.1.2 Semantics of Expressions
The conditional statement and the while-loop require the evaluation of boolean expres-
sions. Since we abstract from values, only expressions concerning locations or set locations
have to be considered here. Equality of pointer variables is straightforward. It translates
to equivalence of the two predicates representing the variables. Boolean combinations of
expressions can also be handled easily. See Figure 6.2.

For sets, equality is more complicated. Two sets can be equal although they are stored at
di�erent locations in the set heap. In the Semantics II of the previous chapter this was
handled by ≈, which recursively descended into the set heap. The following de�nition of
predicate eq would be analogous.

eq(v1, v2) = ((∀v3.isIn(v3, v1) ⇒ ∃v4.(isIn(v4, v2) ∧ eq(v3, v4))) ∧ isSet(v1)
∧ (∀v4.isIn(v4, v2) ⇒ ∃v3.(isIn(v3, v1) ∧ eq(v3, v4))) ∧ isSet(v2))
∨ (v1 = v2)

Here however, we need to give an equivalent formula explicitly. It does not seem possible
though for the general case of set equality using �rst-order logic. Fortunately, the maximal
depth of sets can be determined statically by the type system. This allows us to expand
the recursive de�nition su�ciently often. The equal-predicate is serving this purpose:

equal1(v1, v2) = ((∀v3.isIn(v3, v1) ⇒ ∃v4.(isIn(v4, v2) ∧ v3 = v4)) ∧ isSet(v1)
∧ (∀v4.isIn(v4, v2) ⇒ ∃v3.(isIn(v3, v1) ∧ v3 = v4)) ∧ isSet(v2))
∨ (v1 = v2)

equaln+1(v1, v2) = ((∀v3.isIn(v3, v1) ⇒ ∃v4.(isIn(v4, v2) ∧ equaln(v3, v4))) ∧ isSet(v1))
∧ (∀v4.isIn(v4, v2) ⇒ ∃v3.(isIn(v3, v1) ∧ equaln(v3, v4))) ∧ isSet(v2))
∨ (v1 = v2)

equal(v1, v2) = equaln(v1, v2), where n is the maximal nesting depth of sets in the program.

The extra (v1 = v2) in each de�nition of equali acts as a shortcut. It allows equali to be
used for sets of depth i or less. Using equal we can now go on to de�ne the conditions for
all the expressions concerning sets:
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Expression exp Type Condition cond(exp)

x1 = x2 x1, x2 : t set ∃v1.∃v2.(x1(v1) ∧ x2(v2) ∧ equal(v1, v2))
x1 ∈ x2 ∃v1.∃v2.(x1(v1) ∧ x2(v2) ∧ ∃vel.(isIn(vel, v2) ∧ equal(v1, vel)))

x1 ⊆ x2
∃v1.∃v2.(x1(v1) ∧ x2(v2) ∧ ∀vel1.(isIn(vel1, v1)
⇒ ∃vel2.(isIn(vel2, v2) ∧ equal(vel1, vel2))))

6.1.3 Semantics of Statements
The e�ect of statements is modeled by predicate-update formulae. These specify how the
interpretation of the predicate symbols is altered by the execution of the particular state-
ment. We only give update formulae for predicates that are changed by the respective
statement, i.e. formulae that simply copy the previous interpretation are omitted.

The following table displays the predicate-update formulae for statements manipulating
the heap. They are similar to those given in [SRW02].

Statement Type Predicate-update formula
x := y x : loc x′(v) = y(v)
x.sel := y x.sel : loc sel′(v1, v2) = (sel(v1, v2) ∧ ¬x(v1)) ∨ (x(v1) ∧ y(v2))
x := y.sel x : loc x′(v) = ∃v1.(y(v1) ∧ sel(v1, v))

We also split the handling of malloc-statements into two phases. In the �rst phase the heap
cell to be allocated is selected. The selected-predicate is used to mark this heap cell. The
smallest unallocated heap cell is chosen. The second update-formula is then responsible
for assigning that heap cell and for removing it from the unallocated-predicate.

Statement Type Predicate-update formula
x := malloc or
x.sel := malloc− (1)

selected′(v) = unallocated(v)
∧ ∀v1.(unallocated(v1) ⇒ leq(v, v1))

x := malloc set or
x.sel := malloc set− (1)

selected′(v) = isSet(v) ∧ unallocated(v)
∧ ∀v1.((isSet(v) ∧ unallocated(v1)) ⇒ leq(v, v1))

x := malloc or
x := malloc set− (2)

unallocated′(v) = unallocated(v) ∧ ¬selected(v)
x′(v) = selected(v)
selected′(v) = 0

x.sel := malloc or
x.sel := malloc set− (2)

unallocated′(v) = unallocated(v) ∧ ¬selected(v)
sel′(v1, v2) = (¬x(v1) ∧ sel(v1, v2))
∨ (x(v1) ∧ selected(v2))

selected′(v) = 0

The following table shows the update formulae for statements manipulating sets. In these
cases only the isIn predicate is changed. As in the Semantics II, assignments copy the
contents of sets. Elements are inserted into a set if there is no other equal element already
contained in it. When removing an element, all elements equal to it are removed from the
set.
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Statement Type Predicate-update formula

x := y x : t set
isIn′(v1, v2) = ¬x(v2) ∧ isIn(v1, v2)
∨ x(v2) ∧ ∃v3.(y(v3) ∧ isIn(v1, v3))

x.sel := y x.sel : t set
isIn′(v1, v2) = ¬∃v3.(x(v3) ∧ sel(v3, v2)) ∧ isIn(v1, v2)
∨ ∃v3.(x(v3) ∧ sel(v3, v2)) ∧ ∃v4.(y(v4) ∧ isIn(v1, v4))

x := y.sel x : t set
isIn′(v1, v2) = ¬x(v2) ∧ isIn(v1, v2)
∨ x(v2) ∧ ∃v3.(y(v3) ∧ ∃v4.(sel(v3, v4) ∧ isIn(v1, v4)))

x.insert(y)
isIn′(v1, v2) = isIn(v1, v2)
∨ y(v1) ∧ x(v2) ∧ ¬∃v3.(isIn(v3, v2) ∧ equal(v3, v1))

x.remove(y)
isIn′(v1, v2) = isIn(v1, v2)
∧ ¬(x(v2) ∧ ∃v3.(y(v3) ∧ equal(v1, v3)))

We split the x := y.selectAndRemove-statement into two steps to simplify the formulae.
The �rst step selects the element while the second step actually removes it from y and
assigns it to x. As mentioned before, we use the ordering relation leq to determinize the
statement, by choosing the smallest element with respect to leq. This is done in the �rst
step, by setting the selected-predicate to true for this element. Two di�erent formulae are
used for the second step depending on the type of set. When dealing with sets of locations
we have to alter the stack. In the other case, only the set heap, represented by isIn, is
changed. In both cases selected is reset to be universally false.

Statement Type Predicate-update formula
x := y.selectAndRemove

− (1)
selected′(v) = ∃vset.(y(vset) ∧ isIn(v, vset)
∧ ∀vel.(isIn(vel, vset) ⇒ leq(v, vel)))

x := y.selectAndRemove
− (2)

x : loc
x′(v) = selected(v)
isIn′(vel, vset) = isIn(vel, vset)∧¬(y(vset)∧selected(vel))
selected′(v) = 0

x := y.selectAndRemove
− (2)

x : t set

isIn′(vel, vset) = (isIn(vel, vset)
∨ (x(vset) ∧ ∃vsel.(selected(vsel) ∧ isIn(vel, vsel))))
∧ ¬(y(vset) ∧ ∃vsel.(selected(vsel) ∧ equal(vel, vsel)))

selected′(v) = 0

6.2 Shape Analysis 3-valued
We could use the above predicates and predicate-update formulae directly to generate a
3-valued shape analysis using TVLA. In order to gain additional precision it is however
necessary to add instrumentation predicates.

For our small case study we used three instrumentation predicates. See Figure 6.3 for their
de�nition and intended meaning. We did not need to specify update formulae for these
predicates. TVLA generated them automatically through �nite di�erencing [RSL03]. This
greatly reduced the burden on us. The in[x] predicates are used as abstraction predicates.
They serve a similar purpose as the dle[x, sel] predicate family in Chapter 4 and may thus
serve as a motivation for the Abstraction Expressions presented there.
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Predicate De�ning Formula Intended Meaning
isElement(v1, v2) ∃v.(isIn(v, v2) ∧ equal(v1, v)) v1 is an element of set v2.

isSubset(v1, v2))
isSet(v1)∧ isSet(v2)∧
∀v.(isElement(v, v1) ⇒
isElement(v, v2))

v1 is a subset of v2.

in[x](v) for each x ∈ Var ∃v1.(x(v1) ∧ isElement(v, v1)))
v is an element of the
set pointed to by x.

Figure 6.3: Instrumentation Predicates

For our case study these predicates were su�cient. Many other useful predicates are
conceivable. For instance:

• Ternary predicates isElementOfUnion, isElementOfIntersection. Such predicates
would be hard to visualize though.

• Alternatively, one could introduce unary predicates that represent the union or in-
tersection of two speci�c sets. These could be visualized by additional nodes that are
connecting the two sets to the elements.

6.3 Case Study - Intersection Program
To demonstrate that our shape analysis works in practice we conducted a case study. The
task was to analyze the intersection program introduced in Chapter 5, which computes the
intersection of two sets. Using the instrumentation predicates in[X], in[Y ] and in[Z] we
can formalize the property we want to prove in the following way:

∀v.((in[X](v) ∧ in[Y ](v)) ⇔ in[Z](v)).

An object v is a member of Z if and only if it is a member of both X and Y .
Figure 6.4 shows the source code of the program. The references to the contents of X are
�rst copied into the temporary variable Temp. Temp is used to iterate over the contents
of X without destroying X itself. For every element of X we check whether it is also an
element of Y . In this case it is inserted into Z.

We chose one three-valued input structure depicted in Figure 6.5 as input. An empty set
pointed to by empty is kept to be able to check whether a set is empty by comparison.
Unallocated sets are empty. The elements of X and Y are partitioned through the in[x]
predicates into those that are only contained in X, those only contained in Y and those
contained in both X and Y .

Only one output structure is generated for this input. It is displayed in Figure 6.6. The
only di�erence compared to the input structure is that elements that are contained in both
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6.3 Case Study - Intersection Program

void intersection(Set X, Set Y)
{

Temp := malloc set;
Temp := X;
Z := malloc set;
while (Temp != Empty)
{

p := Temp.selectAndRemove;

if (p ∈ Y)
Z.insert(p);

}

p := NULL;
Temp := NULL;

}

Figure 6.4: RESET Program Computing the Intersection

Empty

isSet

X

isSet

Y

isSet

in[X]

isElement

in[Y]

isElement

in[X]
in[Y]

isElement isElement

unallocated isSet
unallocated

Figure 6.5: Input for Intersection Program

X and Y are now also contained in Z. So the program really computes the intersection of
X and Y , the property is proven.
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Empty

isSet

X

isSet

Y

isSet

Z

isSet

in[X]
in[Y]
in[Z]

isElementisElement isElement

in[X]

isElement

in[Y]

isElement

unallocated isSet
unallocated

Figure 6.6: Output of Intersection Program
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7 Modular Analysis
In this chapter we discuss modularity and modular analysis. We show its bene�ts, but
also obstacles on the way to modularity. After describing techniques to overcome these
obstacles we brie�y investigate modular shape analysis.

7.1 Modularity
Modularity is an important concept in software engineering. Some of the advantages that
a modular approach yields in the design process also translate to advantages of modular
analyses. That is why it is useful to investigate what is meant by modularity in a more
general sense before dealing with modular analysis.

According to Bertrand Meyer [Mey88] there are �ve essential criteria for a modular design
method:

• Decomposability
Large problems maybe decomposed into several less complex subproblems, connected
by a simple structure, independent enough to be worked on concurrently.

• Composability
Software elements can be composed to perform a desired task together. This is also
related to reusability.

• Understandability
A method favors modular understandability if it helps to produce modules that can
be separately understood by a human reader.

• Continuity
Small changes in the problem (speci�cation) lead to small changes in the program in
one or just few modules.

• Protection
The e�ect of defects occurring at run-time remains con�ned to the module were it
occurred. Errors should not propagate too far.

Meyer also names �ve rules for modularity that should be followed to achieve modularity
as it is described above. We will list two of them that are related to modular analysis.
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7 Modular Analysis

• Information Hiding
Only a part of every module should be visible to the outside. This part is called the
interface. Implementation details should be hidden. This rule follows primarily from
the Protection aspect.

• Few Interfaces
Every module should communicate with as few others as possible. Changes do not
a�ect many other modules. This favors Continuity and Protection.

Object-oriented languages like Ei�el, C++, or Java allow to follow a modular design
process. To a certain extent this is also possible in imperative languages.

7.2 Bene�ts of Modular Analysis
Modular analyses exploit the modular structure of programs to be analyzed. Figure 7.1
illustrates a possible modular structure of a program. The modules each follow some spec-
i�cation. A modular analysis would analyze each of the modules against its speci�cation
using only the speci�cation of the modules it is using. This is depicted by the dashed
arrows. An analysis of module C for instance, would prove its speci�cation on the basis of
the speci�cations of E and F . It would be independent of the concrete implementations
of E and F .

BSPEC

A

CSPEC

DSPEC
uses

uses

uses

ESPEC FSPEC

usesuses

Figure 7.1: Sample Modular Structure

This separation into several analyses is related to the Protection and the Understandability
criteria. Modules that are separately understandable by humans lend themselves naturally
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7.3 Aliasing

to an analysis following this structure. Errors in the implementation of modules that re-
main con�ned to the module where they occurred will likely be discovered in the analysis
of the speci�c module, allowing the user to localize the problem. A modular analysis can
also pro�t from the Continuity and the Composability aspects of modularity. A change in
the implementation of one module only requires to reanalyze that particular module. The
rest of the analysis remains valid as long as the speci�cation does not change. Modules
that are frequently reused have to be analyzed against their speci�cation only once. This
could be especially useful for widely used libraries.

In addition to these rather qualitative advantages, modular analyses are usually much
faster than whole-program analyses. The simplicity of the speci�cations compared to their
implementations results in smaller domains and thus earlier termination of the analysis
algorithms.

7.3 Aliasing
Unfortunately, it is not always possible to perform modular analyses. Problems arise,
where modules are not completely separated from each other. A modular view requires
that changes to the state of a module can only be made by calls to the interface. This
corresponds to the Information Hiding rule. However, this can usually not be guaranteed
by the constructs of the programming language. When a memory location is reachable
through di�erent access paths, this is called aliasing. Aliasing allows to manipulate the
heap at one place, causing problems at another. Figure 7.2 gives a simple example of
this. x and y point to the same memory cell. If we manipulate y.next this also has an
impact on x.next. Aliasing only becomes a problem in conjunction with mutable locations.

x y

y.next := 6

3 6

next next

x y

Figure 7.2: Simple Aliasing Example

If we have a notion of what is inside and what is outside of a module, we can distinguish
two types of aliasing. Figure 7.3 gives an example involving a tree-based set module. The
boundary of the set is marked by a rectangle, the interface by dots on the boundary. In this
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Set

Representation Exposure

Outgoing References

Figure 7.3: Representation Exposure and Outgoing References

example the data-elements of the set are considered to be outside. They are accessed by
pointers from the tree structure. These pointers are called Outgoing References. Possibly,
there are also paths leading into the module that are not passing through the interface.
Such pointers, that are crossing the boundary from outside to inside are called Incoming
References. Sometimes the inside of a module is called its representation. Then Incoming
References are also referred to as Representation Exposure [Cla01].

Incoming references allow to manipulate the internal structure of the module. They could
be used to destroy the tree structure or the ordering invariant. On the other hand such
references may be useful. For instance, one might want to create an iterator. It would need
to have read access to the internal structure to perform its task. Outgoing references are
also problematic. In our example we could manipulate one of the data elements. This would
in most cases violate the ordering invariant. Figure 7.4 shows the e�ect of manipulating
set elements in a tree-based implementation (a), a list-based implementation (b) and in
Semantics II (c) of Chapter 5. In all of the three cases set membership is changed and the
data structure invariants are broken. The extent of the anomalies di�ers though:

• In the tree-based case the change of a data element can cause parts of the tree to
become �invisible�. A binary search in the tree would not discover the elements 7 and
8. The ordering invariant is broken. There are smaller elements than 11 in the right
subtree.

• The list implementation is not as heavily damaged by changing one of its elements.
In terms of set membership only the manipulated element is a�ected. In addition,
the data structure invariant guaranteeing no duplicate elements is violated. This
invariant could however be relaxed, for it is not necessary for a correct list-based
implementation.
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• Even if sets are primitives problems may arise. We are dealing with the Semantics II
of Chapter 5. It is only possible to construct such a violation in the context of sets
of sets though. This is because we are not able to manipulate primitive elements of
sets. Two identical elements are created, both containing the 7 only (see Figure 7.4).
In fact this corresponds exactly to the di�erence between the two semantics that we
studied earlier.

The extent of the anomalies seems to be related to the complexity of the implementation.
The more sophisticated the implementation, the greater the problems, as depicted in Figure
7.5. A modular analysis could follow two di�erent approaches. It could either try to model
these anomalies and internalize them, or it could rely on some mechanism to prevent the
�bad� things from happening. We will continue to discuss the latter approach.

7.4 Ways to deal with Aliasing
One possibility is to prevent aliasing altogether. This can be achieved by introducing con-
structs that guarantee static checkability by compilers and program analyzers. However,
static checkability requires very conservative de�nitions. These constructs seem to impair
the programmer too much [HLW+92]. An example of such constructs is a swap statement
that replaces normal assignment statements. In addition, many data structures rely on
aliasing like doubly-linked lists.

Another rather basic approach is to allow aliases, but disallow the mutation of aliased ob-
jects. The transformation that we gave to generate equivalent programs in our set language
is an example of alias prevention (De�nition 17). Whenever we want to manipulate a set
we would make a copy of it �rst and manipulate the copy instead.

More sophisticated methods have been developed to limit aliasing in such a way that anom-
alies are prevented, at the same time being �exible enough to allow common programming
patterns to be employed. Examples are Islands [Hog91], Balloon Types [Alm97], Owner-
ship Types [CNP01, BLS03] and Universes [MPH01]. These methods all establish some
sort of encapsulation. What is encapsulation?

�Encapsulation refers to building a capsule, in the case a conceptual barrier, around some
collection of things.� [WBWW90]

When talking about incoming and outgoing references we already had a notion of objects
being inside or outside a module. This is formalized in di�erent ways here. Constraints
can then be imposed on references crossing the encapsulation boundaries. We may forbid
write access or even read access to objects via access paths that cross the boundary. The
di�culty is to provide a �exible yet statically checkable encapsulation scheme.
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Figure 7.4: Anomalies through Outgoing References
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Figure 7.5: Extent of Anomalies

Noble et. al. [NBT+03] introduce a model of encapsulation to be able to compare di�erent
approaches. We give a short overview of the di�erent approaches that partially stems from
[NBT+03]. All of the attempts allow a nesting of encapsulation, so we will usually only
discuss the basic case.

• Islands was the �rst such protection scheme. It provides full encapsulation, i.e.
everything reachable from so-called bridges belongs to the island. References into
the island that do not originate from the bridge are not allowed. References leaving
the island are also prohibited. The island may only be accessed through its bridge.
Aliasing is only allowed within the island.

set

5
7

11
8

data

data

data

data

data 4

Bridge

Island

• Balloons is quite similar to Islands. It also provides full encapsulation. In contrast
to Islands the entry to the balloon may not be aliased. The advantage of Balloons is
that it needs less syntactic overhead than Islands to achieve encapsulation. It relies
on an Abstract Interpretation to check whether the constraints imposed are met.
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• Ownership Types do not necessarily enforce full encapsulation. An ownership relation
owner between objects is established that forms a tree. Owners serve as entry points
to the elements they encapsulate. In contrast to the full encapsulation schemes
references may cross the boundaries from inside to outside. Entrance is still restricted
to owners. Let ownedby be the transitive closure of the inverse of the owner relation.
Then we can formalize this in the following way:

s −→ t ⇒ s ownedby owner(t)

= ownership
relation

= access

The additional �exibility gained by this is quite useful. For instance, it is now possible
to di�erentiate between arguments and representation. Consider an unsorted linked-
list. We are able to distinguish between elements stored in the list and the connecting
structure. We can thus shield the structure, while keeping the elements available
outside of it. For our set implementations this is not advisable as we have seen
before. Our data structure invariants depend on the elements.

• Universes is similar to Ownership Types. It provides a little more �exibility by
using read-only references. These may cross arbitrarily cross boundaries. Important
programming patterns like iterators for existing containers can be created using read-
only references. This was not possible with Ownership Types.
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7.5 Modular Shape Analysis
We now want to informally explore how a modular shape analysis could look like and how
our previous analyses relate to this.

An important question is how to express module speci�cations. On the one hand we need to
be able to check that a module complies to its speci�cation. On the other hand we want to
use the speci�cation as the basis for the analysis of programs that are using the module. It
seems useful to specify the modules in the same language as the conventional shape analy-
ses. This way we do not have to bridge an additional gap. In the shape analysis framework
of [SRW02] �rst-order logic is used for this purpose. In this domain a module speci�cation
would consist of a number of predicates representing the state of the module and predicate-
update formulae that model the e�ect of the module's methods. A disadvantage of this
approach is that it is harder to write such speci�cations compared to algebraic speci�cation

How would such a speci�cation look like for a set module? In fact, the shape analy-
sis developed in Chapter 6 contains predicates solely devoted to representing sets and
predicate-update formulae to model the e�ect of the set methods. They may well serve as
an example for a module speci�cation. Using such a module speci�cation in an analysis
is easy. We replace the predicates used for the concrete implementation of the module
by the predicates of the speci�cation. Calls to module methods are interpreted by the
predicate-update formulae of the speci�cation instead of applying the methods of the im-
plementation. In our set example an analysis can greatly bene�t from this: The domain is
reduced by using a smaller number of predicates. The e�ect of set methods can be com-
puted by applying single predicate-update formulae. As we have seen in Chapter 4, a single
invocation of the remove method could previously result in an analysis taking several hours.

Using a module speci�cation requires that we have proven that the concrete implementation
actually complies with it. For this purpose we have to somehow relate the domains of the
implementation and the speci�cation. Since both domains are speci�ed using �rst-order
logic, we de�ne the predicates of the speci�cation domain by formulae over the predicates
used in the implementation. This resembles the de�nition of instrumentation predicates.
We used the following two predicates to represent sets primitively (Chapter 6):

Predicate Type Intended Meaning
isSet(v) U → B v represents a set.
isIn(v1, v2) U × U → B v1 is in set v2.

We can relate these predicates to the tree-based implementation like this:

Predicate Related Tree-based Expression
isSet(v) isSet(v) ∧ treeNess ∧ inOrder
isIn(v1, v2) downStar(v1, v2)
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Figure 7.6: Does this constitute a sound Modular Shape Analysis?

where treeNess and inOrder capture the two data structure invariants for ordered trees
and where downStar(v1, v2) is de�ned as follows

Predicate De�ning Formula
down(v1, v2) left(v1, v2) ∨ right(v1, v2)
downStar(v1, v2) down∗(v1, v2)

Interestingly, our TVLA analysis already used the instrumentation predicate downStar
which directly corresponds to isIn. After relating the domains we have to prove that the
e�ect of the set methods in the implementation and the speci�cation on related structures
results in related structures again. In addition, we have to show that other operations
cannot e�ect the structures in the implementation. We believe that these tasks should be
dealt with separately. The former task could possibly be performed by a shape analysis
similar to the one described in Chapter 4. The latter could be taken care of by employing
an alias protection scheme like Islands. As we have seen in Figure 7.5 the primitive seman-
tics was a�ected di�erently by aliasing than the implementations. So such a protection
scheme is necessary.

Let us summarize how the analyses in Chapters 4 and 6 �t in here. In Chapter 4 we
partially proved the conformance of list- and tree-based set implementations to the speci�-
cation of the ADT Set de�ned in Chapter 3. Later we de�ned a semantics of an imperative
language that contains sets as primitives. The de�nition was speci�cally designed to con-
form with the ADT Set speci�cation. In Chapter 6 we created a shape analysis for this
semantics and successfully applied it to a simple program. Although we took the detour
via the ADT Set speci�cation the resulting shape analysis seems to constitute a speci�ca-
tion of the set implementations. We have not proven this though. Figure 7.6 illustrates this.
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7.6 Assume/Guarantee Reasoning
While the approaches above try to prevent the negative e�ects of aliasing, another possi-
bility would be to internalize these e�ects into the analysis. Such analyses are not really
modular, but they might still help to make shape analysis algorithms scale better and they
put less of a burden on the programmer to enter speci�cations.

In Assume/Guarantee Reasoning [YRS04, YSRS05] the e�ect of procedures on the heap
is symbolically characterized. The programmer has to provide the precondition of proce-
dures. Through abstract interpretation and the use of a theorem prover a precise symbolic
representation of the e�ect of the procedure is then inferred. Inputs and outputs are con-
nected in such a formula by using primed and unprimed versions of the predicates. When
analyzing a program that uses such a procedure, the validity of the precondition is checked
�rst. Then the precomputed e�ect is applied on the current state. Both steps involve the
use of theorem provers. This limits the application to decidable logics. By staying in the
domain of the implementation aliasing e�ects can be modeled without problems.
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8 Conclusion
In this chapter we want to brie�y recapitulate our contributions and discuss possible future
work on that basis.

8.1 Contributions
We created a precise shape analysis for programs that are manipulating ordered trees. It
is particularly tailored to invariants of the tree data structure. Choosing the right instru-
mentation predicates required a thorough understanding of the data structures involved.
This meant identifying that reachability alone is not very interesting, but that the �rst
edge on a path from one node to another is important. We implemented the analysis in
TVLA [LA00, LAS00] and successfully applied it to methods of the tree-based set imple-
mentation. The analysis proved that the implementation complies to the axioms (3) and
(4) of the ADT Set speci�cation.

a ∈ s.insert(b) ↔ a =el b ∨ a ∈ s, (3)
a ∈ s.remove(b) ↔ a 6=el b ∧ a ∈ s (4)

We used the isElement-predicate to relate di�erent analyses. Our analyses of the insertion
and removal methods established the two axioms in terms of isElement. Another analy-
sis then established the equivalence between isElement and the set membership method
·.insert(·). Adapting existing analyses for singly-linked lists allowed us to show the same
property for our list-based set implementation.

Inspired by a family of instrumentation predicates used in our tree analysis, we propose a
new way of specifying abstractions by so-called �Abstraction Expressions�. These expres-
sions allow to not only use unary but also binary predicates in the abstraction speci�cation.
�Abstraction Expressions� have the same expressive power as Canonical Abstraction. How-
ever, we need a smaller number of predicates to express certain abstractions.

We also investigated the relation between the complexity of the domains of implementations
and the extent of anomalies caused by aliasing. We found that the extent of anomalies
rises with the complexity of the domains. Figure 8.1 illustrates this. Even the Semantics II
of our RESET language shows some aliasing problems, although its domain is very simple.
Problems occur only with sets of sets though.

91



8 Conclusion

We formally related Semantics I and Semantics II to identify where problems occur ex-
actly. Relating the two semantics also hints at one way of overcoming aliasing problems, a
technique known as alias prevention.
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Semantics I

Primitive,
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List-based
implementation

Tree-based
implementation

no danger

only sets of
sets affected

only one
element affected

other elements
lost as well

Figure 8.1: Extent of Anomalies

8.2 Future Work
In Chapter 4, we successfully analyzed a tree-based set implementation. Since the analysis
is tailored to the underlying data structure and not to the speci�c algorithms employed, it
might be possible to analyze other algorithms working on trees using the same abstraction.

The tree structure lends itself naturally to recursion. We could possibly combine recent
work on interprocedural shape analysis [RS01] with our abstractions to be able to analyze
recursive implementations. Modern data structure libraries usually contain more e�cient
set implementations using balanced trees, like AVL or red-black trees. They maintain even
more complicated data structure invariants than the unbalanced tree implementation we
analyzed. Algorithms on these structures can usually be implemented more easily using
recursion, too. Extending our analysis to cope with the invariants of balanced trees might
make such algorithms amenable as well.

Abstraction Expressions seem useful where we want to distinguish individuals if they di�er
by binary predicates originating from individuals that we distinguish. In our tree-based
analysis, we could separate smaller and larger tree elements. In the shape analysis for
RESET, we could use the set membership relation to separate individuals in terms of the
sets they belong to. An implementation of the concept would allow deeper insight into the
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usefulness of the approach.

In Chapter 7 we discussed modular analysis. Aliasing was identi�ed as an obstacle on
the way to modular analyses. Di�erent encapsulation schemes were brie�y introduced
that limit aliasing. It would be interesting to investigate such protection mechanism even
further. How much do the constructs of the scheme constrain our design? Do the guar-
antees given by the encapsulation scheme su�ce to perform sound modular shape analyses?

Modular Analysis requires module speci�cations. We started out using algebraic spec-
i�cation to specify the ADT Set. The technique proved convenient as a speci�cation
mechanism. However, formally relating implementations to algebraic speci�cations is not
so easy. It is also not obvious how to base a shape analysis on such a speci�cation. In
Chapter 7 we proposed to stay in the �rst-order logic domain for the speci�cation. This
makes it easier to analyze programs on the basis of the speci�cation. Figure 8.2 illus-
trates the situation. Can other speci�cation techniques better cover the triangle? Can
we possibly transform algebraic speci�cations into the domain of the analyses? Maybe we
can automatically generate obligations for shape analysis that are necessary to show the
compliance of implementations to algebraic speci�cations.

Ease of
Specification

Analyzing
Implementations

Analyzing
Programs

Algebraic
Specification

Predicates and
Transformers

?

Figure 8.2: Properties of Speci�cations for Modular Analysis
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A Proofs
Lemma 1:

Proof:

We will prove this constructively: ≡=≡′ \({ψ}×SetLoc′)∪{(ψ, s′) | (∀i ∈ x.∃i′ ∈ x′.i ≡
i′∧∀i′ ∈ s′.∃i ∈ x.i ≡ i′)}. Since ψ /∈ (im(σ)∪im(η)∪dom(ς)), ψ does not occur in any
of the requirements for ≡′ll,≡′ssl,≡′ss. This means that all elements of ≡ll,≡ssl and ≡ss

remain correct after changing ς. ≡′bb and ≡′zz are the same in any Heap Correspondence
Relation, so we are left with ≡′slsl. The pairs with ψ in the �rst component have to be
adjusted. This is achieved by the removal of all existing pairs and the addition of pairs
according to the de�nition. No pairs regarding i or i′ are removed either, proving the
second part of the conjunction.

The proof for ≡′′ is analogous.

Lemma 2:

Proof:

Proof by induction over the type of set that i, j and i′ represent.

• Base case: i, j, i′ represent sets of primitive values (B,Z)
The de�nition of ≡ can be simpli�ed to plain set equality in this case.
i ≡ i′ ⇒ i ≡ss i′ ⇒ i = i′ and j ≡ i′ ⇒ j ≡ss i′ ⇒ j = i′.
So i = j.

• Base case: i, j, i′ represent sets of locations.
We prove i ⊆ j and j ⊆ i:
� e ∈ i ⇒ ∃e′ ∈ i′.e ≡ll e′

e′ ∈ i′ ⇒ ∃e′′ ∈ j.e′′ ≡ll e′

Since ≡ll is by de�nition injective, e = e′′.
� Completely analogous exchanging i and j.

• Step case: i, j, i′ represent sets of sets.
Again, we prove i ⊆ j and j ⊆ i:
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� e ∈ i ⇒ ∃e′ ∈ i′.e ≡ssl e′ ⇒ e ≡ss ς ′(e′)
e′ ∈ i ⇒ ∃e′′ ∈ j.e′′ ≡ssl e′ ⇒ e′′ ≡ss ς ′(e′)
By induction hypothesis e = e′′, so e ∈ j.

� Completely analogous exchanging i and j.

Lemma 3:

Proof:
1. • Case 1: i, i′, j′ ∈ B

i ≡ i′ ⇒ i ≡bb i′ ⇒ (i ⇔ i′)
i ≡ j′ ⇒ i ≡bb j′ ⇒ (i ⇔ j′)
((i ⇔ i′) ∧ (i ⇔ j′)) ⇒ (i′ ⇔ j′) ⇒ (i′ ≈ j′)(σ′, η′, ς ′)

• Case 2: i, i′, j′ ∈ Z
Analogous to previous case.

• Case 3: i ∈ Loc, i′, j′ ∈ Loc′
i ≡ i′ ⇒ i ≡ll i′ ⇒ ∀i′′.(i ≡ll i′′ ⇒ i′ = i′′)
i ≡ j′ ⇒ i ≡ll j′ ⇒ i′ = j′ ⇒ (i′ ≈ j′)(σ′, η′, ς ′)

• Case 4: i ∈ Set, i′, j′ ∈ SetLoc′
Proof by induction over the type of set represented by i.
� Base case: i represents a set of locations or of primitive values

It is su�cient to show that ς ′(i′) = ς ′(j′), because this entails (i′ ≈
j′)(σ′, η′, ς ′).
∗ ς ′(i′) ⊆ ς ′(j′) :

e′ ∈ ς ′(i′) ⇒ ∃e ∈ i.e ≡ e′

e ∈ i ⇒ ∃e′′ ∈ ς ′(j′).e ≡ e′′

For B,Z and Loc ≡ is functional, that is e is related to at most one
element, so e′ = e′′ and (e′ ≈ e′′)(σ′, η′, ς ′).

∗ ς ′(j′) ⊆ ς ′(i′) :
Analogous to previous case.

� Step case: i is a set of sets.
We have to prove (i′ ≈ j′)(σ′, η′, ς ′) = (∀x ∈ ς ′(i′).∃z ∈ ς ′(j′).(z ≈
x)(σ′, η′, ς ′)) ∧ (∀x ∈ ς ′(j′).∃z ∈ ς ′(i′).(z ≈ x)(σ′, η′, ς ′)). We will �rst
prove the �rst part of the conjunction. The second part is analogous.
∗ ∀x ∈ ς ′(i′).∃z ∈ ς ′(j′).(z ≈ x)(σ′, η′, ς ′)

i ≡ i′ ⇒ (e′ ∈ ς ′(i′) ⇒ ∃e ∈ i.e ≡ssl e′)
i ≡ j′ ⇒ (e ∈ i ⇒ ∃e′′ ∈ ς ′(j′).e ≡ssl e′′)
By induction hypothesis we can infer (e′ ≈ e′′)(σ′, η′, ς ′). Since e′′ ∈ j′

we have found a corresponding element for e′.
∗ ∀x ∈ ς ′(j′).∃z ∈ ς ′(i′).(z ≈ x)(σ′, η′, ς ′)

Analogous to �rst part.
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• Case 5: i ∈ Set, i′, j′ ∈ Set′
We have to prove (∀e′ ∈ i′.∃e′′ ∈ j′.(e′ ≈ e′′)(σ′, η′, ς ′))∧(∀e′′ ∈ j′.∃e′ ∈ i′.(e′ ≈
e′′)(σ′, η′, ς ′)). We will separately prove the two parts of the conjunction.
� ∀e′ ∈ i′.∃e′′ ∈ j′.e′ ≡ e′′

e′ ∈ i′ ⇒ ∃e ∈ i.e ≡ e′ and
e′ ∈ i ⇒ ∃e′′ ∈ j′.e ≡ e′′.
Using the previous cases we can infer (e′ ≈ e′′)(σ′, η′, ς ′).

� ∀e′′ ∈ j′.∃e′ ∈ i′.e′ ≡ e′′

Analogous to previous case.
• Case 6: i ∈ SetLoc, i′, j′ ∈ SetLoc′

i ≡slsl i′ ⇒ ς(i) ≡ss ς ′(i′) and
i ≡slsl j′ ⇒ ς(i) ≡ss ς ′(j′)
By case 5 we can infer (ς ′(i′) ≈ ς ′(j′))(σ′, η′, ς ′). By de�nition of ≈ this is
equivalent to (i′ ≈ j′)(σ′, η′, ς ′).

2. • Case 1: i, i′, j′ ∈ B
i ≡ i′ ⇒ (i ⇔ i′)
(i′ ≈ j′)(σ′, η′, ς ′) ⇒ (i′ ⇔ j′)
((i ⇔ i′) ∧ (i′ ⇔ j′)) ⇒ (i ⇔ j′) ⇒ (i ≡ j′′)

• Case 2: i, i′, j′ ∈ Z
Analogous to previous case.

• Case 3: i ∈ Loc, i′, j′ ∈ Loc′
(i′ ≈ j′)(σ′, η′, ς ′) ⇒ i′ = j′

(i ≡ i′ ∧ i′ = j′) ⇒ (i ≡ j′)

• Case 4: i ∈ Set, i′, j′ ∈ SetLoc′
Proof by induction over the type of set represented by i.
� Base case: i represents a set of locations or of primitive values

Here, ≈ simpli�es to set equality of the referenced sets.
(ς ′(i′) ≈ ς ′(j′))(σ′, η′, ς ′) ⇒ ς ′(i′) = ς ′(j′). i ≡ssl i′ is equivalent to i ≡ss

ς ′(i′). By the previous equality we get i ≡ss ς(j′) which is again equivalent
to i ≡ssl j′.

� Step case: i represents a set of sets.
We have to prove i ≡ j′ ⇔ i ≡ss ς ′(j′) ⇔ (∀e ∈ i.∃e′′ ∈ ς ′(j′).e ≡
e′′ ∧ ∀e′′ ∈ ς ′(j′).∃e ∈ i.e ≡ e′′) We will separately prove the two parts of
the conjunction.
∗ ∀e ∈ i.∃e′′ ∈ ς ′(j′).e ≡ e′′

e ∈ i ⇒ ∃e′ ∈ ς ′(i′).e ≡ssl e′ and
e′ ∈ ς ′(i′) ⇒ ∃e′′ ∈ ς ′(j′).(e′ ≈ e′′)(σ′, η′, ς ′).
By induction hypothesis we can infer e ≡ e′′.

∗ ∀e′′ ∈ ς ′(j′).∃e ∈ i.e ≡ e′′

Analogous to previous case.
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• Case 5: i ∈ Set, i′, j′ ∈ Set′
We have to prove i ≡ j′ ⇔ (∀i ∈ s.∃i′ ∈ s′.i ≡ i′ ∧ ∀i′ ∈ s′.∃i ∈ s.i ≡ i′).
We will separately prove the two parts of the conjunction.
� ∀e ∈ i.∃e′′ ∈ j′.e ≡ e′′

e ∈ i ⇒ ∃e′ ∈ i′.e ≡ e′ and
e′ ∈ i′ ⇒ ∃e′′ ∈ j′.(e′ ≈ e′′)(σ′, η′, ς ′).
Using the previous cases we can infer e ≡ e′′.

� ∀e′′ ∈ j′.∃e ∈ i.e ≡ e′′

Analogous to previous case.
• Case 6: i ∈ SetLoc, i′, j′ ∈ SetLoc′

i ≡slsl i′ ⇒ ς(i) ≡ss ς ′(i′) and
(i′ ≈ j′)(σ′, η′, ς ′) ⇒ (ς ′(i′) ≈ ς ′(j′))(σ′, η′, ς ′).
By case 5 we can follow ς(i) ≡ss ς ′(j′) which implies i ≡slsl j′.

Theorem 2:

Proof:
Proof by induction over the structure of the formula.

• Base cases: s = Num and s = true and s = false
Trivial.

• Base case: s = x
By de�nition σ(x) ≡ σ′(x) or σ(x) and σ′(x) are unde�ned.
In the former case X JxK(σ, η, ς) = σ(x) ≡ σ′(x) = X ′JxK(σ′, η′, ς ′). If both values
are unde�ned our condition is also ful�lled.

• Base case: s = x.sel
Again σ(x) and σ′(x) maybe unde�ned. Then the condition is trivially true. Other-
wise, by de�nition σ(x) ≡ σ′(x) implies σ(x) ≡ll σ′(x). This implies η(σ(x), sel) ≡
η′(σ′(x), sel) ∨ (η(σ(x), sel) undef. ∧ η′(σ′(x), sel) undef.).

� Case 1: η(σ(x), sel) de�ned: X Jx.selK(σ, η, ς) = PJx.selK(σ, η, ς) = η(σ(x), sel) =
η′(σ′(x), sel) = P ′Jx.selK(σ′, η′, ς ′) = X ′Jx.selK(σ′, η′, ς ′)

� Case 2: η(σ(x), sel) undef.: X Jx.selK(σ, η, ς) = PJx.selK(σ, η, ς) = undef. =
undef. = P ′Jx.selK(σ′, η′, ς ′) = X ′Jx.selK(σ′, η′, ς ′)

By the previous two cases we know that either PJqK(σ, η, ς) ≡ P ′JqK(σ′, η′, ς ′) or
PJqK(σ, η, ς) and P ′JqK(σ′, η′, ς ′) are both unde�ned. In the latter case also the ex-
pression s will be unde�ned in both cases. Thus, we will only deal with the case that
the values are de�ned in the sequel. This also holds for PJpK(σ, η, ς) and P ′JpK(σ′, η′, ς ′).
Since PJqK(σ, η, ς) ≡ P ′JqK(σ′, η′, ς ′) also ς(PJqK(σ, η, ς)) ≡ ς ′(P ′JqK(σ′, η′, ς ′)) (∗).
For the same reason ς(PJpK(σ, η, ς)) ≡ ς ′(P ′JpK(σ′, η′, ς ′)) (∗∗).
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• Base case: s = q ∈ p
We will separately look at two cases:
1. PJqK(σ, η, ς) ∈ SetLoc, that is q represents a set.
2. PJqK(σ, η, ς) /∈ SetLoc, q represents some primitive value or a location.
1. Proof of �⇒":
X Jq ∈ pK(σ, η, ς) ⇒ ς(PJqK(σ, η, ς)) ∈ ς(PJpK(σ, η, ς))
(∗∗) ⇒ ∃z ∈ ς ′(P ′JpK(σ′, η′, ς ′)).ς(PJqK(σ, η, ς)) ≡ssl z ⇒
ς(PJqK(σ, η, ς)) ≡ss ς ′(z) ⇒ PJqK(σ, η, ς) ≡slsl z
By PJqK(σ, η, ς) ≡slsl P ′JqK(σ′, η′, ς ′) and the previous lemma:
(z ≈ P ′JqK(σ′, η′, ς ′))(σ′, η′, ς ′). So X ′Jq ∈ pK(σ′, η′, ς ′).

Proof of �⇐":
X ′Jq ∈ pK(σ′, η′, ς ′) ⇒ ∃z ∈ ς ′(P ′JpK(σ′, η′, ς ′)).(z ≈ P ′JqK(σ′, η′, ς ′))(σ′, η′, ς ′).
Since PJqK(σ, η, ς) ≡slsl P ′JqK(σ′, η′, ς ′) and by the previous lemma:
PJqK(σ, η, ς) ≡slsl z ⇒ ς(PJqK(σ, η, ς)) ≡ss ς ′(z).
(∗∗) ⇒ ∃y ∈ ς(X JpK(σ, η, ς)).y ≡ssl z ⇒ y ≡ss ς ′(z). By the Set Injec-
tivity Lemma we infer that y = ς(PJqK(σ, η, ς)) and thus ς(PJqK(σ, η, ς)) ∈
ς(PJpK(σ, η, ς)), so X Jq ∈ pK(σ, η, ς).

2. Here, X ′Jq ∈ pK(σ′, η′, ς ′) simpli�es to P ′JqK(σ′, η′, ς ′) ∈ ς ′(P ′JpK(σ′, η′, ς ′)).
Proof of �⇒":
X Jq ∈ pK(σ, η, ς) ⇒ PJqK(σ, η, ς) ∈ ς(PJpK(σ, η, ς))
(∗∗) ⇒ ∃z ∈ ς ′(P ′JpK(σ′, η′, ς ′)).PJqK(σ, η, ς) ≡ z
Since we also know that PJqK(σ, η, ς) ≡ P ′JqK(σ′, η′, ς ′) we can infer by the
previous lemma, that (z ≈ P ′JqK(σ′, η′, ς ′))(σ′, η′, ς ′) and therefore X ′Jq ∈
pK(σ′, η′, ς ′).

Proof of �⇐":
X ′Jq ∈ pK(σ′, η′, ς ′) ⇒ P ′JqK(σ′, η′, ς ′) ∈ ς ′(P ′JpK(σ′, η′, ς ′))
(∗∗) ⇒ ∃z ∈ ς(PJpK(σ, η, ς)).z ≡ P ′JqK(σ′, η′, ς ′). By the injectivity of ≡
on B,Z and Loc and the fact PJqK(σ, η, ς) ≡ P ′JqK(σ′, η′, ς ′) we infer z =
PJqK(σ, η, ς). So X Jq ∈ pK(σ, η, ς).

• Base case: s = q ⊆ p
Proof of �⇒":
X Jq ∈ pK(σ, η, ς) ⇒ ς(PJqK(σ, η, ς)) ⊆ ς(PJpK(σ, η, ς))
(x ∈ ς ′(P ′JqK(σ′, η′, ς ′)) ∧ (∗)) ⇒ ∃z ∈ ς(PJqK(σ, η, ς)).z ≡ x ⇒
(z ∈ ς(AJpK(σ, η, ς)) ∧ (∗∗)) ⇒ ∃z′ ∈ A′JqK(σ′, η′, ς ′).z ≡ z′.
By the previous lemma: (x ≈ z′)(σ′, η′, ς ′). Thus, X ′Jq ∈ pK(σ′, η′, ς ′)

Proof of �⇐":
X ′Jq ∈ pK(σ′, η′, ς ′) ⇒ ∀x ∈ ς ′(P ′JqK(σ′, η′, ς ′)).∃z ∈ ς ′(P ′JpK(σ′, η′, ς ′)).(z ≈
x)(σ′, η′, ς ′)
(x ∈ ς(AJqK(σ, η, ς)) ∧ (∗)) ⇒ ∃z ∈ ς ′(P ′JqK(σ′, η′, ς ′)).x ≡ z.
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X ′Jq ∈ pK(σ, η, ς) ⇒ ∃z′ ∈ ς ′(P ′JpK(σ′, η′, ς ′)).(z ≈ z′)(σ′, η′, ς ′)
By the previous lemma x ≡ z′. (∗∗) ⇒ ∃x′ ∈ ς(AJpK(σ, η, ς)).x′ ≡ z′

Case distinction depending on type of x:
� x ∈ (B ∪ Z ∪ Loc):
≡ is by de�nition injective on these values, so x = x′

� x ∈ Set:
Then x ≡ z′ ⇒ x ≡ssl z′ ⇒ x ≡ss ς ′(z′) and
x′ ≡ z′ ⇒ x′ ≡ssl z′ ⇒ x′ ≡ss ς ′(z′). By the Set Injectivity Lemma x = x′.

So, X Jq ∈ pK(σ, η, ς).
• Step case: s = ¬b1

Again, either BJb1K(σ, η, ς) and B′Jb1K(σ′, η′, ς ′) are unde�ned (then also X JsK(σ, η, ς)
and X ′JsK(σ′, η′, ς ′) are unde�ned) or the following holds:
X J¬b1K(σ, η, ς) = not BJb1K(σ, η, ς) ⇔︸︷︷︸

I.H.

not B′Jb1K(σ′, η′, ς ′) = X ′J¬b1K(σ′, η′, ς ′)

• Step case: s = a1 opa a2

If AJa1K(σ, η, ς) or AJa2K(σ, η, ς) are unde�ned, then also their counterparts are
unde�ned and thus both X Ja1 opa a2K(σ, η, ς) and X ′Ja1 opa a2K(σ′, η′, ς ′) are
unde�ned. Otherwise, by induction hypothesis:
AJa1K(σ, η, ς) = A′Ja1K(σ′, η′, ς ′) and AJa2K(σ, η, ς) = A′Ja2K(σ′, η′, ς ′)
X Ja1 opa a2K(σ, η, ς) =
AJa1K(σ, η, ς) opa AJa2K(σ, η, ς) = A′Ja1K(σ′, η′, ς ′) opa A′Ja2K(σ′, η′, ς ′) =
X ′Ja1 opa a2K(σ′, η′, ς ′)

• Step cases: s = a1 opr a2 and s = b1 opb b2

Analogous to previous case.

Lemma 4:
Proof:

We prove the two claims separately.

• (σ, η, ς) ∼= (σ′2, η
′
2, ς

′
2)

Let ≡ be the Heap Correspondence Relation on (η, ς) and (η′, ς ′). We need to
prove that there exists a Heap Correspondence Relation ≡′ for (η, ς) and (η′2, ς

′
2)

and that σ(y) ≡′ σ′2(y) for all y ∈ dom(σ). By the Stability Lemma we easily
infer that there exists a ≡′ with (η, s) ≡′ (η′2, ς ′2). The two malloc set statements
introduce unaliased set locations, which are then manipulated. For all variables
y ∈ (dom(σ) \ {x} we know that σ′2(y) 6= σ′2(x) by the condition for [Malloc-Set'].
Again we can use the Stability Lemma to �nd that σ(y) ≡′ σ′2(y). So it only
remains to show that σ(x) ≡′ σ′2(x).
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One easily sees that ς ′(σ′(x)) = ς ′2(σ
′
2(x)). By the fact that (σ, η, ς) ∼= (σ′, η′, ς ′) we

know that σ(x) ≡ σ′(x) and thus ς(σ(x)) ≡ ς ′(σ′(x)). Since ς ′(σ′(x)) 6= σ′2(x) we
infer by the Stability Lemma ς(σ(x)) ≡′ ς ′(σ′(x)). From this and the previous fact
we conclude ς(σ(x)) ≡′ ς ′2(σ′2(x)) which is by de�nition equivalent to σ(x) ≡ σ′2(x).

• σ′2(x) /∈ (im(σ′2[x 7→ undef.]) ∪ im(η′2) ∪
⋃

im(ς ′2)) σ′2(x) = ψ′2. The inference rule
[Malloc-Set] ensures that ψ′2 does not occur in the state also [Assignment-Set] does
only change the contents of ς(ψ′2) which proves the claim.

Lemma 5:
Proof:

We will show that whenever an inference rule in Semantics I applies, there are inference
rules in Semantics II that will have an equivalent e�ect. The proof is by induction over
the structure of the statements.

The following inference rules do not manipulate the state, hence the Heap Correspon-
dence Relation that is valid before the step remains valid after it.

• 〈skip; S, (σ, η, ς)〉 . 〈S, (σ, η, ς)〉 [Skip-Elimination]
Let 〈skip; S, (σ, η, ς)〉 ' 〈skip; T (S), (σ′, η′, ς ′)〉. Then [Skip-Elimination'] applies
and we get 〈S, (σ, η, ς)〉 ' 〈T (S), (σ′, η′, ς ′)〉.

• 〈if b then S1 else S2, (σ, η, ς)〉 . 〈S1, (σ, η, ς)〉 where BJbK(σ, η, ς) = 1 [If-True]
Let 〈if b then S1 else S2, (σ, η, ς)〉 ' 〈if b then T (S1) else T (S2), (σ

′, η′, ς ′)〉.
By the Expressions Coincide Lemma BJbK(σ, η, ς) = B′JbK(σ′, η′, ς ′). So [If-True']
also applies in Semantics II and we get 〈S1, (σ, η, ς)〉 ' 〈T (S1), (σ

′, η′, ς ′)〉.

• 〈if b then S1 else S2, (σ, η, ς)〉 . 〈S2, (σ, η, ς)〉 where BJbK(σ, η, ς) = 0 [If-False]
Analogous to previous case.

• 〈while b do S, (σ, η, ς)〉 . 〈S; while b do S, (σ, η, ς)〉 where BJbK(σ, η, ς) = 1 [While-True]
Analogous to [If-True] case.

• 〈while b do S, (σ, η, ς)〉 . 〈skip, (σ, η, ς)〉 where BJbK(σ, η, ς) = 0 [While-False]
Analogous to [If-True] case.

The following inference rules change the state. Therefore we need to show that the
resulting states still correspond. Either by showing that the previous Heap Correspon-
dence Relation is still valid or by giving an adjusted version.
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• 〈x := s, (σ, η, ς)〉 . 〈skip, (σ[x 7→ X JsK(σ, η, ς)], η, ς)〉 [Assignment]
if X JsK(σ, η, ς) ∈ (Item \ SetLoc)

Let 〈x := s, (σ, η, ς)〉 ' 〈x := s, (σ′, η′, ς ′)〉. Then [Assignment'] applies for
〈x := s, (σ′, η′, ς ′)〉. We need to show that 〈skip, (σ[x 7→ X JsK(σ, η, ς)], η, ς)〉 '
〈skip, (σ′[x 7→ X ′JsK(σ′, η′, ς ′)], η′, ς ′)〉 The previous Heap Correspondence Rela-
tion remains valid. Heap and Set heap are not changed by the inference and
σ(x) ≡ σ′(x) ⇔ X JsK ≡ X ′JsK by the Expressions Coincide Lemma.

• 〈x.sel := s, (σ, η, ς)〉 . 〈skip, (σ, η[(σ(x), sel) 7→ X JsK(σ, η, ς)], ς)〉 [Assignment-Heap]
if X JsK(σ, η, ς) ∈ (Item \ SetLoc)

Again the corresponding rule [Assignment-Heap'] applies and the Heap Correspon-
dence Relation remains valid. η(σ(x), sel) and η′(σ′(x), sel) have been changed.
We have to verify that σ(x) ≡ll σ′(x), which was true before the inference step by
de�nition, i.e. all selector-�elds agreed or were unde�ned. By Expressions Coin-
cide Lemma X JsK ≡ X ′JsK and so η(σ(x), sel) and η′(σ′(x), sel) after the inference
step.

• 〈x := s, (σ, η, ς)〉 . 〈skip, (σ, η, ς[σ(x) 7→ ς(X JsK(σ, η, ς))])〉 [Assignment-Set]
if X JsK(σ, η, ς) ∈ SetLoc

The con�guration corresponding to 〈x := s, (σ, η, ς)〉 is of the form 〈x := malloc set; x :=
s, (σ′, η′, ς ′)〉. Application of [Seq. Composition'] with [Malloc-Set'] and [Assignment-
Set'] result in the con�guration 〈skip, σ′[x 7→ ψ′], η′, ς ′[ψ′ 7→ ς ′(X ′JsK(σ′, η′, ς ′))])〉.
We can use the Stability Lemma to prove that there exists a Heap Correspondence
Relation ≡′ for (η, ς[σ(x) 7→ ς(X JsK(σ, η, ς))]) and (η′, ς ′[ψ′ 7→ ς ′(X ′JsK(σ′, η′, ς ′))]),
since ψ′ which was introduced by malloc set is not aliased. The Stability Lemma
also gives us σ(y) ≡′ σ′[x 7→ ψ′](y) because σ′[x 7→ ψ′](y) 6= ψ′ and σ(y) 6= σ(x)
(aliasing is impossible in the �rst semantics).
So it remains to show σ(x) ≡′ σ′[x 7→ ψ′](x) = ψ′. The requirements for a
Heap Correspondence Relation give us σ(x) ≡′ ψ′ ⇔ ς(X JsK(σ, η, ς)) = ς[σ(x) 7→
ς(X JsK(σ, η, ς))](σ(x)) ≡′ ς ′[ψ′ 7→ ς ′(X ′JsK(σ′, η′, ς ′))](ψ′) = ς ′(X ′JsK(σ′, η′, ς ′)).
By the Expressions Coincide Lemma X JsK(σ, η, ς) ≡ X ′JsK(σ′, η′, ς ′). X JsK(σ, η, ς) 6=
σ(x) and X ′JsK(σ′, η′, ς ′) 6= ψ′ so also X JsK(σ, η, ς) ≡′ X ′JsK(σ′, η′, ς ′) by the Stabil-
ity Lemma. The conditions for≡′ �nally give us ς(X JsK(σ, η, ς)) ≡′ ς ′(X ′JsK(σ′, η′, ς ′))
which is equivalent to σ(x) ≡′ σ′[x 7→ ψ′](x).

• 〈x.sel := s, (σ, η, ς)〉 . 〈skip, (σ, η, ς[η(σ(x), sel) 7→ ς(X JsK(σ, η, ς))])〉 [Assignment-Heap-Set]
if X JsK(σ, η, ς) ∈ SetLoc

Similar to proof of [Assignment-Set].

• 〈x := malloc, (σ, η, ς)〉 . 〈skip, (σ[x 7→ ξ], η, ς)〉 [Malloc]
where ξ ∈ Loc and ξ /∈ (im(σ) ∪ dom(η) ∪ im(η) ∪⋃

im(ς))
The same inference rule can be used in Semantics II. Let ≡ be the Heap Correspon-
dence Relation between the two states prior to the execution of the rule and let ξ
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and ξ′ be the two new locations introduced. Then ≡′=≡ ∪(ξ, ξ′) is a Heap Corre-
spondence Relation for the resulting states. Since ξ and ξ′ are new locations they
do not occur in ≡ and thus do not violate any of rules involving other elements.
The requirement for ξ ≡ll ξ′ is also ful�lled, since all selector-�elds are unde�ned.
Finally, ψ = σ(x) ≡′ σ′(x) = ψ′, so the resulting states are corresponding.

• 〈x.sel := malloc, (σ, η, ς)〉 . 〈skip, (σ, η[(σ(x), sel) 7→ ξ], ς)〉 [Malloc-Heap]
where ξ ∈ Loc and ξ /∈ (im(σ) ∪ dom(η) ∪ im(η) ∪⋃

im(ς))
Analogous to the previous case.

• 〈x := malloc set, (σ, η, ς)〉 . 〈skip, (σ[x 7→ ψ], η, ς[ψ 7→ ∅])〉 [Malloc-Set]
where ψ ∈ SetLoc and ψ /∈ (im(σ) ∪ im(η) ∪ dom(ς))

The corresponding inference rule [Malloc-Set'] applies, so it remains to show that
(σ[x 7→ ψ], η, ς[ψ 7→ ∅]) ∼= (σ′[x 7→ ψ′], η′, ς ′[ψ′ 7→ ∅]). The Stability Lemma can
be applied to infer the existence of ≡′ for (η, ς[ψ 7→ ∅]) and η′, ς ′[ψ′ 7→ ∅]). By
the Stability Lemma we can also follow that σ[x 7→ ψ](y) ≡′ σ[x 7→ ψ′](y) for
y ∈ (dom(σ[x 7→ ψ]) \ {x}), since σ[x 7→ ψ](y) 6= ψ and σ′[x 7→ ψ′](y) 6= ψ′.
Finally, σ[x 7→ ψ](x) = ψ ≡′ ψ′ = σ′[x 7→ ψ′](x) because ς[ψ 7→ ∅](ψ) = ∅ ≡ss ∅ =
ς ′[ψ′ 7→ ∅](ψ′).

• 〈x.sel := malloc set, (σ, η, ς)〉 . 〈skip, (σ, η[(σ(x), sel) 7→ ψ], ς[ψ 7→ ∅])〉 [Malloc-Set-Heap]
where ψ ∈ SetLoc and ψ /∈ (im(σ) ∪ im(η) ∪ dom(ς))

Analogous to previous case.

•
〈x.insert(s), (σ, η, ς)〉 . 〈skip, (σ, η, ς[σ(x) 7→ (ς(σ(x)) ∪ {i})])〉 [Set-Insert]

where i =

{
ς(X JsK(σ, η, ς)), if X JsK(σ, η, ς) ∈ SetLoc
X JsK(σ, η, ς), otherwise

The con�guration corresponding to 〈x.insert(s), (σ, η, ς)〉 is 〈xtemp := malloc set;
xtemp := x; x := malloc set; x := xtemp; x.insert(s), (σ′, η′, ς ′)〉.
By the Aliasing Lemma we can execute the �rst four commands of the sequence
and get a new con�guration 〈x.insert(s), (σ′2, η

′
2, ς

′
2)〉, where (σ, η, ς) ∼= (σ′2, η

′
2, ς

′
2)

and σ′2(x) is not aliased.

For the resulting con�guration [Set-Insert'] is applicable. We distinguish two cases:
1. ∃z.z ∈ ς ′2(σ

′
2(x)) ∧ (z ≈ X ′JsK(σ′2, η′2, ς ′2))(σ′2, η′2, ς ′2):

Take such a z. Since σ(x) ≡ σ′2(x) we have ς(σ(x)) ≡ss ς ′2(σ
′
2(x)), which

implies ∃x ∈ ς(σ(x)).x ≡ z.
Because of (z ≈ X ′JsK) and the ≡ / ≈ Relation Lemma we get x ≡ X ′JsK.
By the Expressions Coincide Lemma X JsK ≡ X ′JsK. We have to look at two
cases here:
� X ′JsK ∈ SetLoc′ From X JsK ≡slsl X ′JsK we can follow ς(X JsK) ≡ss ς ′2(X ′JsK)

and from z ≡ssl X ′JsK we follow z ≡ss ς ′2(X ′JsK). By injectivity of ≡ss we
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infer z = ς(X JsK). That is ς(X JsK) is already part of the set and [Set-
Insert] has no e�ect on the state.

� X ′JsK /∈ SetLoc′
Since ≡ \ ≡slsl is injective (by Set Injectivity Lemma for ≡ss and trivially
for the other parts of the relation) we get x = X JsK.
This means that [Set-Insert] has no e�ect, since x is already an element
of the set.

[Set-Insert'] does not change the state either in this case. Thus, the existing
Heap Correspondence Relation remains valid.

2. ¬∃z.z ∈ ς ′2(σ
′
2(x)) ∧ (z ≈ X ′JsK(σ′2, η′2, ς ′2))(σ′2, η′2, ς ′2):

In this case the elements are not part of the sets before and will be in-
serted. By the Stability Lemma there exists a Heap Correspondence Rela-
tion≡′ for (η, ς[σ(x) 7→ (ς(σ(x)) ∪ {i})]) and (η′2, ς

′
2[σ

′
2(x) 7→ (ς ′2(σ

′
2(x)) ∪

{X ′JsK(σ′2, η′2, ς ′2)})]) where i =

{
ς(X JsK(σ, η, ς)), if X JsK(σ, η, ς) ∈ SetLoc
X JsK(σ, η, ς), otherwise

.

The application of the Stability Lemma is possible because σ′2(x) and σ(x) are
not aliased. As in the previous proofs we need to show that σ(y) ≡′ σ′2(y) for
all y ∈ dom(σ). For y ∈ (dom(σ) \ {x}) this also follows from the Stability
Lemma as σ(y) 6= σ(x) and σ′2(y) 6= σ′2(x). This leaves us with σ(x) ≡′ σ′2(x)
to prove. This is by de�nition equivalent to (ς(σ(x)) ∪ {i}) = ς[σ(x) 7→
(ς(σ(x))∪{i})](σ(x)) ≡′ss ς ′2[σ

′
2(x) 7→ (ς ′2(σ

′
2(x))∪{X ′JsK(σ′2, η′2, ς ′2)})](σ′2(x)) =

(ς ′2(σ
′
2(x)) ∪ {X ′JsK(σ′2, η′2, ς ′2)}). We know that ς(σ(x)) ≡′ss ς ′2(σ

′
2(x)). So

showing i ≡ X ′JsK(σ′2, η′2, ς ′2) su�ces to close the proof. In fact, this follows
from the Expressions Coincide Theorem, since i is either ς(X JsK(σ, η, ς)) or
X JsK(σ, η, ς).

•
〈x.remove(s), (σ, η, ς)〉 . 〈skip, (σ, η, ς[σ(x) 7→ (ς(σ(x)) \ {i})])〉 [Set-Remove]

where i =

{
ς(X JsK(σ, η, ς)), if X JsK(σ, η, ς) ∈ SetLoc
X JsK(σ, η, ς), otherwise

Analogous to previous case replacing ∪ with \.

• 〈x := y.selectAndRemove, (σ, η, ς)〉 . 〈skip, (σ, η, ς[σ(y) 7→ (ς(σ(y)) \ {el})][σ(x) 7→ el])〉 [Set-SelectRemove-Set]
where el ∈ ς(σ(y)) and el ∈ Set

The con�guration corresponding to 〈x := y.selectAndRemove, (σ, η, ς)〉 is
〈ytemp := malloc set; ytemp := y; y := malloc set; y := ytemp; x := malloc set;
x := y.selectAndRemove, (σ′, η′, ς ′)〉. By the Aliasing Lemma we can execute the
�rst four statements of the series to obtain a new con�guration
〈x := malloc set; x := y.selectAndRemove, (σ′2, η

′
2, ς

′
2)〉 with (σ, η, ς) ∼= (σ′2, η

′
2, ς

′
2)

and σ′2(y) not aliased. Combining the e�ects of [Malloc-Set'] and [Set-SelectRemove-
Set'] we get 〈skip, (σ′2[x 7→ ψ′], η′2, ς

′
2[σ

′
2(y) 7→ (ς ′2(σ

′
2(y)) \ {el′})][ψ′ 7→ ς ′2(el

′)])〉,
where el′ ∈ ς ′2(σ

′
2(y)) and ψ′ /∈ (im(σ′2) ∪ im(η′2) ∪ dom(ς ′2) ∪

⋃
im(ς ′2)). By the

fact that (σ, η, ς) ∼= (σ′2, η
′
2, ς

′
2) we conclude that ς(σ(y)) ≡ss ς ′2(σ

′
2(y)). We assume

that el ≡ el′ in the following. This is possible due to the nondeterminism of the
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[Set-SelectRemove-Set'] rule.

We need to prove that the resulting con�gurations correspond. The statements
skip and skip obviously correspond. By the Stability Lemma and the fact
that σ(x), σ(y), σ′2(x) and σ′2(y) are not aliased we infer that there exists a Heap
Correspondence Relation≡′ for (η, ς[σ(y) 7→ (ς(σ(y)) \ {el})][σ(x) 7→ el]) and
(η′2, ς

′
2[σ

′
2(y) 7→ (ς ′2(σ

′
2(y)) \ {el′})][ψ′ 7→ ς ′2(el

′)]). The Stability Lemma also allows
us to infer σ(z) ≡′ σ′2[x 7→ ψ′](z) for z ∈ (dom(σ) \ {x, y}). We still need to
prove σ(x) ≡′ σ′2[x 7→ ψ′](x) = ψ′ and σ(y) ≡′ σ′2[x 7→ ψ′](y). We know that
el ≡′ el′ and that ς[σ(y) 7→ (ς(σ(y)) \ {el})][σ(x) 7→ el](σ(x)) = el and ς ′2[σ

′
2(y) 7→

(ς ′2(σ
′
2(y)) \ {el′})][ψ′ 7→ ς ′2(el

′)](σ′2(x)) = el′ which proves σ(x) ≡′ σ′2[x 7→ ψ′](x).
σ(y) ≡′ σ′2[x 7→ ψ′](y) is equivalent to (ς(σ(y)) \ {el}) ≡′ss (ς ′2(σ

′
2(y)) \ {el′}). We

know that ς(σ(y)) ≡′ss ς ′2(σ
′
2(y)) and el ≡ el′ which obviously implies (ς(σ(y)) \

{el}) ≡′ss (ς ′2(σ
′
2(y)) \ {el′}).

• 〈x := y.selectAndRemove, (σ, η, ς)〉 . 〈skip, (σ[x 7→ el], η, ς[σ(y) 7→ (ς(σ(y)) \ {el})])〉 [Set-SelectRemove]
where el ∈ ς(σ(y)) and el ∈ (Item \ SetLoc)

Analogous to previous case.

The last missing inference rule is [Seq. Composition]. This is the only �real" step case
of the proof, i.e. the only case that relies on the induction hypothesis.

• 〈S1, (σ1, η1, ς1)〉 . 〈S2, (σ2, η2, ς2)〉
〈S1; S, (σ1, η1, ς1)〉 . 〈S2; S, (σ2, η2, ς2)〉 [Seq. Composition]

By induction hypothesis we know that if 〈S1, (σ, η, ς)〉.〈S2, (σ2, η2, ς2)〉 and 〈S1, (σ1, η1, ς1)〉 '
〈T (S1), (σ

′
1, η

′
1, ς

′
1)〉 then there exists some 〈S2, (σ2, η2, ς2)〉 ' 〈T (S2), (σ

′
2, η

′
2, ς

′
2)〉

with 〈T (S1), (σ
′
1, η

′
1, ς

′
1)〉 .∗ 〈T (S2), (σ

′
2, η

′
2, ς

′
2)〉.

For every inference step from the series of inferences from the induction hypothesis
we can apply the [Seq. Composition']-rule. This yields 〈T (S1); T (S), (σ′1, η

′
1, ς

′
1)〉.∗

〈T (S2); T (S), (σ′2, η
′
2, ς

′
2)〉.
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B Source Code
B.1 C Implementations
B.1.1 List-based Implementation
Structure Declarations
typedef struct List
{
void* data;
struct List* next;

} List;

typedef struct Set
{
List* list;
int (*compare)(void*, void*);
int size;

} Set;

Set* emptySet(int (*comp)(void*, void*));
//comp should return 0 iff the parameters have the same value

void insertElement(Set* set, void* element);
void* removeElement(Set* set, void* element);
int isElement(Set* set, void* element);
void addSet(Set* set1, Set* set2);
void subSet(Set* set1, Set* set2);
int isSubset(Set* set1, Set* set2);
Set* copySet(Set* set);
int sizeOf(Set* set);

Implementation
#include <stdio.h>

#include "set.h"

Set* emptySet(int (*comp)(void*, void*))
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{
Set* emptySet;

emptySet = (Set*)malloc(sizeof(Set));
emptySet->compare = comp;
emptySet->list = 0;
emptySet->size = 0;

return emptySet;
}

int isEmpty(Set* set)
{
return (set->list == 0);

}

void insertElement(Set* set, void* element)
{
List* list = set->list;
List* prev = 0;

while (list != 0)
{
if (compare(list->data, element) == 0)

return;

prev = list;
list = list->next;

}

List* newList = (List*)malloc(sizeof(List));
newList->data = element;
newList->next = 0;
set->size++;

if (prev == 0) //list is empty
{
set->list = newList;

}
else //append item to list
{
prev->next = newList;

}
}
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void* removeElement(Set* set, void* element)
{
List* temp;
List* list = set->list;

if (list == 0)
return;

if (compare(list->data, element) == 0)
{
set->size--;
set->list = list->next;
free(list);

}
else
while (list->next != 0)
{

if (compare(list->next->data, element) == 0)
{
void* deletedElement = list->next->data;
set->size--;
temp = list->next->next;
free(list->next);
list->next = temp;
return deletedElement;

}
list = list->next;

}
}

int isElement(Set* set, void* element)
{

List* list = set->list;

while (list != 0)
{

if (compare(list->data, element) == 0)
return 1;

list = list->next;
}

return 0;
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}

void addSet(Set* set1, Set* set2)
{
List* list = set2->list;
while (list != 0)
{
insertElement(set1, list->data);
list = list->next;

}
}

void subSet(Set* set1, Set* set2)
{
List* list = set2->list;
while (list != 0)
{
removeElement(set1, list->data);
list = list->next;

}
}

int isSubset(Set* set1, Set* set2)
{
List* list = set1->list;
while (list != 0)
{
if (!isElement(set2, list->data))

return 0;
list = list->next;

}

return 1;
}

Set* copySet(Set* set2)
{
Set* newset = emptySet(set2->compare);
addSet(newset, set2);
return newset;

}

int sizeOf(Set* set)
{
return set->size;

116



B.1 C Implementations

}

int compare(void* a, void* b)
{
return (*((int*)a) - *((int*)b));

}

int main(int argc, char** argv)
{
Set* mySet, *mySet2;
mySet = emptySet(&compare);
mySet2 = emptySet(&compare);

int a, b, c;
a = 34;
b = 344;
c = 3423;

insertElement(mySet2, &b);

insertElement(mySet, &a);

insertElement(mySet, &a);
insertElement(mySet, &b);
insertElement(mySet, &c);
removeElement(mySet, &a);

if (isElement(mySet, &a))
printf("a in mySet\n");

else
printf("a not in mySet\n");

if (isElement(mySet, &b))
printf("b in mySet\n");

else
printf("b not in mySet\n");

if (isSubset(mySet2, mySet))
printf("mySet2 is subset of mySet\n");

else
printf("mySet2 is not subset of mySet\n");

if (isSubset(copySet(mySet), mySet))
printf("mySet is subset of mySet\n");
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else
printf("mySet is not subset of mySet\n");

printf("Size of mySet: %i\n", sizeOf(mySet));
printf("Size of mySet2: %i\n", sizeOf(mySet2));

free(mySet);
free(mySet2);
return 1;

}

B.1.2 Tree-based Implementation

Structure Declarations

typedef struct Tree
{
void* data;
struct Tree* left;
struct Tree* right;

} Tree;

typedef struct Set
{
Tree* tree;
int (*compare)(void*, void*);
int size;

} Set;

Set* emptySet(int (*comp)(void*, void*));
//comp should return 0 iff the parameters have the same value

int isEmpty(Set* set);
void insertElement(Set* set, void* element);
void removeElement(Set* set, void* element);
int isElement(Set* set, void* element);
void addSet(Set* set1, Set* set2);
void subSet(Set* set1, Set* set2);
int isSubset(Set* set1, Set* set2);
Set* copySet(Set* set);
int sizeOf(Set* set);
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Implementation

#include <stdio.h>
#include <stdlib.h>
#include "set.h"

Set* emptySet(int (*comp)(void*, void*))
{

Set* emptySet;

emptySet = (Set*)malloc(sizeof(Set));
emptySet->compare = comp;
emptySet->size = 0;

return emptySet;
}

int isEmpty(Set* set)
{
return (set->tree == 0);

}

void insertElement(Set* set, void* element)
{

if (!isElement(set, element))
{
set->size++;
Tree* tree = set->tree;
Tree* previous = tree;
int compresult;

while (tree != 0) //find suitable position for new element
{
previous = tree;
compresult = compare(tree->data, element);
if (compresult < 0)
tree = tree->left;

else if (compresult > 0)
tree = tree->right;

}

tree = (Tree*)malloc(sizeof(tree));
tree->data = element;
tree->left = 0;
tree->right = 0;
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if (previous == 0) //first element to be inserted...
{
set->tree = tree;

}
else

{
if (compresult < 0)
previous->left = tree;

else if (compresult > 0)
previous->right = tree;

}
}

}

void removeElement(Set* set, void* element)
{

Tree* tree = set->tree;
Tree* previous = 0;
int oldcompresult = 0;

while (tree != 0) //find element...
{

int compresult = compare(tree->data, element);
if (compresult == 0) //we found the element.
{
set->size--;
if ((tree->right == 0) && (tree->left == 0)) //it had not successors
{
if (previous == 0)
set->tree = 0;

else if (previous->left == tree)
previous->left = 0;

else
previous->right = 0;

}
else if (tree->right == 0) //only one successor
{
if (previous == 0)
set->tree = tree->left;

else if (previous->left == tree)
previous->left = tree->left;

else
previous->right = tree->left;

}
else if (tree->left == 0) //only one successor
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{
if (previous == 0)
set->tree = tree->right;

else if (previous->left == tree)
previous->left = tree->right;

else
previous->right = tree->right;

}
else
{ //position has two subtrees: either find largest element to the left

//or smallest to the right; i chose left here
Tree* subtree = tree->left;
Tree* previous2 = 0;
while (subtree->right != 0) //finding largest element to the

//left of the element that is being removed
{
previous2 = subtree;
subtree = subtree->right;

}
if (previous2 != 0) //remove element from predecessor
previous2->right = 0;

subtree->left = tree->left; //attach former subtrees of removed element
subtree->right = tree->right;
if (subtree->left == subtree) //otherwise we would introduce a cycle
subtree->left = 0;

if (previous == 0) //link it to predecessor of removed element
set->tree = subtree;

else if (previous->left == tree)
previous->left = subtree;

else
previous->right = subtree;

}

free(tree);

return;
}

previous = tree;

if (compresult < 0) //traversing the tree in search of the element.
tree = tree->left;
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else
tree = tree->right;

}
}

int isElement(Set* set, void* element)
{

Tree* tree = set->tree;
int depth = 0;

while (tree != 0)
{

if (compare(tree->data, element) == 0)
return 1;

else if (compare(tree->data, element) < 0)
tree = tree->left;

else
tree = tree->right;

}

return 0;
}

void addTree(Tree* tree, Set* set) //adds the contents of the tree to the set recursively
{
if (tree != 0)
{
insertElement(set, tree->data);

addTree(tree->left, set);
addTree(tree->right, set);

}
}

void addSet(Set* set1, Set* set2)
{
addTree(set1->tree, set2);

}

int isSubsetTree(Tree* tree, Set* set) //checks whether elements of the tree
//are contained in the set

{
if (tree != 0)
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{
if (!isElement(set, tree->data))

return 0;

printf("tada\n");

return (isSubsetTree(tree->left, set) && isSubsetTree(tree->right, set));
}

return 1;
}

int isSubset(Set* set1, Set* set2)
{
return isSubsetTree(set1->tree, set2);

}

Set* copySet(Set* set2) //copies a set (shallow copy)
{
Set* newset = emptySet(set2->compare);
addSet(newset, set2);
return newset;

}

int sizeOf(Set* set)
{
return set->size;

}

int compare(void* a, void* b)
{
return -(*((int*)a) - *((int*)b));

}

void printDepth(char* text, Set* set, void* element) //help method for debugging
{
int result = isElement(set, element);

if (result)
{
printf(text);
printf(" holds in depth ");
printf("%i\n", result);
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}
else
{
printf(text);
printf(" does not hold\n");

}
}

void printSubset(char* text, Set* set1, Set* set2)
{
int result = isSubset(set1, set2);

if (result)
{
printf(text);
printf(" holds");

}
else
{
printf(text);
printf(" does not hold\n");

}
}

int drawTreeLayer(Tree* tree, int layer) //draws parts of the tree that have same depth
{
if (tree == 0)
return 0;

if (layer == 0)
{
printf("%i ", *(int*)tree->data);
return 1;

}

return (drawTreeLayer(tree->left, layer-1) + drawTreeLayer(tree->right, layer-1));
}

void drawTree(Tree* tree, char* text)
{
printf(text);
printf("\n");
int layer = 0;
while (drawTreeLayer(tree, layer) != 0)
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{
layer++;
printf("\n");

}
printf("\n");

}

int main(int argc, char** argv)
{
int a, b, c, d;
a = 34;
b = 344;
c = 23;
d = 333;

Set* mySet, *mySet2;
mySet = emptySet(&compare);
mySet2 = emptySet(&compare);

isSubset(mySet, mySet2);
printf("tada\n");

insertElement(mySet2, &d);

insertElement(mySet, &a);
insertElement(mySet, &a);
insertElement(mySet, &c);
insertElement(mySet, &b);

drawTree(mySet->tree, "mySet->tree:");
addSet(mySet, mySet2);
drawTree(mySet2->tree, "mySet2->tree:");

removeElement(mySet, &a);
insertElement(mySet, &a);

printDepth("a in mySet", mySet, &a);
printDepth("b in mySet", mySet, &b);
printDepth("c in mySet", mySet, &c);

printSubset("mySet subset of mySet2", mySet, mySet2);
printSubset("mySet2 subset of mySet", mySet2, mySet);
printSubset("mySet subset of mySet", mySet, mySet);
printSubset("mySet2 subset of mySet2", mySet2, mySet2);
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drawTree(mySet->tree, "mySet->tree:");

srand(time());
Set* randomSet = emptySet(&compare); //creating random binary tree
int i;
for (i = 0; i < 1000; i++)
{
int* randomNumber;
randomNumber = (int*)malloc(sizeof(int));
*randomNumber = rand()/10000000;

insertElement(randomSet, randomNumber);
}

drawTree(randomSet->tree, "randomSet->tree:");

/* if (isSubset(copySet(mySet), mySet))
printf("mySet is subset of mySet\n");

else
printf("mySet is not subset of mySet\n");*/

printf("Size of mySet: %i\n", sizeOf(mySet));
printf("Size of mySet2: %i\n", sizeOf(mySet2));
printf("Size of randomSet: %i\n", sizeOf(randomSet));

free(mySet);
free(mySet2);
free(randomSet);
return 1;

}

B.2 TVLA Analyses
B.2.1 List-based Implementation
Predicates
//////////////////
// Core Predicates

// For every program variable z there is a unary predicate that holds for
// list elements pointed by z.
// The unique property is used to convey the fact that the predicate can hold
// for at most one individual.
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// The pointer property is a visualization hint for graphical renderers.
foreach (z in PVar) {
%p z(v_1) unique pointer

}

// The predicate isSet is true for heap cells that represent sets
%p isSet(v)

// The predicate next represents the n field of the list data type.
%p n(v_1, v_2) function

// The predicate deq represents the equality of the data fields of the two list elements
%p deq(v_1, v_2) reflexive transitive symmetric

/////////////////////////////////////////////
// Instrumentation (i.e., derived) predicates

// The is[n] predicate holds for list elements pointed by two different
// list elements.
%i is[n](v) = E(v_1, v_2) (v_1 != v_2 & n(v_1, v) & n(v_2, v))

// The c[v] predicate holds for elements that reside on a cycle
// along the n field.
%i c[n](v) = E(v_1) (n(v_1, v) & n*(v, v_1))

// The t[n] predicate records transitive reflexive reachability between
// list elements along the n field.
%i t[n](v_1, v_2) = n*(v_1, v_2) transitive reflexive

// Integrity constraints for transitive reachability
%r !t[n](v_1, v_2) ==> !n(v_1, v_2)
%r !t[n](v_1, v_2) ==> v_1 != v_2
%r E(v_1) (t[n](v_1, v_2) & t[n](v_1, v_3) & !t[n](v_2, v_3)) ==> t[n](v_3, v_2)

// For every program variable z the predicate r[n,z] holds for individual
// v when v is reachable from variable z along the n field (more formally,
// the corresponding list element is reachable from z).
foreach (z in PVar) {
%i r[n,z](v) = E(v_1) (z(v_1) & t[n](v_1, v))

%r (r[n,z](v_1) & r[n,z](v_2) & !t[n](v_1, v_2)) ==> t[n](v_2, v_1)
}
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//The noeq[deq] predicate expresses that an element is different from all the
//other elements that can be reached by a sequence of next-pointers (forward or backward)
%i noeq[deq,n](v) = A(v_1) (((t[n](v_1, v) | t[n](v, v_1)) & v_1 != v)

-> (!deq(v_1, v) & !deq(v, v_1)))

%r ((t[n](v_1,v_2) | t[n](v_2,v_1)) & v_1 != v_2 & noeq[deq,n](v_2)) ==> !deq(v_2, v_1)
%r ((t[n](v_1,v_2) | t[n](v_2,v_1)) & v_1 != v_2 & noeq[deq,n](v_2)) ==> !deq(v_1, v_2)
%r (t[n](v_1,v_2) & noeq[deq,n](v_2)) ==> noeq[deq,n](v_1)
%r (t[n](v_2,v_1) & noeq[deq,n](v_2)) ==> noeq[deq,n](v_1)
%r A(v)((t[n](v,v_1) & v != v_1) -> !deq(v,v_1)) ==> noeq[deq,n](v_1)
%r A(v)((t[n](v_1,v) & v != v_1) -> !deq(v,v_1)) ==> noeq[deq,n](v_1)
%r (noeq[deq,n](v) & deq(v_1, v) & v != v_1) ==> !t[n](v_1,v)

// The predicate validSet is true for heap cells that represent valid sets
%i validSet(v) = isSet(v) & noeq[deq,n](v)

//The binary predicate isElement expresses that v_1 is element of set v_2
%i isElement(v_1, v_2) = isSet(v_2) & E(v)(t[n](v_2,v) & deq(v_1,v) & v != v_2)

%r t[n](v,v_2) & isSet(v) & v != v_2 ==> isElement(v_2, v)

// The predicate or[n,z,l] is used to take a snapshot of the part of the
// heap reachable from pointer variable z via dereferences of field n
// when the program reaches the program label l.
// (See Copy_Reach_L in actions.tvp.)
foreach (z in PVar) {

%p or[n,z](v)
}

Actions

%action uninterpreted() {
%t "uninterpreted"

}

%action skip() {
%t "skip"

}

%action Copy_Reach_L(lhs) {
%t "storeReach(" + lhs + ")"
{
or[n,lhs](v) = r[n,lhs](v)
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}
}

///////////////////////////////////////////////////////////////////////////
// Actions for statements manipulating pointer variables and pointer fields

%action Set_Null_L(lhs) {
%t lhs + " = NULL"
{
lhs(v) = 0

}
}

%action Copy_Var_L(lhs, rhs) {
%t lhs + " = " + rhs
%f { rhs(v) }
{
lhs(v) = rhs(v)

}
}

%action Malloc_L(lhs) {
%t lhs + " = (L) malloc(sizeof(struct node)) "
%new
{
lhs(v) = isNew(v)
t[n](v_1, v_2) = (isNew(v_1) ? v_1 == v_2 : t[n](v_1, v_2))
r[n, lhs](v) = isNew(v)
foreach(z in PVar-{lhs}) {
r[n,z](v) = r[n,z](v)

}

is[n](v) = is[n](v)
c[n](v) = c[n](v)

deq(v_1, v_2) = (isNew(v_1) & isNew(v_2)) | //reflexive...
(v_1 != v_2 & (isNew(v_1) | isNew(v_2))? 1/2 : deq(v_1, v_2))

noeq[deq,n](v) = (isNew(v) ? 1 : noeq[deq,n](v))
isElement(v_1,v_2) = (isNew(v_1) ? 1/2 : isElement(v_1,v_2))
validSet(v) = (isNew(v) ? 0 : validSet(v))

}
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}

%action Free_L(lhs) {
%t "free(" + lhs + ")"
%f { lhs(v) }
%message (E(v, v_1) lhs(v) & n(v, v_1)) ->

"Internal Error! " + lhs + "->" + n + " != NULL"
{
c[n](v) = c[n](v)
t[n](v_1, v_2) = t[n](v_1, v_2)
r[n, lhs](v) = r[n, lhs](v)

foreach(z in PVar) {
r[n,z](v) = r[n,z](v)

}
is[n](v) = is[n](v)
noeq[deq,n](v) = noeq[deq,n](v)
isElement(v_1,v_2) = isElement(v_1,v_2)
validSet(v) = validSet(v)
}

%retain !lhs(v)
}

%action Get_Next_L(lhs, rhs) {
%t lhs + " = " + rhs + "->" + n
%f { E(v_1, v_2) rhs(v_1) & n(v_1, v_2) & t[n](v_2, v) }
%message (!E(v) rhs(v)) ->

"Illegal dereference to\n" + n + " component of " + rhs
{
lhs(v) = E(v_1) rhs(v_1) & n(v_1, v)
r[n,lhs](v) = r[n,rhs](v) & (c[n](v) | !rhs(v))

}
}

%action Set_Data_L(lhs, rhs) {
%t lhs + "->data = " + rhs + "->data"
%f { lhs(v) }
%message (!E(v) rhs(v)) ->

"Illegal dereference to\n" + data + " component of " + rhs
%message (!E(v) lhs(v)) ->

"Illegal dereference to\n" + data + " component of " + lhs
{
deq(v_1, v_2) = (lhs(v_1) & E(v)(rhs(v) & deq(v, v_2))) //comp. x->data with s.th.

| (lhs(v_2) & E(v)(rhs(v) & deq(v_1, v))) //comp. x->data with s.th.
| (!lhs(v_1) & !lhs(v_2) & deq(v_1, v_2))

}
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}

%action Set_Next_Null_L(lhs) {
%t lhs + "->" + n + " = NULL"
%f {

lhs(v),
// optimized change-formula for t[n] update-formula
E(v_1, v_2) lhs(v_1) & n(v_1, v_2) & t[n](v_2, v)

}
%message (!E(v) lhs(v)) -> "Illegal dereference to\n" +

n + " component of " + lhs

{
n(v_1, v_2) = n(v_1, v_2) & !lhs(v_1)
r[n,lhs](v) = lhs(v)
foreach(z in PVar-{lhs}) {
r[n,z](v) = (c[n](v) & r[n,lhs](v)?

z(v) | E(v_1) z(v_1) & TC (v_1, v) (v_3, v_4) (n(v_3, v_4) & !lhs(v_3)) :
r[n,z](v) & ! (E(v_1) r[n,z](v_1) & lhs(v_1) & r[n,lhs](v) & !lhs(v)))

}
c[n](v) = c[n](v) & ! (E( v_1) lhs(v_1) & c[n](v_1) & r[n,lhs](v))

}
}

%action Set_Next_L(lhs, rhs) {
%t lhs + "->" + n + " = " + rhs
%f {

lhs(v), rhs(v),
// optimized change-formula for t[n] upate-formula
E(v_4) rhs(v_4) & t[n](v_4, v_2)

}
%message (E(v_1, v_2) lhs(v_1) & n(v_1, v_2)) ->

"Internal Error! " + lhs + "->" + n + " != NULL"
%message (E(v_1, v_2) lhs(v_1) & rhs(v_2) & t[n](v_2, v_1)) ->

"A cycle may be introduced\nby assignment " + lhs + "->" + n + "=" + rhs
{
n(v_1, v_2) = n(v_1, v_2) | lhs(v_1) & rhs(v_2)
foreach(z in PVar) {
r[n,z](v) = r[n,z](v) | E(v_1) r[n,z](v_1) & lhs(v_1) & r[n,rhs](v)

}
c[n](v) = c[n](v) | (E(v_1) lhs(v_1) & r[n,rhs](v_1) & r[n,rhs](v))

}
}
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//////////////////////////////////////////////////////////////////
// Actions needed to simulate program conditions involving pointer
// equality tests.

%action Is_Not_Null_Var(lhs) {
%t lhs + " != NULL"
%f { lhs(v) }
%p E(v) lhs(v)

}

%action Is_Null_Var(lhs) {
%t lhs + " == NULL"
%f { lhs(v) }
%p !(E(v) lhs(v))

}

%action Is_Eq_Var(lhs, rhs) {
%t lhs + " == " + rhs
%f { lhs(v), rhs(v) }
%p A(v) lhs(v) <-> rhs(v)

}

%action Is_Not_Eq_Var(lhs, rhs) {
%t lhs + " != " + rhs
%f { lhs(v), rhs(v) }
%p !A(v) lhs(v) <-> rhs(v)

}

//////////////////////////////////////////////////////////////////
// Actions needed to simulate program conditions involving comparisons
// of data elements.

%action Data_Eq(lhs, rhs) {
%t lhs + ".data == " + rhs + ".data"
%f { lhs(v_1) & rhs(v_2) & deq(v_1, v_2) }
%p E(v_1, v_2) (lhs(v_1) & rhs(v_2) & deq(v_1, v_2))
{
// deq(v_1,v_2) = (((lhs(v_1) & rhs(v_2)) | (rhs(v_1) & lhs(v_2))) ? 1 : deq(v_1, v_2))
deq(v_1, v_2) = ((lhs(v_1) & rhs(v_2)) | (rhs(v_1) & lhs(v_2)))

| (lhs(v_1) & deq(v_1,v_2) & E(v)(rhs(v) & deq(v,v_2)))
| (lhs(v_2) & deq(v_1,v_2) & E(v)(rhs(v) & deq(v_1,v)))
| (rhs(v_1) & deq(v_1,v_2) & E(v)(lhs(v) & deq(v,v_2)))
| (rhs(v_2) & deq(v_1,v_2) & E(v)(lhs(v) & deq(v_1,v)))
| (v_1 == v_2)

}
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}

%action Data_Not_Eq(lhs, rhs) {
%t lhs + ".data != " + rhs + ".data"
%f { lhs(v_1) & rhs(v_2) & deq(v_1, v_2) }
%p !E(v_1, v_2) (lhs(v_1) & rhs(v_2) & deq(v_1, v_2))
{
deq(v_1,v_2) = (((lhs(v_1) & rhs(v_2)) | (rhs(v_1) & lhs(v_2))) ? 0 : deq(v_1, v_2))

}
}

/////////////////////////////////////////
// Actions for testing various properties

%action Assert_ListInvariants(lhs) {
%t "AssertListInvariants(" + lhs + ")"
%f { lhs(v) }
%p E(v)(r[n,lhs](v) & (c[n](v) | !noeq[deq,n](v)))
%message ( E(v)(r[n,lhs](v) & (c[n](v) | !noeq[deq,n](v))) ) ->

"The list pointed by " + lhs + " may be cyclic or may contain duplicates!"
}

%action Assert_No_Leak(lhs) {
%t "assertNoLeak(" + lhs + ")"
%f { lhs(v) }
%p E(v) !r[n,lhs](v) & !(E(v1) element(v1) & deq(v, v1))
%message ( E(v) !r[n,lhs](v) & !(E(v1)element(v1) & deq(v, v1)) ) -> //only the element

//that is to be inserted/removed should not be reachable.
"There may be a list element not reachable from variable " + lhs + "!"

}

%action Assert_Permutation_L(lhs) {
%t "AssertPermutation(" + lhs + ")"
%p !(A(v) (newList(v) | E(v1)(element(v1) & deq(v, v1))

| (r[n,lhs](v) <-> or[n,lhs](v))))
//either it used to be here before or it is the newly inserted element

%message !(A(v) (newList(v) | E(v1)(element(v1) & deq(v, v1)) | (r[n,lhs](v)
<-> or[n,lhs](v)))) ->

"Unable to prove that the list pointed-to by " + lhs +
"is a permutation of the original list "

}

%action Assert_Element_Removed(set, element) {
%t "AssertElementRemoved(" + set + ", " + element + ")"
%p E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))
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%message (E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))) ->
"Element " + element + " has not been removed from set " + set + "."

}

%action Assert_Element_Inserted(set, element) {
%t "AssertElementInserted(" + set + ", " + element + ")"
%p E(vel, vset)(element(vel) & set(vset) & !isElement(vel, vset))
%message (E(vel, vset)(element(vel) & set(vset) & !isElement(vel, vset))) ->

"Element " + element + " has not been inserted into set " + set + "."
}

%action Is_Not_Element(element, set) {
%t "Is_Not_Element(" + set + ", " + element + ")"
%p !E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))
%message (!E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))) ->

"Element " + element + " is not element of set " + set + "."
}

%action Is_Element(element, set) {
%t "Is_Element(" + set + ", " + element + ")"
%p E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))
%message (E(vel, vset)(element(vel) & set(vset) & isElement(vel, vset))) ->

"Element " + element + " is element of set " + set + "."
}

Input Structures

// An empty list (x points to NULL).
%n = {setstart, el}
%p = {

deq = {el->el, setstart->setstart}
noeq[deq, n] = {setstart, el}
set = {setstart}
element = {el}
t[n] = {setstart->setstart, el->el}
r[n,set] = {setstart}
r[n,element] = {el}

isSet = {setstart}
validSet = {setstart}

}

// An acyclic singly-linked list with a single element pointed by set.
%n = {setstart, head, el}
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%p = {
n = {setstart->head}
deq = {setstart->setstart, head->head, el->el, head->el:1/2, el->head:1/2}
noeq[deq,n] = {setstart, head, el}
set = {setstart}
element = {el}
t[n] = {el->el, setstart->setstart, setstart->head, head->head}
r[n,set] = {setstart, head}
r[n,element] = {el}

isSet = {setstart}
validSet = {setstart}
isElement = {head->setstart, el->setstart:1/2}

}

// An acyclic singly-linked list with two or more elements pointed by program set.
%n = {setstart, head, tail, el}
%p = {

sm = {tail:1/2}
n = {setstart->head, head->tail:1/2, tail->tail:1/2}
deq = {el->el, setstart->setstart, head->head, tail->tail:1/2 , el->head:1/2,

head->el:1/2, el->tail:1/2, tail->el:1/2}
noeq[deq,n] = {setstart, head, tail, el}
set = {setstart}
element = {el}
t[n] = {el->el, setstart->setstart, setstart->head, setstart->tail, head->head,

head->tail, tail->tail:1/2}
r[n,set] = {setstart, head, tail}
r[n,element] = {el}

isSet = {setstart}
validSet = {setstart}
isElement = {head->setstart, tail->setstart, el->setstart:1/2}

}

Insertion

/*

#include <stdio.h>

#include "set.h"

void insertElement(Set* set, void* element)
{
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List* list = set->list;
List* prev = 0;

while (list != 0)
{
if (compare(list->data, element) == 0)

return;

prev = list;
list = list->next;

}

List* newList = (List*)malloc(sizeof(List));
newList->data = element;
newList->next = 0;
set->size++;

if (prev == 0) //list is empty
{
set->list = newList;

}
else //append item to list
{
prev->next = newList;

}
}
*/
///////
// Sets

%s PVar {set, list, prev, newList, element, temp}

#include "predicates.tvp"

%%

#include "actions.tvp"

%%

////////////////////////////////////////////////////////////////////////////
// Transition system for a function that creates an element with a specified
// value and inserts it at the end of the list if it is not already contained in the list.
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//including data field...
L0 Copy_Reach_L(set) L1
L1 Get_Next_L(list, set) L2 // List* list = set->list;
L2 Set_Null_L(prev) L3 // List* prev = 0;

L3 Is_Not_Null_Var(list) L4 // while (list != 0)
L3 Is_Null_Var(list) L12 //
L4 Data_Eq(list, element) exit // if (compare(list, element) == 0)
L4 Data_Not_Eq(list, element) L8 //
L8 Copy_Var_L(prev, list) L9 // prev = list;
L9 Get_Next_L(temp, list) L10 // temp = list->next;
L10 Copy_Var_L(list, temp) L11 // list = temp;
L11 Set_Null_L(temp) L3 // temp = 0;

L12 Malloc_L(newList) L13 // List* newList = (List*)malloc(sizeof(List));
L13 Set_Data_L(newList, element) L14 // newList->data = element;
L14 Set_Next_Null_L(newList) L15 // newList->next = 0;

// set->size++;
L15 Is_Null_Var(prev) L16 // if (prev == 0) //list is empty
L15 Is_Not_Null_Var(prev) L17 // else //append item to list
L16 Set_Next_L(set, newList) exit // set->list = newList;
L17 Set_Next_L(prev, newList) exit // prev->next = newList;

exit Set_Null_L(prev) exit2
exit2 Set_Null_L(list) exitfinal

exitfinal Assert_Permutation_L(set) error
exitfinal Assert_ListInvariants(list) error
exitfinal Assert_No_Leak(set) error
exitfinal Assert_Element_Inserted(set, element) error

%% L0, exitfinal, error

Removal

/*

void* removeElement(Set* set, void* element)
{
List* list = set->list;
List* prev = 0;
List* temp;
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while (list != 0)
{
if (compare(list->data, element) == 0)
{

set->size--;
void* deletedElement = list->data;
if (prev == 0)

set->list = list->next;
else

prev->next = list->next;
free(list);
return deletedElement;

}

prev = list;
list = list->next;

}
}
*/
///////
// Sets

%s PVar {set, list, prev, element, newList, temp}

#include "predicates.tvp"

%%

#include "actions.tvp"

%%

////////////////////////////////////////////////////////////////////////////
// Transition system for a function that creates an element with a specified
// value and inserts it at the end of the list if it is not already contained in the list.

L0 Copy_Reach_L(set) L1
L1 Get_Next_L(list, set) L2 // List* list = set->list;
L2 Set_Null_L(prev) L3 // List* prev = 0;

L3 Is_Not_Null_Var(list) L4 // while (list != 0)
L3 Is_Null_Var(list) exit //
L4 Data_Eq(list, element) L5 // if (compare(list, element) == 0)
L4 Data_Not_Eq(list, element) L14 //
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L5 Get_Next_L(temp, list) L6 //temp = list->next;
L6 Is_Null_Var(prev) L7 //if (prev == 0)
L6 Is_Not_Null_Var(prev) L9 //else
L7 Set_Next_Null_L(set) L8 //set->list = 0;
L8 Set_Next_L(set, temp) L11 //set->list = temp (==list->next);
L9 Set_Next_Null_L(prev) L10 //prev->next = 0;
L10 Set_Next_L(prev, temp) L11 //prev->next = temp (==list->next);
L11 Set_Null_L(temp) L12 //temp = 0;
L12 Set_Next_Null_L(list) L13 //list->next = 0;
L13 skip() exit //free(list) omitted for demonstration purpose

L14 Copy_Var_L(prev, list) L15 // prev = list;
L15 Get_Next_L(temp, list) L16 // temp = list->next;
L16 Copy_Var_L(list, temp) L17 // list = temp;
L17 Set_Null_L(temp) L3 // temp = 0;

exit Set_Null_L(prev) exit2
exit2 Set_Null_L(list) exitfinal

exitfinal Assert_Permutation_L(set) error
exitfinal Assert_ListInvariants(list) error
exitfinal Assert_No_Leak(set) error
exitfinal Assert_Element_Removed(set, element) error

%% L0, exitfinal, error

Membership Test

///////
// Sets

%s PVar {set, list, element}

#include "predicates.tvp"

%%

#include "actions.tvp"

%%
/*
int isElement(Set* set, void* element)
{

List* list = set->list;
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while (list != 0)
{

if (compare(list->data, element) == 0)
return 1;

list = list->next;
}

return 0;
}
*/

//including data field...
L0 Copy_Reach_L(set) L1
L1 Get_Next_L(list, set) L2 // List* list = set->list;

L2 Is_Not_Null_Var(list) L3 // while (list != 0)
L2 Is_Null_Var(list) exitnotfound //
L3 Data_Eq(list, element) exitfound // if (compare(list, element) == 0)
L3 Data_Not_Eq(list, element) L4 // (else)
L4 Get_Next_L(list, list) L2 // list = list->next;

exitfound Is_Not_Element(element, set) exitfounderror
exitnotfound Is_Element(element, set) exitnotfounderror

%% L0, exitfound, exitnotfound, exitfounderror, exitnotfounderror

B.2.2 Tree-based Implementation
Predicates
#include "pred_tree.tvp"

/**********************************************/
/*************** Core Predicates *************/

%p dle(v_1, v_2) transitive reflexive

%p isSet(v)

/***********************************************************/
/****************** Instrumentation Predicates *************/
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%i cmp[dle,left](v_1, v_2) = dle(v_2, v_1) & !dle(v_1, v_2) {}
%i cmp[dle,right](v_1, v_2) = dle(v_1, v_2) & !dle(v_2, v_1) {}

foreach (x in TRVar) {
%i dle[x,left](v) = E(v1) (x(v1) & dle(v, v1) & !dle(v1, v))
%i dle[x,right](v) = E(v1) (x(v1) & !dle(v, v1) & dle(v1, v))

}

%i inOrder[dle]() = A(v2, v4)(downStar[left](v2, v4)) -> (dle(v4, v2) & !dle(v2, v4))
& A(v2, v4)(downStar[right](v2, v4)) -> (dle(v2, v4) & !dle(v4, v2)) {}

//v1 is element of set v2
%i isElement(v1, v2) = isSet(v2) & E(vequal)(downStar(v2, vequal)

& dle(vequal, v1) & dle(v1, vequal) & vequal != v2)

/*************************************************/
/**************** Consistency Rules **************/
%r !dle(v_1, v_2) ==> dle(v_2, v_1)

foreach (x in TRVar) {
%r dle[x,left](v) & x(v1) ==> !dle(v1, v)
%r dle[x,right](v) & x(v1) ==> !dle(v, v1)

}

/*%r !deq(v1, v2) & dle(v1, v2) ==> !dle(v2, v1)

%r E(v) deq(v1, v) & !dle(v, v2) ==> !dle(v1, v2)
%r E(v) deq(v1, v) & !dle(v2, v) ==> !dle(v2, v1)*/

%r dle(v1, v2) & dle(v2, v1) & dle(v1, v3) ==> dle(v2, v3)
%r dle(v1, v2) & dle(v2, v1) & dle(v3, v1) ==> dle(v3, v2)

%r E(v1)(!dle(v, v1) & dle(v2, v1)) ==> !dle(v, v2)
%r E(v1)(!dle(v1, v) & dle(v1, v2)) ==> !dle(v2, v)

%r isSet(v) & downStar(v, v1) & v1 != v ==> isElement(v1, v)

foreach (x in {element}) {
%r dle[x,left](v) & x(v1) ==> dle(v, v1)
%r dle[x,left](v) & x(v1) ==> !dle(v1, v)
%r dle[x,right](v) & x(v1) ==> !dle(v, v1)
%r dle[x,right](v) & x(v1) ==> dle(v1, v)

}
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%r E(v1)(dle(v1, v2) & dle(v2, v1) & !dle(v1, v3)) ==> !dle(v2, v3)

%r inOrder[dle]() & downStar[right](v2, v4) ==> !dle(v4, v2)
%r inOrder[dle]() & downStar[left](v2, v4) ==> !dle(v2, v4)

//%r inOrder[dle]() & r[set](v1) & r[set](v2) & v1 != v2 ==> !deq(v1, v2)

%r inOrder[dle]() & E(v2) !dle(vel, v1) & downStar[left](v1, v2) ==> !dle(vel, v2)
%r inOrder[dle]() & E(v2) !dle(v1, vel) & downStar[right](v1, v2) ==> !dle(v2, vel)

%r treeNess() & downStar(v, v1) & !downStar[left](v, v1) & v != v1
==> downStar[right](v, v1)

%r treeNess() & downStar(v, v1) & !downStar[right](v, v1) & v != v1
==> downStar[left](v, v1)

//////////////////
// Core Predicates

// For every program variable z there is a unary predicate that holds for
// list elements pointed by z.
// The unique property is used to convey the fact that the predicate can hold
// for at most one individual.
// The pointer property is a visualization hint for graphical renderers.
foreach (z in PVar) {

%p z(v_1) unique pointer
}

// For every field there is a corresponding binary predicate.
foreach (sel in TSel) {
%p sel(v_1, v_2) function {}

}

// This predicate stores the original reachability of nodes.
foreach (z in PVar) {

%p or[z](v)
}

/////////////////////////////
// Instrumentation Predicates

// The down predicate represents the union of selector predicates.
%i down(v1, v2) = |/{ sel(v1, v2) : sel in TSel } {}

// The downStar predicate records reflexive transitive reachability
// between tree nodes along the union of the selector fields.
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%i downStar(v1, v2) = down*(v1, v2) transitive reflexive {}

foreach (sel in TSel) {
%i downStar[sel](v1, v2) = E(v)(sel(v1, v) & down*(v, v2)) transitive

}

// For every program variable z the predicate r[z] holds for individual
// v when v is reachable from variable z along the selector fields.
foreach (x in PVar) {
%i r[x](v) = E(v1) (x(v1) & downStar(v1, v))

}

%i treeNess() = A(v1, v2, v)((downStar[left](v,v1) & downStar[right](v,v2))
-> (!downStar(v1, v2) & !downStar(v2, v1))) {}

///////////////////////////////////////////////////////////////
// Additional integrity constraints

// down predicate
foreach (sel in TSel) {
%r !down(v_1, v_2) ==> !sel(v_1, v_2)

}

// Binary reachability (downStar predicate)
%r !downStar(v_1, v_2) ==> !down(v_1, v_2)
%r (E(v_1) downStar(v_1, v_2) & !downStar(v_1, v_3)) ==> !downStar(v_2, v_3)

// Unary reachability (r[z] predicates)
foreach (x in PVar) {

%r r[x](v_1) & !r[x](v_2) ==> !downStar(v_1, v_2)
%r r[x](v_1) & !r[x](v_2) ==> !down(v_1, v_2)

}

// The treeness conditions
foreach (sel in TSel) {
foreach (complementSel in TSel- {sel}) {
// %r (E(v_1, v_2, v_3) sel(v_1, v_2)& complementSel(v_1, v_3) &
// downStar(v_2, v_4) & downStar(v_3, v_5)) ==> v_4 != v_5
// commented-out for efficiency
// Useful consequences of the above rule which TVLA did not generate

/* %r (E(v_2, v_4) treeNess() & sel(v_1, v_2) & downStar(v_2, v_4) & downStar(v_3, v_4))
==> !complementSel(v_1, v_3)
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%r (E(v_2) treeNess() & sel(v_1, v_2) & downStar(v_2, v_3))
==> !complementSel(v_1, v_3)*/

%r (E(v_4) treeNess() & downStar[sel](v_1, v_4) & downStar(v_3, v_4))
==> !downStar[complementSel](v_1, v_3)

%r treeNess() & downStar[sel](v1, v2) & downStar[complementSel](v1, v3) ==> v2 != v3

%r treeNess() & sel(v_1, v_2) ==> !complementSel(v_1, v_2)
%r treeNess() & downStar[sel](v_1, v_2) ==> !downStar[complementSel](v_1, v_2)
}

%r (E(v_1, v_2) treeNess() & sel(v_1, v_2) & downStar(v_2, v_3) &
downStar(v_1, v_4) & v_4 != v_1 & !downStar(v_2, v_4))

==> !downStar(v_4, v_3)
%r (E(v_1, v_2) treeNess() & sel(v_1, v_2) & downStar(v_2, v_3) &

downStar(v_1, v_4) & v_4 != v_1 & !downStar(v_2, v_4))
==> !downStar(v_3, v_4)

}

// consequences of the acyclicity assumption
%r downStar(v_1, v_2) ==> !down(v_2, v_1)
foreach (sel in TSel) {
%r sel(v_1, v_2) ==> !downStar(v_2, v_1)
foreach (complementSel in TSel- {sel}) {
%r sel(v_1, v_2) ==> !complementSel(v_2, v_1)

}
}

Actions

// Binary-search Tree Actions

%action uninterpreted() {
%t "uninterpreted"

}

%action skip() {
%t "skip"

}

%action Copy_Reach_T(lhs) {
%t "storeReach(" + lhs + ")"
{
or[lhs](v) = r[lhs](v)

}
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}

///////////////////////////////////////////////////////////
// Actions encoding program statements that involve boolean
// program variables.

%action Is_True(x1) {
%t x1
%p x1()

}

%action Is_False(x1) {
%t "!" + x1
%p !x1()

}

%action Set_True(x1) {
%t x1 + " = true"
{

x1() = 1
}

}

%action Set_False(x1) {
%t x1 + " = false"
{

x1() = 0
}

}

//////////////////////////////////////////////////////////////////
// Actions encoding program conditions involving pointer equality.

%action Is_Not_Null_Var(x1) {
%t x1 + " != null"
%f { x1(v) }
%p E(v) x1(v)

}

%action Is_Null_Var(x1) {
%t x1 + " == null"
%f { x1(v) }
%p !(E(v) x1(v))
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}

%action Is_Eq_Var(x1, x2) {
%t x1 + " == " + x2
%f { x1(v), x2(v) }
%p A(v) x1(v) <-> x2(v)

}

%action Is_Not_Eq_Var(x1, x2) {
%t x1 + " != " + x2
%f { x1(v), x2(v) }
%p !A(v) x1(v) <-> x2(v)

}

///////////////////////////////////////////////////////////////
// Actions encoding program statements that involve comparisons
// of the data fields.

%action Greater_Data_T(x1, x2) {
%t x1 + "->data > " + x2 + "->data"
%f { x1(v_1) & x2(v_2) & dle(v_1, v_2) }
%p !E(v_1, v_2) x1(v_1) & x2(v_2) & dle(v_1, v_2)

}

%action Less_Equal_Data_T(x1, x2) {
%t x1 + "->data <= " + x2 + "->data"
%f { x1(v_1) & x2(v_2) & dle(v_1, v_2) }
%p E(v_1, v_2) x1(v_1) & x2(v_2) & dle(v_1, v_2)

}

%action Greater_Equal_Data_T(x1, x2) {
%t x1 + "->data >= " + x2 + "->data"
%f { x1(v_1) & x2(v_2) & dle(v_2, v_1) }
%p E(v_1, v_2) x1(v_1) & x2(v_2) & dle(v_2, v_1)

}

%action Less_Data_T(x1, x2) {
%t x1 + "->data < " + x2 + "->data"
%f { x1(v_1) & x2(v_2) & dle(v_2, v_1) }
%p !E(v_1, v_2) x1(v_1) & x2(v_2) & dle(v_2, v_1)

}

%action Equal_Data_T(x1, x2) {
%t x1 + "->data == " + x2 + "->data"
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%f { x1(v_1) & x2(v_2) & dle(v_2, v_1) & dle(v_1, v_2) }
%p E(v_1, v_2) x1(v_1) & x2(v_2) & dle(v_2, v_1) & dle(v_1, v_2)

}

%action Not_Equal_Data_T(x1, x2) {
%t x1 + "->data != " + x2 + "->data"
%f { x1(v_1) & x2(v_2) & dle(v_2, v_1) & dle(v_1, v_2) }
%p !E(v_1, v_2) x1(v_1) & x2(v_2) & dle(v_2, v_1) & dle(v_1, v_2)

}

//////////////////////////////////////////////////////////////
// Actions encoding program statements that manipulate pointer
// variables and pointer fields.

// x1 = (Tree) malloc(sizeof(struct node))
%action Malloc_T(x1) {

%t x1 + " = (Tree) malloc(sizeof(struct node)) "
%new
{

x1(v) = isNew(v)
r[x1](v) = isNew(v)
foreach (x in PVar-{x1}) {

r[x](v) = (isNew(v) ? 0 : r[x](v))
}
down(v1, v2) = ((isNew(v1) | isNew(v2)) ? 0 : down(v1, v2))
downStar(v1, v2) = downStar(v1, v2) | (isNew(v1) & v1 == v2)
foreach (sel in TSel) {

downStar[sel](v1, v2) = downStar[sel](v1, v2)
}
dle(v_1, v_2) =

(v_1 == v_2 ) |
(v_1 != v_2 & (isNew(v_1) | isNew(v_2))? 1/2: dle(v_1, v_2))

foreach (var in TRVar-{x1}) {
dle[var, left](v) = (isNew(v) ? 1/2 : dle[var, left](v))
dle[var, right](v) = (isNew(v) ? 1/2 : dle[var, right](v))

}
foreach (var in TRVar - (TRVar-{x1})) {

dle[x1, left](v) = (isNew(v) ? 0 : 1/2)
dle[x1, right](v) = (isNew(v) ? 0 : 1/2)

}

foreach (sel in TSel) {
cmp[dle,sel](v_1, v_2) =

!(isNew(v_1) & isNew(v_2)) &
(v_1 != v_2 & (isNew(v_1) | isNew(v_2))? 1/2: cmp[dle,sel](v_1, v_2))
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sel(v1, v2) = ((isNew(v1) | isNew(v2)) ? 0 : sel(v1, v2))
}
isElement(v1, v2) = (isNew(v2) ? 0 : (isNew(v1) & isSet(v2) ? 1/2

: isElement(v1, v2)))

inOrder[dle]() = inOrder[dle]()
treeNess() = treeNess()

}
}

// x1 = NULL
%action Set_Null_T(x1) {

%t x1 + " =(T) NULL"
{

x1(v) = 0
r[x1](v) = 0

inOrder[dle]() = inOrder[dle]()
treeNess() = treeNess()

}
}

// x1 = x2
%action Copy_Var_T(x1, x2) {

%t x1 + " = (T)" + x2
%f { x2(v), r[x2](v) }
{

x1(v) = x2(v)
r[x1](v) = r[x2](v)

inOrder[dle]() = inOrder[dle]()
treeNess() = treeNess()

}
}

// x1 = x2->sel
%action Get_Sel_T(x1, x2, sel) {

%t x1 + " = (T)" + x2 + "->" + sel
%f {

E(v_1, v_2) x2(v_1) & sel(v_1, v_2) & downStar(v_2, v),
E(v_1) x2(v_1) & left(v_1, v),
E(v_1) x2(v_1) & right(v_1, v)

}
%message !(E(v) x2(v)) -> "a possibly illegal dereference to ->" + sel
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+ " component of " + x2 + "\n"
{

x1(v) = E(v1) x2(v1) & sel(v1, v)
r[x1](v) = E(v_1,v_2) x2(v_1) & sel(v_1, v_2) &

downStar(v_2, v)
inOrder[dle]() = inOrder[dle]()
treeNess() = treeNess()

}

}

// x1->sel = NULL
%action Set_Sel_Null_T(x1, sel) {

%t x1 + "->" + sel + " = (T) NULL"
%f { x1(v), // change-formula for sel(v_1, v_2)

E(v_1) x1(v_1) & sel(v_1, v_2),
E(v_1, v_2) x1(v_1) & sel(v_1, v_2) & downStar(v_2, v)

// for reachability and downStar

}
%message !(E(v) x1(v)) -> "a possibly illegal dereference to ->" + sel

+ " component of " + x1 + "\n"
{

sel(v_1, v_2) = sel(v_1, v_2) & !x1(v_1)
down(v_1, v_2) = ((x1(v_1) & sel(v_1, v_2)) ? 0 : down(v_1, v_2))
downStar(v_1, v_2) =

((downStar(v_1, v_2) &
E(v_3, v_4) downStar(v_1, v_3) & x1(v_3) & sel(v_3, v_4) & downStar(v_4, v_2))?

0 : downStar(v_1, v_2))

foreach (s in TSel - {sel}) {
downStar[s](v_1, v_2) = ((downStar[s](v_1, v_2) &

E(v_3, v_4) downStar[s](v_1, v_3) & x1(v_3) & sel(v_3, v_4)
& downStar(v_4, v_2)) ? 0 : downStar[s](v_1, v_2))

}

downStar[sel](v_1, v_2) = ((downStar[sel](v_1, v_2) &
E(v_3, v_4) (downStar[sel](v_1, v_3) | v_1 == v_3) & x1(v_3) & sel(v_3, v_4)

& downStar(v_4, v_2)) ? 0 : downStar[sel](v_1, v_2))

r[x1](v) = r[x1](v) & !(E(v_1, v_2) x1(v_1) & sel(v_1, v_2) & downStar(v_2, v))
foreach (x2 in PVar - {x1}) {

r[x2](v) = r[x2](v) & !(E(v_1, v_2)(x1(v_1) & r[x2](v_1) &
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sel(v_1, v_2) & downStar(v_2, v)))
}
inOrder[dle]() = inOrder[dle]()
treeNess() = treeNess()

}
}

// assert(x1->sel==NULL); x1->sel = x2
%action Set_Sel_T(x1, sel, x2) {

%t x1 + "->" + sel + " = (T)" + x2
%f { x1(v), x2(v),

E(v_4) x2(v_4) & downStar(v_4, v_2)
}

%message !(E(v) x1(v)) -> "a possibly illegal dereference to ->" + sel
+ " component of " + x1 + "\n"

%message (E(v_1, v_2) x1(v_1) & sel(v_1, v_2)) -> "an internal error assuming "
+ x1 + "->" + sel + "==NULL\n"

// Checks for creation of a cycle.
%message (E(v_1, v_2)

x1(v_1) & x2(v_2) & downStar(v_2, v_1)) ->
"A cycle may be introduced by assignment " + x1 + "->" + sel + "=" + x2 + "\n"

{
sel(v_1, v_2) = sel(v_1, v_2) | x1(v_1) & x2(v_2)
down(v_1, v_2) = down(v_1, v_2) | x1(v_1) & x2(v_2)

foreach (x3 in PVar) {
r[x3](v) = r[x3](v) | E(v_1) x1(v_1) & r[x3](v_1) & r[x2](v)

}

treeNess() = treeNess() & !E(v1, v2)(x2(v2) & downStar(v1, v2) & v1 != v2)

downStar(v_1, v_2) =
(E(v_3, v_4) x1(v_3) & x2(v_4) & downStar(v_1, v_3) &
downStar(v_4, v_2) ? 1: downStar(v_1, v_2))

foreach (s in TSel - {sel}) {
downStar[s](v_1, v_2) =

(E(v_3, v_4) x1(v_3) & x2(v_4) & downStar[s](v_1, v_3) &
downStar(v_4, v_2) ? 1: downStar[s](v_1, v_2))

}
downStar[sel](v_1, v_2) =

(E(v_3, v_4) x1(v_3) & x2(v_4) & (downStar[sel](v_1, v_3) | v_1 == v_3) &
downStar(v_4, v_2) ? 1: downStar[sel](v_1, v_2))
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inOrder[dle]() = inOrder[dle]() & A(v1, v2, v3)((x1(v1) & x2(v2) & downStar(v2, v3))
-> (cmp[dle, sel](v1,v3)

& A(v)( (downStar[left](v, v1) -> (dle(v3, v) & !dle(v, v3)))
& (downStar[right](v, v1) -> (!dle(v3, v) & dle(v, v3))))))

}
}

// free(x1)
%action Free_T(x1) {

%t "free(" + x1 + ") "
%f { x1(v) }
%message (E(v_1, v_2) x1(v_1) & (|/{ sel(v_1, v_2) : sel in TSel })) ->

"Internal Error! assume that the selectors of " + x1 + "are all NULL"
%retain !x1(v)

}

%action Set_Data_T(lhs, rhs) {
%t lhs + "->data = " + rhs + "->data"
%f { lhs(v) }
%message (!E(v) rhs(v)) ->

"Illegal dereference to\n" + data + " component of " + rhs
%message (!E(v) lhs(v)) ->

"Illegal dereference to\n" + data + " component of " + lhs
{

dle(v_1, v_2) = (lhs(v_1) & E(v)(rhs(v) & dle(v, v_2))) //comp. x->data with s.th.
| (lhs(v_2) & E(v)(rhs(v) & dle(v_1, v))) //comp. x->data with s.th.
| (!lhs(v_1) & !lhs(v_2) & dle(v_1, v_2))

inOrder[dle]() = inOrder[dle]() & A(v1, v2)((lhs(v1) & rhs(v2)) -> (
A(v3)(downStar[left](v1, v3) -> (dle(v3, v2) & !dle(v2, v3)))

//nodes reachable from lhs are in order with the new value of lhs which is in rhs
& A(v3)(downStar[right](v1, v3) -> (!dle(v3, v2) & dle(v2, v3)))
& A(v)((downStar[left](v, v1) -> (dle(v2, v) & !dle(v, v2)))

//nodes reaching lhs are still in order
& (downStar[right](v, v1) -> (!dle(v2, v) & dle(v, v2))))))

treeNess() = treeNess()
}

}

//////////////////////////////////////////
// Actions for testing various properties.

%action Is_Sorted_Data_T() {
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%t "Is Data in tree " + root + " in ascending order?"
%p A(v) inOrder[dle]()

}

%action Is_Not_Sorted_Data_T() {
%t "Is Data in tree NOT in ascending order?"
%p !inOrder[dle]()
%message !inOrder[dle]() ->

"Unable to prove that the tree is still in order"
}

%action Is_Element(el, s) {
%t "Is " + el + " an element of set " + s + "?"
%p E(v1, v2)(el(v1) & s(v2) & isElement(v1,v2))
%message (E(v1, v2)(el(v1) & s(v2) & isElement(v1,v2))) ->

"Unable to prove that " + el +
" is not an element of " + set

}

%action Is_Not_Element(el, s) {
%t "Is " + el + " not an element of set " + s + "?"
%p !(E(v1, v2)(el(v1) & s(v2) & isElement(v1,v2)))

%message !(E(v1, v2)(el(v1) & s(v2) & isElement(v1,v2))) ->
"Unable to prove that " + el +
" is an element of " + set

}

%action Assert_Permutation_T(set, element) {
%t "AssertPermutation(" + set + ", " + element + ")"
%p !(A(v) ((E(vel) dle(v, vel) & dle(vel, v) & element(vel))

| (r[set](v) <-> or[set](v))))
%message !(A(v) ((E(vel) dle(v, vel) & dle(vel, v) & element(vel))

| (r[set](v) <-> or[set](v)))) ->
"Unable to prove that the tree pointed-to by " + set +
" is a permutation of the original tree "

}

Input Structures

//an empty set
%n = {setstart, el}
%p = {

set = {setstart}
element = {el}
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downStar = {el->el, setstart->setstart}
r[set] = {setstart}
r[element] = {el}

inOrder[dle] = 1

treeNess = 1

dle = {setstart->setstart, el->setstart, el->el}

dle[element, right] = {setstart}

cmp[dle,right] = {el->setstart}
cmp[dle,left] = {setstart->el}

isSet = {setstart}
}

//a one-elementary set
%n = {setstart, u, el}
%p = {

set = {setstart}
element = {el}

left = {setstart->u}

down = {setstart->u}
downStar = {u->u, el->el, setstart->setstart, setstart->u}

downStar[left] = {setstart->u}
r[set] = {setstart, u}
r[element] = {el}

inOrder[dle] = 1

treeNess = 1

dle = {setstart->setstart, u->setstart, el->setstart,
u->u, el->el, el->u:1/2, u->el:1/2}

dle[element, left] = {u:1/2}
dle[element, right] = {setstart, u:1/2}

cmp[dle,right] = {u->setstart, el->setstart, el->u:1/2, u->el:1/2}
cmp[dle,left] = {setstart->u, setstart->el, el->u:1/2, u->el:1/2}
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isSet = {setstart}
isElement = {u->setstart, el->setstart:1/2}

}

//a non-empty set
%n = {setstart, u, us, el}
%p = {

sm = {us:1/2}
set = {setstart}
element = {el}

left = {u->us:1/2, us->us:1/2, setstart->u}
right = {u->us:1/2, us->us:1/2}

down = {setstart->u, u->us:1/2,us->us:1/2}
downStar = {u->u, u->us, us->us:1/2, el->el,

setstart->setstart, setstart->u, setstart->us}
downStar[left] = {setstart->u, setstart->us, u->us:1/2, us->us:1/2}

downStar[right] = {u->us:1/2, us->us:1/2}
r[set] = {setstart, u, us}
r[element] = {el}

inOrder[dle] = 1

treeNess = 1

dle = {setstart->setstart, u->setstart, us->setstart, el->setstart,
u->u, u->us:1/2, us->u:1/2, us->us:1/2,
el->el, el->u:1/2, el->us:1/2, u->el:1/2, us->el:1/2}

dle[element, left] = {u:1/2, us:1/2}
dle[element, right] = {setstart, u:1/2, us:1/2}

cmp[dle,right] = {u->setstart, us->setstart, el->setstart,
u->us:1/2, us->u:1/2, us->us:1/2,
el->u:1/2, el->us:1/2, u->el:1/2, us->el:1/2}

cmp[dle,left] = {setstart->u, setstart->us, setstart->el,
u->us:1/2, us->u:1/2, us->us:1/2,
el->u:1/2, el->us:1/2, u->el:1/2, us->el:1/2}

isSet = {setstart}
isElement = {u->setstart, us->setstart, el->setstart:1/2}

}
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Insertion

%s PVar {set, tree, previous, element, root}
%s TRVar {element}
%s TSel {left, right}

#include "pred_sort.tvp"
%%
#include "actions_sort.tvp"
%%

/*
void insertElement(Set* set, void* element)
{
Tree* tree = set->tree;
Tree* previous = tree;

while (tree != 0) //find suitable position for new element
{
previous = tree;
if (compare(tree->data, element->data) < 0)

tree = tree->left;
else if (compare(tree->data, element->data) > 0)

tree = tree->right;
else if (compare(tree->data, element->data) == 0) //element is already contained...

return;
}

set->size++;

tree = (Tree*)malloc(sizeof(tree));
tree->data = element;
tree->left = 0;
tree->right = 0;
if (previous == 0) //first element to be inserted... (tree was empty)
{
set->tree = tree;

}
else
{
if (compare(previous->data, element->data) < 0)

previous->left = tree;
else if (compare(previous->data, element->data) > 0)

previous->right = tree;
}

}
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*/

L0 Copy_Reach_T(set) L1

L1 Get_Sel_T(tree, set, left) L2 // Tree* tree = set->tree;
//left denotes tree for sets... a new selection predicate would make things complicated

L2 Copy_Var_T(previous, tree) L3 // Tree* previous = tree;

L3 Is_Not_Null_Var(tree) L4 // while (tree != 0)
L3 Is_Null_Var(tree) L81 //
L4 Copy_Var_T(previous, tree) L5 // previous = tree;
L5 Greater_Data_T(tree, element) L6 // if (compare(tree->data, element->data) < 0)
L5 Less_Data_T(tree, element) L7 // if (compare(tree->data, element->data) > 0)
L5 Equal_Data_T(tree, element) exit // if (compare(tree->data, element->data) == 0)

L6 Get_Sel_T(tree, tree, left) L3 // tree = tree->left;
L7 Get_Sel_T(tree, tree, right) L3 // tree = tree->right;

// set->size++;

L81 Set_Null_T(tree) L8
L8 Malloc_T(tree) L9 // tree = (Tree*)malloc(sizeof(tree));
L9 Set_Data_T(tree, element) L10 // tree->data = element->data
L10 Set_Sel_Null_T(tree, left) L11 // tree->left = 0;
L11 Set_Sel_Null_T(tree, right) L12 // tree->right = 0;

L12 Is_Null_Var(previous) L13 // if (previous == 0)
L12 Is_Not_Null_Var(previous) L15 // else
L13 Set_Sel_Null_T(set, left) L14 // set->tree = 0;
L14 Set_Sel_T(set, left, tree) exit1 // set->tree = tree;
L15 Greater_Data_T(previous, element) L16a //if (compare(previous->data, element->data)<0)
L15 Less_Data_T(previous, element) L17a //if (compare(previous->data, element->data)>0)
L16a Set_Sel_Null_T(previous, left) L16b // previous->left = 0;
L16b Set_Sel_T(previous, left, tree) exit1 // previous->left = tree;
L17a Set_Sel_Null_T(previous, right) L17b // previous->right = tree;
L17b Set_Sel_T(previous, right, tree) exit1 // previous->right = tree;

exit Set_Null_T(tree) exit1 // tree = 0
exit1 Set_Null_T(previous) exit2 // previous = 0;

exit2 Is_Not_Element(element, set) error
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exit2 Is_Not_Sorted_Data_T() error
exit2 Assert_Permutation_T(set, element) error

%% L1, exit2, error

Removal

%s PVar {root, set, tree, treeRight, treeLeft, following, previous, previous2,
element, temp, subtree}

%s TRVar {element}
%s TSel {left, right}

#include "pred_sort.tvp"
%%
#include "actions_sort.tvp"
%%

/*
void removeElement(Set* set, void* element)
{

Tree* treeRight = 0;
Tree* treeLeft = 0;
Tree* following = 0;
Tree* tree = set->tree;
Tree* previous = 0;
Tree* previous2 = 0;
Tree* temp = 0;
Tree* subtree = 0;

while (tree != 0) //find element...
{

if (compare(tree->data, element) == 0) //we found the element.
{
treeLeft = tree->left;
treeRight = tree->right;
tree->left = 0;
tree->right = 0;
set->size--;

if ((treeRight == 0) && (treeLeft == 0))
following = 0;

else if (treeRight == 0)
following = treeLeft;

else if (treeLeft == 0)
following = treeRight;
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if ((treeRight == 0) || (treeLeft == 0))
{
if (previous == 0)
set->tree = following;

else
{
temp = previous->left;
if (temp == tree)
previous->left = following;

else
previous->right = following;

temp = 0;
}

}

following = 0;

if ((treeRight != 0) && (treeLeft != 0))
{ //position has two subtrees: either find largest element to the left

//or smallest to the right; i chose left here
subtree = treeLeft;
previous2 = 0;
temp = subtree->right;
while (temp != 0) //finding largest element to the left of the element that

//is being removed
{
previous2 = subtree;
subtree = temp;
temp = subtree->right;

}
temp = 0;
if (previous2 != 0) //remove element from predecessor
{
temp = subtree->left;
subtree->left = 0;
previous2->right = 0;
previous2->right = temp;

temp = 0;
}

subtree->right = 0;
if (treeLeft != subtree) //otherwise we would introduce a cycle

subtree->left = treeLeft; //attach former subtrees of removed element
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subtree->right = treeRight;

if (previous == 0) //link it to predecessor of removed element
set->tree = subtree;

else
{
temp = previous->left;
if (temp == tree)
previous->left = subtree;

else
previous->right = subtree;

temp = 0;
}

}

free(tree);

return;
}

previous = tree;

if (compare(tree->data, element) < 0) //traversing the tree in search of the element.
tree = tree->left;

else
tree = tree->right;

}
}

*/

/*

*/

//including data field...
L0 Copy_Reach_T(set) Lentry1

Lentry1 Set_Null_T(treeRight) Lentry2 // Tree* treeRight = 0;
Lentry2 Set_Null_T(treeLeft) Lentry3 // Tree* treeLeft = 0;
Lentry3 Set_Null_T(following) Lentry4 // Tree* following = 0;
Lentry4 Get_Sel_T(tree, set, left) Lentry5 // Tree* tree = set->tree;
//left denotes tree for sets... a new selection predicate would make things way more complicated
Lentry5 Set_Null_T(previous) Lentry6 // Tree* previous = 0;
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Lentry6 Set_Null_T(previous2) Lentry7 // Tree* previous2 = 0;
Lentry7 Set_Null_T(temp) Lentry8 // Tree* temp = 0;
Lentry8 Set_Null_T(subtree) Lwhile // Tree* subtree = 0;

Lwhile Is_Not_Null_Var(tree) Lbody // while (tree != 0) find element...
Lwhile Is_Null_Var(tree) exit //
Lbody Not_Equal_Data_T(tree, element) Lnotfound

//else (if (compare(tree->data, element->data) != 0))
Lbody Equal_Data_T(tree, element) Lfound

//if (compare(tree->data, element->data) == 0)

Lfound Get_Sel_T(treeLeft, tree, left) Lf1 // treeLeft = tree->left;
Lf1 Get_Sel_T(treeRight, tree, right) Lf1b // treeRight = tree->right
Lf1b Set_Sel_Null_T(tree, left) Lf1c // tree->left = 0;
Lf1c Set_Sel_Null_T(tree, right) Lf2 // tree->right = 0;

// set->size--;
Lf2 Is_Null_Var(treeRight) Lf3 //
Lf2 Is_Not_Null_Var(treeRight) Lf5 //
Lf3 Is_Null_Var(treeLeft) LfNull //if ((treeRight == 0) && (treeLeft == 0))
Lf3 Is_Not_Null_Var(treeLeft) LfRight // else if (treeRight == 0)
Lf5 Is_Null_Var(treeLeft) LfLeft // else if (treeLeft == 0)
Lf5 Is_Not_Null_Var(treeLeft) LfAfterAll // else...
LfNull Set_Null_T(following) LfAfter // following = 0;
LfRight Copy_Var_T(following, treeLeft) LfAfter // following = treeLeft;
LfLeft Copy_Var_T(following, treeRight) LfAfter // following = treeRight;

LfAfter Is_Null_Var(previous) LfAfter2 // if (previous == 0)
//if ((treeRight == 0) || (treeLeft == 0)) is ensured...
LfAfter Is_Not_Null_Var(previous) LfAfter3 // else
LfAfter2 Set_Sel_Null_T(set, left) LfAfter2b // set->tree = 0;
LfAfter2b Set_Sel_T(set, left, following) LfAfterAll // set->tree = following
LfAfter3 Get_Sel_T(temp, previous, left) LfAfter4 // temp = previous->left;
LfAfter4 Is_Eq_Var(temp, tree) LfAfter5 // if (temp == tree)
LfAfter4 Is_Not_Eq_Var(temp, tree) LfAfter7 // else
LfAfter5 Set_Sel_Null_T(previous, left) LfAfter6 // previous->left = 0;
LfAfter6 Set_Sel_T(previous, left, following) LfAfterAll //previous->left = following;
LfAfter7 Set_Sel_Null_T(previous, right) LfAfter8 // previous->right = 0;
LfAfter8 Set_Sel_T(previous, right, following) LfAfterAll //previous->right = following;
LfAfterAll Set_Null_T(temp) LfAfterAlla // temp = 0;

LfAfterAlla Set_Null_T(following) LfR1 // following = 0;
LfR1 Is_Not_Null_Var(treeRight) LfR2 // if (treeRight != 0)
LfR1 Is_Null_Var(treeRight) exit // else
LfR2 Is_Not_Null_Var(treeLeft) LfRin // if (treeLeft != 0)
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LfR2 Is_Null_Var(treeLeft) exit // else

LfRin Copy_Var_T(subtree, treeLeft) LfRin2 // subtree = treeLeft;
LfRin2 Set_Null_T(previous2) LfRin3 // previous2 = 0;
LfRin3 Get_Sel_T(temp, subtree, right) Lwhile2 // temp = subtree->right;

Lwhile2 Is_Not_Null_Var(temp) Lw2body // while (temp != 0)
Lwhile2 Is_Null_Var(temp) Lfbodyend // else
Lw2body Copy_Var_T(previous2, subtree) Lw22 // previous2 = subtree;
Lw22 Copy_Var_T(subtree, temp) Lw23 // subtree = temp;
Lw23 Get_Sel_T(temp, subtree, right) Lwhile2 // temp = subtree->right;
Lfbodyend Set_Null_T(temp) Lfb2 // temp = 0;

Lfb2 Is_Not_Null_Var(previous2) Lfb3 // if (previous2 != 0)
Lfb2 Is_Null_Var(previous2) Lfb5 // else
Lfb3 Get_Sel_T(temp, subtree, left) Lfb3aa // temp = subtree->left;
Lfb3aa Set_Sel_Null_T(subtree, left) Lfb3a // subtree->left = 0;
Lfb3a Set_Sel_Null_T(previous2, right) Lfb3b // previous2->right = 0;
Lfb3b Set_Sel_T(previous2, right, temp) Lfb3c // previous2->right = temp;
Lfb3c Set_Null_T(temp) Lfb5 // temp = 0;

Lfb5 Set_Sel_Null_T(subtree, right) Lfb6 // subtree->right = 0;
Lfb6 Is_Not_Eq_Var(treeLeft, subtree) Lfb7 // if (treeLeft != subtree)
Lfb6 Is_Eq_Var(treeLeft, subtree) Lfb8 // else
Lfb7 Set_Sel_T(subtree, left, treeLeft) Lfb8 // subtree->left = treeLeft;
Lfb8 Set_Sel_T(subtree, right, treeRight) Lfb9 // subtree->right = treeRight;

Lfb9 Is_Null_Var(previous) Lfb10 // if (previous == 0)
Lfb9 Is_Not_Null_Var(previous) Lfb12 // else
Lfb10 Set_Sel_Null_T(set, left) Lfb11 // set->tree = 0;
Lfb11 Set_Sel_T(set, left, subtree) exit // set->tree = subtree;
Lfb12 Get_Sel_T(temp, previous, left) Lfb13 // temp = previous->left;
Lfb13 Is_Eq_Var(temp, tree) Lfb14 // if (previous == 0)
Lfb13 Is_Not_Eq_Var(temp, tree) Lfb15 // else
Lfb14 Set_Sel_Null_T(previous, left) Lfb14a // previous->left = 0;
Lfb14a Set_Sel_T(previous, left, subtree) Lfbt // previous->left = subtree;
Lfb15 Set_Sel_Null_T(previous, right) Lfb15a // previous->right = 0;
Lfb15a Set_Sel_T(previous, right, subtree) Lfbt // previous->right = subtree;
Lfbt Set_Null_T(temp) exit // temp = 0;
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Lnotfound Copy_Var_T(previous, tree) Lnf2 // previous = tree;
Lnf2 Less_Data_T(tree, element) Lnf4 // if (compare(tree->data, element) < 0)
Lnf2 Greater_Data_T(tree, element) Lnf3 // else
Lnf3 Get_Sel_T(tree, tree, left) Lwhile // tree = tree->left;
Lnf4 Get_Sel_T(tree, tree, right) Lwhile // tree = tree->right;

exit Set_Null_T(treeLeft) exit0 // treeLeft = 0;
exit0 Set_Null_T(treeRight) exitr // treeRight = 0;

exitr Set_Null_T(tree) exit1 // tree = 0
exit1 Set_Null_T(previous) exit2 // previous = 0;
exit2 Set_Null_T(previous2) exit3 // previous2 = 0;
exit3 Set_Null_T(subtree) exit4 // subtree = 0;
exit4 Set_Null_T(temp) exit5 // temp = 0;
exit5 Set_Null_T(following) exit6 // following = 0;

exit6 Is_Element(element, set) error
exit6 Is_Not_Sorted_Data_T() error
exit6 Assert_Permutation_T(set, element) error

%% Lentry1, exit6, error

Membership Test

%s PVar {set, tree, element}
%s TRVar {element}
%s TSel {left, right}

#include "pred_sort.tvp"
%%
#include "actions_sort.tvp"
%%

/*
int isElement(Set* set, void* element) //returns 0 if element is not contained,

//otherwise depth starting at 1
{

Tree* tree = set->tree;
int depth = 0;

while (tree != 0)
{

depth++;
printf("%i\n",*(int*)tree->data);

162



B.2 TVLA Analyses

int compresult = compare(tree->data, element);
if (compresult == 0)
return 1; //depth;

else if (compresult < 0)
tree = tree->left;

else
tree = tree->right;

}

return 0;
}
*/

L0 Copy_Reach_T(set) L1
L1 Get_Sel_T(tree, set, left) L2 // Tree* tree = set->tree;
//left denotes tree for sets... a new selection predicate would make things complicated

L2 Is_Not_Null_Var(tree) L3 // while (tree != 0)
L2 Is_Null_Var(tree) exitnotfound
L3 Equal_Data_T(tree, element) exitfound //if (compresult = 0) return 1;
L3 Greater_Data_T(tree, element) L4 // else if (compresult < 0)
L3 Less_Data_T(tree, element) L5 // else if (compresult > 0)
L4 Get_Sel_T(tree, tree, left) L2 // tree = tree->left;
L5 Get_Sel_T(tree, tree, right) L2 // tree = tree->right;

exitfound Is_Not_Element(element, set) exitfounderror
exitnotfound Is_Element(element, set) exitnotfounderror

%% L1, exitfound, exitnotfound, exitfounderror, exitnotfounderror
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