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Abstract

Digital film processing is characterized by a resolution
of at least 2K (2048x1536 pixels per frame at 30 bit/pixel
and 24 pictures/s, data rate of 2.2 GBit/s); higher resolu-
tions of 4K (8.8 GBit/s) and even 8K (35.2 GBit/s) are on
their way. Real-time processing at this data rate is be-
yond the scope of today’s standard and DSP processors,
and ASICs are not economically viable due to the small
market volume. Therefore, an FPGA-based approach was
followed in the FlexFilm project. Different applications are
supported on a single hardware platform by using different
FPGA configurations.

The multi-board, multi-FPGA hardware/software archi-
tecture is based on Xilinx Virtex-II Pro FPGAs which con-
tain the reconfigurable image stream processing data path,
large SDRAM memories for multiple frame storage and a
PCI express communication backbone network. The FPGA-
embedded CPU is used for control and less computation in-
tensive tasks.

This paper will focus on three key aspects: a) the used
design methodology which combines macro component
configuration and macro-level floorplanning with weak pro-
grammability using distributed microcoding, b) the global
communication framework with communication scheduling
and c) the configurable, multi-stream scheduling SDRAM
controller with QoS support by access prioritization and
traffic shaping.

As an example, a complex noise reduction algorithm in-
cluding a 2.5 dimensions DWT and a full 16x16 motion es-
timation at 24 fps requiring a total of 203 Gops/s net com-
puting performance and a total of 28 Gbit/s DDR-SDRAM
frame memory bandwidth will be shown.
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stream-based architechture, weak programming, SDRAM-
controller, QoS, communication centric, communication
scheduling, PCI-Express
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1. Introduction

Digital film post processing (also calledelectronic film
post processing) at resolutions of 2Kx2K (2048x2048 pix-
els per frame at 30 bit/pixel and 24 pictures/s resulting in an
image size of 15 MBytes and a data rate of 360 MBytes per
second) [1], [2] and up are used in the motion picture and
advertisement industries. There is a growing market seg-
ment that requires real-time or close to real-time processing
to get immediate feedback in interactive film processing.
Some of those algorithms are highly computation demand-
ing, far beyond current DSP or processor performance. Typ-
ical state-of-the art products in this low-volume, high-price
market use FPGA based hardware systems with fixed con-
figurations.

Upcoming products face several challenges, such as in-
creasing computing demands and algorithm complexity,
larger FPGA architectures with floorplanning requirements,
and increasing demands to product customization.

Another key challenge is the global communication in-
frastructure and communication scheduling which is re-
quired due to the high bandwidth and usage of multiple FP-
GAs and boards to implement the algorithm.

Furthermore, large external memory space holding sev-
eral frames is of major importance since the embedded
FPGA memories are too small. If not carefully designed,
external memory access will become a bottleneck. Since
modern FPGAs contain both the image processing data path
and embedded processors which access the same memory,
different access patterns have to be considered.

This paper presents an answer to these challenges in
the form of the FlexFilm [3] hardware platform in sec-
tion 2.1and its software counterpart FlexWAFE [4] (Flexi-
ble Weakly-programable Advanced Film Engine) in section
2.2. Section2.3 will discuss the global communication ar-
chitecture. Since external memory and the required mem-
ory access scheduling play a key role, chapter2.4 will ex-
plain the memory controller architecture.

An example of a 2.5 dimensions noise reduction appli-
cation using bidirectional motion estimation/compensation
and wavelet transformation is presented in section3. Sec-
tion 4 will show some example results about the quality of
service features of the memory controller. Finally, section5
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concludes this paper.

1.1. Related Work

The Imagine stream processor [5] uses a three level hi-
erarchical memory structure: small registers between pro-
cessing units, one 128KB stream register file and external
SDRAM. It has eight arithmetic clusters each with six 32-
bit FPUs (floating point units) that execute VLIW instruc-
tions. Although it is a stream oriented processor, it does
not achieve the theoretical maximum performance due to
stream controller and kernel overhead.

The methodology presented by Park et al. [6] is focused
on application level stream optimizations and ignore archi-
tecture optimizations and memory prefetching.

In the recent years, the paradigms "Communication Cen-
tric Design" and "Communication Scheduling" have grown
in importance for SoCs and especially MPSoCs as well as
for complete systems [7, 8]. A great amount of work and
research is currently active in the field of network architec-
tures and communication scheduling ([9, 10, 11, 12, 13]).
Allthough similar to NoC, none of this works covers a het-
erogeneous network of a multi-board / multi-FPGA system
with a PCI-Express based backbone.

Regarding external memory, the Prophid
architecture[14] [15] by Meerbergen et al. describes
a dynamic RAM scheduler for the Prophid DSP platform
that is focused on streams using large FIFO buffers and
round-robin scheduling. The memory scheduler of the
previously mentioned Imagine processeor is optimized for
the application algorithms, however it does not distinguish
different stream types. Closest to the FlexFilm memory
controller architecture is a memory scheduler IP offered
by Sonics [16] that also handles different access patterns
and service levels at high average memory bandwidth. The
bandwidth is similar to that of the scheduler presented here
and is close to the maximum possible bandwidth. However,
their complex 7-stage architecture is designed towards
ASICs and not FPGAs.

1.2. Technology Status

Current FPGAs achieve over 300 MHz, have up to
1 MByte distributed RAM and up to 512 18-bit MAC
units (source XilinxVirtex-IV [17]). Together with the
huge amount of distributed logic in the chip (up to 100K
CLBs [17]) it is possible to build circuits that compete with
ASICs regarding performance, but have the advantage of
their configurability and therefore reuse.

PCI-Express, mainly developed by Intel and approved as
a PCI-SIG standard in 2002, is the successor of the PCI bus
communication architecture. Rather than a shared bus, it is
a network framework consisting of a series of bidirectional
point-to-point channels connected through switches. Each

Figure 1. FlexFilm board (block diagram)

Figure 2. FlexFilm board

channel can operate at the same time without negatively af-
fecting other channels. Depending on the actual implemen-
tation, each channel can operate at speeds of 2 (X1-speed),
4, 8, 16 or 32 (X16) Gbit per second (full duplex, both direc-
tions each). Furthermore, PCI-Express features a sophisit-
cated quality of service management to support a variety of
end-to-end transmission requirements like minimum guar-
anteed throughput or maximum latency.

2. FlexFilm Architecture

2.1. System Architecture

In an industry-university collaboration, a multi-board,
extendible FPGA based system has been designed. Each
FlexFilm board (figures1 and 2) features 3 Xilinx
XC2PV50-6 FPGAs which provide the massive processing
power required to implement the image processing algo-
rithms. Another FPGA (also Xilinx XC2PV50-6) acts as
a PCI-Express router with two PCI-Express X4 links, en-
abling 8 Gbit/s net bidirectional communication with the
host PC and with other boards (figure3).
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Figure 3. Global system architecture

The board-internal communication uses multiple 8
Gbit/s FPGA-to-FPGA links, implemented as 16 differen-
tial wire pairs operating at 250 MHz DDR (500 Mbit/s per
pin), which results in a data rate of one 64-bit word per core
clock cycle (125 MHz) or 8 Gbit/s. Additional control lines
are available for scheduler synchronization.

As explained in the introduction, digital film applica-
tions require huge amounts of memory. However, the used
Virtex-II Pro FPGA contains only 4.1 Mbit of dedicated
memory ressources (232 RAM blocks of 18 Kbit each). For
this reason, each FPGA is equipped with four gigabit of ex-
ternal DDR-SDRAM, organized as four independent, 32 bit
wide modules of one gigabit each. Two modules can be
combined into one 64-bit module if desired. The RAM is
clocked with the FPGA core clock of 125 MHz which re-
sults at 80% bandwidth utilizastion in a sustained effective
performance of 6.4 Gbit/s per module.

2.2. FlexWAFE Reconfigurable Architecture

The FPGAs are configured using macro components that
consist of local memory address generators (LMC) that
support sophisticated memory pattern transformations and
data stream processing units (DPUs). Their sizes fit the
typical FPGA blocks and can be easily laid out as macro
blocks reaching a clock rate of 125 MHz. They are pa-
rameterized in data word lengths, address lengths and sup-
ported address and data functions. The macros are pro-
grammed via address registers and function registers and
have small local sequencers to create a rich variety of ac-
cess patterns, including diagonal zig-zagging and rotation.
The adapted LMCs are assigned to local FPGA RAMs that
serve as buffer and parameter memories. The macros are
programmed at run time via a small and, therefore, easy to
route control bus. A central algorithm controller sends the
control instructions to the macros controlling the global al-
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Figure 4. FlexWAFE Reconfigurable architec-
ture

Figure 5. Communication scheduling

gorithm sequence and synchronization. Programming can
be slow compared to processing as the macros run local
sequences independently. In effect, the macros operate as
weakly programmable coprocessors known from MpSoCs
such as VIPER [18]. This way, weak programming sepa-
rates time critical local control in the components from non
time-critical global control. This approach accounts for the
large difference in global and local wire timing and routing
cost. The result is similar to a local cache that enables the
local controllers to run very fast because all critical paths
are local. Figure4 shows an overview.

2.3. Global Data Flow

Even if only operating at the low 2K resolution, one im-
age stream alone comes at a data rate of up to 2.2 Gbit/s.
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With the upcoming 4K resolution, one stream requires a net
rate of 8.8 Gbit/s. At the processing stage, this bandwidth
rises even higher, for example because multiple frames are
processed at the same time (motion estimation) or the inter-
nal channel bit resolution is increasing to keep the desired
accuracy (required by filter stages such as DWT). Given the
fact that the complete algorithm has to be mapped to differ-
ent FPGAs, data streams have to be transported between the
FPGAs and boards. These data streams might differ greatly
in their characteristics such as bandwidth and latency re-
quirements (e.g. image data and motion vectors), and it will
be required to transport multiple streams over one physical
communication channel. Minimum bandwidths and maxi-
mum possible latencies must be guaranteed, this is accom-
plished through communication scheduling.

Therefore it is obvious that due to this reasons the com-
munication architecture is therefore a key point of the com-
plete FlexFilm project. The first decision was made to aban-
don any bus structure communication architecture, since
due to their shared nature their available effective band-
width becomes too limited if many streams need to be trans-
ported simultaneously. Furthermore, current bus systems
do not provide a quality of service management which is
required for a communication scheduling.

For this reason, point-to-point communication channels
were used for inter-FPGA communication on one board and
PCI-Express was selected for board-to-board communica-
tion. Currently, PCI-Express is only used for stream input
and output to a single FlexFilm board, however in the future
multiple boards will be used.

As explained above, multiple streams have to be trans-
ported over one physical channel, and communication
scheduling has to guarantee a smooth and deadlock-free
operation. Latencies should be kept at a minimum, since
large latencies require large buffers which have to be imple-
mented inside the FlexWAFE FPGAs and which are nothing
but "dead freight."

Since the streams (currently) are periodic and their band-
width is known at design time, TDMA (time division multi-
ple access) scheduling is a suitable solution. TDMA means
that access to the communication channel is granted to each
stream in turn. The bandwidth assigned to each stream can
be specified by either a) the access duration per stream – the
higher, the more bandwidth is assigned to that stream, or b)
by giving access to a stream more often during a complete
TDMA schedule.

For example, take 2 streams (1) and (2), whereas the re-
quired bandwith for stream (1) is 3 words every 5 clock
cycles and stream (2) requires 2 words every clock cycle.
In the first solution, stream (1) would be granted access for
three clock cycles followed by stream (2) for two cycles,
which can be expressed as a TDMA schedule of 1-1-1-2-2.
Buffers are required at the sender and receiver for packetiz-

ing and depacketizing of the periodic streams. In the second
solution, the TDMA schedule would be 1-2-1-2-1, result-
ing in the same bandwidth assignment, however due to the
smaller packet size less buffers are required. For this reason,
second solution was choosen for the intra-FPGA communi-
cation with a packet size of one word.

In many TDMA implementations, small packet sizes re-
duce the effective available bandwidth due to packet head-
ers and trailers which carry checksums and scheduling in-
formation. This is not required by the FlexFilm project
since due to short wire lengths and differential signaling
techniques transmission errors are neglectable, and the re-
quired scheduling information is transmitted by additional
control lines.

Since PCI-Express can be operated as a TDMA bus, the
same scheduling techniques apply as for the inter-FPGA
communication. The only exception is that PCI-Express re-
quires a larger packet size of currently up to 512 bytes1. The
required buffers however fit well into the IO-FPGA.

Figure5 shows an inter-FPGA and a PCI-Express sched-
ule example.

2.4. Memory Controller

As explained in the introduction, memory access pat-
terns from the embedded CPU (PowerPC) and the stream
processing data path show different access patterns:

• Hard real-time periodic access sequencesand fixed
address access patternswith optimized fixed schedul-
ing [19] generated by the data path. These sequences
require aminimum memory throughputand can be
buffered to increase the maximum allowed memory ac-
cess time without performance loss. By adapting the
buffer size, arbitrary access times are acceptable, but
the maximum access time must be bounded to avoid
buffer over- or underflows.

• Random address patternsgenerated byCPU cache
misses, either soft- or hard real-time. Because the pro-
cessor stalls on a cache miss and since prefetch is of
limited use due to the less predictable access patterns,
memory access time is the crucial parameter determin-
ing performance. On the other hand, (average) mem-
ory throughput is less significant. To improve perfor-
mance, memory access time has to be minimized (soft
real-time) or bounded (hard real-time). Such require-
ments are typically neglected but they are important
for the overall system performance, as will be seen in
the experiments.

This results in two types of QoS:guaranteed minimum
throughput at guaranteed maximum latencyand smallest
possible latency.

1Limitation by Xilinx PCI-Express IP core
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The 125 MHz clocked RAM reaches a peak performance
per bank of 8 Gbits per second. To avoid external memory
access becoming a bottleneck, a scheduling memory con-
troller (CMC2) was developed which implements the QoS
types explained above. Other constrains were flexible con-
figurability (see chapter3) and resource usa ge – since the
CMC does not perform stream processing, it can be consid-
ered as (required) ballast and thus the area usage should be
kept at a minimum.

Figure6 shows the CMC block diagram. The controller
core, the two-staged memory access scheduler, is capable
of increasing the bandwidth utilization by applying bank in-
terleaving (minimizes the bank stall cycles) and read/write
request bundling (minimizes bus turnaround cycles). QoS
is implemented by prioritizing PowerPC memory accesses
(high priority CPU requests are always executed before
standard priority data path requests) and by traffic shaping
those high priority requests to prevent data path request star-
vation. The traffic shaper allows patterns such asn requests
within a window ofT clock cycles (also known as "leaky
bucket" principle in networking applications).

The memory accesses the SDRAM using auto precharge
mode, requests to the memory controller are always done
at full SDRAM bursts. To avoid excessive memory stalls
due to SDRAM bank precharge and activation latencies, the
address translation is performend in a way that memory re-
quests are evenly distributed across all banks to maximize
the bank interleaving effect.

The memory controller is configurable regarding
SDRAM timing and layout, application ports (number of
ports, different data and address width per port), address
translation and QoS settings (prioritization and flow con-
trol).

A more detailed description can be found in [20]
and [21].

2.5. FPGA Programming

FPGA programming consists of script-based VHDL
macro parameterization based on library elements, followed
by controller synthesis and FPGA floorplanning. This com-
bination greatly simplifies programming as the resulting
modules can easily be placed in the floorplan, avoiding time
consuming and ineffective global routing with manual op-
timization. For system programming, there is a global flow
programming tool under development that semiautomati-
cally assigns communication link bandwidth and memory
space to the operators of a global data flow graph. So far,
these design steps are manual. The design flow is depicted
in Figure7.

2Central Memory Controller; historic name, emerged when it was sup-
posed to only have one external memory controller per FPGA.

Figure 6. Memory Controller Block Diagram

3. A Sophisticated Noise Reducer

To test this system architecture, a complex noise reduc-
tion algorithm depicted in figures8 and9 based on 2.5 di-
mensions discrete wavelet transformation (DWT) between
consecutive motion compensated images was implemented
at 24 fps. The algorithm starts by creating a motion com-
pensated image using pixels from the previous and from the
next image. Then it performs a Haar filter between this im-
age and the current image. The two resulting images are
then transformed into the 5/3 wavelet space, filtered with
user selectable parameters, transformed back to the normal
space and filtered with the inverse Haar filter. The DWT
operates only in the 2D space-domain, but due to the mo-
tion compensated pixel information, the algorithm also uses
information from the time-domain, therefore it is said to be
a 2.5D filter. A full 3D filter would also use DWT in the
time domain, therefore requiring multiple consecutive im-
ages (typically 5). The algorithm is presented in detail in
[22].

3.1. Motion estimation

Motion estimation is used in many image processing al-
gorithms and many hardware implementations have been
proposed. The majority are based on block matching. Of
these, some use content dependent partial search. Others
search exhaustively, in a data independent manner. Exhaus-
tive search produces the best block matching results at the
expense of an increased number of computations.

A full-search, block matching ME operating in the lumi-
nance channel and using the sum of absolute differences
(SAD) search metric was developed because it has pre-
dictable, content independent memory access patterns and
can process one new pixel per clock cycle. The block size is
16x16 pixels and the search vector interval is -8/+7. Its im-

5



Model Graph
Editor

Configuration
Verification

synthesis
ISE

FPGA

descriptions, symbols
user settable parameter

stream transformation 
instructions
verification instructions

SystemC models

Timing Behavior
Buffers

Simulation

CPU, memory & 
com. controller

insertion

Mapping
available resources

platform
description

FlexWAFE
Modules

memory & 
com. controller

modules

Code-Generation
VHDL

iterations

Libraries

Resource
Calculation

allocated resources

Figure 7. Designflow

Figure 8. Advanced noise reduction algrithm

plementation is based on [23]. Each of the 256 processing
elements (PE) performs a 10 bit difference, a comparasion,
and a 19 bit accumulation. These operations and their lo-
cal control was accommodated in 5 FPGA CLBs as shown
in Figure10. As seen in the rightmost table of that figure,
the resource utilization within these 5 CLBs is very high
and even 75% of the LUTs use all of its four inputs. This
block was used as a Relationally Placed Macro (RPM) and
evenly distributed on a rectangular area of the chip. Unfor-
tunately each 5 CLBs only have 10 tri-state buffers which
is not enough to multiplex the 19 bit SAD result, therefore
the PEs are accommodated in groups of 16 and use 5 extra
CLBs per group to multiplex the remaining 9 bits. Given
the cell-based nature of the processing elements, the tim-
ing is preserved by this placement. To implement the 256
PEs with corresponding SAD bus, 1360 CLBs and 26 extra

Figure 9. DWT based 2D noise reduction

CLBs are required for finding the minimum SAD includ-
ing global control. On the edge of the images the motion
vectors can only have limited values, a fact that is used to
reduce the initial row latency of [23] from 256 to 0.

Bidirectional motion-estimation is achieved using two of
these blocks. The ME core processing elements require that
the images be presented at its inputs in a column-major way,
but the images are transfered between FPGAs and stored
in SDRAM in a row-major order. Therefore, each of the
PE’s three inputs gets data from memory via a group of two
LMCs. The first hides the SDRAM latency by perform-
ing prefetching as explained in [4] whilhe the second trans-
forms the accesses from row-major to column-major order
using a small local blockRAM. When fed with the lumi-
nance component of 2048x2048 pixels, 10 bit-per-pixel im-
ages at 24 frames per second, the core computational power
(ignoring control and data transfers) is 155 Gop/s (tested in
post-layout simulation).

The resulting performance is higher than known imple-
mentations using NVIDIA GPUs [24], significantly above
the 18 Gop/s of the IMAGINE dedicated image processing
ASIC [5] running at 400MHz, and far beyond the 0.8 Gop/s
of a leading TI fixed-point TMS320C64x DSP running at
1GHz [25].

3.2. Motion Compensation

Motion compensation uses the block motion vectors
found by the ME to build an image that is visually simi-
lar to the current image, but only contains pixels extracted
in a blockwise manner from the previous/next image. The
criteria to choose the image block from the previous or next
image is the SAD associated to that block, the image block
with the smallest SAD (and therefore more similar to the
current image block) of the two is chosen. On a scene cut,
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RAMB 44 out of 232 18%
Slices 20,583 out of 23,616 87%
TBUF 5,408 out of  11,808 45%

● bidirectional ME with block size 16x16
● bidirectional MC
● searches -8/+7 vector interval
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Figure 10. Mapping and resource usage in a Xilinx XC2V50P device

one of the images will produce large SADs (because the
contents of it are most probably completely different from
the current image) and all blocks will be chosen from the
other image, the one that belongs to the same scene. This
has the advantage of making the noise reduction algorithm
immuneto scene cuts.

3.3. Discrete Wavelet Transform

The discrete wavelet transform (DWT) transforms a sig-
nal into a space where the base functions are wavelets [26],
similar to the way Fourier transformation maps signals to a
sine-cosine based space. The 5/3 wavelet was chosen for its
integer coefficients and invertibility (the property to convert
back to the original signal space without data loss). The
2D wavelet transformation is achieved by filtering the row
major incoming stream with two FIR filters (one with 5 the
other with 3 coefficients) and then filtering the resulting two
signals columnwise using the same filter coefficients. The
four resulting streams can be transformed back to the orig-
inal stream by filtering and adding operations. The noise
reduction algorithm requires three levels of decomposition,
therefore three of these blocks were cascaded and the noise
reduction DPUs added. To compensate the latency of the
higher decomposition levels, LMCs were used to build FI-
FOs with the external SDRAM. The resulting system is de-
picted in figure9 and was presented in detail in [4] .

The filter implementation uses polyphase decomposition
(horizontal) and coefficient folding (vertical). To maximize
throughput, the transformation operates line-by-line instead
of level-by-level [27]. This allows for all DPUs to operate
in parallel (no DPU is ever idle), minimizes memory re-
quirements and performs all calculations as soon as possi-
ble. Because the 2D images are a finite signal some control

Image
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n-2

Image
n-3

incomming
data

forward
search area
(next image)

reference
(current image)

backward
search area

(prev. image)

advance of
read/write addresses
to form ring buffer

Figure 11. Frame buffer access sequence

was added to achieve the symmetrical periodic extension
(SPE) [28] required to achieve invertibility. This creates a
dynamic datapath because the operations performed on the
stream depend on the data position within the stream. All
multiply operations were implemented with shift-add op-
erations because of the simplicity of the coefficients used.
One 2D DWT FPGA executes 162 add operations on the
direct DWT, 198 add operations on the inverse DWT and
513 extra add operations to support the SPE, all between 10
and 36 bits wide.

3.4. External Memory

Figure11 shows the required frame buffer access struc-
ture of the motion estimation. As can be seen, three im-
ages are accessed simultaneously, one image as reference
(n − 2), and two images as backward and forward search
area (n − 3 and n − 1). The two search areas are read
twice with different addresses. Besides that, the current in-
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coming image (n) needs to be buffered. Each of the two
ME engines contains its own frame buffer to store four
full-size images of up to 4Kx4K accessed via its respec-
tive CMC0 or CMC1 (Figure10). Each of the CMCs writes
one stream to memory and reads three streams. For ease
of implementation each pixel is stored using 16 bits. This
translates to 1.5 Gbit/second write and 4.1 Gbit/second read
bandwidth to off-chip SDRAM, amounting to a total of
6.1 Gbit/second that is below the maximum practical band-
width of 7 Gbit/second. The MC block operates in the RGB
color space unlike the ME block that uses the luminance
only. It stores one RGB pixel in a 32 bit word (10 bits
per color component) and uses its own memory controller
(CMC2 on Figure10). It uses a similar ring-buffer scheme
as CMC0 and 1 and is also capable of storing four images
of up to 4Kx4K resolution, but it groups the two external
memory banks and accesses them via a 64 bit bus and is
therefore capable of twice the troughput of the ME’s CMCs.
Due to the nature of SDRAM accesses it is only possible to
access blocks of 16 pixels at addresses that are multiples
of 16 (memory alignment). This means that in the worst-
case two blocks of 16 pixels need to be fetched in order to
access a non-aligned group of 16 pixels to build the motion
compensated image. The MC block also needs to access the
current image in order to do intra-block pixel-by-pixel val-
idation of the results. This leads to a worst case bandwidth
of 3.0 Gbit/second write and 9.2 Gbit/second read which is
below the practical limit of 14 Gbit/second. The area oc-
cupied by these 3 memory controllers is about 12 % of the
FPGA area, leaving enough room for the stream processing
units.

As explained in chapter3, the DWTs need synchro-
nization FIFOs to compensate the additional latency of the
higher level DWTs. The level 2 FIFOs completely fit into
the FPGA internal memory, so only for the level 1 FIFOs
external SDRAM was required. Due to layout issues, two
memory controllers in a 64-bit configuration were used for
separate buffering of read channel and the green/blue chan-
nels.

The ME/MC-FPGA requires 3 CMCs in 2 different con-
figurations; the DWTs each require 2 controllers in 2 con-
figurations. Together with the 2 controllers in the router
FPGA, 9 memory controllers in 5 configurations were used
alltogether.

Since in this application the PowerPC and therefore the
QoS features are not (yet) used, these features were sepa-
rately tested, see chapter4.

3.5. Mapping and Communication

The complete algorithm was mapped onto the three
FlexWAFE image processing FPGAs of a single FlexFilm
board. Stream input and output is done via the router FPGA
and the PCI-Express host network, the second PCI-Express

Figure 12. Algorithm mapping

port remains unused. Input and output streams require a net
bandwidth of 3 Gbit/s each which can be easily handled by
the X4 PCI-Express interface. Since only single streams are
transmitted, no TDMA scheduling is necessary. The packe-
tizing and depacketizing of the data, as well as system jitter
compensation is done by double-buffering the incomming
and outgoing images in the external RAM.

Figure 12 shows the mapping solution (router FPGA
omitted). The 1st FlexWAFE FPGA contains the Motion-
Estimantion and MotionCompensation, the 2nd FPGA the
Haar- and inverse Haar filters and one 2D DWT noise re-
duction block, the 3rd FPGA contains the other 2D DWT
noise reduction block.

As can be seen, between the 1st and the 2nd FPGA two
independent image streams – the original and the motion
compensated images – with a total bandwidth of 6 Gbit need
to be transported over one physical channel. The word size
of both streams is 30 bit (10 bit RGB). For transport, always
two words of each stream were merged and zero-padded to
form a 64 bit word. The TDMA scheduler was programmed
with an (in this case simple) sequence of 1-2, which means
that the 64 bit words were transmitted in alternating way.
Due to the small TDMA packet size of two words no exter-
nal SDRAM was required for buffers.

Due to the mapping onto different SDRAM channels
as explained in3.4 the maximum effective bandwidth per
SDRAM channel of 7 Gbit/s (14 Gbit/s for a 64 bit com-
bined channel, respectively) was not an issue.

3.6. Implementation

Each buildding block has been programmed in VHDL
using an extensive number ofgenerics(VHDL language
constructs that allow parameterizing at compile-time) to in-
crease the flexibility and reuse. The sequence of run-time
programable parameters for the LMCs image transfers (the
contents of the AC memory) were described in XML and
transformed to VHDL via XSLT. In the future it is planed
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to use even more scripts and XML based high-level system
descriptions. Each block was behaviorally simulated indi-
vidually using Modelsim 7.1b and synthesized using Xilinx
ISE 7.1i SP4. All blocks except the motion compensation
have also been simulated after place-&-route and the de-
sired functionality and speed were achieved. The data I/O
blocks and the CMCs have also been tested in hardware.

Currently the ME and MC are being integrated in a single
chip (Figure10), and due to the large resource utilization
(87% of the FPGA slices are used) floorplaning is neces-
sary to achieve the required speed. So far the Xilinx Floor-
planner has been used, but in the future it is planned to use
Xilinx PlanAhead and/or Synplicity Premier with Design
Planner. Both softwares are currently being evaluated.

3.7. Outlook

Currently, the 56 filter parameters used by the DWT fil-
ter are static. However, in [22] it is shown that the results
can be significantly improved by runtime adapting the filter
coefficients depending on the image. The required calcu-
lations will be done by a PowerPC which will have to ac-
cess parts of the images in the MotionCompensation FPGA
frame memory, thus requiring the QoS service features of
the memory controller.

4. SDRAM QoS

In [20] and [21] a complex simulator setup was used be-
fore availability of the FlexFilm board to evaluate the CMC
QoS architecture. However, due to lack of a cycle-accurate
instruction set simulator for the embedded PowerPC 405
core, these results were inaccurate. Therefore, a real test
environment was created, consisting of the PowerPC, two
SDRAM-controllers, two load generators and the required
PowerPC-CMC interfaces (figure13).

The load generators (one read and one write) created
memory access streams with linear address patterns similar
to the DWT filters and a programmable period. Requests
to the SDRAM were done at 64 bit and a burst length of
8 words, which means the maximum possible period is 8
clock cycles. Since one SDRAM data transfer takes 4 clock
cylces (8 words @ 64 bits, 2 words per clock cycle), two
load generators running at a period of 8 clocks would have
created a theoretical SDRAM load of 100 %. However, due
to memory stall cycles (refresh cycles, bus switching stall
cycles) a maximum period of 10/9 (or 9/10) was possible,
resulting in a bandwidth utilization of 72 %. If the period is
too small, the load generators start loosing memory requests
(they cannot operate in real-time any more).

The PowerPC was clocked at 250 MHz and executed
an adapted version of the JPEG decrompression program
from the MiBench benchmark suite [29] (we have chosen a

Figure 13. CMC QoS test environmant

real application rather than artificial benchmarks like SPEC
for more realistic results). Code and data were completely
mapped to the 1st memory controller. Since the original
program accessed the harddisk to read and write data, in
our environment the Xilinx Memory-FileSystem was used
which was mapped to the 2nd memory controller. Both PPC
instruction and data caches (16K each) were activated, at a
cache miss 4 words @ 64 bits were read and/or written to
the memory. Since one memory access burst reads or writes
8 words @ 64 bits, the PowerPC-CMC interface contains an
additional line buffer ("1-burst-cache").

CPU accesses to the 1st memory controller were option-
ally priorized and flow controlled. Table1 shows the test
results.

With the CPU activated, but without prioritization (and
flow control) the load generators start loosing requests (that
means, missing the deadline) at periods of 11/11 (nr. 1.1 to
1.3). Activating CPU priorities leads to a noticeable CPU
speedup, however the load generators start loosing requests
very quickly, with results getting worse at periods of 11/11
(nr. 2.1 to 2.3). With flow control enabled, there is still a
CPU speedup compared to the non-priorized test, however
this time the load generators are fully operational again (nr.
3.1 to 3.6). Moreover, results 3.5 and 3.6 show that with
CPU prioritization and traffic shaping enabled load periods
of 11/11 are possible which is not the case without any QoS
service (1.3). Activating complex traffic shaping patterns
shows a positive, albeit very small effect.

5. Conclusion

A record performance reconfigurable HW/SW platform
for digital film applications was presented. The combina-
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nr. pri. CPU flow control load gen. period CPU exec. lost requests
access T/n read write time [ms] read write

1.1 no deactivated 12 12 2195 0 0
1.2 no deactivated 12 11 2217 0 0
1.3 no deactivated 11 11 2263 5 7
2.1 yes deactivated 12 12 2119 258 175
2.2 yes deactivated 12 11 2121 4,324 7,598
2.3 yes deactivated 11 11 2121 25,872 25,871
3.1 yes 32 / 1 12 12 2144 0 0
3.2 yes 61 / 2 12 12 2123 0 0
3.3 yes 45 / 1 12 11 2169 0 0
3.4 yes 93 / 2 12 11 2163 0 0
3.5 yes 57 / 1 11 11 2209 0 0
3.6 yes 113 / 2 11 11 2193 0 0

FlowcontrolT/n: n requests within T clock cycles.

Table 1. SDRAM controller test results

tion of programmable and parameterized macros that can
easily be handled in floorplaning and decentralized weak
programming with non-critical timing was key to a high de-
signer productivity.

We have also shown that the scheduling memory con-
troller with QoS support helps to improve the overall system
performance.

The FPGA resource utilization is very satisfactory in-
cluding memory and routing resources. The FlexWAFE ar-
chitecture is part of a larger project towards an extendible
PCI-Express based real time film processing system.
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