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1 Introduction

Modern situation assessment and controlling applications often require efficient fusion of large
amounts of heterogeneous and uncertain information. In addition, fusion results are often mis-
sion critical. It turns out that Bayesian networks (BN) [22] are suitable for a significant class of
such applications, since they facilitate modeling of very heterogeneous types of uncertain infor-
mation and support efficient belief propagation techniques. BNs are based on solid theoretical
foundations which facilitate (i) analysis of the robustness of fusion systems and (ii) monitoring
of the fusion quality.

We assume domains where situations can be described through sets of discrete random
variables. A situation corresponds to a set of hidden and observed states that the nature
‘sampled’ from some true distribution over the combinations of possible states. Thus, in a
particular situation certain states materialized while others did not, which corresponds to a
point-mass distribution over the possible states. Consequently, the state estimation can be
reduced to a classification of the possible combinations of relevant states. We assume that there
exist mappings between hidden states of interest and optimal decisions/actions. In this context,
we consider classification of the states accurate if it is equivalent to the truth in the sense that
knowing the truth would not change the action based on the classification.

We focus on classification based on the estimated probability distributions (i.e. beliefs)
over the hidden states. These distributions are estimated with the help of BNs, which facilitate
systematic fusion of information about observations with the prior knowledge about the stochas-
tic processes. BNs define mappings between observations and hypotheses about hidden events
and, consequently, BNs have a significant impact on the classification accuracy. In general, one
of the most challenging problems associated with BNs is determination of adequate modeling
parameters [7].

We emphasize a fundamental difference between the model accuracy and the estimation ac-
curacy. In general, a BN is a generalization over many possible situations that captures the
probability distributions over the possible events in the observed domain. However, even a per-
fect generalization does not necessarily support accurate classification in a particular situation.
For example, consider a domain in which 90% of fires cause smoke. While it is common that fires
cause smoke, in rare cases we might have a fire but no smoke. By applying diagnostic inference
we could use smoke detector reports to reason about the existence of a fire. Such inference is
based on a sensor model, a generalization which describes the probability that a fire will cause
smoke. Consequently, observing the absence of smoke would in such a rare case decrease our
belief in the presence of fire, leading our belief away from the truth, even if the used BN were a
perfect generalization.

In this paper we expose properties of BNs which are very relevant for the design of robust
information fusion systems in real world applications. We show that certain types of BNs support
robust inference. In addition, we introduce the Inference Meta Model (IMM), a new runtime
perspective on inference in BNs which supports analysis of the inherent fusion robustness and
can provide additional information on the fusion quality.

2 State Estimation with Bayesian networks

In general, human decision makers or artificial intelligent systems make use of mappings between
the constellations of relevant states and actions. We assume that the relevant states of the
environment can be captured sufficiently well by finite sets of discrete variables. Thus, each
combination of variable instantiations corresponds to a certain choice of actions.

Moreover, in real world applications we can often directly observe only a fraction of the
variables of interest. Consequently, we have to estimate the states of interest with the help
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of models that describe relations between the observed and hidden variables, i.e. variables
representing events that cannot be observed directly. In addition, in real world applications
we usually deal with stochastic domains. In other words, we often do not know with certainty
which states of the hidden variables materialized. Instead, we associate each possible state of
a variable with a hypothesis that the state materialized. Each hypothesis is associated with a
score, a posterior probability determined with the help of probabilistic causal models that map
constellations of observed states to probability distributions over hidden states.

We assume that the hypothesis whose score exceeded a certain threshold corresponds to the
truth. Thus, the state estimation process can be reduced to a classification problem.

2.1 Estimation Accuracy

We define accurate state estimation in the decision making context. Suppose that each constel-
lation of states is associated with an optimal decision di. If the decision maker knew that state
hi materialized she would make the decision di corresponding to that state. However, she cannot
directly observe the true state. Instead, she is supplied with a posterior probability distribu-
tion P̂ (hi|E) over the possible states of variable H that is based on the current observations E .
Moreover, for each possible state hi we define a threshold θhi

in such a way that only one of the
possible thresholds can be exceeded at a time. If the estimated P̂ (hi|E) > θhi

then decision di is
made as though the true state would be hi. In this decision making context we define accurate
state estimation:

Definition 1 (Accurate Distribution) A posterior distribution P̂ (H|E) is considered accu-
rate iff there exists a decision threshold θhi

such that P̂ (hi|E) > θhi
and hi = h∗.

Thus, the threshold corresponding to the true state h∗ is exceeded if P̂ (H|E) gets sufficiently
close to the true distribution P (H). In other words, the state estimation can be reduced to a
classification of the possible combinations of relevant states.

Obviously, the classification quality is related to the divergence between the estimated and
the true distributions. Throughout this paper we use the Kullback-Leibler divergence and as-
sume that there exists a constant δ corresponding to a decision threshold θhi

, such that P̂ (H|E)
will result in the correct decision if KL(P (H) ‖ P̂ (H|E)) < δ.

Note, in this paper P̂ (.) refers to modeling parameters and estimated probabilities, while
P (.) without a hat denotes true probabilities in the modeled world.

2.2 Bayesian networks

We assume that P̂ (H|E) is computed with the help of Bayesian networks (BNs), which support
theoretically rigorous modeling and belief propagation. A Bayesian network is defined as a tuple
〈D, P 〉, where D = 〈V, E〉 is a directed a-cyclic graph defining a domain V = {V1, . . . , Vn} and
a set of directed edges 〈Vi, Vj〉 ∈ E over the domain. The joint probability distribution over the
domain V is defined as

P̂ (V) =
∏

Vi∈V

P̂ (Vi|π(Vi)),

where P̂ (Vi|π(Vi)) is the conditional probability table (CPT) for node Vi given its parents π(Vi)
in the graph. In this paper, we assume that each node represents a discrete variable. In gen-
eral, probability distributions over arbitrary sets of discrete variables can be computed through
appropriate marginalization of P (V) and they are described through real-valued tables called
potentials1 [12].

1Note that CPTs are also potentials
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BNs can be used as causal models [23, 17] that describe probabilistic relations between
different hidden phenomena and heterogeneous sensory observations (see example in figure 1). In
a BN we choose a hypothesis node H with states hi and compute probability distribution P̂ (H|E)
over H for a given evidence pattern E (e.g. sensory observations). Evidence E corresponds to
a certain constellation of node instantiations and subsequent inference (i.e. information fusion)
results in a distribution P̂ (H|E) that determines a ”score” P̂ (hi|E) for each hypothesis hi ∈ H.
Moreover, given H we can define a conditionally independent network fragment :

Definition 2 (Conditionally Independent Network Fragment) Given a BN and a clas-
sification variable H, ith conditionally independent network fragment FH

i is a set of nodes that
include node H and are d-separated from other parts of a BN by H. All nodes within FH

i are
dependent given the variable H.

2.3 Factorization

D-separation implies conditional independence between the modeled variables, which corre-
sponds to a specific factorization of the estimated posterior probability distribution P̂ (H|E).
Namely,

⋂

iF
H
i = {H}, which means that the potentials corresponding to a particular network

fragment FH
i do not share any variables with the potentials associated with other network frag-

ments, except the hypothesis variable H. Thus, each network fragment FH
i is associated with a

factor φi(H) resulting from a marginalization of all variables from this fragment except H and
the evidence variables from FH

i that were instantiated according to the evidence Ei. This is
reflected in the following factorization:

P̂ (H, E) =
∑

V\H

P̂ (V)
∏

ek∈E

ek =

∑

V0\H

∏

Vi∈V0

P̂ (Vi|π(Vi))
∏

ek∈E0

ek

}

φ0(H)

·
∑

V1\H

∏

Vi∈V1\H

P̂ (Vi|π(Vi))
∏

ek∈E1

ek

}

φ1(H)

· · ·

·
∑

Vm\H

∏

Vi∈Vm\H

P̂ (Vi|π(Vi))
∏

ek∈Em

ek,
}

φm(H) (1)

V0 denotes all nodes from the network fragment FH
0 that includes all predecessor nodes of

H, while Vi (i = 1, . . . , m) is the set of nodes contained in the fragments consisting of H’s
successors only. In addition,

∏

ek∈Ei
ek denotes the instantiations of the evidence nodes in the

i− th network fragment FH
i (see [12]). Since H d-separates all sets Vi (see Definition 2) we can

identify conditionally independent factors φi(H) (i = 0, . . . , m) whose product determines the
resulting joint probability. Each factor φi(H), is a function that yields a value φi(hi) for each
state hi of H. In other words, φi(H) is a vector of scalars corresponding to the states of H.
Each factor φi(H) corresponds to an independent opinion over H based on a subset Ei ⊆ E of
all observations E .

By considering the d-separation, we can further distinguish between Predictive and Diag-
nostic conditionally independent network fragments.

Definition 3 (Predictive Network Fragment) Given a probabilistic causal model and a hy-
pothesis variable H, a Predictive conditionally independent network fragment FH

i relative to H
includes (1) all ancestors π∗(H) of H and (2) variables for which there exists at least one path
to H via ancestor nodes π∗(H).
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Figure 1: A causal model relating hypotheses represented by node H and different types of
observations captured by nodes B, D, E, K, L and M .

In general, given definition 3, we can show that in any BN we can find at most one predictive
fragment if the predecessors of H do not form special Independence of Causal Influence models
(ICI), such as noisy-OR gates [11, 22].

Definition 4 (Diagnostic Network Fragment) Given a probabilistic causal model and a
class variable H, a Diagnostic conditionally independent network fragment FH

i relative to vari-
able H does not include any predecessors of H.

By considering causality, we see that Diagnostic conditionally independent network fragments
provide retrospective support for the belief over H. In other words, factors corresponding to such
fragments update belief over H by considering only the evidence nodes that H d-separates from
all H’s predecessors. As we will show in the following discussion, this has important implications
w.r.t. the factorization and classification robustness.

For the sake of clarity, in this paper we limit our discussion to domains that can be described
with BNs featuring poly-tree topologies 2. Consequently, a predictive fragment can never contain
a descendant from the classification variable H and each child of H corresponds to a specific
diagnostic fragment. For example, given the DAG shown in Figure 1 and an evidence set
E = {b1, d2, e1, k2, l1, m1} we obtain the following factorization:

P̂ (hi, E) =

φ0(hi)
︷ ︸︸ ︷
∑

A

P̂ (A)P̂ (b1|A)
∑

C

P̂ (C)P̂ (hi|A, C) (2)

·
∑

F

P̂ (F |H)P̂ (k2|F )P̂ (l1|F )P̂ (m1|F )

︸ ︷︷ ︸

φ1(hi)

P̂ (d2|hi)
︸ ︷︷ ︸

φ2(hi)

P̂ (e1|hi)
︸ ︷︷ ︸

φ3(hi)

In this example a single predictive fragment FH
0 consists of variables A, B, C and H, while

there are three diagnostic fragments FH
1 , FH

2 and FH
3 , each corresponding to a child of H.

Moreover, variable instantiations in fragments FH
0 , FH

1 , FH
2 and FH

3 were based on evidence
subsets E0 = {b1}, E1 = {d2}, E2 = {e1} and E3 = {k2, l1, m1}, respectively. Note also that the
Predictive fragment FH

0 is associated with a single factor φ0(H).

3 Inference Processes

In general, probabilistic inference (also called belief propagation) in BNs can be viewed as a
series of multiplication and marginalization steps that combine predefined modeling parameters

2The discussion can be extended to more general topologies which, however, is out of scope of this paper.
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according to the observed evidence. Moreover, belief propagation in BNs is a combination of
predictive and diagnostic inference processes [22]. In this section we discuss the two types of
inference in a decision making context and analyze their robustness with respect to modeling
inaccuracies.

3.1 Prediction

Predictive inference is reasoning about states of a hidden variable H that can materialize as a
consequence of observed events E . Given a probabilistic causal model, we infer the probability
distribution P̂ (H|E) over hidden states of the hypothesis variable H by considering observed
instantiations of the variables from the set of ancestors π∗

H of H. Thus, we reason in the
causal direction about the outcome of a stochastic causal process, which can be viewed as
a sampling process on some true distribution P (H|E). Note that P (H|E) corresponds to a
particular materialization of the states of variables from the set of H’s ancestors π∗

H .

For example, consider a network fragment consisting of a hypothesis node H and n parents
Ei (see Figure 2). Node H is associated with a CPT capturing P̂ (H|E). By instantiating
parents with evidence E = {e1, . . . , en}, we express the distribution over the states of node H
with P̂ (H|e1, . . . , en), which is a column in P̂ (H|E). Parents E in this example represent a single
predictive network fragment and, according to the factorization properties emphasized in the
previous section, we see that this corresponds to a single factor, i.e. P̂ (H|e1, . . . , en) = φ0(H).

3.2 Diagnostic Inference

Diagnostic inference (or retrospective support [22]) is reasoning about hidden events that already
took place and were followed by observations. Such inference is based on reversal of the causal
relations captured by diagnostic network fragments. Moreover, in diagnostic reasoning we know
that exactly one of the possible events took place. Therefore, the true distribution must be one
of the possible point mass distributions:

P (hi) =

{
1 if hi = h∗

0 otherwise
(3)

In this context, classification based on diagnostic inference can be viewed as a choice of one of
the true point mass distributions.

Moreover, in BNs with tree topologies all children of the classification variable H are con-
ditionally independent given H. Consequently, according to definition 4, each child node of H
corresponds to exactly one diagnostic factor. For example, consider a simple model with a hy-
pothesis node H which is a root of n branches with evidence nodes (see Figure 3). The posterior
distribution over the states of H is given by:

P̂ (H|E) = αP̂ (H)
∏

ej∈E

P̂ (ej |H), (4)

where E = {e1, . . . , en} is the evidence set, ej denotes the instantiated state of child Ej and α
is a normalizing constant.

The likelihoods capture a generative model, which describes the distributions over effects of
a certain cause. The likelihoods represent generalizations obtained through sampling in many
different possible situations. As we will show later, the fact that diagnostic inference implements
reasoning about a state corresponding to a point mass distribution has important implications
with respect to the inference robustness.
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Figure 3: Diagnostic BN.

3.3 Robustness of Inference Processes

The robustness of inference processes can be expressed as the size of the parameter domain that
guarantees a sufficiently small KL divergence between the posterior and the true distribution
with high probability; i.e. the greater the domain from which the designer or the learning
algorithm can choose adequate modeling parameters, the greater is the chance that inference
will be accurate in different situations.

We can show that the choice of evidence nodes in a poly-tree influences the inherent inference
robustness. In general, the predictive and diagnostic inference processes in tree like structures
are very different with respect to the way the evidence is incorporated into the factorization.
Namely, all ancestors of H and variables connected to H via its ancestors are summarized
through a single predictive factor. Diagnostic inference, on the other hand, can be realized
through several factors, each corresponding to a child of H.

Again, we assume that the estimation accuracy is related to the KL divergence between the
true distribution over states of a hypothesis node P (H) and the posterior distribution P̂ (H|E)
given the evidence set E . We first consider a simple network in Figure 2, which consists of binary
nodes. Also, let’s assume a particular instantiation {e1, . . . , en} of the n parent nodes (hard
evidence) corresponding to a single distribution vector from the CPT. Suppose that the true
probability P (h) = 0.7. We plot the corresponding KL(P (H) ‖ P̂ (H|e1, . . . , en)) as a function
of the relevant modeling parameter (see Figure 4). The figure shows that a sufficiently small
divergence can be achieved if P̂ (h|e1, . . . , en) ∈ [0.65, 0.75], which is a rather narrow interval.
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Figure 4: Divergence between the true and the posterior distribution for different parameters of
a simple ‘predictive’ BN that guarantee a correct decision; i.e. KL(P (h) ‖ P̂ (h|E)) < 0.005.

Next, consider an example of diagnostic inference based on a naive BN from Figure 3 where
all n children, are associated with identical CPTs. Since we assumed binary variables, the CPTs
can be specified by two parameters P̂ (e|h) and P̂ (e|h). We investigate the effect of changing
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Figure 5: Divergence between the true and the posterior distribution for different parameters
P̂ (e|h) of a naive BN that guarantee a correct decision; i.e. KL(P (h) ‖ P̂ (h|E)) < 0.005.
Different curves correspond to the following numbers of children nodes: 20 (dashed), 30 (dotted)
and 40 (dash-dotted).

P̂ (e|h) and fix P̂ (e|h) = 0.3 which is equal to the true conditional distribution. We assume that
the true probability P (h) = 1. Figure 5 depicts the divergence for different values of P̂ (e|h),
where each curve represents a different number of children n. On the horizontal axis we can
identify intervals for values of P̂ (e|h), for which the divergence KL(P (h) ‖ P̂ (h|E)) < 0.005.
From this diagram it is apparent that the intervals, from which we can choose adequate P̂ (e|h),
grow with the number of children. In other words, diagnostic inference becomes inherently
robust if we use BNs with sufficiently large branching factors. In such cases we can pass the
correct decision threshold under a wide choice of modeling parameters. This implies that the
likelihood of choosing inadequate modeling parameters in a given situation is reduced. Contrary
to the predictive inference example, we see that the redundancy with respect to the evidence
nodes does improve the robustness.

While predictive inference is sufficiently accurate only if we can obtain parameters that
precisely describe the true distributions over events of interest, we see that parameter precision
is not crucial for diagnostic inference. In other words, the redundancy of parameters plays an
important role w.r.t. the robustness.

4 Factor Accuracy

Examples from the preceding section suggest that inference in BNs can be robust if the un-
derlying process models have topologies featuring many conditionally independent factors. We
explain these properties with the help of a coarse runtime perspective. We investigate under
which conditions the factors support accurate fusion. We show that inference processes can be
very robust if the CPTs merely capture simple relations between the true conditional probability
distributions and the BN topology corresponds to many factors in the posterior factorization.
We argue that because of this property the fusion can be inherently robust since such relations
can be identified easily by the designers or machine learning algorithms.
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4.1 Updating Tendencies

In order to be able to analyze the impact of the modeling parameters on the classification
with BNs, we focus our attention on inference processes. Consider again the example from the
previous section (see Figure 1). Recall that each instantiation of a network fragment that is
d-separated from the other parts of the network by H corresponds to a factor in the expression
describing the distribution over H. For each such conditionally independent network fragment
we can observe, that if we multiply the conditional equation with the corresponding factor and
normalize over all states of H, the posterior probability of one state will increase the most.
For example suppose the parameters were P (f2|h1) = 0.8 and P (f2|h2) = 0.3. Observation of
F = f2, thus increased the posterior of h1 the most. One could say that for observation F = f2

state h1 ‘wins’. Obviously, the state that wins sufficiently often will end up with the highest
posterior probability. This suggests that it is not the exact factor values, but the relations
between them that matter most with respect to the estimation accuracy. Therefore, for each
factor φi(H) we introduce a factor reinforcement:

Definition 5 (Factor Reinforcement) Assume a classification variable H and a fragment
FH

i . Given some instantiation Ei of the evidence variables within FH
i , we can compute a factor

φi(hj) for each state hj of variable H and determine the corresponding factor reinforcement rH
i

as follows:

rH
i = arg max

hj

φi(hj). (5)

Note that factor φi(H) either captures the likelihood of states of H, if it corresponds to a diag-
nostic fragment, or it represents a prior over H if it corresponds to a predictive fragment.

In other words, reinforcement rH
i is a function that returns the state hj of variable H,

whose probability is increased the most (i.e. reinforced) by instantiating nodes of the frag-
ment FH

i corresponding to factor φi(H)i. For example, given factorization (2), we obtain four
reinforcements: rH

0 = arg maxhi
φ0(hi), rH

1 = arg maxhi
φ1(hi), rH

2 = arg maxhi
φ2(hi) and

rH
3 = arg maxhi

φ3(hi).

Moreover, we can define an accurate reinforcement:

Definition 6 (Accurate Reinforcement) Let H be a classification variable and let h∗ be its
hidden true value. A reinforcement rH

i contributed by factor φi(H) is accurate in a particular
situation iff

h∗ = rH
i . (6)

In other words, the true state of H is reinforced. We illustrate accurate reinforcements
with an example. We assume binary variables H and E related through P̂ (E|H) (i.e. a CPT)
containing modeling parameters P̂ (e1|h1) = 0.7 and P̂ (e1|h2) = 0.2. Given these parameters
and observation of E = e1, the subsequent inference is based on the multiplication with factors
φi(h1) = P̂ (e1|h1) and φi(h2) = P̂ (e1|h2), which yields reinforcement rH

i = h1. If h1 is indeed
the true value of H (i.e. the ground truth) then belief propagation through the network fragment
corresponding to φi reinforces the true value and we consider the reinforcement accurate (see
Definition 6). Consequently, we consider modeling parameters P̂ (e1|h1) and P̂ (e1|h2) adequate.
Moreover, one can see that in this particular case we will obtain an accurate reinforcement as
long as the parameters in P̂ (E|H) satisfy condition P̂ (e1|h1) > P̂ (e1|h2), which defines intervals
for adequate parameter values.

If the true probability distribution P (H) is a point mass distribution, then we can show an
interesting property of the factors that satisfy this condition:
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Proposition 1 Let’s assume a posterior distribution P̂ (H|E) = α
∏

i φi(H). If this factoriza-
tion is expanded through a multiplication with a new factor φ′(H) that for a given instantiation
E ′ satisfies condition (6), then the resulting posterior P̂ (H|E ∪ E ′) = αφ′(H)

∏

i φi(H) satisfies
the relation

KL(P (H) ‖ P̂ (H|E)) > KL(P (H) ‖ P̂ (H|E ∪ E ′)), (7)

independently of the assumed modeling parameters corresponding to other factors. In other
words, the estimated distribution approaches the true distribution P (H).

Proof We write a ratio of posterior probabilities in order to get rid of the normalizing constants

∀hk 6= h∗ :
P̂ (h∗|E ∪ E ′)

P̂ (hk|E ∪ E ′)
=

φ′(h∗)

φ′(hk)

∏

i

φi(h
∗)

φi(hk)
. (8)

If factor φ′(H) satisfies condition (6) we see that ∀hk 6= h∗ : φ′(h∗)
φ′(hk) > 1. Consequently,

P̂ (h∗|E∪E ′)

P̂ (hk|E∪E ′)
> P̂ (h∗|E)

P̂ (hk|E)
for all hk 6= h∗. Since we assume that the true distribution P (H) is a

point mass distribution, the ratio of true probabilities P (h∗)
P (hk) = ∞ for all hk 6= h∗. Thus, the

posterior ratio (8) approaches the true ratio P (h∗)
P (hk) independently of the magnitude of φ′(h∗)

φ′(hk) . In

other words, the probability of the correct hypothesis is increased: i.e. P̂ (h∗|E ∪ E ′) > P̂ (h∗|E).
Because P (H) is a point mass distribution, the divergence is reduced to KL(P (H) ‖ P̂ (H|E)) =

P (h∗)log P (h∗)

P̂ (h∗|E)
and relation (7) obviously holds true. �

In other words, proposition 1 implies that, in a given situation, an inference step results
in correct belief updating for very different parameters as long as the parameters satisfy very
simple relations.

4.2 True Distributions and Inference

A factor φi(H) is obtained by combining parameters from one or more CPTs from the cor-
responding network fragment FH

i . This combination depends on the evidence which in turn
depends on the true distributions over modeled events. Thus, with a certain probability we
encounter a situation in which factor φi(H) is adequate, i.e. it satisfies condition (6). We can
show that this probability depends on the true distributions and simple relations between the
true distributions and the CPT parameters.

We can facilitate further analysis, by using the concept of factor reinforcements to charac-
terize the influence of a single CPT. For the sake of clarity, we focus on diagnostic inference
only. For example, consider a CPT P̂ (E|C) relating variables C and E. If we assume that
one of the two variables was instantiated, we can compute a reinforcement at the other related
variable. For the instantiation E = e∗, we would obtain a reinforcement rC

i = arg maxcj
φi(cj)

at C, where φi(C) = P̂ (e∗|C). Thus, in such a case factors are identical to CPT parameters and
an adequate CPT can be defined:

Definition 7 (Adequate CPT) A CPT P̂ (E|C) is adequate in a given situation if the follow-
ing is true: if one variable were instantiated to the true state, then the belief propagation based
on this CPT would reinforce the true state of the other variable. i.e. parameters in P̂ (E|C)
satisfy (6) for a given instantiation.

In other words, an adequate CPT supports accurate inference. If all CPTs from FH
i were

adequate in a given situation, then also φi would be adequate. This is often not the case, however.
Whether a factor φi is adequate depends on which CPTs from the corresponding fragment are
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inadequate. Obviously, the higher is the probability that any CPT from a fragment FH
i is

adequate, the higher is the probability that FH
i is adequate as well. In further discussion we

express the probability that a CPT is adequate. For the sake of clarity, we focus on diagnostic
inference only.

By taking a closer look at the relations between the true and modeled distributions over the
events of interest, we can express the lower bound pre for the probability that the parameters of
a CPT relating two random variables C and E satisfy condition (6) in a particular situation. In
order to facilitate further discussion, we first introduce sets of effects that can be characterized
through relations between the true probabilities P (ek|ci):

B∗
ci

= {ek|∀cj 6= ci : P (ek|ci) > P (ek|cj)}. (9)

Each set B∗
ci

contains the effects for which the likelihood of the cause ci is greater than the
likelihood of any other possible state of C. In other words, each B∗

ci
describes a partition of the

input space for which a classifier based on a single CPT P̂ (E|C) that perfectly describes the
true conditional distributions between C and E, i.e. P̂ (E|C) = P (E|C), would be optimal [9] if
the class prior distribution P (C) were uniform.

Moreover, for each possible cause, i.e. a state ci, we can express the probability Pci
that an

effect from the set B∗
ci

will take place:

Pci
=

∑

ej∈B∗

ci

P (ej |ci), (10)

Pci
is the probability that given state C = ci a classifier based on P (E|C), uniform P (C) and

classification threshold 0.5 will correctly classify a case.

In general, the modeling parameters P̂ (E|C) will not be identical to the true distributions
P (E|C). Thus, the input space of a classifier using a single CPT P̂ (E|C) and assuming uniform
class prior distribution is described through the set Bci

= {ek|∀cj 6= ci : P̂ (ek|ci) > P̂ (ek|cj)}
instead, where P̂ (E|C) 6= P (E|C). Obviously, the probability of a correct classification with
such a classifier is Pci

if B∗
ci

= Bci
. By considering this and the definitions of B∗

ci
and Bci

we
can show the following property:

Proposition 2 Let’s assume the modeling parameters P̂ (ej |ci), the true distribution P (ej |ci)
and the corresponding Pci

for state C = ci. Given any state ci, Pci
is also the probability that

we will encounter a situation in which the modeling parameters P̂ (ej |ci) support an accurate
reinforcement (i.e. satisfy condition (6)) if the following relations are satisfied:

∀ej : argmaxiP̂ (ej |ci) = argmaxiP (ej |ci). (11)

In addition, with the help of probability Pci
, we can define well distributed events as follows:

Definition 8 (Well Distributed Events) If for all ci ∈ C relation Pci
> 0.5 is satisfied, we

consider events C and E well distributed.

By considering this definition and proposition 2 we can derive the following important corollary:

Corollary 3 Let’s define the lower bound pre = mini(Pci
) on the probability, that we will en-

counter a situation in which a CPT relating C and E is such that the condition (6) is satisfied.
pre > 0.5 if the modeling parameters satisfy condition (11) and the events C and E are well
distributed, i.e. ∀ci ∈ C : Pci

> 0.5.
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(a)

c1 c2

e1 0.7 0.4
e2 0.2 0.3
e3 0.1 0.3

(b)

c1 c2

e1 0.8 0.4
e2 0.2 0.6

(c)

c1 c2

e1 0.7 0.6
e2 0.3 0.4

Figure 6: Conditional Probability Tables (CPT).

We illustrate this with an example. We assume a simple model consisting of two nodes C
and E which are related through a CPT P̂ (E|C). In addition, we assume that we have a perfect
model. This means that the modeling parameters P̂ (E|C) are identical to the true distributions
P (E|C) given by the CPT in table 6.a.

Given that c2 is the (hidden) true state of C (i.e. c∗ = c2), we would obtain an accurate
factor reinforcement if we observed either e2 or e3. Thus, for state c2 we obtain the following
evidence set Bc2 = {e2, e3}. The probability Pc2 that either of these observations is caused by
c2 is Pc2 = P(e2 ∨ e3|h2) = 0.6. Similarly, if c1 were the true state of C, then observation of
e1 would result in a factor corresponding to an accurate reinforcement; i.e. Bc1 = {e1}. The
probability of observing e1 given event c1 is Pc2 = P(e1|c1) = 0.7. Thus, whichever the true
state of C, for this example we get pre > 0.6. Note also, that in this example the events were well
distributed and pre > 0.6 for many different parameters as long as condition (11) is satisfied.

However, we can encounter also cases where the relations between the events are such that
the lower bound for pre is less than 0.5. For example, assume random variables C and E which
are related by a CPT, whose parameters are identical to the true distribution depicted in table
6.c (i.e. we have a perfect model). By considering Definition 6 we see that in the case that
c2 occurs we will in 40% of the cases observe e2, which will yield a correct reinforcement. In
other words, there exist domains in which the true distribution over modeled events is such
that the expected classification performance can be very poor, even if we had perfect models.
If we consider binary variables, we see that this is the case if for both possible causes the true
probability of getting the same effect is greater than 0.5.

Note that proposition 2 and corollary 3 imply pre > 0.5 if (i) the events are well-distributed
and (ii) coarse relations (11) between the modeling parameters and true probability distributions
are satisfied. Since relations (11) are very simple, it is plausible to assume that in many domains
designers or machine learning algorithms can specify BNs where for most CPTs pre > 0.5.
This is especially the case if we use variables with few states. For example, assume the true
distribution in table 6.b. If we specified modeling parameters such that P̂ (e1|c1) > 0.5 and
P̂ (e1|c2) < 0.5, then we would obtain a modeling component (i.e. a CPT) for which pre = 0.6.

As we show later, the estimation process can be very robust if we can assume that pre > 0.5
for every CPT in a BN with poly-tree topology featuring sufficiently large branching factors.

5 Inference Meta Model

By considering the properties of inference processes in BNs discussed in the previous section, we
introduce an Inference Meta Model (IMM), which describes inference processes from a coarse
perspective. IMM facilitates analysis of inference processes and represents a basis for theoreti-
cally rigorous approaches to the monitoring of information fusion quality. IMM is a collection
of definitions and theorems that capture relevant aspects of inference with BNs:

1. Causes of inference faults and their impact on the fusion quality (Section 5.1).

2. Asymptotic properties of updating tendencies with respect to the fusion robustness (Sec-
tion 5.2).
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5.1 Inference Faults

While a single factor satisfying condition (6) does not guarantee accurate fusion results, we see
that factors which do not satisfy this condition inevitably increase the KL divergence between
the true and the estimated distributions. In other words, factors that do not satisfy (6) are in a
given situation inadequate and result in erroneous belief updates. We can identify several causes
of such inadequacies.

Definition 9 (Fault type 1) BNs are generalizations of large sets of training examples cor-
responding to different relevant situations from the target domains. Consequently, even though
a model might be accurate in the sense that it describes the generalized world perfectly, in a
rare situation it might not support correct mapping between the instantiated evidence node and
the hypothesis, i.e. condition (6) is not satisfied. In other words, such a model is inadequate
in the current situation and causes faulty inference. Consider the previous example based on
the true probability P (E|C) shown in table 6.a. If we had perfect modeling parameters, i.e.
P̂ (E|C) = P (E|C), then the inference step based on the CPT P̂ (E|C) would violate condition
(6) and decrease the belief in the true state (e.g. C = c1), if the world were in the (rare) state
{C = c1, E = e2}.

Definition 10 (Fault type 2) The generalization can inaccurately capture relations between
the conditional probabilities, such that relation (11) is not satisfied. Such modeling faults increase
the chance that the model is inadequate in a particular situation.

Definition 11 (Fault type 3) Information providers can be erroneous.

5.2 A Coarse Perspective on Inference

Condition (6) relates belief updating tendencies to accuracy, and ignores the magnitude of the
updates. We extend the notion of updating tendencies in order to translate inference processes
to a perspective where belief updating is reduced to counting of state updates, which facilitates
the analysis of the fusion processes.

As next, we define for each state xi of a random variable X a reinforcement counter:

Definition 12 (Reinforcement Counter) Reinforcement counter nX
i of state xi of variable

X is defined as follows:
nX

i = ||{rX
j |∀r

X
j : xi = rX

j }||,

where || · || denotes the cardinality of a set and rX
j denotes the reinforcement from the j-th

fragment rooted in X. In other words, nX
i counts reinforcements of the state xi. Moreover, each

variable X with m states is associated with a set of reinforcement counters NX = {n1, . . . , nm}.

We can further simplify the inference process by assuming that the state xi with the great-
est reinforcement counter nX

i is the true state. The assumed true state is captured by the
Reinforcement Summary :

Definition 13 (Reinforcement Summary) We define a reinforcement summary sX of node
X as follows:

sX = ximax , (12)

where imax = arg maxi n
X
i is the index of the state of X that is associated with the greatest

reinforcement counter. In other words, Reinforcement Summary is the state associated with the
greatest reinforcement counter nX

max = maxi(n
X
i ). If X is a leaf node then sX is an instantiation

of X.
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Reinforcement summary sX represents the state of node X that best ‘explains’ the current
set of observations, when ignoring the belief magnitudes. We can illustrate these definitions with
an example. Let’s assume three independent fragments relative to variable H and a sequence of
factor reinforcements rH

1 = h1, rH
2 = h1 and rH

3 = h2. If node H had 3 states, then we would
obtain counters NH = {2, 1, 0} and the reinforcement summary sH = h1.

5.3 Reinforcement Counter Distributions

By considering reinforcement counters we can reduce belief updating to a counting problem. We
can show that under certain conditions there exist probability distributions over combinations of
reinforcement counters, which suggests that the reinforcement counters can be used for a coarse
grained belief propagation as well as a robust analysis of the inference processes.

If we define the lower bound pX
F for the probability that any diagnostic network fragment

FX
i rooted in variable H supports an accurate reinforcement in a particular situation, then we

can show the following:

Proposition 4 Given a classification node H and an odd number of independent network frag-
ments k for which pH

F > 0.5, the probability pH
s that the true state corresponds to the maximum

reinforcement counter nH
max is greater than 0.5.

Proof We can express the lower bound for the probability pH
s that we will encounter a situation

in which sH , the state of H associated with the maximum reinforcement counter, is indeed the
hidden true state of H:

p̄H
s =

k∑

m=dk/2e

(
k

m

)

(pH
F )m(1− pH

F )k−m, (13)

where m is the number of accurate reinforcements (see Definition 6). In the case of binary
nodes nH

max = m ≥ dk/2e. By considering properties of binomial distributions, m ≥ dk/2e and
the lower bound pH

F > 0.5, we know that the following relations must hold for odd numbers of
network fragments k

pH
s ≥ p̄H

s ≥ pH
F > 0.5. (14)

Also, by considering the binomial distribution captured by (13), we can easily show that for
odd k’s which are greater than 1, a more restrictive relation holds true: pH

s ≥ p̄H
s > pH

F > 0.5.
�

Moreover, if we use multi-value variables, then p̄H
s is the probability of encountering a subset

of situations in which the maximum counter is associated with the true state. Thus, if we use
(13) for networks with multi-value nodes, we impose a conservative requirement that nH

max =
m ≥ dk/2e. In other words,if we use multi state variables, the probability p̄H

s is even greater
than in the binary cases. In addition, we can easily identify the following properties:

Corollary 5 Given a BN with classification node H and a sufficiently great number of network
fragments k for which pH

F > 0.5, then probability pH
s ≥ p̄H

s > 0.5 also for even numbers of
network fragments k. In addition, limk→∞pH

s = 1.
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5.4 Robust Inference

Modeling parameters determined by designers or learning algorithms usually do not describe
the true probability distributions precisely. On the other hand, classification with a BN in a
particular situation is correct if the designers or the learning algorithms choose CPT parameters
from a parameter domain such that the correct classification threshold is exceeded; i.e. the
KL divergence between the estimated and the true probability distribution is sufficiently small.
Clearly, the greater the domain from which we can choose adequate parameters for any situation,
the greater is the chance that the inference will be accurate. In this section we show that the
robustness depends on the modeling topology.

With the help of the reinforcement counters, we can explain under which circumstances
inference processes in BNs will be robust with respect to the variation of parameters. While the
classification accuracy depends on the actual combination of observations and parameter values,
we can show that the robustness improves with increasing numbers of factors φi if they satisfy
very weak conditions. We can identify the following porperty:

Proposition 6 The domain of parameters for which the correct classification threshold is ex-
ceeded in a particular situation grows with the increasing number of conditionally independent
fragments FH

i that support accurate factor reinforcements rH
i in more than 50% of possible situ-

ations. Thus, the more independent fragments are introduced, the greater variety of parameters
will support correct classification.

Proof We can explain this property by using reinforcement counters. Let’s first assume a δ
such that estimated distribution P̂ (H|E) over node H will result in a correct classification if
the Kullback-Leibler divergence satisfies KL(P (H) ‖ P̂ (H|E)) < δ, where P (H) is the true
distribution. Note that P (H) is a point mass distribution, reflecting the fact that exactly one
of the possible states of H materialized. For the classification variable we also define nH

a , the
number of factors contributing accurate reinforcements (see definition 6) and nH

e , the number
of factors introducing inaccurate reinforcements. Thus, the total number of independent factors
is nH

a + nH
e .

We also assume that the posterior probability P̂ (H|E) remains approximately constant if
the numbers of accurate and inaccurate reinforcements are the same, i.e. nH

a = nH
e . This

is the case if for every factor φi corresponding to an inaccurate reinforcement we can find a
factor φj corresponding to an accurate reinforcement such that the factors cancel out after the
normalization.

According to proposition 1 we see that nH
a −nH

e accurate reinforcements will reduce KL(P (H) ‖
P̂ (H|E)), irrespectively of the magnitude of the corresponding factors φi. However, for a given
δ, these factors must be large enough to satisfy KL(P (H) ‖ P̂ (H|E)) < δ in nH

a − nH
e steps.

If the number of fragments is increased we obtain new reinforcement counters nH
a′ and nH

e′ .
According to proposition 4 it is more likely that (nH

a′ − nH
e′ ) > (nH

a − nH
e ) than (nH

a′ − nH
e′ ) <

(nH
a − nH

e ) if pH
F > 0.5 for every network fragment. Moreover, according to corollary 5, this

probability grows with increasing number of fragments.

In other words, by increasing the number of factors, the absolute difference nH
a −nH

e grows as
well. Consequently, we can use a greater variety of factor values in order to satisfy KL(P (H) ‖
P̂ (H|E)) < δ; due to larger nH

a − nH
e we can satisfy KL(P (H) ‖ P̂ (H|E)) < δ also with

factors that result in smaller belief updates, i.e. smaller changes of the estimate P̂ (H|E). This
means that the intervals from which we can choose adequate parameters grow, which increases
the likelihood of having factors φi that will in a given situation support accurate classification.
Thus, increasing the number of factors in P̂ (H|E) that satisfy pH

F > 0.5 improves the robustness,
since the classification is less sensitive to the parameter precision and the impact of inference
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faults of type 1 can effectively be mitigated. Properties captured by this proposition are reflected
in the examples from section 3.3. �

5.5 Reinforcement Propagation

Reinforcement counters support a coarse grained approach to belief propagation in BNs that
feature many conditionally independent network fragments.

For the sake of clarity, we consider only reinforcements contributed through factors φi im-
plementing diagnostic inference steps (see section 3). This simplification is justified for BNs
with poly-tree topologies with significant branching factors. In such a network, the predictive
network fragment has an insignificant influence on the posterior over the classification variable
H. Consequently, we assume that the state estimation is based on a BN with a simple tree
topology where H corresponds to the root node.

Let’s assume a set VL consisting of leaf nodes that were instantiated through hard evidence.
Moreover, we find a set PL = {π(X)|X ∈ VL} consisting of all parents of nodes from set VL. For
each parent Y ∈ PL we determine the reinforcement summary sY resulting from the propagation
from its children contained in the set σ(Y ) ⊆ VL. Every parent node is then instantiated as
if the state returned by sY were observed. If nodes from PL have parents, we set VL ← PL

and find a new set of parents and the procedure is repeated until the reinforcement summary is
determined at the root node H. This procedure can be summarized by the following algorithm:

Algorithm 1: Reinforcement Propagation Algorithm

Collect all instantiated leaf nodes in the set VL;1

Find PL, a set of all parents of the nodes in VL;2

if PL 6= � then3

for each node Y ∈ PL do4

find set σ(Y ) of all children of Y ;5

for each node Xi ∈ σ(Y ) do6

Compute reinforcement rY
i at node Y resulting from the instantiation of Xi;7

end8

Compute reinforcement summary sY at node Y ;9

Instantiate node Y as if sY were observed (hard evidence);10

end11

Make instantiated parent nodes from PL elements of VL: VL ← PL;12

Go to step 2;13

else14

stop;15

end16

By running this algorithm, we obtain sX for all unobserved variables. Moreover, we can
show that this algorithm has an interesting property if the probability pre > 0.5 for all CPTs in
a BN with tree topology:

Proposition 7 Given a BN with binary nodes and odd branching factors k, for every non-
terminal node X the probability pX

s that the true state corresponds to the maximum reinforcement
counter nH

max is greater than 0.5.

Proof We can show this by considering proposition 4. Namely, in BNs with tree topologies
each child node of some node X corresponds to a fragment FX

i relative to X. In other words,
the branching factor at node X is identical to the number of diagnostic fragments rooted in X.
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We can use (13) to compute p̄X
s for every node X except the leaves. In addition, tree

topologies facilitate the formulation of the probability pX
F ; i.e. the lower bound that any of the

network fragments rooted in X supports correct mapping in a given situation. If we compute p̄X
s

for the parents of leaf nodes (i.e. terminal nodes), we simply set pX
F equal to p∗re, corresponding

to a child node of X associated with the minimum pre. However, for the hidden nodes with
non-terminal children we must consider the fact that according to the presented algorithm the
instantiation of every child is based on its reinforcement summary. In other words, in contrast
to the leaf nodes, the instantiations of non-terminal children can be erroneous. Therefore, we
formulate pX

F at node X as a function of p∗re and p̄X
s :

pX
F = p̄Y

s p∗re + α(1− p̄Y
s )(1− p∗re), (15)

where p̄Y
s is the lower bound on the probability that summary sY at X’s child node Y is

accurate in a given situation. The second term represents the probability of encountering a
situation where the reinforcement would be inaccurate given a correct state of Y , but we chose
an incorrect state yi such that the errors cancel out and the true state of H gets reinforced.
Note that (15) is valid also for the leaf nodes, where we set p̄Y

s = 1, since the observations are
deterministic. By recursively applying operations (15) and (13) and starting with the leaf nodes,
we can compute p̄X

s for all non-terminal nodes in a tree.

If we have binary variables, then α = 1 and we can easily show that for any p∗re > 0.5 the
probability pX

F > 0.5 at any non-terminal node. Consequently, according to proposition 4, we
see that in a BN with binary variables featuring a tree topology and any odd branching factor,
the probability pX

s > 0.5 for any non-terminal node X, since pH
s ≥ p̄H

s ≥ pH
F > 0.5. �

By considering the properties of binomial distributions we can derive the following corollary:

Corollary 8 Given a BN with a tree topology, pre > 0.5 for all CPTs and sufficiently great
branching factor k, then the probability pX

s > 0.5 also in the case of multi-state nodes and even
branching factors k. Moreover, limk→∞pX

s = 1 for every node X and for each fragment FX
i ,

limk→∞pX
Fi

= pre, where pre corresponds to the CPT connecting X and the rest of fragment FX
i .

In other words, the distribution over constellations of reinforcement counters at any variable
is a function of p∗re and the branching factors k, which is reflected in the experimental results
shown in section 6.2.

Note that if we use networks with binary nodes then the presented approach to the prop-
agation of reinforcements can be viewed as a hierarchical system of decoders (see for example
figure 7) that implement repetition coding technique known from the information theory [18].
Determination of the reinforcement summary sX and its use for the instantiation at node X
corresponds to the majority voting. Probability 1− pre, on the other hand, corresponds to the
failure ratio over a binary noisy channel. It is well known that by using the repetition coding
technique the decoding accuracy at the receiver asymptotically approaches the true point-mass
distribution corresponding to the source state.

6 Applications

The presented IMM supports analysis and techniques that are relevant for the development of
robust fusion systems for real world applications. In particular, by considering IMM we can
derive design rules that support building of fusion systems that can cope with imprecise models
and uncertain observations. In addition, IMM provides a theory that justifies simple yet effective
runtime analysis of fusion processes.



Section 6 Applications 17

Decoder 0

Decoder 1 Decoder 2

Decoder 3

Decoder 4

Decoder 5 Decoder 6 Decoder 7

Figure 7: A hierarchy of decoders.

6.1 Design of Robust Inference Systems

The IMM provides a guidance for the design of inherently robust fusion systems if we can specify
CPTs such that the corresponding pre > 0.5. In section 4.2 we showed that this assumption is
realistic. Namely, pre > 0.5 if the modeling parameters capture very coarse relations between
the true probabilities, i.e. we avoid faults of type 2, and events are not ill distributed. Since
these relations are very coarse, we can assume that in many cases they can easily be identified
by designers or machine learning algorithms.

Given assumption pre > 0.5, proposition 6 implies that the inherent robustness of the state
estimation with BNs improves through addition of conditionally independent network fragments,
given some hypothesis variable H. As we build a fusion system we must specify modeling
fragments for each information source. For many information sources, as for example sensors,
we can assume that they are conditionally independent. Consequently, by adding new sources
to the system we increase the number of fragments at different levels of the BN that supports a
meaningful fusion. Such a BN basically describes how observed events can cause different states
of H, which in turn can cause further observations.

For example, in the model from figure 1, we could consider nodes D and E as two observations
from different types of sensors. These two observations were caused by some phenomenon
corresponding to some state of H. On the other hand, the same phenomenon will cause a
hidden event F with a certain probability, while F will result in three observations represented
by nodes K, L and M . In this way we introduced three diagnostic fragments relative to H
which results in factorization (2). Obviously, if we had more sensors that can detect event H,
we could introduce more conditionally independent factors.

If the observation types D and E were obtained with sensors that can detect event A instead,
we would obtain a different topology depicted in figure 8. The corresponding factorization
would contain less factors. Namely, by incorporating such information sources we introduce
new nodes to the predictive fragment. Consequently, the number of fragments relative to H
would not increase by adding new information sources. For example for the evidence set E =
{b1, d2, e1, k2, l1, m1} we would obtain the following factorization:
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Figure 8: A causal model relating hypotheses represented by node H and different types of
observations captured by nodes B, D, E, K, L and M .

P̂ (hi, E) =

φ0(hi)
︷ ︸︸ ︷
∑

A

P̂ (A)P̂ (b1|A)P (d2|A)P (e1|A)
∑

C

P̂ (C)P̂ (hi|A, C) (16)

·
∑

F

P̂ (F |H)P̂ (k2|F )P̂ (l1|F )P̂ (m1|F )

︸ ︷︷ ︸

φ1(hi)

In this case the incorporation of new information sources did not increase the number of
independent factors relative to H and we cannot exploit the property captured by proposition
6. Such a network requires precise parameters P̂ (H|A, C) relating variables A, C and H and it
cannot compensate faults of type 1, which requires factor redundancy.

This example illustrates that, given limited resources, we should incorporate information
sources that increase the number of conditionally independent factors of P̂ (H|E), which improves
inherent fusion robustness as well as the effectiveness of different fusion monitoring approaches
(see the following sections). In other words, IMM can be considered in mission critical sensor
management tasks. Namely, often situation assessment requires different types of information.
However, due to temporal limitations and scarce resources, it might be difficult or impossible
to gather and process all possible observations in a given time frame. For example, in a gas
disaster scenario the decision makers would require heterogeneous information from mobile labs
that is obtained through more or less advanced measurements. However, the measurements
cannot be made simultaneously and they take time. Consequently, due to the time pressure
and a small number of mobile labs, it makes sense to first make the measurements that will
contribute to reliable assessment the most. If the relations between the measurements and hidden
events of interest H can be described through a BN, then we can make first the measurements
corresponding to diagnostic fragments relative to H. In this way we would optimize the sensing
process with respect to the robustness.

6.2 Coping with Imprecise Models by Using an Alternative Belief Propagation

Method

Proposition 7 and corollary 8 suggest that we can use reinforcement propagation algorithm as a
coarse alternative to usual belief propagation. In this way we can achieve very robust diagnostic
inference with asymptotic properties if a few coarse assumptions are satisfied, even if we use
imprecise models and noisy evidence. This is achieved if we use networks with many conditionally
independent fragments (see definition 2) and pre > 0.5, which is reflected in the experimental
results shown in figure 9. The curves show how pX

s changes as a function of pre at a root node
in simple tree networks with four levels and different branching factors. In this experiment, the
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Figure 9: pX
s , the probability that the maximum counter is associated with the correct state, as

a function of pre and branching factors k: 3 (solid), 5 (dotted) and 7 (dashed).

variables had three states. From the depicted curves it is apparent that for sufficient branching
factors the classification accuracy can be very high, despite significant modeling uncertainties
and noisy evidence. Note for example a high classification accuracy for pre = 0.7 and branching
factors 7. The same accuracy can be achieved with very different CPT parameters as long as
they capture simple relations (see section 4.2).

Such a simplified belief propagation approach is very relevant for many real world applications
where states of hidden variables are inferred through interpretation (i.e. fusion) of information
obtained from large numbers of different sources, such as sensors and humans. While in such
settings it is usually very difficult to obtain precise descriptions of the true probability distri-
butions, the domains can be adequately captured through tree like BNs with high branching
factors. In such applications each information source is associated with a conditionally indepen-
dent fragment given the monitored phenomenon (see section 7.1).

On the other hand, we can often make the realistic assumption that the learning algorithms
or human experts can identify simple relations between the probabilities in the true distributions
(see section 4.2) and specify CPT parameters such that pre > 0.5. For example, assume the
true conditional probabilities over variables E and C in 6.b. The corresponding pre = 0.6 as
long as the modeled probabilities satisfy relations (11). Thus, the CPT contributes to accurate
classification since it will be adequate in more than 50% of cases; e.g. given observation E = e1,
the CPT P̂ (E|C) will support correct reinforcement at C as long as the used parameters satisfy
relations P̂ (e1|c1) > 0.5 and P̂ (e1|c2) < 0.5.

6.3 Runtime Analysis of the Inference Quality

Even if we had a perfect causal model BN, precisely describing the true distributions in the
domain, we could encounter situations in which this BN would not support accurate state
classification for the given observations. Namely, the CPTs in such a model are generalizations,
which do not support correct mapping of an observation if it is a rare case. In other words, in
stochastic domains we always have to deal with the faults of type 1 (see definition 9). There are
situations where a significant portion of observations corresponds to rare cases, which can result
in erroneous estimation; i.e. an incorrect state of hypothesis variable H will be associated with
the greatest posterior probability.

However, if we can assume that pre > 0.5, we can show that in a given situation the maximum
counter nH

max corresponds to the true state of H with a certain probability that grows with



20 Inference Meta Models: A New Perspective On Belief Propagation With Bayesian Networks

the number of network fragments that incremented nH
max. We can exploit these properties and

consider a reinforcement counter as additional information on the estimation quality. Namely, we
consider a fusion result P̂ (H|E) potentially misleading, if the state with the maximum posterior
probability is not associated with a reinforcement counter that exceeds some threshold τ . This
simple approach is implemented by the filtering Algorithm 2 that provides a flagging mechanism
which can reduce the chance of using misleading fusion results.

Algorithm 2: Filtering Algorithm

Inputs: BN, evidence E ;1

Compute P̂ (H|E) over hypothesis variable H;2

Compute set of reinforcement counters NH = {nH
1 , . . . , nH

m};3

Determine the index of the state with the maximum posterior probability:4

imax = argmaxiP̂ (hi|E);
if nH

imax
< τ then5

Consider P̂ (H|E) misleading → activate the flag for a potentially misleading result;6

end7

Proposition 4 and corollary 5 suggest that this algorithm is effective if it is used with BNs
featuring many independent fragments (see definition 2) and CPTs where pre > 0.5. For ex-
ample, if τ = dk/2e, where k is the number of fragments, the probability of encountering a
case in which the result will correctly be classified as reliable or misleading is greater than 0.5.
This probability approaches 1 as k grows. By increasing τ we improve effectiveness of removing
false positives (i.e. critical events classified as non-critical) while, the portion of true positives
considered as misleading grows.

These properties are reflected in experiments. Data was sampled from a generative model,
a BN with a tree topology, 4 levels and branching factor 7. Each sampled set of observations
was fed to a classification network which was identical to the generative model; thus we used a
perfect model for the classification. Random sampling occasionally resulted in constellations of
observations corresponding to rare situations. For the sake of simplicity all CPTs were associated
with the same pre. Diagrams in figure 10 show the impact of the presented filtering algorithm
on the percentage of true/false positives. The horizontal axis represents threshold τ while the
vertical axis represents the percentage of true positives out of all positives. In other words,
the vertical distance between a curve and the horizontal line at 100% represents false positives,
which should be reduced. The curves show that the filtering effectiveness is a function of pre

and threshold τ . For example, the curve with diamonds corresponds to pre = 0.7. By using
τ = 4 the percentage of false positives was reduced by approximately ∆Fp ≈ 70%, while 176 out
of 1000 cases were considered potentially misleading. In this experiment the prior probability of
the critical state was 0.33. In general, the effectivness of this algorithm grows with pre, which
is reflected in figure 10. The effectiveness grows also with the number of independent factors,
which corresponds to growing branching factors in tree-like topologies.

Such filtering technique is useful in applications where a failure to detect critical events
(i.e. false positives) could have devastating consequences while reacting to false alarms is less
costly. For example, a fire in a remotely observed section of a chemical plant can be detected
with relatively unreliable sensors. A failure to detect the fire could result in a catastrophe
while an activation of a flag indicating a potentially misleading state estimation could prompt
the operator to zoom in with a camera or send a remotely controlled robot. In this case, the
damage caused by a false positive outweighs the use of an alternative, more expensive mode of
observation involving manual work or scarce resources.

Algorithm 2 implements a coarse rejection mechanism, which is relevant for the domains
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Figure 10: True positives as a function of different thresholds τ . Stars, diamonds and circles
correspond to pre = 0.6, pre = 0.7 and pre = 0.8, respectively.

where the available data quantities do not allow reliable determination of the optimal classifica-
tion/rejection thresholds based on the ROC curves [9].

7 Discussion

We introduced IMM which describes information fusion in BNs from a coarse, runtime per-
spective. We emphasize the difference between the generalization accuracy and the fusion (i.e.
classification) accuracy. Fusion is based on models that are generalizations over many possi-
ble situations. Consequently, even if we used a perfect model, in a rare situation, a particular
set of observations could result in erroneous classification. From the user point of view, the
classification accuracy is more important than the generalization accuracy.

IMM exposes important properties of BNs that are relevant for the construction of inherently
robust information fusion systems. IMM is based on very coarse and plausible assumptions (see
section 4.2). With the help of the IMM we show that inference in BNs can be very insensitive
to the parameter values and can have asymptotic properties with respect to the classification
accuracy. In this way we can, in certain cases, relax the problem of obtaining appropriate
modeling parameters [7]. This means that the fusion can be very robust, which is especially
relevant in the domains where it is difficult to obtain precise models due to the lack of sufficient
training data or expertise. Also, the implications of the IMM agree to a great extent with the
experimental results reported in [11].

In addition, IMM introduces a reinforcement propagation algorithm that can be used as an
alternative to the common approaches to inference in BNs and supports detection of potentially
misleading fusion results.

7.1 Causal Models with Simple Topologies

In this paper we proposed methods that assume BNs with great numbers of conditionally inde-
pendent network fragments (see definition 2) which implies that:

• The presented IMM is limited to BNs with relatively simple topologies.

• Huge quantities of evidence must be propagated through large networks.
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In this context, we should ask (i) whether such limited topologies still support modeling of
real world domains and (ii) whether the required computing and communication capacities are
feasible.

It turns out that simple topologies are relevant for a significant class of modern situation
assessment and controlling applications that require processing of large amounts of heterogeneous
information that can be accessed through the existing sensing and communication infrastructure.

We illustrate this with the help of a simple example. Let’s assume a fire detection system
that makes use of different types of sensors, such as smoke detectors, thermometers and cameras
detecting flames. Each sensor measures a particular physical quantity. For example, smoke
detectors could measure conductivity of the ionized air in their vicinity. Electronic circuits
evaluate air conductivity and generate streams of sensor reports. Moreover, the j-th report
from the i-th sensor is represented by a random variable Ri

j . A report signaling the presence

or absence of some phenomenon, such as smoke, is characterized by Ri
j = true or Ri

j = false,
respectively. The smoke concentration exceeding some threshold for a certain period of time (i.e.
a time slice) would cause a change of the air conductivity, such that the electronic circuit would
measure a high conductivity within that time slice. In such a case the sensor is considered to
work properly if P (Ri

j = true), the probability that a report from this sensor will indicate the

presence of smoke, is greater than P (Ri
j = false), the probability that a report will signal the

absence of smoke, i.e. P (Ri
j = true) > P (Ri

j = false). If the smoke were absent, a sensor that

works correctly would generate reports for which the distribution P (Ri
j) would satisfy relation

P (Ri
j = true) < P (Ri

j = false). However, the probability distribution P (Ri
j) does not depend

only on the presence of the phenomenon that we are trying to infer. For example, the sensor
electronics might fail, the sensor could be covered by ice, low temperatures could influence the
air conductivity, etc. In other words, the distribution P (Ri

j) over reports depends on many
different factors which are often not well known.

In order to avoid detailed modeling of the processes resulting in sensor reports, we introduce
the sensor propensity 3 concept that represents two types (classes) of situations characterized by
combinations of the states of the electronic components and the states of the sensor’s immediate
environment (e.g. conductivity of the ionized air). We represent the sensor propensity by
a binary variable S. S = true denotes the class of state combinations which influence the
sensing process in such a way that the probability of obtaining a sensor report confirming some
phenomenon is greater than 0.5; i.e. P (Ri

j = true|S = true) > P (Ri
j = false|S = true). On the

other hand, the class of situations corresponding to S = false would influence the distribution
over sensor reports P (R|S), such that P (Ri

j = true|S = false) < P (Ri
j = false|S = false).

In other words, the sensor propensity denotes the sensor’s tendency of producing observation
sequences in which the majority of reports indicates either the presence or the absence of some
phenomenon.

By representing sensor propensity through a binary node we can use simple causal models to
describe the relations between the hidden phenomenon, sensor propensity and the observation
sequences. For example, for smoke detectors such relations are captured by highlighted nodes
in figure 11, where node Smoke represents the presence/absence of smoke, binary nodes Si

represent propensity of the i-th sensor, while nodes Ri
j correspond to sensor reports obtained

from the i-th sensor during a particular time slice.

Clearly, it can be very difficult to obtain parameters for the CPTs P̂ (S|Smoke) and P̂ (Ri
j |S)

that would precisely describe the true distributions over the states of propensity Si and existence
of Fire. However, according to corollary 3 in section 4.2, we know that a network fragment
FH

i is likely to contribute to correct estimation if the CPTs corresponding to nodes of FH
i

capture very simple relations between the true conditional probabilities. In this context a smoke

3observation tendency
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Figure 11: A causal model capturing relations between the hidden phenomenon Fire and dif-
ferent types of sensor observations. Highlighted portion of the graph captures causal relations
between Smoke, sensor propensities Si and sensor reports Ri

j .

detector is useful for the state estimation if the corresponding modeling parameters P̂ (Ri
j |S)

and P̂ (S|Smoke) satisfy condition (11) and the true distributions are well distributed thus
simultaneously satisfying relations: P (Ri

j = true|S = false) < P (Ri
j = false|S = false),

P (Ri
j = true|S = true) > P (Ri

j = false|S = true), P (S = true|Smoke = true) > P (S =
true|Smoke = false) and P (S = false|Smoke = true) < P (S = false|Smoke = false).
In other words, a modeling fragment provides a useful estimation expertise without precisely
describing the true distributions. A fragment is useful if merely very simple relations between
the true distributions are satisfied and identified by the designer or a learning algorithm.

With each sensor we introduce an independent partial causal process which is initiated
through some hidden phenomenon. For example, by introducing a new smoke detector the
presence of smoke will initiate different processes in the sensor’s circuitry which will eventually
produce sensor reports. We can assume that such a sensor does not influence its environment
and other sensors; a smoke detector does not influence the smoke concentration or any other
parameters of the environment that could in turn influence other sensors.

Such independencies are reflected in the corresponding causal models. Namely, for each
sensor we expand a BN by introducing a propensity node and the corresponding sensor report
nodes. For example, in figure 11 the mth smoke detector is associated with a propensity node
Sm and report nodes Rm

j . Nodes Smoke, Sm and Rm
j represent a network fragment FSmoke

m ,
which is conditionally independent of other network components given node Smoke. Obviously,
by using many information sources reporting about heterogeneous phenomena we can obtain
BN topologies with many independent fragments.

Moreover, we assume domains where hidden states of the environment do not change during
a certain observation time interval, i.e. a single time slice. For example, fire is either present
or absent throughout an entire time slice. We call such phenomena quasi-static. On the other
hand, within a finite time slice, we obtain sequences of observations which are influenced by
the hidden quasi-static phenomena. Such observations are represented through leaf nodes. In
contrast to hidden variables representing quasi-static phenomena, each observation corresponds
to a particular time instant. Also, for a significant class of sensors, we can assume that sequences
of observations result from first order Markov processes. As it was shown in [5], such a process
can be modeled through a set of branches rooted in a single node corresponding to a quasi static
phenomenon. In other words, for each observation from a sequence obtained within a single
time slice, a new leaf node is appended to a common parent node in a BN.

In addition, often simple models assuming conditional independence can provide accurate
classification even in the cases where the true processes are more complex and the models ignore
certain dependencies [30, 6]. In fact, experiments showed that classification with very simple
BNs often outperformed estimation based on complex models with topologies describing the true
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dependencies accurately. In other words, despite the simplicity, the models assumed by IMM can
be adequate in relatively complex domains. In addition, if we can translate the classification to
a counting problem, we can use methods based on majority voting techniques with well known
properties [15].

Moreover, inherently robust inference systems based on many independent network frag-
ments require processing of large quantities of evidence in large networks, which introduces
large communication and processing burden. Fortunately, due to the factorization properties,
we can cope with these challenges by distributing modeling and belief propagation throughout
networks of processing nodes [21, 29, 20].

7.2 Extending the IMM to More Complex Topologies

It seems that under certain conditions the reinforcement propagation and filtering algorithms
could be adapted to more general topologies.

Inference based on reinforcements could be extended to more general topologies containing
ICI components, such as noisy-OR gates [11, 22]; i.e. given some hypothesis node H, there exist
evidence nodes Ei which are (i) ancestors of H and (ii) causally independent. It seems that
in such cases the robustness of the estimation of the states of H improves with the number of
evidence nodes Ei. Namely, the true distribution over P (H|e1, . . . , en) approaches some point
mass distribution as the number in independent causes increases. Consequently, we might be
able to introduce predictive reinforcements with similar properties as diagnostic reinforcements
w.r.t. the updating tendencies (see proposition 1).

In addition, we could transform multiply connected DAGs into trees consisting of hypernodes.
The hypernodes in such trees would represent compound states, combinations of states from the
original multiply connected network. Such a construction can be guided by a Junction tree
[12], which could facilitate identification of conditionally independent hypernodes. After the
states of hypernodes would be determined, we could compute CPTs relating complex states
of the hypernodes by using common approaches to belief propagation in multiply connected
BNs [12]. Thus, we would obtain a singly connected BN with nodes representing variables with
many states. In other words, the basic principles of the IMM can be applied to more general
topologies as long as they feature sufficiently large numbers of conditionally independent network
fragments. In such cases, however, the determination of pre as well as the justification of the
assumption pre > 0.5 might not be as straight forward as is the case with tree topologies.
Namely, the conditional distributions between the states of the resulting hypernodes might not
be well distributed (see section 4.2) and due to many possible states in each hypernode it might
be difficult to identify relations (11).

In other words, the rationale from section 4.2 might not be justified in the case of multiply
connected BNs. In this section we showed that we can relatively easily identify simple relations
(11) between the true probabilities over related events if the CPTs do not have many parame-
ters. This is the case if modeling variables do not have many states and the causal processes can
be described through BNs with simple tree topologies. In such cases the assumption pre > 0.5
is plausible and by recursively using (15) we can compute the lower bound on the probability
pH
Fi

that a particular factor φi corresponding to fragment FH
i supports an accurate reinforce-

ment. In other words, tree topologies allow a modular approach to the determination of pH
Fi

,
which requires rather coarse assumptions about simple relations. In multiply connected net-
works, however, relations are more complex and many parameters might be required to describe
them. Consequently, if such networks are transformed to simple trees with hypernodes, each
hypernode can have many possible states. In other words, in multiply connected networks it
can be difficult to justify pH

Fi
> 0.5 and, consequently, the presented algorithms might not have

asymptotic properties. Clearly, if we had sufficient amounts of data, pH
Fi

> 0.5 could be verified
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experimentally for each modeling fragment and the results from this paper are valid.

7.3 Related Work

Several researchers have addressed the parameter robustness problem by using convex sets to
capture uncertainties of the CPT parameters [10, 4, 27]. However, representations based on
convex sets require complex approaches to belief propagation, such as linear programing and
can result in not very informative distributions. The IMM introduced in this paper, on the other
hand, suggests that inference with BNs can be inherently robust without explicitly considering
the parameter uncertainties. In the case of topologies with many independent network fragments,
CPTs with very different parameters support accurate classification without any modification of
the representation. Namely, contrary to approaches [10, 27, 4], we can show that, given certain
topologies, the inference can be very robust even with crisp CPT parameters, if they capture
simple greater than/smaller than relations between the true probabilities (see section 4.2); e.g.
for binary nodes the experts must merely specify whether a particular parameter is greater or
smaller than 0.5. Consequently, it seems that specification of such ordering relations might be
easier for an expert or machine learning process than specification of sets of possible parameter
values. In other words, the presented approach supports fusion with asymptotic properties for
a significant class of models while it requires very coarse assumptions.

Moreover,the reinforcement propagation introduced in IMM seems to be similar to the infer-
ence in Qualitative Probabilistic Networks (QPN) [8, 28]. Both approaches use a more abstract
view on the conditional probability distributions. Similarly to the QPN approach, we assume
that designers or machine learning processes can identify a few coarse grained relations between
the natural distributions. But there are significant differences. The QPN approach is suitable
for arbitrarily complex topologies, while the reinforcement propagation algorithm is limited to
simpler topologies. However, due to a very coarse representation of distributions, the QPN
approach becomes inconclusive in cases where different network fragments relative to some clas-
sification variable H introduce conflicting updates of the distribution over H [26]. In stochastic
domains, this is quite common and the chance of having conflicting influences grows with the
number of conditionally independent network fragments. In order to be able to cope with such
problems the basic QPN principles were extended by sophisticated representation and updating
algorithms [19, 25]. However, it seems that implementation of such approaches is relatively
complex and results might be difficult to interpret. For example, the algorithm described in [26]
considers the evidence entering order and ignores intercausal influences, while approach in [19]
considers relative and absolute magnitudes of influence and introduces complex operations. On
the other hand, the reinforcement propagation algorithm introduced in this paper can cope with
conflicting evidence in a very robust way since it is based on different assumptions. Contrary
to QPNs, we do not assume any preprocessing of the BNs in order to obtain a coarser grained
representation of the distributions between the different events of interest. In QPNs relations
between the true distributions are encoded through different types of influence and combined
through special operators. Instead, we use common BNs in conjunction with a coarse grained
inference algorithm which takes into account frequencies of factor reinforcements (see section 4).
In contrast to the QPN approach we assume a lower bound on the probability of obtaining a
correct factor reinforcement in a given situation. Given coarse grained assumptions that (i) the
modeled events are well distributed and (ii) that the designers or machine learning algorithms
can identify simple relations in the true distributions correctly, we can consider the frequencies
of reinforcements as indications of the true states. Consequently, we can formulate asymptotic
properties of classification processes and determine lower bounds on the classification accuracy
as well as the lower bounds on the quality checking effectiveness (see section 6.3). In other
words, QPN and IMM are complementary. QPN seems to be useful as an intermediate stage
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in the design process [24], while the IMM supports robust runtime fusion analysis and accurate
estimation with asymptotic properties based on very imprecise models.

Also, the presented robustness analysis is complementary to the common approaches to fine
grained sensitivity analysis [2, 3, 1]. Contrary to these approaches, we take into account the
relations between the true distributions and the modeling parameters and do not consider the
entire network topology along with the instantiations. In this context, the IMM provides coarse
guidelines for (i) the early design phase of robust fusion systems and (ii) sensor management at
runtime.

Several researchers also addressed the problem of detecting potentially misleading inference
results [14, 16, 13]. These approaches are based on the data conflict measure and straw models.
While they support more general models than the filtering Algorithm 2 presented in section 6.3,
they are based on assumptions that might be difficult to justify in real world settings. This is
due to the fact that these approaches consider magnitude of belief updates. On the other hand,
Algorithm 2 is based on updating tendencies, which requires rather coarse assumptions. We
use the magnitude of the greatest reinforcement counter as a consistency measure. By consid-
ering properties of the reinforcement propagation algorithm, we can show that the effectiveness
of Algorithm 2 improves asymptotically as the number of conditionally independent network
fragments increases.

7.4 Further Research

Currently, we are investigating how the reinforcement counters could be used for the detection
of inadequate modeling components and erroneous information sources. Namely, patterns of re-
inforcement counters seem to provide a suitable consistency measure. Our future work will focus
on a thorough investigation of the robustness of IMM with respect to erroneous independence
assumptions as well as possibilities of using the IMM theory in the context of machine learning
techniques. It seems that IMM could provide a plausible rationale for a meaningful state space
discretization that would support more efficient learning of the CPT parameters.
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