Challenges in
Computational Commutative Algebra

John Abbott

Dipartimento di Matematica
Universita di Genova, Italy
abbott@dima.unige.it

Abstract. In this paper we consider a number of challenges from the
point of view of the CoCoA project one of whose tasks is to develop
software specialized for computations in commutative algebra. Some of
the challenges extend considerably beyond the boundary of commutative
algebra, and are addressed to the computer algebra community as a
whole.

1 Introduction

Computer algebra occupies the middle ground between traditional mathematics
and computer science, so the challenges to be faced derive from these two fields
and the way they interact. Here we shall restrict attention to “commutative
algebra” (i.e. polynomial arithmetic), an area apparently so simple that it could
not harbour any interesting challenges.

Our point of view is that of a developer of symbolic computation software.
Naturally, the foremost challenge in computer algebra is the invention of effective
methods for computing mathematical objects; for instance, the definition of the
radical of an ideal gives no clue as to how to compute it effectively. Once the
algorithms are known, the main challenge for a developer is that of turning
them into software which computes results quickly. We regard the challenges
of algorithm discovery and of efficient implementation as implicit and shall not
mention them again.

Before concentrating on the specific situation of CoCoA, we identify three
challenges which affect or involve the computer algebra community as a whole.
These challenges are infrastructural in nature. The most important challenge is
to obtain academic recognition for published software to the extent that papers
presenting new algorithms but not accompanied by an implementation should
be regarded as “half baked”. The intercommunication challenge calls for a de-
termined effort to make it easy to move mathematical values from one software
system talk to another. The third challenge is to convince hardware producers
to give us a helping hand.

In preparation for the discussion about CoCoA, we present a brief expla-
nation of the three types of (symbolic computation) software: systems, servers,
and libraries. Then, regarding CoCoA, we discuss some of the more challenging

Dagstuhl Seminar Proceedings 06271
Challenges in Symbolic Computation Software
http://drops.dagstuhl.de/opus/volltexte/2006 /768

aspects of producing the new version, recalling some of the history of the project
to place the whole into context.

Finally, we present three quite specific challenges. None of them is particu-
larly far-reaching, but they do represent gaps in our knowledge.

2 The Most Important Challenge

From our point of view as developers of computer algebra software, there is
one challenge which stands far above the others. A challenge which, if not ad-
dressed, threatens our very existence. The onerous work involved in producing
good quality symbolic computation software attracts almost no academic
recognition. The challenge is to reverse this dismissive attitude.

In the prevailing academic climate, one’s academic existence (i.e. career)
depends on the production of sufficiently many publications; this is sometimes
referred to as “publish or perish”. Precisely what constitutes a publication varies
from place to place. But software is universally excluded from consideration. This
exclusion is damaging to the whole field of symbolic computation.

Undoubtedly, it will be difficult to change the current practice, even if we
ignore the political hurdles. One obstacle is the vital step in the process of aca-
demic publication, the peer review; it is not clear how this could be effectively
extended to software, though some guidance can be taken from the world of
numerical computation which has the academic journal Transactions on Mathe-
matical Software. A notable difference from the numerical world is that there is
no universal standard environment defining the basic data-structures and opera-
tions in computer algebra, and as a consequence potentially publishable software
components normally rely on large bodies of supporting code. For instance, a
published routine in the Maple language cannot readily be used by people who do
not happen to have (the correct version of) that particular commercial system;
so, for these people, the software is not really “published”.

Consider for a moment the situation of the young academic in computer al-
gebra. He has developed a new algorithm worthy of publication, and a prototype
implementation. The next step is to write an article describing the algorithm,
proving correctness and analysing it. Additionally, he could refine the proto-
type into good clean code with documentation and publish it (e.g. on his web
site) simultaneously with the article. Obviously, publishing the code would be
of considerable benefit to anyone who actually wants to use the new algorithm.
However, many are quite unaware of just how much time and effort is frequently
involved in the pre-publication refinement of the prototype; in some cases it could
more than double the original author’s burden. Now, our young academic would
have to be uncommonly altruistic to invest the time to produce the publishable
implementation: for him it is time wasted, time he could have spent working on
his next article, a publication which will count towards his career (unlike the
published software).

Now consider all the young academics in computer algebra. Most of them
will not be “uncommonly altruistic”, so we can expect that most articles about

algorithms will not be accompanied by published software, and in a few years we
arrive at a situation where there has been lots of published theoretical progress
but no one can actually make use of anyone else’s algorithms; at least, not
without having to produce a secondary implementation. With each secondary
implementation produced, the effort saved by the original author is paid by the
hapless implementor (who surely cannot hope for any recognition of his effort
because “it’s only an implementation, nothing new”). If even one secondary
implementation is produced then the computer algebra community as a whole
has not saved any effort. The effort saved by the original author is saved by
the community only if no implementation is ever produced, in which case the
usefulness of the original article is open to question. This hardly seems a good
way to sustain a thriving healthy computer algebra research community.

In this scenario we have concentrated on young researchers rather than older
researchers who perhaps have the luxury of not needing to strive to further
their careers, and so maybe are less pressed to produce a stream of articles just
barely separated by the “least publishable increment”. Yet it seems that the
burden of implementation almost always falls on the young, possibly because
programming is (dis)regarded as a menial task. This is rather unfortunate since
the skill and breadth of knowledge needed to write excellent software
usually derive from long experience which young researchers are unlikely
to have.

Some first steps towards addressing the challenge are already being taken
by Traverso who is endeavouring to establish an Active Journal of Computa-
tional Algebra [11]. The journal will have a machine readable component, and is
specifically designed to publish normal theoretical articles together with runnable
corresponding implementations. The intention is that both the article and the
implementation will be subject to peer review before publication. There are still
a number of technical difficulties to resolve: e.g. copyright issues with implemen-
tations that build upon proprietary software, and the maintenance and evolution
of published software.

In summary, with current attitudes there is a strong disincentive for aca-
demics to produce good quality implementations of new algorithms. Producing
good software is hard work, considerably harder than writing an article. For
those unfamiliar with the onus of programming, we offer the following analogy:
the effort of refining a prototype to be publishable is no less than that needed
to flesh out a sketch proof into a complete, robust, publishable proof with all
details worked out.

Alternatively, we could decide that it is inappropriate for academics to pro-
duce programs, and simply leave that job to the producers of commercial com-
puter algebra software. But they will choose what to implement (and when)
based on commercial interests, which are more likely to be dictated by engineers
who surely outnumber computer algebraists as clients. This hardly seems a good
way to sustain a thriving healthy computer algebra research community.

3 The Intercommunication Challenge

Symbolic computation software comes in many shapes and sizes, each system
having its own strengths and weaknesses. Ideally all these pieces of software
would collaborate, each contributing its own expertise. The current situation is
rather far from this ideal: it is often difficult to transfer values from one system
to another (e.g. the string xy can be a variable in some systems while in others it
represents the product of x and y). This difficulty of communication is in stark
contrast to the nearly universal language of mathematics. The lack of a univer-
sal protocol for exchanging mathematical data is an astonishing lacuna
which needs to be remedied. We remark that TEX is unsuitable for this role as
its purpose is to describe the printed appearance of the formula rather than to
capture the semantic essence (e.g. the formula (a,b) has several meanings: an
open interval, the ideal generated by a and b, a two component vector, and so
on).

Fifteen years ago the potential benefit of a universal protocol had already
been noticed by several research groups. About that time the OpenMath project
began to study the matter in considerable detail; the group has now evolved into
the OpenMath Consortium [9]. Initially efforts were directed at creating a means
of transmitting mathematical values; the issue of how to express what was to be
done with the transmitted values was deferred. Even this more restricted aim
proved to be a tough challenge. Nevertheless, a workable solution was found.
However, this solution has remained largely a theoretical curiosity as implemen-
tations are so scarce that they have only limited practical impact. In reality, the
intercommunication challenge still persists.

It is easy to overlook just how useful being able to exchange mathematical
data would be. The most obvious use is when no single software system offers
all the operations needed to achieve a complete solution to a problem. The
possibility to move values reliably and swiftly between different systems is a
great stride toward uniting the abilities of these systems. Continuing in the
same direction several researchers considered how to construct a “broker” which
would complete the unification of the different systems’ abilities by moving values
automatically and transparently back and forth according to the operations to
be performed and the various participating systems’ respective suitabilities for
that specific task. From here it is only a small step to conceive of a collection
of computers networked together governed by an extended broker which can
distribute computations across the “grid”.

Here are a few further situations where a universal protocol would be help-
ful. A computation completed using one symbolic system can be transferred to
another system for independent confirmation of the result by a different im-
plementation. Two collaborating researchers can exchange mathematical results
(e.g. by email) without being obliged to use the same identical software. Mathe-
matical results can be archived, their meaning safely protected from the vagaries
of software evolution (or extinction). The protocol may even facilitate struc-
tural searches through databases of mathematical formulas (e.g. [log(z) dz and
[log(y) dy have the same structure).

4 Hardware Support

For many years numerical computations have enjoyed impressive degrees of hard-
ware support (e.g. dedicated floating-point machine instructions, coprocessors).
So far there is no such assistance for symbolic computation. In part, this ab-
sence is no doubt a consequence of the diversity of basic operations in symbolic
computation. Nonetheless there are two clear candidates for hardware support
which should improve performance of a wide range of symbolic computations
(albeit by only a constant factor).

One candidate is big integer arithmetic. Apart from calculations over
a finite field, and some computations of a combinatorial nature, virtually all
symbolic computations involve arithmetic on integers (or rationals) with unlim-
ited precision. The de facto library for big integer arithmetic is GMP [5]. The
library contains numerous assembly language routines to access the partial sup-
port present in certain processor families. It is regrettable that the hardware
support is erratic, and essentially inaccessible from any high-level programming
language. The currently increasing interest in cryptographic methods involving
big integer arithmetic may add enough impetus to convince hardware manufac-
turers, and language standards bodies, to supply a uniform set of basic building
blocks needed for big integer arithmetic.

The other candidate is modular arithmetic. Modular arithmetic is the un-
sung hero of many successes of symbolic computation: in many cases the best
known algorithms (on data with integer or rational coefficients) apply a reduc-
tion to modular arithmetic, and then use lifting techniques and reconstruction
algorithms to obtain the final answer. For the case of polynomial factorization
the modular reduction is unavoidable as no feasible alternative is known. Modu-
lar reduction works well because it precludes the phenomenon of “intermediate
coefficient swell”, where surprisingly large integers appear during the course of
the algorithm even though they are not present in the inputs or the final result.
It is remarkable how well modular techniques work given how poorly a basic op-
eration such as modular multiplication is supported on current processors; note
that the widely used programming languages C and C++ do offer support for
modular arithmetic. We can reasonably expect modular methods to become still
more pervasive given the current trend towards multiprocessor computers and
the natural parallelism in “chinese remaindering”. Hardware support for basic
modular arithmetic would yield tangible gains for a wide variety of symbolic
computations. The principal stumbling block will be that almost no-one outside
computer algebra uses modular arithmetic extensively, and alone we are too few.

5 Software Types

Before presenting CoCoA, we give a quick overview of the different types of
symbolic computation software. Currently there are two main categories of sym-
bolic computation software: the large “monolithic” systems (e.g. Maple and
REDUCE), and the small specialized systems (e.g. CoCoA and Singular). The

monolithic systems each aim to cover as much of mathematics as possible, and
so can be described as “general purpose”; they are predominantly commercial
and typically quite costly (compared to an annual research budget). Most of the
small systems limit their areas of applicability, so are to be considered as “special
purpose”; but in return offer often markedly better performance than the general
purpose systems for computations within their realms; they are predominantly
free.

We mention separately the GMP [5] and NTL [10] libraries. These are not
interactive systems, you cannot simply sit down and start doing computations
with them. Instead, they are libraries: collections of compatible routines and
functions which can be called from inside another program — to use the facilities
of GMP or NTL you must write a program. Clearly these libraries are not
suitable for a casual user unfamiliar with programming; in contrast, they are
invaluable to researchers who are fluent in programming, offering the chance to
save many months of hard work.

At this point we make the important observation that the facilities offered
by symbolic computation software can be made available in more than one way.
In fact, we identify three essentially different ways of accessing the capabilities
of the software:

(a) as an interactive system
(b) via a server
(c) as a library

Each of these modes has its own characteristics making it the most suitable
under the right circumstances. Mode (a) is well suited to casual use or for users
inexpert at programming. Modes (b) and (c) are appropriate when writing a
program which needs to perform some symbolic computation; probably they are
the most interesting for researchers in symbolic computation. As a rule, mode (b)
is likely to be better if the program interacts not too often with the symbolic
computation software; mode (c) is better if there are many interactions.

Curiously, we know of no symbolic computation software which promotes
all three modes of use. Interaction via mode (b) could allow a number of small
specialized servers to collaborate to achieve a wide combined area of applicability,
possibly rivalling some of the general purpose systems. Before this can become a
reality, we must establish a common language for all these servers as described
in the Intercommunication Challenge.

6 Challenges in the CoCoA Project

The CoCoA project [3] began in 1987. Initially it developed just a small program
in Pascal running only on Macintoshes written simply to enable the authors to
experiment with Buchberger’s algorithm for computing Grobner bases. Within
two years the program had become widely used in many countries both for
research and teaching.

Then the program was translated into C, and ported to other platforms. A
high-level interpreted language was devised and incorporated into the program.
The newly acquired programmability permitted rapid extension of CoCoA’s fa-
cilities via interpreted program modules. And as CoCoA’s abilities grew, so did
its use in universities around the world.

More recently efforts have been directed at areas usually neglected (or even
despised) in academic environments notwithstanding their unquestionably vital
contributions to the usefulness of the program: a sophisticated (graphical) user
interface, comprehensive documentation, and robustness. Of course, there has
also been continual development in more academically “respectable” areas, often
spurred on by symbiosis with researchers using CoCoA not only in algebraic
geometry but also in other fields such as mathematical analysis, and statistics.

Now the project has entered an important phase: the entire program is be-
ing recreated in C++ with the goal of producing a “laboratory” for studying
computational commutative algebra. The new version is largely complete, and
should be able to supplant the old one in 1-2 years’ time. Henceforth when we
speak of CoCoA we shall mean this new version.

CoCoA is one member of a small, elite group of highly specialized systems
having as their main forte the capability to calculate Grobner bases; other mem-
bers include Singular [7], Macaulay 2 [6], RISA/ASIR [8] and FGb [4]. Although
a number of general purpose symbolic computation systems do offer the possi-
bility to compute Grobner bases, their non-specialist nature implies a number
of severe compromises which make them far less suitable to act as a labora-
tory — most notably: relatively poor execution speed and limited control over
the algorithm parameters.

The efficient Grobner code forms the core of CoCoA, but there are also a
number of other notable components (present in the old CoCoA, and gradually
being incorporated into the new version): for instance, polynomial factorization,
some exact linear algebra operations, determination of Hilbert functions, and
computing with zero-dimensional schemes.

6.1 Justifying the new CoCoA

As the range of operations in the old CoCoA grew, it became ever more apparent
that the software design suffered a number of innate limitations which could not
easily be remedied. Our options seemed to be two: embark on a difficult process of
adapting the existing code to be more flexible, or start afresh using the experience
gained with the old code to help direct a brand new implementation. For various
reasons we excluded the idea of modifying the existing code.

Logically, this left us with just one option: rewrite everything. In fact, there
was another “unthinkable” option: namely, to abandon CoCoA and use some
other system (possibly with our own front end). How can we justify the high
cost of producing another algebra system? This was our first real challenge.

The cost would be justified if the new CoCoA were to become widely used. So
our first step was to establish what we believed to be the most valuable concrete
characteristics [2]:

A the software must be easy and rewarding to use;
B the software must be reliable, robust and long-lived;
C the software must be “free” (in the GPL sense).

It seems reasonable to believe that software which combines these characteristics
is likely to become widely used. Each of these points has a number of implications
which we explore briefly.

Point A implies that the facilities offered by the software should be readily
accessible; in particular the new CoCoA will be usable as an interactive system,
via a server, and as a C++ library. Each means of access must present a simple,
logical and elegant interface; here we must presuppose a certain mathematical
maturity on the part of the user. To be rewarding the software must offer a
complete palette of functions, and must also exhibit good run-time performance
(i.e. good speed without excessive use of memory). Naturally the software must
be accompanied by good documentation, including numerous illustrative exam-
ples.

Point B tells users that they can trust results produced by the software, and
that the initial effort in learning to use the software should continue to be useful
for many years. Reliability in complex software is notoriously difficult to achieve,
but we can make great strides in that direction by developing a extensive test
suite along with the main software. A useful step in the direction of robustness is
checking that arguments supplied to functions/procedures are valid, and giving
a meaningful error if they are not. Two important contributions toward the
longevity of the code are good documentation, and clarity of coding style guided
by sensible coding conventions. A small amount of “desperate and dirty” code is
tolerated if it yields markedly better performance; of course, these bits require
especially good documentation.

Point C guarantees that the enthusiast can “look inside” our implementa-
tions, and possibly even improve them. To comply with the spirit of the GPL,
the code needs to be clear and readable and well documented. We also hope
that eventually there will be contributions from researchers outside the CoCoA
Team.

Returning a moment to point A, we observe that it is open to subjective
interpretation. Our only reasonable course is to choose what we feel is the best
compromise, perhaps based on feedback from users. Naturally, the interface to
the C+4++ library is constrained by the language limitations: for instance, we
opted not to use the ~ symbol for powers because it readily leads to unexpected
“wrong” behaviour, e.g. 2*x~2 would be interpreted as (2*x) ~2; this interpre-
tation is dictated by the rules of operator precedence in C++, and these rules
are immutable.

Many of the requirements listed above are little more than good programming
practice. The aspect we have found most challenging is establishing a clean over-
all design which is simultaneously mathematically sound and efficient in practice.
The “basic design” of mathematics has been built up over many centuries; we
take it for granted. Unfortunately, there is no ready-made, tried-and-tested de-
sign for computer algebra; our field is barely fifty years old. CoCoA is certainly

not the first to face this challenge; we combine independent thought with ideas
already used by others (e.g. in Axiom). An example of an originally unforeseen
design feature is a function which determines whether a general ring element lies
in the natural image of Z, and if so, gives a pre-image of that element (usually
the “simplest” pre-image, if there is a choice).

6.2 Why didn’t we use Aldor?

Having decided to recreate CoCoA from scratch, one of the first choices we made
was the implementation language. The final shortlist contained two candidates:
C++ and Aldor. Without any doubt, Aldor was better suited for implementing
computer algebra software: it has some understanding of mathematical types,
and has a library offering a useful selection of fundamentals — effectively a head
start compared to C++.

The deciding factor was the desired longevity of the new CoCoA, point B
in the preceding section. We hope CoCoA will live for many years; ten, twenty,
maybe more. There can be little doubt that C++ compilers will still be around in
twenty years’ time. The future of the Aldor compiler does not appear so certain.

To survive, the Aldor compiler needs to be improved and maintained; but will
this happen? We, computer algebraists, grumble that mathematicians dismiss us
as “almost computer scientists,” while the computer scientists spurn us saying we
are just “mathematical programmers”. The Aldor compiler faces similar bilateral
rejection. A computer algebraist thinks it is a task for a computer scientist,
whereas a computer scientist thinks that compiler work is dull and only for first
year undergraduates. Really, it is a challenging task requiring expertise from both
disciplines. Furthermore, without proper recognition for the work (see Section 2)
the prospects look bleak.

Considering the many years of thoughtful design put into Axiom/Aldor, it
would be a great shame if they simply fade out of existence, a damning indict-
ment on the computer algebra community.

6.3 Implementation Tricks

The execution speed of a program is one of its most important characteristics:
a program which is twice as fast will let you complete your computation in half
the time. Grobner basis computations are noted for being potentially lengthy,
possibly even taking days, so a faster implementation translates into a genuine
time saving. At the other end of the spectrum, most single calculations with
GMP are completed in a tiny fraction of a second, yet the GMP library is full of
implementation tricks to make it run faster. The tangible gain derives from the
fact that large, higher level symbolic computations typically call GMP operations
many thousands of times; so the individual minuscule savings quickly add up.
A reasonable definition of implementation trick is “an idea for making a
program usefully faster but apparently with limited general applicability”. To
give an indication of how important these tricks can be, we simply observe that
the advantages of the fast dedicated implementations of Buchberger’s Algorithm

(such as those in CoCoA, Singular and Macaulay) are almost exclusively due to
careful application of various tricks. In practice, these programs are hundreds of
times faster than an unsophisticated implementation.

The time it takes to discover a trick can be surprisingly long, yet once dis-
covered it may become almost obvious. Given the speed improvements the tricks
can lead to, it seems appropriate that they should be publicizable. Some tricks
are ideas large enough to merit independent publication (e.g. geobuckets [12]),
many remain buried inside a remark in some more wide-ranging article, and
some exist solely as a few lines of code in a big program. The computer algebra
community needs a safe place in which to keep these small pearls of wisdom. In
the new CoCoA we endeavour to mention all tricks we use in the documentation,
and the source code is open so everyone can see these small ideas in context.

It could also be useful to gather together various useless tricks that were
tried because they seemed promising but which proved unworthwhile in the end.
For some reason, failed research customarily goes unmentioned, leaving others
unwarned about tempting blind alleys.

7 Some Very Specific Challenges

Here we present three small challenges which arose during the development of
CoCoA, and to which we have not yet find a satisfactory response.

7.1 Multiplication of Multivariate Polynomials

Multiplication of big integers and (dense) univariate polynomials can be effected
in soft linear time via fast Fourier transform methods. Multiplication of dis-
tributed multivariate polynomials (i.e. ordered sums of non-zero terms) is not
so efficient in general. The obvious algorithms all have at least quadratic com-
plexity, and in some cases the result may have quadratic size. The existence of
freak polynomials having sparse squares [1] proves that we cannot hope for an
algorithm linear in the size of the product. Is there a general algorithm which is
faster than quadratic when the size of the result happens to be subquadratic?
Perhaps a generalization of Karatsuba’s method?

7.2 Powering of Multivariate Polynomials

Powering of big integers and (dense) univariate polynomials is another problem
which can be regarded as adequately solved (e.g. using a recursive “binary”
algorithm). For many distributed multivariate polynomials a simple sequential
algorithm turns out to be faster than the recursive “binary” method because
squaring typically more than doubles the number of terms in a multivariate
polynomial. In some cases, powering using the binomial expansion can be highly
effective: write f = f1+ f> and then compute f" =3, (}) fEf2=F; there is some
freedom in the choice of f; and f5. Although powering is relatively uncommon,
it is surprising that we do not know the best method for such a basic operation.

Is there a general algorithm which is always at least as fast as any of the three
methods described here?

7.3 Polynomial Relationships among Approximate Points

One of the precepts of most computer algebra studies is that all input data are
exact and that an exact result is required. An immediate consequence is the re-
liance on big integer arithmetic. However, outside the realm of pure mathematics
one rarely has exact data, thereby inhibiting the applicability of computer al-
gebra to “real world” problems. Relatively recently there has been a marked
increase in studies concerning, say, polynomials whose coefficients are known
only approximately (e.g. computing the GCD, or finding a factorization). One
significant difficulty with these approximate problems is understanding what the
“right answer” should be.

The CoCoA group is actively studying ways to determine polynomial re-
lationships among approximate data points. The case of exact data points is
elegantly solved by the Buchberger-Moller Algorithm which finds a Grébner
basis for the ideal of all polynomials vanishing at the given points. Here the
challenge is to find one or more useful generalizations of the B-M algorithm to
the approximate setting. As with many other algorithms in computer algebra,
the structure of the result depends on where zero coefficients occur during the
computation. The nub of the problem is deciding whether an approximate value
should be viewed as zero or not.

8 Conclusions

The health of practical research in computer algebra depends on ready availabil-
ity of good quality open-source software which can be modified and easily built
upon. It is costly to produce high quality implementations and maintain them
(e.g. incorporating new algorithms as they are developed, and porting to new
systems and new hardware). The imbalance in the academic values of theoret-
ical and implementational outputs recognizes neither the cost nor the value of
software, and is consequently detrimental to our health.

Currently our various softwares cannot talk to each other, but this is a curable
handicap. The theoretical groundwork has already been done, what remains is
primarily to implement the design. It would be easier to make the effort required
if the value of implementation work were properly recognized.

The new CoCoA software strives to set an example in terms of a clean,
structured design offering a natural and pleasant interface together with good
run-time efficiency. This efficiency comes as a result of both good overall design
and the careful use of numerous implementation tricks; both these important
aspects are covered in the documentation. Producing the overall design has been,
and continues to be, a challenging task.

References

1.
2.

3.
4.

12.

J. Abbott Sparse Squares of polynomials, Math. Comp. vol. 73, pp. 407-413, 2002
J. Abbott The Design of CoCoALib; Proceedings of ICMS 2006, Springer
LNCS 4151, 2006.

CoCoA Team The CoCoA Project; main web page http://cocoa.dima.unige.it/
J-C Faugere FGb Polynomial System Solving via Grébner bases; main web page
http://fgbrs.1lip6.fr/jcf/Software/FGb/index.html

T. Granlund and others GMP: the GNU Multiple Precision Library; main web
page http://www.swox.com/gmp/

D. Grayson, M. Stillman The Macaulay 2 Computer Algebra System; main web
page http://www.math.uiuc.edu/Macaulay2/

G.-M. Greuel, G. Pfister, H. Schonemann The Singular Computer Algebra System;
main web page http://www.singular.uni-k1l.de/

M. Noro The RISA/ASIR Open Source General Computer Algebra System; main
web page http://www.asir.org/

. The OpenMath Society; main web page http://www.openmath.org/
10.
11.

V. Shoup NTL: a Number Theory Library; main web page http://www.shoup.net/
C. Traverso The Active Journal of Computational Algebra; a brief abstract may be
found in the proceedings of Calculemus 2006, to appear in ENTCS http://wuw.
entcs.org/

T. Yan The geobucket data structure for polynomials; J. Symbolic Computation,
vol. 25(3), pp. 285-294, March 1998

