
06081 Abstracts Collection

Software Veri�cation: In�nite-State Model

Checking and Static Program Analysis

� Dagstuhl Seminar �

Parosh Aziz Abdulla1, Ahmed Bouajjani2 and Markus Müller-Olm3

1 University of Uppsala, SE
parosh@docs.uu.se

2 LIAFA - Université Paris VII, FR
ahmed.bouajjani@liafa.jussieu.fr

3 Westfälische Wilhelms-Universität Münster, DE
mmo@math.uni-muenster.de

Abstract. From 19.02.06 to 24.02.06, the Dagstuhl Seminar 06081 �Soft-
ware Veri�cation: In�nite-State Model Checking and Static Program
Analysis� was held in the International Conference and Research Cen-
ter (IBFI), Schloss Dagstuhl. During the seminar, several participants
presented their current research, and ongoing work and open problems
were discussed. Abstracts of the presentations given during the seminar
are put together in this paper. The �rst section describes the seminar
topics and goals in general. Links to extended abstracts or full papers
are provided, if available.

Keywords. Software veri�cation, in�nite-state systems, static program
analysis, automatic analysis

06081 Executive Summary � Software Veri�cation:

In�nite-State Model Checking and Static Program

Analysis

Software systems are present at the very heart of many daily-life applications,
such as in communication (telephony and mobile Internet), transportation, en-
ergy, health, etc. Such systems are very often critical in the sense that their fail-
ure can have considerable human/economical consequences. In order to ensure
reliability, development methods must include algorithmic analysis and veri�ca-
tion techniques which allow (1) to detect automatically defective behaviors of
the system and to analyze their source, and (2) to check that every component
of a system conforms to its speci�cation.

Two important and quite active research communities are particularly con-
cerned with this challenge: the community of computer-aided veri�cation, espe-
cially the community of (in�nite-state) model checking, and the community of

Dagstuhl Seminar Proceedings 06081
Software Veri�cation: In�nite-State Model Checking and Static Program Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/799

2 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

static program analysis. From 19.02.06 to 24.02.06, 51 researchers from these
two communities met at the Dagstuhl Seminar 06081 �Software Veri�cation:
In�nite-State Model Checking and Static Program Analysis� in order to im-
prove and deepen the mutual understanding of the developed technologies and
to trigger collaborations. During the seminar which was held at the International
Conference and Research Center (IBFI), Schloss Dagstuhl, several participants
presented their current research, and ongoing work and open problems were dis-
cussed. Abstracts of the presentations given during the seminar are put together
in this paper. Links to extended abstracts or full papers are provided, if available.

Keywords: In�nite-state systems, model checking, program analysis, software
veri�cation

Joint work of: Abdulla, Parosh Aziz; Bouajjani, Ahmed; Müller-Olm, Markus

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2006/797

Invisible Safety for Distributed Protocols

Ittai Balaban (Courant Institute - New York, USA)

The method of �Invisible Invariants� has been applied successfully to protocols
that assume a �symmetric� underlying topology, be it cliques, stars, or rings. In
this paper we show how the method can be applied to proving safety properties of
distributed protocols running under arbitrary topologies. Many safety properties
of such protocols have reachability predicates, which, on �rst glance, is beyond
the scope of the Invisible Invariants method. To overcome this di�culty, we
present a technique, called �coloring,� that allows, in many instances, to replace
the second order reachability predicates by �rst order predicates, resulting in
properties that are amenable to Invisible Invariants, where �reachable� is replaced
by �colored.� We demonstrate our techniques on several distributed protocols,
including a variant on Luby's Maximal Independent Set protocol, the Leader
Election protocol used in the IEEE 1394 (Firewire) distributed bus protocol,
and various distributed spanning tree algorithms.

All examples have been tested using the symbolic model checker TLV.

Keywords: Model-checking, parameterized systems, shape analysis, deductive
veri�cation, distributed protocols

Joint work of: Balaban, Ittai; Pnueli, Amir; Zuck, Lenore

Abstraction, Loops and Falsi�cation

Thomas Ball (Microsoft Research, USA)

Finitary abstraction is useful for helping to prove properties of programs but
less helpful for proving the presence of errors.

http://drops.dagstuhl.de/opus/volltexte/2006/797

In�nite-State Model Checking and Static Program Analysis 3

In particular, to prove the presence of an error, one must show that loops on
the way to the error state terminate. Existing abstractions for underapproxima-
tion (such as must transitions in modal transition systems) do not address this
problem as they help prove loops are non-terminating (rather than terminating)
for some inputs. We demonstrate that by simple local analysis over a modal
transition system and basic properties of the underlying concrete system, it is
possible to infer transitive must relationships, without resorting to abstraction
re�nement.

We show how these transitive must relationships enable us to demonstrate
the presence of rarely occurring errors.

Keywords: Finitary abstraction, loops, termination analysis, modal transition
systems

Joint work of: Ball, Thomas; Sagiv, Mooly

Analysis of Dynamic Communicating Systems by

Hierarchical Abstraction

Jörg Bauer (Universität des Saarlandes, D)

We propose a new abstraction technique for verifying topology properties of dy-
namic communicating systems (DCS), a special class of in�nite-state systems.
DCS are characterized by unbounded creation and destruction of objects along
with an evolving communication connectivity or topology. We employ a light-
weight graph transformation system to specify DCS. Hierarchical Abstraction
(HA) computes a bounded over-approximation of all topologies that can occur
in a DCS directly from its transformation rules. HA works in two steps. First,
for each connected component, called cluster, of a topology, objects sharing a
common property are summarized to one abstract object. Then isomorphic ab-
stract connected components are summarized to one abstract component, called
abstract cluster. This yields a conservative approximation of all graphs that may
occur during any DCS run. The technique is implemented.

Keywords: Graph transformation, abstract interpretation, shape analysis

Joint work of: Bauer, Jörg; Wilhelm, Reinhard

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/727

Lazy Shape Analysis

Dirk Beyer (EPFL - Lausanne, CH)

Many software model checkers are based on predicate abstraction. Values of
variables in branching conditions are represented abstractly using predicates.
The strength of this approach is its path-sensitive nature.

http://drops.dagstuhl.de/opus/volltexte/2006/727

4 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

However, if the control �ow depends heavily on the values of memory cells on
the heap, the approach does not work well, because it is di�cult to �nd `good'
predicate abstractions to represent the heap. In contrast, shape analysis can
lead to a very compact representation of data structures stored on the heap. We
combine shape analysis and predicate abstraction, and integrate shape analysis
into the software model checker BLAST. Because shape analysis is expensive, we
do not apply it globally. Instead, we ensure that shapes are computed and stored
locally, only where necessary for proving the veri�cation goal. To achieve this, we
extend lazy abstraction re�nement, which so far has been used only for predicate
abstractions, to shapes. This approach does not only increase the precision of
model checking and shape analysis taken individually, but also increases the
e�ciency of shape analysis (we do not compute shapes where not necessary).
We implemented the technique by extending BLAST with calls to TVLA, and
evaluated it on several C programs manipulating data structures, with the result
that the combined tool can now automatically verify programs that are not
veri�able using either shape analysis or predicate abstraction on its own.

Keywords: Software model checking, shape analysis, counterexample-guided
abstraction re�nement, interpolation, predicate abstraction

Joint work of: Beyer, Dirk; Henzinger, Thomas A.; Théoduloz, Grégory

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/728

See also: Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Lazy
Shape Analysis. In Proc. of CAV 2006, to appear.

Automatic Termination Proofs for Programs with

Shape-Shifting Heaps

Dino Distefano (Queen Mary College - London, GB)

We describe a new program termination analysis designed to handle imperative
programs whose termination depends on the mutation of the program's heap.
We �rst describe how an abstract interpretation can be used to construct a
�nite number of relations which, if each is well-founded, implies termination. We
then give an abstract interpretation based on separation logic formulae which
tracks the depths of pieces of heaps. Finally, we combine these two techniques to
produce an automatic termination prover. We show that the analysis is able to
prove the termination of loops extracted from Windows device drivers that could
not be proved terminating before by other means; we also discuss a previously
unknown bug found with the analysis.

Keywords: Termination analysis, heaps, separation logic

Joint work of: Distefano, Dino; Berdine, Josh; Cook, Byron; O'Hearn, Peter

http://drops.dagstuhl.de/opus/volltexte/2006/728

In�nite-State Model Checking and Static Program Analysis 5

Abstraction Re�nement with BDDs and Craig

Interpolation

Javier Esparza (Universität Stuttgart, D)

Counterexample-guided abstraction re�nement (CEGAR) has proven to be a
powerful method for software model-checking. In this paper, we investigate this
concept in the context of sequential (possibly recursive) programs whose state-
ments are given as BDDs. We examine how Craig interpolants can be computed
e�ciently in this case and propose a new, special type of interpolants. Moreover,
we show how to treat multiple counterexamples in one re�nement cycle. We
have implemented this approach as an extension of the model-checker Moped
and report on experiments.

Keywords: Abstraction re�nement, interpolation

See also: J. Esparza, S. Kiefer, and S. Schwoon. Abstraction re�nement with
Craig Interpolation and Symbolic Pushdown Systems. In Proc. of TACAS 2006,
LNCS 3920, pp. 489-503, Springer-Verlag, 2006.

Analysis of Recursive Markov Chains, Recursive Markov

Decision Processes, and Recursive Stochastic Games

Kousha Etessami (University of Edinburgh, GB)

Recursive Markov Chains (RMCs) are a natural abstract model of procedural
probabilistic programs and other systems involving both recursion and proba-
bility. RMCs de�ne a class of denumerable Markov chains with a rich theory
generalizing that of multi-type Branching (stochastic) Processes and Stochastic
Context-Free Grammars, and they are tightly related to probabilistic Pushdown
Systems. Recursive Markov Decision Processes (RMDPs) and Recursive Stochas-
tic Games (RSGs) extend RMCs with a controller and two adversarial players,
respectively.

In a series of recent papers we have studied central algorithmic analysis and
veri�cation questions for RMCs, RMDPs, and RSGs, providing some strong
upper and lower bounds on the complexity of key algorithmic problems.

I will provide a broad survey of this work, indicate some of the main tech-
niques involved in our analyses, discuss potential application domains, and in-
dicate some of the many directions for future research.

This talk describes joint work with Mihalis Yannakakis (Columbia Univer-
sity) contained in a series of recent papers that appear at: STACS'05, TACAS'05,
ICALP'05, QEST'05, and STACS'06, and in a submitted paper.

Keywords: Recursive Markov Chains, Recursive Markov Processes, Recursive
Stochastic Games

Joint work of: Etessami, Kousha; Yannakakis, Mihalis

6 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

Robust Interpretation of Metric-Time Properties:

Continuous Reasoning Meets Formal Methods

Martin Fränzle (Universität Oldenburg, D)

We transfer the concept of robust interpretation from arithmetic �rst-order the-
ories to metric-time temporal logics. The idea is that the interpretation of a
formula is robust i� its truth value does not change under small variation of
the constants in the formula. Exemplifying this on Duration Calculus (DC),
our �ndings are that the robust interpretation of DC is equivalent to a multi-
valued interpretation that uses the real numbers as semantic domain and assigns
Lipschitz-continuous interpretations to all operators of DC. Obviously, such con-
tinuity permits various approximation schemes, thus allowing to generalize �nd-
ings obtained on one trajectory to the whole set of su�ciently close trajectories.
This includes approximations between discrete and dense time, thus permitting
exploitation of discrete-time (semi-)decision procedures on dense-time proper-
ties.

Keywords: Robustness, metric-time temporal logic, duration calculus

Joint work of: Fränzle, Martin; Hansen, Michael R.

Quantitative Aspects of Dynamic Memory Program

Analysis

Radu Iosif (VERIMAG - CNRS, F)

In this talk we survey on several recent works that attempt to combine program
analysis techniques such as Hoare Logic and Regular Model Checking with quan-
titative reasoning, by taking into consideration the sizes of the data structures
handled by the program. The advantages of combining shape with numeric in-
formation are threefold. First, more powerful shape properties can be expressed,
for instance the fact that a tree is balanced, or that the sum of the lengths of
two lists equals the length of a third one. Second, the semantics of the program
can be expressed in a more precise way. Third, one can use existing results in
the �elds of number theory and extended automata to de�ne decidable classes
of programs, for which safety and termination properties can be veri�ed auto-
matically.

Keywords: Program analysis, dynamic memory, number theory, counter au-
tomata, tree automata

Joint work of: Iosif, Radu; Bozga, Marius; Bouajjani, Ahmed; Habermehl,
Peter; Lakhnech, Yassine; Moro, Pierre; Vojnar, Tomas

In�nite-State Model Checking and Static Program Analysis 7

Verifying Systems with Dynamically Evolving Structure

using Graph Transformation

Barbara König (Universität Stuttgart, D)

Graph transformation systems can be used to model systems with dynamically
evolving structures, which are hard to verify due to features such as their in�nite
state space and the creation and deletion of objects during runtime. We propose
to approximate graph transformation systems by Petri nets using an unfolding
technique. In a case study we verify insertion into red-black trees by modelling
it using graph rewriting and by applying our approximation method.

Keywords: Graph transformation systems, Petri nets, veri�cation

Automata-based Techniques in Symbolic Model Checking

Axel Legay (University of Liège, B)

�(ω-)Regular model checking� is the name of a family of symbolic techniques
for analyzing in�nite-state systems in which states are represented by (in)�nite
words, and sets of states by �nite automata on these objects, and transitions by
�nite automata operating on pairs of state encodings, i.e. �nite-state transducers.
In this context, the central problem is then to compute the iterative closure of
a �nite-state transducer. A simple technique for iterating transducers is the one
based on widening principle. In this approach the idea is simply to compute
successive approximations of the closure in order to guess it. In the �rst part of
this talk, we investigate the possibilities of applying widening techniques in case
where only speci�c techniques have been exploited so far. Finding that existing
generic techniques are often not applicable in cases easily handled by speci�c
techniques (systems with integers, systems with reals, heterogenous systems, ...),
we have developed new approaches to iterating transducers. These approaches
build on earlier work, but exploit a number of new conceptual and algorithmic
ideas, often induced with the help of experiments, that give it a broad scope, as
well as good performance. In the second part of the talk, we address the problem
of verifying liveness properties using the regular model checking framework. We
show how this problem can be reduced to the one of computing the transitive
closure of a transducer.

Keywords: Regular model checking, in�nite-state systems, automatic analysis

Flat counter automata almost everywhere!

Jérôme Leroux (LaBRI - Bordeaux, F)

This paper argues that �atness appears as a central notion in the veri�cation of
counter automata.

8 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

A counter automaton is called �at when its control graph can be �replaced�,
equivalently w.r.t. reachability, by another one with no nested loops.

From a practical view point, we show that �atness is a necessary and su�-
cient condition for termination of accelerated symbolic model checking, a generic
semi-algorithmic technique implemented in successful tools like FAST, LASH or
TReX.

From a theoretical view point, we prove that many known semilinear sub-
classes of counter automata are �at: reversal bounded counter machines, lossy
vector addition systems with states, reversible Petri nets, persistent and con�ict-
free Petri nets, etc. Hence, for these subclasses, the semilinear reachability set
can be computed using a uniform accelerated symbolic procedure (whereas pre-
vious algorithms were speci�cally designed for each subclass).

Keywords: Symbolic representation, in�nite state system, acceleration, meta-
transition

Joint work of: Leroux, Jérôme; Sutre, Grégoire

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/729

Full Paper:
http://www.labri.fr/perso/leroux/papiers/LerouxSutre-ATVA05.ps

Inferring Network Invariants Automatically

Martin Leucker (TU München, D)

Veri�cation by network invariants is a heuristic to solve uniform veri�cation of
parameterized systems. Given a system P , a network invariant for P is a system
that abstracts the composition of every number of copies of P running in parallel.
If there is such a network invariant, by reasoning about it, uniform veri�cation
with respect to the family P [1] ‖ · · · ‖ P [n] can be carried out.

In this talk, we propose a procedure searching systematically for a network
invariant satisfying a given safety property. The search is optimized using a
combination of Angluin's and Biermann's learning/inference algorithms for im-
proving successively possible invariants. We also show how to reduce the learning
problem to SAT, allowing e�cient SAT solvers to be used, which turns out to
yield a very competitive learning algorithm. The overall search procedure �nds
a minimal such invariant, if it exists.

Keywords: Network invariance, learning, SAT solving

Joint work of: Grinchtein, Olga; Jonsson, Bengt; Leucker, Martin; Piterman,
Nir

http://drops.dagstuhl.de/opus/volltexte/2006/729
http://www.labri.fr/perso/leroux/papiers/LerouxSutre-ATVA05.ps

In�nite-State Model Checking and Static Program Analysis 9

Thread-Modular Veri�cation as Abstract Interpretation

Alexander Malkis (MPI für Informatik - Saarbrücken, D)

Consider a multithreaded program with a �xed number of �nite-state threads
communicating via shared variables. The problem is whether there is a com-
putation from an initial state to an error state. We examine the algorithm of
Flanagan and Qadeer for this problem. This algorithm computes a superset of
states that occur in computations starting in the initial state. Until now no
description of this superset was known. We characterize this superset in the
framework of abstract interpretation. We show that this algorithm implements
Cartesian abstraction.

Keywords: Cartesian abstraction, static analysis, abstract interpretation, threads,
shared variables, safety

Joint work of: Malkis, Alexander; Podelski, Andreas

The Zeno Problem for Dense-Timed Petri Nets

Richard Mayr (North Carolina State University, USA)

Dense-Timed Petri Nets are an extension of Petri nets in which each token is
equipped with a real-valued clock. The Zeno problem is the question whether
there exists a Zeno-computation from a given marking, i.e., an in�nite compu-
tation which takes only a �nite amount of time. This question is hard for dense
time, because (unlike for discrete time) an in�nite Zeno-computation can have
in�nitely many time-passing phases of decreasing length (e.g., 2−n, for n=1,2,...).
We show the decidability of the Zeno problem by a (partial) encoding of timed
Petri nets into a subclass of untimed transfer nets. Furthermore, the related
question if there exist arbitrarily fast computations from a given marking in a
timed Petri net is also decidable. On the other hand, the existence of an in�-
nite non-Zeno computation (i.e., an in�nite computation taking in�nite time) is
undecidable.

Keywords: Veri�cation, timed Petri nets, Zeno

On Probabilistic Program Equivalence and Re�nement

Joël Ouaknine (Oxford University, GB)

We study notions of equivalence and re�nement for probabilistic programs for-
malized in the second-order fragment of Probabilistic Idealized Algol.

10 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

Probabilistic programs implement randomized algorithms: a given input yields
a probability distribution on the set of possible outputs. Intuitively, two programs
are equivalent if they give rise to identical distributions for all inputs. We show
that equivalence is decidable by studying the fully abstract game semantics of
probabilistic programs and relating it to probabilistic �nite automata. For terms
in beta-normal form our decision procedure runs in time exponential in the syn-
tactic size of programs; it is moreover fully compositional in that it can handle
open programs (probabilistic modules with unspeci�ed components).

In contrast, we show that the natural notion of program re�nement, in which
the input-output distributions of one program uniformly dominate those of the
other program, is undecidable.

Keywords: Probabilistic Idealized Algol, game semantics, program equivalence

Joint work of: Ouaknine, Joël; Murawski, Andrzej

See also: Andrzej S. Murawski and Joël Ouaknine: On Probabilistic Program
Equivalence and Re�nement. In Proc. of CONCUR 2005, LNCS 3653, pp. 156-
170, Springer-Verlag, 2005.

Verifying Properties of Well-founded Linked Lists

Shaz Qadeer (Microsoft Research, USA)

We present a novel method for verifying programs that manipulate linked lists,
based on two new predicates that characterize reachability of heap cells. These
predicates allow reasoning about both acyclic and cyclic lists uniformly with
equal ease. The crucial insight behind our approach is that a circular list invari-
ably contains a distinguished head cell that provides a handle on the list. This
observation suggests a programming methodology that requires the heap of the
program at each step to be well-founded , i.e., for any �eld f in the program,
every sequence u.f, u.f.f, . . . contains at least one head cell. We believe that our
methodology captures the most common idiom of programming with linked data
structures. We enforce our methodology by automatically instrumenting the pro-
gram with updates to two auxiliary variables representing these predicates and
adding assertions in terms of these auxiliary variables.

To prove program properties and the instrumented assertions, we provide
a �rst-order axiomatization of our two predicates. We also introduce a novel
induction principle made possible by the well-foundedness of the heap. We use
our induction principle to derive from two basic axioms a small set of additional
�rst-order axioms that are useful for proving the correctness of several programs.

We have implemented our method in a tool and used it to verify the cor-
rectness of a variety of nontrivial programs manipulating both acyclic and cyclic
singly-linked lists and doubly-linked lists. We also demonstrate the use of in-
dexed predicate abstraction to automatically synthesize loop invariants for these
examples.

In�nite-State Model Checking and Static Program Analysis 11

Keywords: Software veri�cation, heap-allocated data structures, theorem prov-
ing

Full Paper:
http://research.microsoft.com/∼qadeer/docs/popl06.lists.pdf

A Complete Abstract Interpretation Framework for

Coverability Properties of Well Structured Transition

Systems

Jean-Francois Raskin (Université Libre de Bruxelles, B)

We present an abstract interpretation based approach to solve the coverability
problem of well-structured transition systems. Our approach distinguishes from
other attempts in that (1) we solve this problem for the whole class of well-
structured transition systems using a forward algorithm. So, our algorithm has to
deal with possibly in�nite downward closed sets. (2) Whereas other approaches
have a non generic representation for downward closed sets of states, which
turns out to be hard to devise in practice, we introduce a generic representation
requiring no additional e�ort of implementation.

Keywords: Reachability analysis, in�nite state systems, well structured tran-
sition systems, Petri nets

Full Paper:
http://www.ulb.ac.be/di/ssd/cfv/publications.html

See also: Pierre Ganty, Jean-Francois Raskin, and Laurent Van Begin. A Com-
plete Abstract Interpretation Framework for Coverability Properties of WSTS.
In Proc. of VMCAI'06, LNCS 3855, pp. 49�64, Springer-Verlag, 2006.

WYSINWYX: What You See Is Not What You eXecute

Thomas Reps (University of Wisconsin - Madison, USA)

What You See Is Not What You eXecute: computers do not execute source-code
programs; they execute machine-code programs that are generated from source
code. Not only can the WYSINWYX phenomenon create a mismatch between
what a programmer intends and what is actually executed by the processor,
it can cause analyses that are performed on source code (or intermediate rep-
resentations constructed from source code) to fail to detect bugs and security
vulnerabilities. This issue arises regardless of whether one's favorite approach to
assuring that programs behave as desired is based on theorem proving, model
checking, or abstract interpretation.

To address the WYSINWYX problem, we have developed algorithms � based
on model checking and abstract interpretation � to recover information from

http://research.microsoft.com/~qadeer/docs/popl06.lists.pdf
http://www.ulb.ac.be/di/ssd/cfv/publications.html

12 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

stripped executables about the memory-access operations that the program per-
forms. These algorithms are used in the CodeSurfer/x86 tool to construct inter-
mediate representations that are used for browsing, inspecting, and analyzing
stripped x86 executables. In addition to providing information about memory-
access operations, CodeSurfer/x86 can be used to extract models of executables
in the form of weighted pushdown systems.

Keywords: Static analysis, low-level code, memory-access analysis

Joint work of: Reps, Thomas; Balakrishnan, Gogul; Lim, Junghee; Teitelbaum,
Tim

Applications of the First-Order Theory of Boolean

Algebras of Sets with Linear Cardinality Constraints

Peter Revesz (University of Nebraska, USA)

The �rst-order theory of Boolean algebras of sets with linear cardinality con-
straints was recently shown to be decidable and to admit existential and universal
quanti�er elimination. This logic allows the expression of interesting conditions
on the size of set or pointer linked data structures. We consider those cases under
which these expressions can be shown to imply invariants at �xed locations of
programs that use these types of data structures.

Keywords: Linear cardinality constraints, quanti�er elimination, decidability,
program invariants

Termination Proofs for Systems Code

Andrei Rybalchenko (EPFL - Lausanne, CH)

Termination of (operating) system components is crucial for the successful sys-
tem behavior. We present the main building blocks of our tool for the automated
termination proofs of C code fragments (containing nested loops, gotos, mutually
recursive function calls, pointer aliasing etc). These blocks are transition invari-
ants, transition predicate abstraction, and abstraction re�nement for termina-
tion. Transition invariants are auxiliary assertions for proving termination that
can be computed by least �xed point iteration. We apply transition predicate
abstraction to make such iteration e�ective. We discover the relevant transition
predicates from counterexamples. Finally, we describe how we extend the SLAM
software model checker to automatically compute transition invariants, which
gives us a tool for proving termination of C programs.

Keywords: Termination, re�nement, binary reachability

Joint work of: Cook, Byron; Podelski, Andreas; Rybalchenko, Andrey

In�nite-State Model Checking and Static Program Analysis 13

Veri�cation of Nondeterministic Channel Systems with

Probabilistic Message Losses

Philippe Schnoebelen (ENS - Cachan, F)

We introduce NPLCS's, a model for asynchronous communication protocols
where messages can be lost according to probabilistic laws, and investigate the
decidability of qualitative linear-time veri�cation problems. Beside its applica-
tion domain, the speci�city of this research is that the operational semantics for
our model are in�nite-state Markovian decision processes.

Keywords: Probabilistic and nondeterministic in�nite-state systems, lossy
channel systems

Joint work of: Baier, Christel; Bertrand, Nathalie; Schnoebelen, Philippe

Reachability Analysis of Multithreaded Software with

Asynchronous Communication

Stefan Schwoon (Universität Stuttgart, D)

We introduce asynchronous dynamic pushdown networks (ADPN), a new model
for multithreaded programs in which pushdown systems communicate via shared
memory. ADPN generalizes both CPS (concurrent pushdown systems) and DPN
(dynamic pushdown networks). We show that ADPN exhibit several advantages
as a program model. Since the reachability problem for ADPN is undecidable
even in the case without dynamic creation of processes, we address the bounded
reachability problem, which considers only those computation sequences where
the (index of the) thread accessing the shared memory is changed at most a
�xed given number of times. We provide e�cient algorithms for both forward
and backward reachability analysis. The algorithms are based on automata tech-
niques for symbolic representation of sets of con�gurations.

This talk is based on joint work with Ahmed Bouajjani, Javier Esparza, and
Jan Strej£ek that appeared in FSTTCS 2005.

Keywords: Model checking, pushdown systems, concurrency

Joint work of: Bouajjani, Ahmed; Esparza, Javier; Schwoon, Stefan; Strej£ek,
Jan

Full Paper:
http://www.fmi.uni-stuttgart.de/szs/publications/info/schwoosn.BESS05b.shtml

See also: Proceedings of FSTTCS 2005 and Technical Report 2005/06 (Univer-
sität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik).

http://www.fmi.uni-stuttgart.de/szs/publications/info/schwoosn.BESS05b.shtml

14 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

Accelerating Abstraction Re�nement by Summarizing

Loops

Nassim Seghir (MPI für Informatik - Saarbrücken, D)

Predicate based abstraction re�nement is a technique that builds an abstract
system in the domain of formulas constructed over a set of predicates using
logical operators. The re�nement process consists in �nding new predicates and
adding them to the predicate set when the abstraction is too coarse.

Most of the approaches proposed so far use the weakest precondition to infer
new predicates. Such approaches may diverge in the presence of loops. Moreover,
predicates that can be inferred are limited to formulas obtainable via syntactic
substitutions over condition expressions present in the program.

This work proposes a technique based on summarizing loops to avoid the
divergence of the re�nement process. A loop summary is an over-approximation
of the relation between program variables before and after the execution of the
loop. Using our method, we were able to verify safety properties that neither
methods based on weakest precondition nor interpolation methods were able to
verify.

Keywords: Predicate abstraction, abstraction re�nement, loop summaries

Exact XML Type Checking in Polynomial Time

Helmut Seidl (TU München, D)

Macro tree transducers (mtts) have been shown to be an expressive formalism
for reasoning about XSLT-like document transformations. Here, we are con-
cerned with techniques for precise type-checking. Inverse type inference, though,
is known to have exponential worst-case complexity already for top-down trans-
formations without parameters. Instead, we propose forward inference based
on precise characterizations of output languages of transducers. Using this ap-
proach, we exhibit that type-checking for call-by-value mtts with few parame-
ters is polynomial � given that the output type is speci�ed by a deterministic
automaton and that every input node is visited by the mtt only constantly of-
ten. Based on context-free tree grammars, we also propose a fast approximative
type-checking algorithm which works for general mtts. Finally, we extend our
approach to macro forest transducers which additionally support concatenation
as a builtin output operation.

Keywords: Macro tree transducers, document transformation, XSLT, inverse
type inference

Joint work of: Seidl, Helmut; Perst, Thomas; Maneth, Sebastian

In�nite-State Model Checking and Static Program Analysis 15

Constraint-based Static Analysis of Programs

Henny Sipma (Stanford University, USA)

We present a constraint-based approach to static analysis of programs. The
approach involves the following steps: (1) Fix a template property, that is, a
property of a certain shape with unknown coe�cients; (2) Provide the conditions
for the property to hold; (3) Encode the conditions as a system of constraints
using rules that allow computing consequences; (4) Solve the constraints; (5)
Substitute the solutions in the template property; all concrete properties thus
obtained are properties of the system of the desired kind. We demonstrate how
this approach can be used to generate linear inequality invariants, linear ranking
functions, and polynomial equality invariants.

The advantage of this approach is that it does not require widening.
Controlling the complexity of the constraint system can be achieved by

strengthening the conditions on the property or constraining the template prop-
erty itself. Other advantages are that it can be used to generate any property that
can be encoded as a system of constraints, and that it can generate properties
in any domain that allows computation of consequences. A disadvantage of the
approach is that the resulting system of constraints can have high complexity.
Constraint solving, however, is a very active �eld of research, and any advances in
this area directly improve scalability and precision of constraint-based program
analysis.

Keywords: Static program analysis, constraint-based analysis, invariant gener-
ation, termination analysis

Joint work of: Sankaranarayanan, Sriram; Colon, Michael; Sipma, Henny;
Bradley, Aaron; Manna, Zohar

Verifying Concurrent Message-Passing C Programs with

Recursive Calls

Tayssir Touili (LIAFA - Université Paris VII, F)

We consider the model-checking problem for C programs with (1) data ranging
over very large domains, (2) (recursive) procedure calls, and (3) concurrent par-
allel components that communicate via synchronizing actions. We model such
programs using communicating pushdown systems, and reduce the reachabil-
ity problem for this model to deciding the emptiness of the intersection of two
context-free languages L1 and L2. We tackle this undecidable problem using
a CounterExample Guided Abstraction Re�nement (CEGAR) scheme. We im-
plemented our technique in the model checker MAGIC and found a previously
unknown bug in a version of a Windows NT Bluetooth driver.

Joint work of: Chaki, S.; Clarke, E.; Kidd, N.; Reps, T.; Touili, T.

16 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

Environment Abstraction for Parameterized Systems

Helmut Veith (TU München, D)

Many aspects of computer systems are naturally modeled as parameterized sys-
tems which renders their automatic veri�cation di�cult. In well-known exam-
ples such as cache coherence protocols and mutual exclusion protocols, the un-
bounded parameter is the number of concurrent processes which run the same
distributed algorithm. We introduce environment abstraction as a tool for the
veri�cation of such concurrent parameterized systems. Environment abstraction
enriches predicate abstraction by ideas from counter abstraction; it enables us to
reduce concurrent parameterized systems with unbounded variables to precise
abstract �nite state transition systems which can be veri�ed by a �nite state
model checker. We demonstrate the feasibility of our approach by verifying the
safety and liveness properties of Lamport's bakery algorithm and Szymanski's
mutual exclusion algorithm.

Keywords: Model checking, software veri�cation, predicate abstraction, para-
meterized systems

Joint work of: Veith, Helmut; Clarke, Edmund; Talupur, Muralidhar

Abstract Regular Model Checking and Its Application to

Veri�cation of Programs with Dynamic Data Structures

Tomas Vojnar (Techn. University - Brno, CZ)

The talk presents the abstract regular model checking framework combining
regular model checking, which is a generic technique for verifying a wide range
of in�nite-state and parameterised systems, with the approach of automated
abstraction with counterexample-guided re�nement. In regular model checking,
�nite-state automata are used for �nitely representing in�nite, but regular sets
of reachable con�gurations. We present several di�erent abstraction schemas
applicable over the �nite-state automata in order to make regular model checking
terminate as often as possible (in general, termination cannot be guaranteed
as we are dealing with undecidable problems) and also to cope with the state
explosion problem related to the size of the automata encountered. We further
present a way how abstract regular model checking can be used for verifying
programs with dynamic singly-linked dynamic structures, which involves a way
of encoding memory con�gurations of such programs as words and program
statements as word transducers. We also comment on possible extensions of
abstract regular model checking from words to trees and on ways of using this
new framework for verifying programs with more general classes of dynamic
linked data structures.

Keywords: Regular model checking, abstraction, program veri�cation, dynamic-
linked data structures, pointers

In�nite-State Model Checking and Static Program Analysis 17

Joint work of: Bouajjani, Ahmed; Habermehl, Peter; Moro, Pierre; Rogalewicz,
Adam; Vojnar, Tomas

Full Paper:
http://www.�t.vutbr.cz/∼vojnar/Publications/bhmv-lists-05.ps.gz

See also: A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying Pro-
grams with Dynamic 1-Selector-Linked Structures in Regular Model Checking.
In Proc. of TACAS'05, LNCS 3440, pp. 13�29, Springer-Verlag, 2005.

On the Decidability of Metric Temporal Logic

James Worrell (Oxford University, GB)

Metric Temporal Logic (MTL) is a widely-studied real-time extension of Linear
Temporal Logic. In this talk we consider a fragment of MTL, called Safety MTL,
capable of expressing properties such as invariance and time-bounded response.
Our main result is that the model-checking and satis�ability problems for Safety
MTL are decidable. These are the �rst positive decidability result for MTL
over dense-time omega-words that do not involve restricting the precision of the
timing constraints, or the granularity of the semantics; the proof heavily uses
the techniques of in�nite-state veri�cation.

Keywords: Metric temporal logic, model-checking, satis�ability

A Logic of Reachable Patterns in Linked Data-Structures

Greta Yorsh (Tel Aviv University, IL)

We de�ne a new decidable logic for expressing and checking invariants of pro-
grams that manipulate dynamically-allocated objects via pointers and destruc-
tive pointer updates. The main feature of this logic is the ability to limit the
neighborhood of a node that is reachable via a regular expression from a desig-
nated node. The logic is closed under boolean operations (entailment, negation)
and has a �nite model property. The key technical result is the proof of decidabil-
ity. We show how to express precondition, postconditions, and loop invariants for
some interesting programs. It is also possible to express properties such as dis-
jointness of data-structures, and low-level heap mutations. Moreover, our logic
can express properties of arbitrary data-structures and of an arbitrary number
of pointer �elds. The latter provides a way to naturally specify postconditions
that relate the �elds on entry to a procedure to the �elds on exit. Therefore, it is
possible to use the logic to automatically prove partial correctness of programs
performing low-level heap mutations.

Keywords: Heaps, logic, decidability

http://www.fit.vutbr.cz/~vojnar/Publications/bhmv-lists-05.ps.gz

18 P. A. Abdulla, A. Bouajjani and M. Müller-Olm

Joint work of: Yorsh, Greta; Rabinovich, Alexander; Sagiv, Mooly; Meyer,
Antoine; Bouajjani, Ahmed

Full Paper:
http://www.cs.tau.ac.il/∼gretay/papers/LRP.abs.html

http://www.cs.tau.ac.il/~gretay/papers/LRP.abs.html

	06081 Abstracts CollectionSoftware Verification: Infinite-State Model Checking and Static Program Analysis --- Dagstuhl Seminar ---
	 Parosh Aziz Abdulla, Ahmed Bouajjani and Markus Müller-Olm

