AN INNER/OUTER STATIONARY ITERATION FOR COMPUTING PAGERAN K
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Abstract. We present a stationary iterative scheme for PageRank datiggu The algorithm is based on a
linear system formulation of the problem, uses inner/oitiégations, and amounts to a simple preconditioning tech-
nique. Itis simple, can be easily implemented and paradidli and requires minimal storage overhead. Convergence
analysis shows that the algorithm is effective for a cruaeirtolerance and is not particularly sensitive to the ahoic
of the parameters involved. Numerical examples featuriatrices of dimensions up to approximately” confirm
the analytical results and demonstrate the acceleratacigence of the algorithm compared to the power method.
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1. Introduction. PageRank [13] is a method for ranking Web pages whereby dspage
‘importance’ (or ranking) is determined according to theklistructure of the Web. This
model has been used by Google as part of its search engingtegly. The exact ranking
techniques and calculation methods used by Google todayodienger public information,
but the PageRank model has taken on a life of its own and haiegtconsiderable attention
in the scientific community in the last few years. PageRan&ssentially the stationary
distribution vector of a Markov chain whose transition mais a convex combination of the
matrix associated with the Web link graph and a certain rankatrix. A key parameter in
the model is thelamping factora scalar denoted henceforth byhat determines the weight
given to the Web link graph in the model. Due to the great simk sparsity of the matrix,
methods based on decomposition are considered infeagilskead, iterative methods are
used, where the computation is dominated by matrix-vecaiodyrcts. Detailed descriptions
of the problem and available algorithms can be found, forrgda, in [3,11].

In this paper, we propose and investigate a new algorithrthifoPageRank problem. It
uses the linear system formulation and involves innerfdtegeations. The proposed tech-
nique is based on the observation that in general, the antladlelamping factor is, the easier
it is to solve the problem. Hence we apply an iterative schamwhich each iteration re-
quires solving another linear system which is similar iralgebraic structure to the original,
but with a lower damping factor. In essence, what is propbsed is a simple precondition-
ing approach that exploits the spectral properties of theixiavolved. We use a technique
of inexact solves, whereby the inner iteration is solved/dola crude tolerance. The algo-
rithm is just a few lines long, and can be implemented andligdizzed in a straightforward
fashion.

The remainder of the paper is structured as follows. In 8edi we provide a brief
description of the PageRank problem. In Secfibn 3 we inttedhe proposed algorithm.
Numerical examples for a few large Web matrices are giveretti8n[4. Finally, in Section
B we draw some conclusions.
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2. The problem of computing PageRank.The ‘raw’ PageRank:; of pagei is defined
asr; = Zj_)i i—j, wherej — i indicates that pagglinks to page:, andn; is the outdegree
of pagej. Each page therefore shares its importance equally ambuoifpat pages to which it
links; self-links are ignored. The problem in its basic fazam thus be formulated as follows:
find a vector that satisfies: = P”x, whereP is given by

- L if i —

P”_{ 0 ifij.
Pages with no outlinks produce rows of all 0’s/h henceP in its above form is not neces-
sarily a stochastic matrix. This is handled in the model biyielating zero rows, which is
done by replacing® with

1 if?’LiZO,

_ P T o
P=P+dv, dz_{ 0 otherwise,

Here the vectov is a probability vector, and now the modified matfixs a proper stochastic
matrix. The Ergodic theoreml|[7, Theorem 6.4.2] tells us thatstationary distribution is
unigue and is the limiting distribution starting from anytial distribution if the transition
matrix is irreducible and aperiodic. In the case of PageRardonvex combination aP”
with a rankd matrix has these desirable properties:

A=aPT +(1-a)veT, (2.1)

wherea € (0,1) is the damping factog, is the vector of all 1s, and is a positive vector.
Our final definition of the PageRank vector, thenxis= Az. Considered as a Markov
chain, the model assumes that at each time step, a ‘randofet gither follows a link with
probability«, or ‘teleports’ with probabilityl —«, selecting the new page from the probability
distribution given byv. The choice of a damping factor significantly smaller thaallows
for an effective application of the power method, since thethad converges linearly with
an asymptotic error constant In the original formulation of PageRank |[13], the choice
a = 0.85 was suggested. A higher value @f(i.e., close tol) yields a model that more
closely reflects the actual link structure of the Web, butesake computation more difficult.

Notice that despite the fact thdtis dense because” is dense, it need not be explicitly
formed since matrix-vector products df with = can be efficiently computed by imposing
|lz|l = 1 (or, equivalentlye” 2 = 1, sincex is nonnegative):

Az = aPTz + 9,
where for notational convenience we define
o= (1- .

Thus, the power method for computing PageRank amounts &ategly applyinge «
aPTx + . If the initial guess has a unit 1-norm, then so do all the tesa throughout
this iteration, so normalization is not necessary.

Since Brin and Page’s original formulation of the PageRardblem, much work has
been done by the scientific community to propose and inveggtignprovements over this
algorithm. In [9] an extrapolation method is presented,cktaccelerates convergence by
calculating and then subtracting off estimates of the doutions of the second and third
eigenvectors. Analysis of the eigenstructure of the matniat interesting results and obser-
vations about the sensitivity of the eigenvalue problemgaren in [4,.14]. An Arnoldi-type
technique is proposed ini[6]. Other methods have also bepsidered: see the surveys
[2,18,110], which contain many additional results and usedtérences.

2



3. Aninner/outer stationary method. We now present the new algorithm. As pointed
outin [1,/5,.12], using”z = 1 the eigenvalue problem = Az = aPTx + v’ 2 can be
reformulated as a linear system:

(I —aPT)z =14

Inspired by the fact that the original problem is easier teesavhena is small, let us consider
the stationary iteration

(I —BPYapy 1 = (= B)PTay +0, k=1,2,... (3.1)

where0 < 8 < « is some parameter, ang = v, the original teleportation vector. To solve
@), we will computer,; using an inexact inner Richardson iteration as follows:

yi+1 = BPTy; + (a — B)PTap + 0, (3.2)

where we takeyy = x; as the initial guess and assign the computed vector to which w
converge as the new, ;. We should stress that the inner iteration we present hguests
one of many possibilities; in this case we accelerate thespavethod, since power iterations
applied to the eigenvalue problem are equivalent to Ricdwardype iterations applied in the
linear system setting. In practice, any solution method din@ applies for the linear system
formulation can be applied in the inner iteration stage. sThwe can refer to the matrix
I — BPT as a preconditioner.

The outer iterative schemie(B.1) is associated with thétisifi

I—aP"=Mo—No; Mo=1-pP"; No=(a—p)P", (3.3)
and the corresponding outer iteration matrix is given by
To = (a = B)(I — pPT)7'PT. (3.4)
The inner schem&(3.2) is associated with the splitting
I-3PT =M;—-N;; M;y=1; N;y=gPT, (3.5)
and the corresponding inner iteration matrix is simply

T; = BPT. (3.6)

ALGORITHM 1
basic inner/outer iteration

1.y — PTy

2:repeatuntil |jay +0 — x| < T
38 fe(a-By+d

4 repeat until || f + By — z([1 <7
5: x—pPy+f

6: y— PTx

7 end repeat

8: end repeat

The iterative procedure is presented in Algorithm 1; thepeaters) andr are the inner
and outer tolerances respectively. The main challengedstiermine values of andy that
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will accelerate the computation. In the extreme case 0 the inner problem can be solved
immediately (regardless af) but the outer iteration is equivalent to the power methdae T
other extreme leads to a similar situationgi& « then the number of outer iterations is small
(one iteration ify = 7) but the inner iteration this time is equivalent to poweraten. As for

71, avalue very close to zero (that is, very strict) may resuipending a long computational
time performing inner iterations, just to compute a singléeo iterate. This may result in
slow convergence overall. Settimgvery loose, on the other hand, may result in an iterate
whose ‘quality’ is low in the sense that it does not suffidigapproximate the exact solution
of the inner iteration. Our hope is that we can find intermed@hoices of3 andn that
significantly reduce the overall work compared to the powethad.

Convergence of the outer iterations involves some del@atlengthy analysis and will
be presented elsewhere. We will just say here that it is ples& obtain a range of values for
[ andn for which convergence is guaranteed.

We now consider the rate of convergence of the inner iteraf@.2) and the dependence
on the parameters and3. From [3.6) it follows that asymptotically, the error is vegd by
a factor of approximately in each inner iteration. It is possible to derive a formulatfee
error between a given inner iterate and the PageRank vesfoliews. Define

€ =Y; — .
By the linear system formulatiom, = o Pz + . Subtracting this froni{3]12), we get

€j1 = BPTyj — BPTxk + aPTek
= BP"¢; + (o — B) P e,

which leads to
J
& =P Ve + (@—p)> B 1P ) ey
1=0

Notice thaty, = x1, and hencey = ex. This can further simplify the expression for the error
and shows that; is aj-th degree polynomial i®”, dependent o and 3 and multiplied
by €0-

While we cannot easily prove that the iteration counts feritiner solves monotonically
decrease as we get closer to the solution of the problembthesaexpression for the error in-
dicates that whep, = =y, is sufficiently close ta:, the inner iterations will rapidly converge,
to the point of immediate convergence. This motivates uadorporate an improvement in
Algorithm 1: when the inner iterations start converging ietdiately we switch to the power
method, which spares us the need to check the inner conwa@eiterion. The modified
scheme is presented in Algorithm 2. This is the algorithm sehenceforth in our numerical
examples.

4. Numerical experiments. We have implemented the proposed inner/outer method
using MATLAB MEX files. We ran experiments on a Linux workstation with a2@Hz P4
processor and 2 GB of main memory, and used Web matrices vdioemsions and number
of nonzeros are provided in Talileld.1. We used outer tolesan@nging from10—3 to 107,
and damping factors from = 0.85 to o = 0.99. As an initial guess we tooky = v = %e,
and ran the algorithm for various values@gandr. As our speedup criterion, we will refer
below to arelative percentage gaimeasure given by

I, — I,
225 100%, (4.1)
IP
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1.y — Pz

2:repeatuntil |jay + 0 — x|y < T

ALGORITHM 2
inner/outer iteration

3 fe(a—-By+d

4 fori=1 until[|f+ By —z[1 <7

5: x—Py+f

6: y— Py

7 end for

8 if i=1, powergy + v); break

9: end repeat

| name size | nz | avg nz per row|
UBC- CS 51,681 673,010 13.0
St anford 281,903 | 2,312,497 8.2
UBC 339,147 | 4,203,811 12.4
St anf or d- Ber kel ey | 683,446 | 7,583,376 11.1
edu 2,024,716| 14,056,641 6.9
wb- edu 9,845,725| 57,156,537 5.8
TABLE 4.1

Dimensions and number of nonzeros of a few test matrices. UB® matrices were generated using a
Web crawler developed by the first author. The Stanford amdf&-Berkeley matrices were retrieved from
http://www.stanford.edu/ sdkamvar . The edu and wbh-edu matrices were provided by Yahoo! Résearc
Laboratory.

wherel, and represent the power and inner/outer stationary iteratomts, respectively.

Results for the inner/outer method applied to 8teanf or d- Ber kel ey matrix are
presented in Fig—4.1. On the left-hand graph we see that limsse inner tolerance there
is only a narrow range of values ¢f for which the inner/outer method converges much
more quickly than the power method; see the convergencédaap, = 0.1. Wheny is
very strict the overall computational work is large for akhall values of3, due to a large
number of inner iterations; see the graphfor= 10-5. Significant gains are observed for
moderatevalues ofy; see, for example, the graph fgr= 0.01. In this case, the performance
of the scheme is not sensitive to the choicesof We have observed similar behavior for
our other test matrices: choosimg~ 10-2 and0.4 < 3 < 0.8 has consistently led to
accelerated convergence. The right-hand graph ifElh htds similar behavior for various
fixed values of3, with n varying. The conclusion is that moderate values of hd#ndn
reduce the overall computational work and are fairly ing@msto small perturbations.

Choosing the particular valugs= 0.5 andn = 102, which have been observed to be
optimal amongst the values we tested, we now compare therpahce of our inner/outer
method to the power method.

We plot in Fig[Z? the norms of the residuals for both methodson the largewb- edu
matrix for two values ofn. As previously discussed, the gains in the inner/outer oteth
are made in thénitial iterates, and the gains are most significant whes 0.99 and the
outer tolerance is loose. This can be observed in[Elg. 4.2revforr = 102 we have
a relative gain 067%. From Tabld€Z3 we can see that for the other matrices thegswvi
range from17% to 41% for = = 10~7, and from38% to 74% for 7 = 10~3. When the
outer tolerance is stricteil(—7), the inner/outer scheme achieves a relative gain of 9% for
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FI1G. 4.1. Total number of matrix-vector products required for comerce of the inner/outer scheme, for the
St anf or d- Ber kel ey matrix. (Outer Tolerancd0~7, o = 0.99, 8 andn varied.)

a = 0.85 (72 matrix-vector products compared® for the power method), which is fairly
marginal. On the other hand, when= 0.99 the inner/outer stationary method achieves a
substantial relative gain of 28%: 328 fewer matrix-vectarducts thari 159.
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FiG. 4.2. Convergence of the computation for he845, 725 x 9, 845, 725 wb- edu matrix (r = 107,
B = 0.5 andn = 10~ 2 in the inner/outer method)

Table[4P shows that the inner iteration counts per outeatitetn decrease monotonically
in practice and reach one fairly quickly. From the table we see that it take®4 inner iter-
ations overall (within 9 outer iterations) until the inn&rates start converging immediately,
at which point we switch to the power method. Taljle$ 4. FafAdkow that overall, the gains
are substantial and do indeed strongly dominate the ovedrhea

We end this section with a brief reference to the merits of smlteme in comparison
with the well known Quadratic Extrapolation scherne [9]. Bpeed of convergence for both
methods is similar; see for example [9, Fig. 7], and in bothhods the gains are made
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| outer iteration| # inner iterations

1-2 4

3-4 3

5-9 2

10-... 1
TABLE 4.2

Number of inner iterations required for each outer iterativhen applying the inner/outer stationary method
to wb- edu matrix withc = 0.99, b = 0.5, andn = 10~2. Total iteration counts and CPU times for this example
can be found in the last rows of TalfleW.3 and TAR[é 4.4.

in initial iterates. However, our outer/inner method has tlistinct advantages. It is simple,
relying exclusively on matrix-vector products and norm gatations. It also has lower space
requirements: it involves only three working vectarsy, f in Algorithms 1 and 2), whereas

in Quadratic Extrapolation six vectors are required foording iterates and solving the least
squares problem.

| outer tolerance]] 1073 I 107° I 1077 |

| matrix || power | infout | savings|| power | infout | savings|| power | infout | savings]|
UBC- CS 226 140 38.1% 574 431 24.9% 986 814 17.4%
Stanford 281 120 57.3% 716 426 40.5% 1165 790 32.2%
UBC 242 140 42.1% 676 483 28.6% 1121 855 23.7%
St an- Ber k 309 120 61.2% 751 448 40.3% 1202 825 31.4%
edu 426 111 73.9% 882 410 53.5% 1339 786 41.3%
wb- edu 287 120 58.2% 714 441 38.2% 1159 831 28.3%

TABLE 4.3

Total number of matrix-vector products required for comgesrce to three different outer tolerancesand the
corresponding relative gains defined By14.1). The pararsetsed here arec = 0.99, 3 = 0.5, n = 10~ 2.

| outer tolerance]| 1073 I 107° I 107 |

| matrix || power | infout | savings| power | infout | savings| power | infout | savings]|
UBC- CS 3.0 2.0 33.3% 7.6 6.0 21.1% 13.0 11.3 13.1%
St anford 43.3 19.7 54.5% 110.9 69.5 37.3% 180.7 124.5 31.1%
uUBC 21.1 12.8 39.3% 59.1 43.3 26.7% 97.2 77.6 20.2%
St an- Ber k 42.4 17.6 58.5% 104.8 64.3 38.6% 166.5 117.2 29.6%
edu 175.1 | 48.6 72.2% 363.7 | 173.2 | 52.4% 546.6 333.0 39.1%
wh- edu 4525 | 198.8 | 56.1% 1128.5| 704.4 | 37.6% 1814.3 | 1318.0| 27.4%

TABLE 4.4

CPU times (in seconds) required for convergence to thrderdifit outer tolerances, and the corresponding
relative gains defined bff{4.1). The parameters used here:at0.99, 3 = 0.5, n = 10~ 2.

5. Conclusions. We have presented an inner/outer stationary method foleaetiag
PageRank computations. Our algorithm is simple, fast, atrdduces minimal overhead.
Because no permutations, projections, orthogonalizatiwrdecompositions of any sort are
involved, programming it is straightforward, and it is higparallelizable.

The algorithm is parameter-dependent, but an effectivicehaf the parameters can be
easily made. We have shown that the proposed techniqueie# for a large range of inner
tolerances. Observing that the gains are made in the iitgigtes, our scheme switches to
the power method once the inner iterations start converigingediately. Forx = 0.85 our
algorithm marginally outperforms the power method, butaues ofa closer to 1 the gains
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are quite substantial.

The mechanism of inner/outer iterations allows for muchiffiéity, and a Richardson-
type inner iteration is only one possibility; in fact, angéar solver that is effective for the
linear system formulation of PageRank computations candmporated into our inner/outer
scheme. Itis most natural to think of our approach as a pitioning technique, where the
preconditioner is strongly connected with the underlyipgdral properties of the matrix.

Future work may include investigating how to dynamicallyedenine the parameters
andn, and exploring the performance of the algorithm as an aratede technique for other
methods of PageRank computation. It may also be possibld@htegroposed technique is
applicable as a preconditioner for general Markov chains.

The excellent performance of the method for the large nmesrige have tested, along
with its simplicity and modest storage requirements, sagt&t this scheme may be very
effective for PageRank computations.

References.

[1] A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRankpatation and the struc-
ture of the Web: Experiments and algorithms. Tlhe Eleventh International WWW
ConferenceMay 2002.

[2] P. Berkhin. A survey on PageRank computihgternet Math, 2:73—-120, 2005.

[3] K. Bryan and T. Leise. The $25,000,000,000 eigenvecidre linear algebra behind
Google.SIAM Review48(3):569-581, 2006.

[4] L. Eldén. A note on the eigenvalues of the Google matReport LiTH-MAT-R-04-01,
Linkdping University 2003.

[5] D. Gleich, L. Zhukov, and P. Berkhin. Fast parallel PageR a linear sys-
tem approach. Yahoo! Research Technical Report YRL-2004-038, availalzle
http://research.yahoo.com/publication/YRL-2004-p88 2004.

[6] G.H. Golub and C. Greif. An Arnoldi-type algorithm for ngouting PageRankBIT,
46(4):759-771, 2006.

[7] G. Grimmett and D. StirzakeProbability and Random Processe®xford University
Press, Oxford, third edition, 2001.

[8] I.C.F. Ipsen and R. S. Wills. Mathematical propertiesdd aanalysis of Google’s
PageRankBol. Soc. Esp. Mat. Aplto appear.

[9] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and G.H. Glol Extrapola-
tion methods for accelerating PageRank computations. Pihoceedings of the
12th International Conference on the World Wide W&ianford Technical Report:
http://dbpubs.stanford.edu:8090/pub/2003-17, 2003.

[10] A.N. Langville and C.D. Meyer. A survey of eigenvectoethods for Web information
retrieval. SIAM Review47(1):135-161, 2005.

[11] A.N. Langville and C.D. MeyelGoogle's PageRank and Beyond: The Science of Search
Engine RankingsPrinceton University Press, 2006.

[12] C.B. Moler. Numerical Computing with MatlatSIAM, 2003.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The PagdRaitation rank-
ing: bringing order to the web. Stanford Digital Libraries, available via
http://dbpubs.stanford.edu:8090/pub/1999-6899.

[14] S. Serra-Capizzano. Jordan canonical form of the Googltrix: a potential contribu-
tion to the PageRank computatiddlAM J. Matrix Anal. App|.27:305-312, 2005.



