
Improved Search for Night Train Connections

Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Darmstadt University of Technology, Computer Science,
64289 Darmstadt, Hochschulstraße 10, Germany

muellerh,schnee@algo.informatik.tu-darmstadt.de,
http://www.algo.informatik.tu-darmstadt.de

Abstract. The search for attractive night train connections is funda-
mentally different from ordinary search: the primary objective of a cos-
tumer of a night train is to have a reasonably long sleeping period without
interruptions due to train changes. For most passenger it is also undesired
to reach the final destination too early in the morning. These objectives
are in sharp contrast to standard information systems which focus on
minimizing the total travel time.
In this paper we present and compare two new approaches to support
queries for night train connections. These approaches have been inte-
grated into the Multi-Objective Traffic Information System (MOTIS)
which is currently developed by our group. Its purpose is to find all train
connections which are attractive from a costumer point of view.
With a computational study we demonstrate that our specialized algo-
rithms for night train connections are able to satisfy costumer queries
much better than standard methods. This can be achieved with reason-
able computational costs: a specialized night train search requires only
a few seconds of CPU time.

Keywords: timetable information system, multi-criteria optimization,
night trains, computational study

1 Introduction and Motivation

Marketing campaigns of major railway companies praise the advantages of night
trains: “By traveling at night you save paying a hotel night, and you gain a
full day of activities.” Compared to traveling by plane, passengers can take
more luggage with them, and they save the check-in procedures at airports and
transfers from the airport to the city center.

At a first glance, it may seem surprising that the same railway companies
spend only little effort to support potential customers in their search for attrac-
tive night train connections. However, we will explain later in this paper why an
efficient night train search is computationally quite challenging.

Current search engines either do not support an explicit search for night
trains at all or their functionality is quite limited. The latter type of search en-
gines supports only direct connections and requires that the user already knows
from which night train station he wants to start and at which night train station

243
ATMOS 2007
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1178 (p.243-258)

244 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Mannheim Hbf

Hannover Hbf

Stuttgart Hbf

Hamburg Hbf

Karlsruhe Hbf

Stuttgart Hbf

Hamburg Hbf

Fig. 1. Example: Alternative night train connections from Stuttgart Hbf to Ham-
burg Hbf.

he wants to leave. Of course, the search of direct connections is algorithmically
very simple. The problem immediately becomes much more difficult if the start-
ing point or the final destination are not served by a night train connection at all.
In general, there will be several night train stations in the neighborhood of the
starting point and the destination of a journey which has to be planned. Thus,
this paper deals with a complex environment of a relatively dense network (like
the railway network of central Europe) which offers many alternatives. The goal
of this paper is to introduce and to discuss several approaches for an effective
night train search for such a scenario.

In general, we look for a connection consisting of three parts (the first and
third part may be empty):

– one or more feeder trains from the origin to the entry point of a night train,

– a night train, and

– again one or more feeder trains from the station exit point of the night train
to the final destination.

The purpose of the initial feeder trains is to bring the costumer in time (with
a certain safety margin) to the night train. For the feeder trains (in the first
and the third part), we aim for fastest and most convenient connections with
respect to the number of interchanges, whereas the night train section should
have a minimum length of h hours. The parameter h can be set by the costumer,
a typical choice might be h = 6 hours.

Thus, the overall connection which we are looking for will typically not be
the fastest possible, and that is why information servers which focus on fastest
connections will fail to find and offer them. If there are several alternatives for the
arrival time at the destination, the search engine should present all alternatives.
Fig. 1 shows an example of a query from Stuttgart Hbf to Hamburg Hbf with
two alternative night train connections. The first connection is faster with a total
duration of 8 h 23 min, but requires two train changes and has a sleeping period
of only 5 h 19 min. The second connection has a total duration of 9 h 54 min,
only one train change but offers an uninterrupted sleeping period of 8 h 02 min.

Improved Search for Night Train Connections 245

Related work. In recent years, there has been strong interest in efficient
algorithms for timetable information. Two main approaches have been pro-
posed for modeling timetable information as a shortest path problem: the time-

expanded [1,2,3,4,5], and the time-dependent approach [6,7,8,9,10,11,12,5]. The
common characteristic of both approaches is that a query is answered by apply-
ing some shortest path algorithm to a suitably constructed graph. These models
and algorithms are described in detail in a recent survey [13].

Several recent publications on timetable information systems focus merely on
performance issues to find fastest connections, and mostly consider only greatly
simplified single criteria scenarios. These simplified models ignore aspects like
days of operation, transfer times and restrictions, desired train attributes, meta
stations, footpaths between stations, just to name a few.

Multi-criteria search for train connections in a realistic environment has been
studied in [4]. In this paper, we adopt the same philosophy: our underlying model
has to ensure that each proposed connection is indeed feasible, that is, can be
used in reality by a potential costumer. Moreover, our focus is on the quality
of the proposed connections and we aim at presenting attractive alternatives to
customers.

Our Contribution. We are not aware of any previous work on night train
search. Our first contribution in this paper is a formal model which tries to
capture the notion of attractive night train connections. In Section 2, we first
review the notion of relaxed Pareto optimality from [4]. Afterwards, we discuss
how to model that a connection offers enough sleeping time and what other
aspects should be considered.

Based on this formal model, we develop two general approaches for night
train search. The first approach is an enumerative approach. It is based on the
idea that there are only relatively few night trains which are candidates for a
given query.

Our second approach considers sleeping time as an additional criterion in a
multi-criteria search. Here we extend a multi-criteria version of Dijkstra’s algo-
rithm to this additional criterion.

The basic versions of both general approaches are quite inefficient. Therefore,
we have engineered both of them. By using appropriate speed-up techniques we
achieve acceptable average running times of only a few seconds per query. In
an extensive computational study we show that our fastest versions yield high
quality solutions, much better than what we can reach by standard methods.

Overview. The rest of the paper is organized as follows. We start with our
formalization of attractive night train connections, followed by a brief description
of MOTIS in Section 3. Then, we introduce two general approaches to night train
search in Section 4. Afterwards we present computational results based on a large
test set of real customer queries. Finally, we conclude with a short summary.

246 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

2 Attractive Night Train Connections

2.1 General Considerations

A simple measurement for the “attractiveness” of a connection does not ex-
ist. Different kinds of costumers have differing (and possibly contrary) prefer-
ences. Key criteria for the quality of a connection are travel time, ticket cost
and convenience (number of interchanges, comfort of the used trains, time for
train changes). In order to build a traffic information system that can provide
attractive connections we avoid the drawbacks of weighted target functions or
“preference profiles”. Instead we want to serve each possible costumer by pre-
senting him a selection of highly attractive alternatives with one single run of
the algorithm.

When dealing with multiple criteria a standard approach is to look for the
so-called Pareto set. For two given k-dimensional vectors x = (x1, . . . , xk) and
y = (y1, . . . , yk), x dominates y if xi ≤ yi for 1 ≤ i ≤ k and xi < yi for at least
one i ∈ {1, . . . , k}. Vector x is Pareto optimal in set X if there is no y ∈ X that
dominates x. Here, we assume for simplicity that all criteria shall be minimized.
It should be obvious how these definitions have to be adapted if some criterion
has to be maximized.

We argued in [4] that the set of Pareto optima still does not contain all
attractive connections and proposed to apply the concept of relaxed Pareto op-

timality. It provides more alternatives than Pareto optimality can give. Under
relaxed Pareto dominance

– connections that are nearly equivalent but differ slightly do not dominate
each other;

– the bigger the difference in time between start or end of two connections the
less influence they have on each other.

We use the following rules to compare connections A and B which have de-
parture times dA, dB , arrival times aA, aB, travel times tA, tB (all data given in
minutes) and iA, iB interchanges, respectively. Connection A dominates connec-
tion B

– with respect to the criterion travel time if B does not overtake A and

tA + α(tA) · min{|dA − dB|, |aA − aB|} + β(tA) < tB,

where, α(tA) := tA/360 and β(tA) := 5 +
√

tA/4;
– with respect to the number of interchanges only if iA < iB;

For ease of exposition we omit in this paper further rules which consider
ticket costs. The interested reader is referred to [14].

2.2 Discussion of Objectives for Night Trains

How can we ensure that a connection offers enough sleeping time? From a mod-
eling point of view, we could simply impose a lower bound on the sleeping time

Improved Search for Night Train Connections 247

as a side constraint. Let us call this lower bound minimum sleeping time and
denote its value by lbst.

Unfortunately, the choice of some suitable constant lbst is not obvious since
different customers may have very different opinions on what they regard as
sufficient sleeping time. But even if customers are allowed to choose this constant
individually according to their personal preferences, any sharp border imposed
by such a constant is questionable. If we choose lbst too large we may miss
valuable alternatives (which are just below the given value). In contrast, choosing
the constant lbst too small may lead to relatively short sleeping periods, since
the search algorithm has no incentive to favor alternatives with longer sleeping
periods.

However, to use the pure objective “maximize the sleeping time” is also
questionable as it supports unnecessary, but costly detours. Thus, we have to
balance the goal to maximize the sleeping time with the usual goal to minimize
the overall travel time.

Therefore, we combine both ideas and propose the following model. We
choose a fairly small lower bound on the minimum sleeping time, to distinguish
night train connections which include a reasonable sleeping period from other
connections which only partially use a night train.

Suppose we want to compare two connections c1 and c2 with total travel
times tt(c1) and tt(c2) and sleeping times st(c1) and st(c2), respectively. We
suggest the following domination rules:

1. If connection c1 is faster than c2, then the increase in sleeping time st(c2)−
st(c1) should be at least as large as the increase in total travel time tt(c2)−
tt(c1). Otherwise, we consider c2 as dominated by c1 with respect to these
two criteria.

2. We also impose an upper bound on the sleeping time ubst. The idea is that
sleeping times longer than this upper bound should not be considered as
beneficial for the customer. Thus, instead of using the original sleeping time
st, we use a modified sleeping time mst := min{st, ubst} in our comparisons
of connections.

2.3 Filtering Attractive Solutions

Trains are considered as night trains if they are officially labeled as such (and
not just operate during the night). A connection is considered as a night train

connection only if it includes a night train with a sleeping time of at least lbst

minutes.
This definition does only partially capture what passengers will consider as

an attractive night train connection. Therefore, we propose to apply additional
criteria to reduce the result sets further. In this paper, we use the following
additional rules:

– We remove all night train connections with an extremely long feeder section,
since such connections usually imply a large detour. To this end, we use an
upper bound on feeder lengths ubfe.

248 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

– We also remove all connections which have more than two additional in-
terchanges than some other night train connection as such connections are
quite uncomfortable.

– From the remaining solutions, we filter out all dominated solutions, where
we use modified sleeping time mst := min{st, ubst} as explained above.

Since ticket costs depend very much on the chosen train category and the
fare system is quite complicated, we do not consider ticket costs in this paper
for ease of exposition.

3 The Information Server MOTIS

This section is intended to give a brief introduction to MOTIS and the main ideas
behind it. In the following subsections we first explain what kind of queries can
be handled. Afterwards we briefly touch upon the graph model used and the
general search algorithm.

3.1 Queries

A query to a timetable information system usually consists of the start station

(or origin) of the connection, the terminal station (destination) and an inter-

val in time in which either the departure or the arrival of the connection has
to be, depending on the search direction, the user’s choice whether to provide
the interval for departure (“forward search”) or arrival (“backward search”). If
several stations are relatively close together, they are grouped together to form
virtual meta-stations. The search engine treats all stations belonging to the same
meta-station as equivalent. Additional query options include:

Train class restrictions. Each train has a specific train class assigned to it. These
classes are high-speed trains such as the German ICE and French TGV; ICs and
ECs and the like; local trains, “S-Bahn” and subway; busses and trams. The
query may be restricted to a subset of all train classes.

Attribute requirements and night train categories. Trains have attributes de-
scribing additional services they provide. Such attributes are for example: “bike
transportation possible” or“board restaurant available”. Night trains offer differ-
ent categories, for example reclining seats, couchettes (unisex sleeping compart-
ments), or sleepers (private and comfortable sleeping accommodation available
as singles, doubles or triples). Users who wish to have a minimum standard of
comfort can specify which night train categories are acceptable for them. The
default specification in night train search is to accept all night train categories.

3.2 Time-Expanded Graph Model

The basic idea of a so-called time-expanded graph model is to introduce a directed
search graph where every node corresponds to a specific event (departure, arrival,
change of a train) at a station.

Improved Search for Night Train Connections 249

A connection served by a train from station A to station B is called elemen-

tary, if the train does not stop between A and B. Edges between nodes represent
either elementary connections, waiting within a station, or changing between two
trains. For each optimization criterion, a certain length is associated with each
edge.

Traffic days, possible attribute requirements and train class restrictions with
respect to a given query can be handled quite easily. We simply mark train edges
as invisible for the search if they do not meet all requirements of the given query.
With respect to this visibility of edges, there is a one-to-one correspondence
between feasible connections and paths in the graph.

More details of the graph model can be found in [4].

3.3 The Search Algorithm in MOTIS

Our algorithm is a “Pareto-version” of Dijkstra’s algorithm using multi-dimensio-
nal labels. Pseudocode is given in Algorithm 1. See Möhring [15] or Theune [16]
for a general description and correctness proofs of the multi-criteria Pareto-
search. In this algorithm, each label is associated with a node v in the search
graph. A label contains key values of a connection from a start node up to v.
These key values include the travel time, the number of interchanges, a ticket
cost estimation and some additional information. For every node in the graph
we maintain a list of labels that are not dominated by any other label at this
node. In the beginning, all label lists are empty.

Then, start labels are created for all nodes with a timestamp within the
query interval and stored in a priority queue (lines 5-7). In the main loop of the
algorithm, one label is extracted from the priority queue in each iteration (line
9). For the corresponding node of that label all outgoing edges are scanned and
labels for their head nodes are created, provided that the edge is feasible (lines
10-12). Any new label is compared to all labels in the list corresponding to its
node. It is only inserted into that list and into the priority queue if it is not
dominated by any other label in the list. On the other hand, labels dominated
by the new label are removed (line 18).

As a further means of exploiting dominance we keep a short list of Pareto-
optimal labels at the terminal station (called topTerminalLabelList) and com-
pare each new label to these labels (line 14). To compare labels at an intermediate
node v with a node at the terminal, we use lower bounds on the key values of
a shortest, a most convenient, and a cheapest path from v to the terminal sta-
tion. We increase the criteria of the label at v by lower bounds on the according
values. If the label with its increased values is dominated by any label at the
terminal, it is excluded from further search.

Since this optimization can only work with at least one label at the termi-
nal station, we initially determine a guaranteed fastest connection from source
to target using a goal-directed single criterion search in an initialization phase
before the actual multi-criteria search. This search is by orders of magnitude
faster than the multi-criteria search and can be performed in less then 50ms on
average.

250 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Input: a timetable graph and a query
Output: a set of Pareto-optimal labels at the terminal

foreach node v do1

list<Label> labelListAt(v) := ∅;2

list<Label> topTerminalLabelList := ∅;3

PriorityQueue pq := ∅;4

foreach node v in start interval do5

Label startLabel := createStartLabel(v);6

pq.insert(startLabel);7

while ! pq.isEmpty() do8

Label label := pq.extractLabel();9

foreach outgoing edge e=(v,w) of v=label.getNode() do10

if isInfeasible(e) then continue; // ignore this edge11

Label newLabel := createLabel(label, e);12

if newLabel is dominated by labelListAt(w) then continue;13

if newLabel is dominated by topTerminalLabelList then continue;14

// newLabel is not dominated15

pq.insert(newLabel);16

labelListAt(w).insert(newLabel);17

labelListAt(w).removeLabelsDominatedBy(newLabel);18

if newLabel qualifies for topTerminalLabelList then19

topTerminalLabelList.insert(newLabel);20

Algorithm 1: Pseudocode for the generalized Dijkstra algorithm.

4 Approaches for Night Train Search

In this section we describe two new approaches which we have developed for
night train search.

4.1 Pre-Selection of Night Trains

We first present an enumerative approach. Its general idea is to select suitable
night train sections first, and then to compute corresponding feeder sections.
The main steps can be stated quite easily.

1. Iterate over all night trains of the train schedule which operate on the query
day.

2. For each such train, determine all stations which may serve as entry point
and all stations which may serve as exit points.

3. For each such pair, determine feeder sections to compose complete connec-
tions.

4. Let C be the collection of connections determined. Apply Pareto dominance
to filter out all dominated connections from C. Return the result.

In the following we will first describe steps 2 and 3 in more detail, afterwards
we will discuss how to speed up this general approach.

Improved Search for Night Train Connections 251

a

Entrance

Start station Terminal station

b

c

Alternative entranceNight Train

Exit

Alternative exit

Fig. 2. Selection of pairs of entry and exit points. Pairs are rejected if a+b > α·c,
i.e., if they would induce a too large detour.

Selection of Entry and Exit Points. Given a query and a particular night
train, we have to select in step 2 suitable pairs of entry and exit points to this
train. This has to be done with care to achieve a reasonable efficiency. Thus in
this phase we intend to reject as many pairs as possible without loosing valuable
solutions.

A station where a night train stops (and boarding/deboarding is allowed)
qualifies as a possible entry or exit point if it is close with respect to some
distant metric to the start or to the terminal station of the query, respectively.

To this end, two metrics can be used: Euclidean distance and lower bounds on
the travel time for the feeder section. The advantage of Euclidean based bounds
is that we can compute them in constant time. However, such bounds ignore
completely the railway network and the train schedule. Two stations which are
geographically close may be far from each other with respect to public transport.
Estimates on the required travel time between two stations would allow to make
more accurate decisions. We propose to use lower bound on the travel time as
estimates. These bound can be computed quite efficiently.

As the length of required feeder sections depends very much on the given
query, we do not use any fixed absolute bound to decide whether two stations
are close enough to each other. Instead we propose to use a query-dependent
rejection rule which is visualized in Fig. 2. A pair of entry and exit points is
rejected for a query if the bound a on the feeder length from the start station
to the entry point and the bound b on the feeder length from the exit point
to the terminal station together exceed the bound c on the length of a direct
connection between start and terminal station by some factor α, i.e., if

a + b > α · c.

Our experiments revealed that setting α := 1 is a suitable conservative choice.
Finally, we accept a pair of entry and exit stations only if the travel time

of the corresponding night train between these two stations is above our lower
bound on the sleeping time lbst.

Computation of Feeders. Given a pair of entry and exit points for a night
train the next step is to compute feeder trains.

252 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

The entry point for the night train determines when we have to arrive at this
particular station at the latest. Since we really want to reach the night train we
incorporate some extra safety margin to this calculation. Then we can use an
ordinary backward search from this station and the latest arrival time to the
start station to find suitable feeder trains.1 Likewise we perform an ordinary
forward search from the exit point to the terminal station.

Since entry and exit points are likely to appear in several pairs, we have
to make sure not to compute the same feeder sections several times. To avoid
repeated calculations, we therefore introduced a caching mechanism which stores
the results of each feeder search.

Pruning the Search Space. A naive implementation of our enumerative ap-
proach would do the feeder computation in an arbitrary order for all selected
pairs. Since the selection of pairs is done in a very conservative way, the resulting
algorithm would be quite inefficient.

A more clever refinement of this approach uses a priority queue to determine
the order of feeder computations. The idea is that already computed solutions
can be used to prune the search space. The priority queue contains all pairs
for which at least one feeder has not been computed yet. The key by which we
order the entry and exit point pairs in the priority queue is an estimate on the
travel time of the overall connection. This travel time estimate is composed by
the known length of the night train section plus estimates on the feeder lengths.
When a particular feeder has been determined during the course of the algorithm,
our estimates are updated for all elements in the priority queue where this feeder
fits. In each iteration we select and remove the top element from the priority
queue. For the corresponding pair we check whether it is already dominated
by previously computed connections. If this is the case, we discard this pair.
Otherwise, we compute one missing feeder. Afterwards we either obtain a set of
complete connections for this pair, or the other feeder section is still missing. In
the latter case, we reinsert the pair into the priority queue with the updated key
information.

4.2 Multi-Criteria Search with an Additional Criterion

The second approach which we propose adds sleeping time as a new criterion to
the multi-criteria search for attractive connections. Form a software-engineering
point of view the multi-criteria framework implemented in MOTIS is easily ex-
tendable to an additional criterion. In general, only two modifications are nec-
essary.

1. We have to make sure that the labels representing partial connections keep
track of the additional criterion.

1 Ordinary search allows the replacement of start and terminal stations by equivalent
meta-stations. The possibility for such a replacement has to be switched off for the
entry and exit point as in our scenario we really have to arrive at the pre-selected
station and not at some equivalent one.

Improved Search for Night Train Connections 253

2. The domination rules have to be adapted so that they effectively prune
labels.

While the modification of labels is straightforward, finding good domination rules
is much more difficult (and usually requires some experimental evaluation).

Pruning of labels during search by domination can only be done with the
help of good and efficiently computable bounds, lower bounds for minimization
and upper bounds for maximization, respectively.

Thus, for the maximization criterion sleeping time we need an upper bound.
Given a partial connection, this bound should limit the maximum additional
sleeping time this connection can accumulate to the terminal station. With the
help of such an upper bound a label of a partial connection can be dominated
with respect to the criterion sleeping time if the current sleeping time plus the
additional sleeping time is smaller than the sleeping time of some known com-
plete connection. Unfortunately, we do not know such upper bounds, except for
trivial ones which are far too loose to help in pruning.

Since a Pareto search without pruning is hopeless (although the search space
is polynomially bounded in practice [17], it is still way too large to achieve
computation times of a few seconds), we have to use heuristic domination rules
which cannot guarantee to find all attractive solutions.

We adapt the domination rules of MOTIS as follows: A complete connection
c is only allowed to prune a partial connection p

– if p “has used and already left” a night train but did not reach at least lbst

sleeping time, or
– if p “has used and already left” a night train but did not reach more sleeping

time than c, or
– if p is currently “in a night train” then c has to have sleeping time above

the threshold lbst, and the sleeping time of c has to be at least the sleeping
time of p plus β times a lower bound on the remaining travel time for p (for
some constant β), or

– if p contains no night train at all.

While the first two rules are still exact, the two others are aggressive heuristics.2

If c is allowed to prune it still needs to be “relaxed Pareto smaller” with
respect to the other criteria. For the comparison of labels belonging to the
same node (i.e., partial connection against partial connection) nothing has to
be changed.

5 Computational Results

5.1 Test Cases

We took the train schedule of trains within Germany of July 2007. For our ex-
periments, we used a snapshot of about 25000 real customer queries of Deutsche

2 Initial experiments showed that without these heuristics the average CPU time would
be about one minute. This is clearly not acceptable for on-line use of information
systems.

254 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Fig. 3. The railway network of Germany. All night train routes are highlighted.

Bahn AG. From these we selected and processed only those 1782 queries where
the straight line distance between start and terminal station was at least 350
km. For all other queries the distance is likely to be too short to allow for a
reasonable night train connection.

Among the 1782 queries, we have 347 queries which possess a direct night
train connection and 940 require only one feeder. The remaining 495 queries
need two feeders. The current schedule and the derived time-expanded graph
have sizes as shown in Table 1.

5.2 Specific Definition of Attractive Solutions

We have chosen the following constants to specify our notion of attractive night
train connections as introduced in Section 2.

– A connection is considered as a night train connection only if it includes a
night train with a sleeping time of at least lbst = 240 minutes.

– We limit the maximal travel time of some feeder section also to ubfe := 240
minutes.

– In our definition of the modified sleeping time mst := min{st, ubst} (as
introduced in Section 2) we have chosen the upper bound as ubst = 420
minutes.

5.3 Computational Environment

All computations are executed on an AMD Athlon(tm) 64 X2 dual core processor
4600+ with 2.4 GHz and 4 GB main memory running under Suse Linux 10.2.
Our C++ code has been compiled with g++ 4.1.2 and compile option -O3.
We compare the following variants:

– Algorithm A: our standard MOTIS version which was designed to find all
attractive train connections with respect to travel time minimization and
minimizing the number of train interchanges. MOTIS requires a time interval
specifying when the connection has to start. To use MOTIS for a night

Improved Search for Night Train Connections 255

number of stations 8 916
number of trains 56 994
number of night trains 229
number of nodes 2 400 534
number of edges 3 715 557

Table 1. Key parameters of the schedule and the corresponding graph.

train search, we set this start interval to a period between 6:00 pm on the
traffic day and 2:00 am on the following day. For our comparison with other
variants, we considered only night train connections.

– Algorithm B: the enumerative approach of pre-selecting night trains as de-
scribed in Section 4.1.

– Algorithm C: a heuristic version of Algorithm B. We replace the multi-
criteria search for feeders by a single-criteria search with respect to travel
time. The latter is much more efficient, but may lead to additional inter-
changes. The idea behind this variant is that feeder connections should in
general not be very complicated.

– Algorithm D: the multi-criteria version of MOTIS with sleeping time as an
additional criterion as described in Section 4.2.

5.4 Experiments

Experiment 1. In our first experiment we want to study the basic question:
How often is it necessary to use a specialized night train search to find any
suitable night train connection?

To answer this question we compared Algorithm A with all other variants, see
Table 2. Algorithm A (standard MOTIS) does not find any night train connection
in 370 out of 1782 test cases (20.75%), whereas Algorithms B and C always
found at least one reasonable night train connection. This already shows that a
specialized night train search can offer much more to customers. Our version of
Algorithm D (MOTIS with one additional criterion) fails to find a night train
connection in 41 cases (2.3%). This is due to our heuristic version of domination
rules.

Experiment 2. How does the quality of the result sets compare to each other?
The comparison of the result sets in a multi-objective search space can be

done in several ways. A first, but only rough indicator is the size of the solution
set after filtering out dominated solutions. The largest result set is delivered by
Algorithm B (4223 solutions over all instances), followed by Algorithm C (3939
solutions) and Algorithm D (3196 solutions). Algorithm A delivers only 2334
solutions.

Next we studied which algorithmic variant was able to find the most at-
tractive connection. For this comparison we introduced a quality measure which
allows us to rank the solutions for each query.

256 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Algorithm # connections CPU time # failures

A (standard MOTIS) 2334 1.87s 370 20.75 %
B (pre-selection+feeder) 4223 14.20s 0 0 %
C (pre-selection+fast feeder) 3939 3.72s 0 0 %
D (MOTIS with additional criterion) 3196 2.34s 41 2.3 %

Table 2. The total number of connections found, average running times in
seconds, and the number of failures for all variants.

Given a connection c with travel time tt(c) in minutes, modified sleeping time
mst(c) also in minutes, and number of interchanges ic(c), we measure the cost
of c by the function

q(c) := tt − mst + k · ic,
where we set the constant k := 20 and ubst = 420 minutes. The smaller the
cost value, the better we regard the quality of the corresponding connection.
Our cost function can be interpreted as follows: We have to pay for each minute
of travel time. This cost can be reduced by the sleeping time up to our upper
bound ubst. An interchange is counted as 20 minutes extra travel time. We now
rank the solutions as follows: A direct night train connection has always first
rank. All other connections are ranked according to increasing cost. We have
experimented with different constants in our cost function. It turned out that
the ranking of our algorithms is quite robust against changes it these values.

With respect to this ranking of solutions, we now compared the quality of the
first rank solutions against each other. Table 3 shows how often the first ranked
solutions have strictly better quality, how often they match, and how often they
are strictly worse. We observe that the quality of Algorithm B and Algorithm C
is quite similar, whereas Algorithm D has a slightly poorer quality.

Experiment 3. Is their a trade-off between computational efficiency and quality
of the solutions?

See Table 2 for the average CPU times for all variants. Standard MOTIS
(with an exceptionally long query interval of 8 hours) is the fastest variant with
only 1.87 seconds, but fails too often to find a night train connection. Algo-
rithm B which gives the overall best quality is about four times slower than
Algorithm C. Since the quality delivered by Algorithm C comes close to that of
Algorithm B, it will usually not be worth to use the more expensive Algorithm B.

Algorithm D is slightly faster than Algorithm C, but its quality is also slightly
poorer. Thus depending on what is more important either Algorithm D or Al-
gorithm C should be used.

Experiment 4. To gain more insight into the behavior of Algorithms B and
C we did some operation counting. The following numbers always represent
averages.

From the set of all possible entry and exit points, 1719 have been rejected
since they are not served on the query date, from the remaining 1605 entry

Improved Search for Night Train Connections 257

B vs. C # cases

B wins 48
C wins 13
both match 1721

B vs. D # cases

B wins 317
D wins 229
both match 1220

C vs. D # cases

C wins 312
D wins 250
both match 1220

Table 3. Pairwise comparison of the first ranked solutions.

points 1144 have been rejected because of our distance criterion, and 1205 pairs
were removed because of insufficient sleeping time. We had to calculate 111 feeder
sections for each query. This explains why it was crucial to speed up Algorithm B
by a more efficient feeder computation. It is worth noting that additional 405
feeder computations have been avoided by our caching mechanism.

6 Conclusions

Our computational study shows that a specialized night train search delivers
many more attractive connections than an ordinary search. We have observed a
trade-off between quality of the solution sets and computation time. Our imple-
mentation of a multi-criteria search with one additional criterion fails to find a
good night train connection in a few cases, but is most efficient. The pre-selection
approach with a fast feeder computation never failed and delivers almost optimal
quality. Both variants are fast enough to be applied in on-line information sys-
tems. With additional tuning the running times can probably be reduced further
while keeping high quality.

We see two promising perspectives to apply our algorithms in practice. The
first one is the scenario for which this paper was written: the user explicitly asks
for a night train connection. Then we would recommend to use Algorithm C
which delivers an excellent quality. The second scenario is an ordinary query with
a start interval in the evening. Then it would be an option to run MOTIS with
an additional criterion (Algorithm D) but without spending too much additional
computation time. If this search finds attractive night train connections, they
can be offered as alternatives to those computed for the query interval.

Acknowledgments

This work was partially supported by the DFG Focus Program Algorithm En-
gineering, grant Mu 1482/4-1. We wish to thank Wolfgang Sprick for fruitful
discussions and close collaboration in the development of MOTIS, and Deutsche
Bahn AG for providing us timetable data for scientific use.

References

1. Pallottino, S., Scutellà, M.G.: Shortest path algorithms in transportation models:
Classical and innovative aspects. In: Equilibrium and Advanced Transportation
Modelling. Kluwer Academic Publishers (1998)

258 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

2. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics
5 (2000) Article 12

3. Müller-Hannemann, M., Schnee, M., Weihe, K.: Getting train timetables into the
main storage. In: Proceedings of the 2nd Workshop on Algorithmic Methods and
Models for Optimization of Railways (ATMOS 2002). Volume 66 of Electronic
Notes in Theoretical Computer Science. Elsevier (2002)

4. Müller-Hannemann, M., Schnee, M.: Finding all attractive train connections by
multi-criteria Pareto search. In: Proceedings of the 4th Workshop in Algorithmic
Methods and Models for Optimization of Railways (ATMOS 2004). Volume 4359
of Lecture Notes in Computer Science, Springer Verlag (2007) 246–263

5. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable
information in public transportation systems. ACM Journal of Experimental Al-
gorithmics (JEA) 12 (2007) 2.4

6. Cooke, K.L., Halsey, E.: The shortest route through a network with time-dependent
internodal transit times. Journal of Mathematical Analysis and Applications 14

(1966) 493–498
7. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with

time-dependent edge-length. Journal of the ACM 37 (1990) 607–625
8. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks

21 (1991) 295–319
9. Kostreva, M.M., Wiecek, M.M.: Time dependency in multiple objective dynamic

programming. Journal of Mathematical Analysis and Applications 173 (1993)
289–307

10. Nachtigal, K.: Time depending shortest-path problems with applications to railway
networks. European Journal of Operations Research 83 (1995) 154–166

11. Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact
time-table queries. In: Proceedings of the 3rd Workshop on Algorithmic Methods
and Models for Optimization of Railways (ATMOS 2003). Volume 92 of Electronic
Notes in Theoretical Computer Science. Elsevier (2004) 3–15

12. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards realistic modeling of
time-table information through the time-dependent approach. In: Proceedings
of the 3rd Workshop on Algorithmic Methods and Models for Optimization of
Railways (ATMOS 2003). Volume 92 of Electronic Notes in Theoretical Computer
Science. Elsevier (2004) 85–103

13. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable informa-
tion: Models and algorithms. In: Algorithmic Methods for Railway Optimization.
Volume 4395 of Lecture Notes in Computer Science., Springer Verlag (2007) 67–89

14. Müller-Hannemann, M., Schnee, M.: Paying less for train connections with
MOTIS. In Kroon, L.G., Möhring, R.H., eds.: 5th Workshop on Algorithmic
Methods and Models for Optimization of Railways, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)
<http://drops.dagstuhl.de/opus/volltexte/2006/657>.

15. Möhring, R.H.: Verteilte Verbindungssuche im öffentlichen Personenverkehr:
Graphentheoretische Modelle und Algorithmen. In: Angewandte Mathematik -
insbesondere Informatik, Vieweg (1999) 192–220

16. Theune, D.: Robuste und effiziente Methoden zur Lösung von Wegproblemen.
Teubner Verlag, Stuttgart (1995)

17. Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria
shortest path problems. Annals of Operations Research 147 (2006) 269–286

	Improved Search for Night Train Connections
	Thorsten Gunkel, Matthias Müller--Hannemann and Mathias Schnee

