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Abstract

For component-based systems, classical techniques for

Worst-Case Execution Time (WCET) estimation produce

unacceptable overestimations of a components WCET. This

is because software components more general behavior, re-

quired in order to facilitate reuse. Existing tools and meth-

ods in the context of Component-Based Software Engineer-

ing (CBSE) do not yet adequately consider reusable analy-

ses.

We present a method that allows different WCETs to

be associated with subsets of a components behavior by

clustering WCETs with respect to behavior. The method

is intended to be used for enabling reusable WCET anal-

ysis for reusable software components. We illustrate our

technique and demonstrate its potential in achieving tight

WCET-estimates for components with rich behavior.

1 Introduction

In this paper we present a method that allows reuse of

components with rich behavior in contexts where not all

functionality of the components is needed. Typically, soft-

ware components with rich behaviour have a worst-case ex-

ecution time that may be drastically overestimated when the

component is applied in a specific context. For these con-

texts it is imperative to be able to analytically reduce the es-

timated resource usage in order to achieve tight predictions

of high quality. Thus increasing accuracy of predictions.

The work presented in this paper is intended to facilitate

reusable WCET analysis for software components, e.g., in

the framework presented in [1, 2].

Components are often reused over product boundaries,

i.e., they are part of product lines and it is desirable to use

the same component without re-analysis or recompilation.

However, different products offer different contexts or us-

age of components; thus a component used in, e.g., a truck,

may use different parts of the component compared to the

same component used in a caterpillar. Using a context in-
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sensitive WCET analysis may be very inaccurate compared

to the actual WCETtruck or WCETcaterpillar (WCETs of

the truck and caterpillar respectively), leading to a poor uti-

lization of the system resources because of large differences

between predicted behavior and actual behavior.

Resource constraints and predictability requirements are

especially common in embedded-systems sectors, such as

automotive, robotics and other types of computer controlled

equipment. Because of the intrinsically non-linear behavior

of software, it is often hard to make accurate predictions of

the WCET of a piece of software. The problem is wors-

ened in component-based development where components

are kept independent of context to facilitate reuse. It is de-

sirable to have an accurate analysis, allowing for the im-

plementation of a system with less resources. This can be

achieved by considering the context in which the software

is used.

The contribution of this paper is a method for increas-

ing the accuracy of a component’s WCET by clustering

execution-times with respect to usage. We use binary search

heuristics to efficiently create clusters of similar execution-

times. We describe and formalize the method, and exem-

plify with an illustrative example. Finally we use a simple

academic case study and create clusters of two components.

The outline of the rest of this paper is as follows; in Sec-

tion 2 we discuss related works. Usage scenarios are dis-

cussed in Section 3. In Section 4 component WCET analy-

sis and the WCET clustering method are presented. In Sec-

tion 5 we evaluate the method. In Section 6 we discuss the

applicability of the method, and finally, Section 7 concludes

the paper and future work is discussed.

2 Related work

Static WCET analysis is the only safe method for esti-

mating WCETs for hard real-time systems [3]. However,

traditional static WCET analysis does not consider usage.

Software components designed for reuse are often more

general compared to application specific code, leading to

that parts of the component are only used in specific us-

ages; in turn leading to greater variance of execution times.

For component-based systems, where reuse is in focus, it is
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desirable to not being forced to reanalyze components for

each usage, at least within the same platform.

One approach to solve similar problems is parametric

WCET. This has been proposed by many researchers within

the WCET community but there is still very few paramet-

ric WCET methods developed. In [4] Björn Lisper outlines

a technique for fully automatic parametric WCET analysis,

which is based on known mathematical methods. In a MSc

thesis [5, 6] a method inpired by Lispers work has been de-

veloped and tested with the aiT tool [7]. However, the focus

of this work is not reusable WCET analysis, and reanalysis

is required for different usages. A program representation

for parametric WCET analysis has been suggested by Colin

and Bernat [8]. Vivancos et. al. [9] propose an iterative

method for computing WCET for loops parameterized in

the number of loop iterations.

The main differences between the method proposed in

this paper compared to parametric WCET is that we try to

find execution-times for given input domains with the aim

to create clusters of inputs that result in similar execution-

times. Hence, a cluster is repersented by conditions on

the inputs and a execution-time. A usage profile (limita-

tions on inputs) is subsequently applied to the clusters to

assess which clusters, and thereby which execution-times,

that must be considered to be the WCET.

In [10] each basic block of a program is analyzed with

respect to execution times and probability distributions of

the execution times are derived. This method is, in com-

parision to our method, based on measurements. In [11] a

framework has been developed that considers the usage of

a system; however, neither software components nor reuse

is considered. In [12] the source code is divided in modes

depending on input, and only modes that are used in a given

context is analyzed. In [13] a framework for probabilistic

WCET with static analysis is presented. The probabilities

are related to the probability of possible values of exter-

nal and internal variables. All mentioned methods have the

drawback of requiring reanalysis for every new usage.

Recent case-studies show that it is important to consider

mode- and context-dependent WCET estimates when ana-

lyzing real sized industrial software systems [14, 15].

There are several WCET tools that support assertions

and conditions to make the WCET tighter, e.g., aiT [7],

RapiTime [16], Bound-t [17] and SWEET [18].

3 Usage scenario

In the “real” physical world, distinct modes exist and are

often engineered into systems, for example, as modes of

operation. We hypothesize that modes are significant dis-

criminators of WCET and can be utilized for more accurate

WCET modeling.

In [19] usage scenarios are probability distributions for

so-called modes. Probabilities are estimated using large

number of long program runs. To guarantee statistical prop-

erties (for example relative independence of input order),

the program runs are divided into short runs, for example

cycles in periodic real-time systems, transaction in transac-

tion processing systems, and if necessary sampled. Modes

are then defined as sets of similar runs based on input

classes or other context parameters.���������� � � � � 			 
���
 

Figure 1. Input variable I.

Thus we define a usage scenario as U =
〈X0, ..., Xn−1〉, where the Xi(0 ≤ i < n) are input

variables, each with bounds on values, a given type,

and a probability distribution Pi : Xi → [0, 1] for the

occurrence of these values in the input. We assume

that these variables (and hence their distributions) are

chosen to be statistically independent and either have

small domains naturally or model discredited partitions of

real input variables. (See Figure 1 for an illustration of

these concepts). The input domain M is then defined as

M := X0 × · · · × Xn−1. The probability distributions

Pi(0 ≤ i < n) extend uniquely to a probability distri-

bution P : M → [0, 1] on the input domain, defined by

P (x0, . . . , xn−1) = P0(x0) × · · · × Pn−1(xn−1).����������
������ ����� �����

� � � ���� ��
Figure 2. Usage scenario.

Furthermore we assume that 0 ≤ pt < 1 is a given prob-

ability threshold for ignoring low probability inputs (and

consequently later their times). This will permit predictions

of the form “with 0.99 probability WCET< 500ms.” Inputs

over the threshold are called active and the ratio of active in-

puts over all inputs is called the usage-scenario utilization.

See also Figure 2 for an illustration of the concept.
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4 Component WCET analysis

Components are reused in different products and differ-

ent contexts. A different usage profile can substantially

change the behavior of a component. To predict the exe-

cution time of a complex component with high accuracy,

components must today be reanalyzed for every new usage

profile – a very costly activity. Furthermore, it is not cer-

tain that the source code is available for components as they

may be delivered by sub contractors. In this case analyses

become even more costly [20].

Our method overcomes the problem by analyzing the ex-

ecution times and their probability as a function of the input

of the component. We assume that execution time varies

with different inputs and their associated modes.

We define an input domain I for a set of input variables

{X0, X1, . . . , Xn−1} as I = X0 × X1 × · · · × Xn−1.

Each element q in I is associated with an execution time

ET (q) ∈ W, where all execution times of the component

are represented in the set W. The longest execution time

max(W) = WCETabs is the absolute WCET. A traditional

static WCET tool will only find an estimate WCETest ≥
WCETabs; however, we want to find the WCET for a spe-

cific usage. Because I often is very large, we can not per-

form WCET analysis for every element in I (every possible

usage), instead we perform static WCET analysis with an-

notations on the input parameters, and perform a number of

systematic runs with different bounds on the input param-

eters. When WCET analysis is performed with restrictions

on the input parameters, not all input elements are consid-

ered, but rather a set of clusters {Dl|Dl ⊆ I}, such that

D0 ⊕ D1 ⊕ · · · ⊕ Dn−1 = I, where A = B ⊕ C means

B ∩ C = ∅ ∧ A = B ∪ C. Thus, a cluster is a subset of

all possible inputs, and a WCET tool can produce a WCET

considering only that subset of inputs. Each cluster Dl is

analyzed and associated with two execution times etmax
l =

max(ET (d))d∈Dl
and etmin

l = min(ET (d))d∈Dl
. The

time etmax
l is the result of running the WCET tool with the

inputs represented in Dl with respect to WCET. The time

etmin
l is the result of running the WCET tool with the inputs

represented in Dl with respect to best-case execution time

(BCET).

As with all static WCET analyses all execution time es-

timates are safe over-estimations.

4.1 Clustering WCETs

To handle the size of the input domain I clusters need

to be expressed with bounds or other operators, where each

bound is associated with a WCET. It is often unfeasible to

make a list of all inputs that are associated with one cluster;

furthermore, WCET-tools often uses bounds to restrict the

inputs. With the mathematical operators {≤, >} ranges of

inputs can be expressed. The clusters Dl should be chosen

in such a way that similar execution times are grouped and

can be expressed as restrictions on the inputs. A challenge is

to find the right clusters Dl such that accuracy of execution

times become high.

4.2 Finding clusters

When the input domain I is too large to perform WCET

analysis for every single input combination it is necessary

to divide I into clusters of input combinations and analyze

each cluster with respect to execution time. As the relation

between inputs and WCET is not known a priori, the input

space must be searched to find clusters such that all input

combinations within the cluster produces similar execution

times. In order to find such clusters it is necessary to have a

way of evaluating clusters.

Theoretically, each single input combination has only

one fixed execution-time. The difference between etmax
l

and etmin
l of a cluster Dl shows the greatest difference be-

tween two execution times within the cluster. This in turn

is an indicator of how similar the execution times are in the

cluster. The sum of the difference between etmax
l and etmin

l

of all clusters
∑

l(et
max
l − etmin

l ) should be minimized to

get the highest accuracy. In the extreme, each cluster con-

tains one element; a good solution is a trade-off between

acceptable difference and max number of clusters. If the

difference between etmax
l and etmin

l of the cluster is larger

than the required accuracy the cluster is not evaluated as a

good cluster. Thus, the allowed difference between etmax
l

and etmin
l of the cluster depends on the required accuracy

of the cluster.

It is desired to create as few clusters as possible and

yet acquire as high accuracy as possible. Clusters are ef-

fectively annotations (input restrictions) to a WCET-tool.

Hence, we need methods to find annotations for WCET-

tools.

To find accurate clusters with the least effort we propose

a binary tree search approach, recursively dividing the in-

put space into two clusters until the required accuracy has

been found for all branches. Finding the clusters is a blind

search problem. The only data initially known is the longest

and shortest execution time for the entire search space (the

WCET and BCET). This lack of knowledge depends on the

nature of most WCET-tools, they provide a WCET and a

BCET given a program and annotations; we want a large

number of execution times considering different input com-

binations. The more the input space is divided the more data

become available. There are several possible approaches

to solve blind search problems, where binary search, simu-

lated annealing and evolutionary search, are a few possible

candidates.

Consider a simple example (Figure 3) with a function

foo having two input variables x and y, where x can take

the values [0..9] and y can take the values [0..4]. All possi-
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ble execution times given this simple example are summa-

rized in Table 1. In this small example there are only 50

possible input combinations, and it is trivial to make an ex-

haustive search to find all combinations that give the same

execution time. In a larger example, this is not possible. We

have chosen such a simple example to simplify the visual-

ization of the method.

Figure 3. Example code.

#i x y cond. etmax
l etmin

l

4 [3, 4] [1, 2] 170 170

2 [3, 4] [0] 130 130

12 [0, 2] [0, 4] x 6= y 140 140

15 [5, 9] [0, 2] 130 130

2 [1, 2] [1, 2] x = y 60 60

1 [0] [0] 20 20

14 [3, 9] [3, 4] 1 1

Table 1. Clustered WCETs with respect to the

example code shown in Figure 3. #i is the
number of input combinations. x and y are

the limitations on the inputs. Cond is a log-

ical condition on the inputs and etmax

l
and

etmin

l
are the longest and shortest execution

times produced by the inputs.

One set of values produce the worst-case execution time

WCET. In the example in Figure 3 the WCET is produced

by inputs represented by the first row in Table 1. All other

input combinations lead to lower execution times. Consider

an example where the usage scenario defines x = {3..6}
and y = {3..4}, the WCET will never occur. A WCET

topology of the example is shown in Figure 4. For the case

of a 2-dimensional input domain, the WCET topology is

visible in an execution time matrix as shown in Figure 5.

The initial knowledge of the matrix is only the highest

and lowest values (Figure 6.a). Since the knowledge of

� ! " �#! " � !$" �#!$" � !%" �#!%" � !&" �#!&" � !'" �#!'" �(!'"
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Figure 4. WCET topology with respect to the
example code shown in Figure 3.

the execution times is limited we need a search method to

localize areas with the similar execution times. One ap-

proach is to make a binary search for similar WCETs. In

Figure 6 binary search is shown, dividing the search space

into smaller and smaller clusters until the desired accuracy

has been reached. The accuracy is defined as the distance

between the highest and lowest values etmax
l and etmin

l for

each cluster. In Figure 6, clusters that have reached their

desired accuracy are marked with “*”.BC DEC DEC DEC DECDEC FC DEC DEC DECDEC DEC FC DEC DECDGC DHC DHC D DDGC DHC DHC D DDGC DGC DGC D DDGC DGC DGC D DDGC DGC DGC D DDGC DGC DGC D DDGC DGC DGC D D
I J K L MIJKLMNOPQR

S T

Figure 5. Matrix of the inputs {x,y} with cor-

responding execution times with respect to

the example code shown in Figure 3. The dot-
ted line shows the cluster Dl as shown in Fig-

ure 4.

If the input space is divided into too few clusters accu-

racy will be lost; consider the extreme case of only using

one cluster (all inputs), then the accuracy will be the same

as standard WCET analysis. Due to large input spaces it

is often infeasible to make an exhaustive search; therefore,

even when the input domain is divided into a relatively large

number of clusters it is still important how these are chosen
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to maximize accuracy. Since the analysis is supposed to be

reused, the effort of the analysis itself is of less concern.

UVW XYZU[\ XZX]̂_̀aYbc
Z X ] ^ _ UVW XYZU[\ XUVW X ẐU[\ X

ZX]̂_̀aYbc
Z X ] ^ _

UVW X_Z UVW X_ZU[\ ]Z U[\ X_ZUVW XYZ UVW XU[\ X Ẑ U[\ XUVW X Ẑ UVW XU[\ X Ẑ U[\ X
ZX]̂_̀aYbc

Z X ] ^ _UVW XYZ UVW X_ZU[\ ]Z U[\ XUVW X Ẑ UVW XU[\ X Ẑ U[\ X
ZX]̂_̀aYbc

Z X ] ^ _
d e
f g

hi hi
hihi

Figure 6. Binary search with respect to the

input matrix shown in Figure 5. An ’*’ indi-
cates that a cell does not need to be further

divided. Max indicates the WCET reported by

the tool given the annotations, and min the
BCET dito.

5 Evaluation

We have performed a small evaluation with the SWEET

WCET-tool [18]. SWEET has an annotation language to

give restrictions on input parameters. Hence, it is very suit-

able for the approach presented in this paper. The annota-

tions are described by the clusters.

Two components from an academic adaptive cruise con-

troller (ACC) have been analyzed, “loggerOutput” and

“SpeedControl”. Both components have three input vari-

ables. We have a performed a guided binary search on both

components. The guidance consisted of limitations on the

input variables to 8 values for each input; these limitations

were chosen based on the source code. The result of the

guidance was an input domain of 83 = 512 input combina-

tions on each of the components. It required 12 clusters of

the input domain of the “LoggerOutput” component to par-

tition the execution times and produce 3 WCET expressions

called contracts. The execution times were more scattered

in the “SpeedLimit” component and it required 25 clusters

to isolate all execution times into three contracts, The final

contracts derived from the clusters for the “LoggerOutput”

and “SpeedLimit” components are shown in Tables 2 and 3.

# Expression WCET

1 i2 ≤ 0 ∧ i3 ≤ 0 239

2 (i2 > 0∧ i3 ≤ 0)∨ (i2 ≤ 0∧ i3 > 0) 433

3 other 627

Table 2. LoggerOutput component “contract”

from 12 clusters.

# Expression WCET

1 i1 ≤ 0 105

2 i2 > 0 ∧ ((i1 = 0 ∧ i3 < 0)∨
(i1 > 0 ∧ i3 ≥ 0))

384

3 other 263

Table 3. SpeedLimit component “contract”
from 25 clusters.

The derived contracts are used with a usage scenario on

the input parameters. Depending on the usage the contracts

will give the WCET corresponding to the usage.

We see that for many usages we get substantially lower

WCETs for both components. Using a traditional usage

independent analysis would produce much to pessemistic

WCET for many usage scenarios.

6 Applicability

The method described in this paper is a general cluster-

ing method that is well suited for creating contract based

WCETs for components. Each cluster can also be aug-

mented with more information, e.g., scheduling parameters

and information on energy consumption. In this way clus-

ters can be created with respect to several parameters and

trade-offs between them can be made.

Furthermore, the proposed method is useful for both hard

and soft real-time systems. In this paper we have only de-

scribed the application for hard real-time systems.

The methods as described in this paper indirectly per-

form an exhaustive WCET analysis because all input com-

binations are represented. This will result in safe overesti-

mations and the “real” WCET is guaranteed to be included

in the analysis.

For soft real-time systems, a number of input com-

binations (not clusters) can be analyzed with respect to

execution-time and clusters can be created through, e.g., the

least square method.
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The focus of the method is still to create tight and ac-

curate reusable WCET estimations through expressing the

WCET as usage parameterized contracts.

6.1 Hardware effects

It should be noted that the contracts specified for the

clusters only consider input data limits. The timing of the

code in the cluster will also be dependant on the hardware

upon which the code is executed and where in memory the

code is located. Assuming that a simple 4-, 8- or 16-bit CPU

is used, which is common in a large segment of the embed-

ded domain, and that the code is forced to reside in and

access memory areas with the same timing properties as as-

sumed in the WCET analysis, the WCET estimates derived

should also be valid in the new context. However, if a more

advanced CPU is used, maybe with a cache or some other

performance enhancing features, and/or if the compiler and

linker change the code structure, and/or if some other hard-

ware timing properties are changed, the derived component

WCET estimates should be used with caution. Thus, in the

latter case the contract for a component might also need to

include information upon the hardware, compiler and linker

configuration. This is something not yet considered in our

work.

7 Conclusions and future work

Component-Based Software Engineering (CBSE) is a

promising development method to reduce time-to-market,

reduce development costs, and to increase software quality.

One main characteristic of CBSE that enable these benefits

is its facilitation of software component reuse, i.e., the same

software component can be used in different contexts. Un-

fortunately for resource constrained systems, reusable com-

ponents with rich behavior increase resource consumption

by decreasing the tightness of analyses.

In this paper we have presented a method for clustering

Worst-Case Execution-Times (WCETs) with respect to be-

havior for reusable software components. The purpose of

the method is to associate different WCETs with subsets of

the component behavior to achieve tight WCET estimates.

The presented method is intended to be used for facilitating

reusable WCET analysis for reusable software components

as presented in, e.g., [1, 2]. We have illustrated the method

and demonstrated its potential in a small case study.

Future work includes case studies on large components

to evaluate the feasibility of the approach. Also case stud-

ies on industrial code is planned to evaluate the industrial

appropriateness of the proposed method. We also plan to

investigate augmentation of clusters with additional param-

eters, e.g., scheduling parameters.
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