
Analysis of path exclusion at the machine code level

Ingmar Stein and Florian Martin

AbsInt Angewandte Informatik GmbH

Science Park 1, D-66123 Saarbrücken, Germany

{stein,florian}@absint.com, http://www.absint.com

Abstract

We present a method to find static path exclusions in a

control flow graph in order to refine the WCET analysis.

Using this information, some infeasible paths can be dis-

carded during the ILP-based longest path analysis which

helps to improve precision. The new analysis works at the

assembly level and uses the Omega library to evaluate Pres-

burger formulas.

1 Introduction

A commonly used method to calculate worst-case exe-

cution times (WCET) for a program is to maximize

tG =
∑
n∈N

c(n) · t(n)

where G = (N,E, s, x) is the control flow graph represent-

ing the program, c(n) is the execution count of a basic block

n and t(n) is the runtime of n. This optimization problem

can be formulated as an Integer Linear Program (ILP) and

solved by widely available ILP solvers.

The result of an ILP-based path analysis is a path that

represents a safe upper bound of the execution time. How-

ever, it is possible that this path can never occur at runtime.

At a fork in the control-flow graph, the decision which of

the successor nodes will be executed next often depends on

the path that leads to the fork. Depending on the execu-

tion history, only one of two successors might be feasible.

Those dependencies are not accounted for in the ILP, and

the path analysis views both nodes as possible successors.

This situation can lead to a drastic overestimation of the real

WCET.

In this paper, we introduce an extension of the aiT [1]

analyzer that incorporates those dependencies into the ILP,

which in turn improves the WCET prediction. The analysis

produces additional ILP constraints that can exclude several

classes of infeasible paths.

The example in Figure 1 illustrates how flow facts can

be beneficial for the WCET computation. In this example,

the path analysis has to select the successor nodes with the

highest costs for both of the branches A and D. The result-

ing WCET is the sum of the costs associated with the edges

constituting the critical path, i.e. 100 + 100 = 200.

A

B C

D

E F

G

10 100

100 10

false true

false true

Figure 1. A control flow graph

However, if the analysis finds out that a positive outcome

of the branch condition at A implies a positive outcome of

the branch condition at D and vice versa, it creates a flow

fact which allows only the paths ACDFG and ABDEG.

As a result, the new critical path has a WCET of 100+10 =
110.

Such constructs as in the example often occur in code

generated by code-generators such as SCADE [2] or in

mode-driven code where many execution paths are con-

trolled via relatively few flags.

1ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1196

http://www.absint.com


2 Overview

The input for the flow constraint analysis is the control-

flow graph of the program. While traversing this graph,

each conditional branch is visited and an expression de-

scribing the branch condition is built. This step is trivial

for high-level programming languages where the conditions

are given in the source code, but as we are facing machine

code, we have to reconstruct this information. Using a slic-

ing component which operates on the assembly level, we

find a set of instructions and variables that contribute to the

branch conditions. If all instructions contained in that set

can be mapped to arithmetic or comparison operations, we

can build a boolean expression representing the branch con-

dition.

In a second step, the expressions are transformed into

another representation suitable for a solver library (Omega).

The solver is used to compare two expressions, i.e. to check

whether one expression implies the other or whether they

are even equivalent. Beforehand, we test whether the two

expressions can actually occur on the same path because

not every implication allows for a sensible statement about

the program.

The results of the comparisons are used to create new

ILP constraints that are added to the ILP for the path anal-

ysis. This leads to a higher precision of the WCET predic-

tion, i.e. a predicted worst-case execution time that is lower

than the predicted WCET without the flow constraint anal-

ysis, but still is a safe upper bound of the real WCET.

3 The Flow Constraint Analysis

The flow constraint analysis traverses the control-flow

graph and inspects all conditional branches, i.e. all inner

nodes with more than one successor that are not call nodes.

If value analysis finds the exact (singleton) value of the

condition register at a conditional branch, it marks one of

the two outgoing edges as infeasible, and additional flow

facts cannot improve the situation any more. Hence, only

those branches where value analysis cannot deduce the

value of the condition register are relevant for the flow-fact

generation; the ones whose outcome is already determined

by the value analysis are skipped.

A backward slice is computed for each considered con-

ditional branch using the condition register as the initial tar-

get. A slice is a set of program points that directly or indi-

rectly participate in the computation of the slicing criterion.

A method how to compute slices is presented in [5].

Definition 3.1. A slice is called linear iff the program

points contained in the slice can be ordered such that each

program point is dominated by its predecessor. A linear

slice that is ordered like that is called an ordered slice.

Example 3.1 (Linear slice). Figure 2 shows two control-

flow graphs. The instructions that constitute two different

slices are highlighted using a bold border. The left graph

represents a linear slice because the two basic blocks can be

ordered as A, D and block A dominates block D. In con-

trast, the right graph is non-linear because block C domi-

nates neither D nor A.

A

B C

D

A

B C

D

Figure 2. Linear slice (upper) and non-linear

slice (lower)

We now restrict the analysis to linear slices. This ex-

cludes exactly those conditions that are built up on several

different paths. The ordered slices are then transformed into

slice trees. The inner nodes of a slice tree represent instruc-

tions while the leaves are either registers, memory cells, or

constants (see for instance Figure 3).

Slice trees containing memory accesses whose target ad-

dresses cannot be determined statically cannot be used for

the following comparisons and are therefore discarded.

A slice tree is an intermediate representation that can

be transformed into other formats for different theorem

provers. This process is described in the following for the

Omega library.

The Omega Project is a collection of “Frameworks and

Algorithms for the Analysis and Transformation of Scien-

tific Programs” by William Pugh and the Omega Project

Team [4]. In particular, Omega offers a tautology test for

2



bc.gt

cmpi0xd 0x2c.t

0 add 0

r3 r4

Figure 3. A slice tree

Presburger formulas that we will use to compare the branch

expressions.

Definition 3.2. Presburger arithmetic is defined as an

arithmetic with the constants 0 and 1, a function +, a re-

lation = and the axioms

1. ∀x : ¬(0 = x+ 1);

2. ∀x∀y : ¬(x = y) =⇒ ¬(x+ 1 = y + 1);

3. ∀x : x+ 0 = x;

4. ∀x∀y : (x+ y) + 1 = x+ (y + 1);

5. If P (x) is a formula consisting of the constants

0, 1,+,= and a single free variable x, then the fol-

lowing formula is an axiom

(P (0)∧∀x : P (x) =⇒ P (x+1)) =⇒ ∀x : P (x).

Presburger arithmetic is a decidable fragment of arith-

metic and implementations of fully automatic decision pro-

cedures (such as Omega) are readily available.

Slice trees are translated into Omega trees by mapping

the semantics of the individual instructions to arithmetic or

comparison operations. Instructions with unknown seman-

tics are treated as symbolic functions. Several patterns are

used during the translation of instructions into Omega oper-

ators that allow for the combination of multiple instructions

into a single operator. While the inner nodes of Omega trees

represent operations, the leaves are translated as follows:

• Integer constants remain constants.

• Registers and memory cells become free variables. A

prefix of the variable name encodes the type of the

variable as shown in Table 1.

Prefix Type Suffix

r Register Register number

m Memory cell (word) Memory address

h Memory cell (halfword) Memory address

b Memory cell (byte) Memory address

Table 1. Omega tree leaves

>

+ 0

r3 r4

Figure 4. An Omega tree

Figure 4 shows the Omega tree resulting from the slice tree

of Figure 3 using a simplified notation.

If all conditional branches are annotated with Omega

trees, we can compare the branch conditions of two basic

blocks A and B by testing several boolean expressions us-

ing Omega: A =⇒ B, A =⇒ ¬B, ¬A =⇒ B,

¬A =⇒ ¬B and the same expressions with A and B
swapped. If Omega determines one of the expressions to

be a tautology, we can derive the flow constraints accord-

ing to Table 2. The names at, af , bt, and bf stand for the

true and false successors of the two basic blocks a and b,
and c(x) the execution count of basic block x. The table

includes expressions that are logically equivalent to cover

those cases where some of the successors at, af , bt, and bf
are unavailable.

Expression Flow constraint

A =⇒ B c
(
at

)
≤ c
(
bt
)

A =⇒ ¬B c
(
at

)
≤ c
(
bf
)

¬A =⇒ B c
(
af

)
≤ c
(
bt
)

¬A =⇒ ¬B c
(
af

)
≤ c
(
bf
)

B =⇒ A c
(
bt
)
≤ c
(
at

)
B =⇒ ¬A c

(
bt
)
≤ c
(
af

)
¬B =⇒ A c

(
bf
)
≤ c
(
at

)
¬B =⇒ ¬A c

(
bf
)
≤ c
(
af

)
Table 2. Implications and corresponding flow

constraints

3



4 Limitation to n bits

Omega operates on the domain of integers, therefore the

variables in the Presburger formulas have no range restric-

tions. However, the machine arithmetic works on n bits

and is thus not modelled correctly in the Omega expres-

sions. To resolve this problem, one can introduce modulo

operators in the expressions to simulate an n bit range. If

C is an expression whose result is an n bit value, C is re-

placed by C ′ = C mod 2n. Because Presburger expres-

sions don’t have a built-in modulo operator, another substi-

tution is needed:

If a term x mod c occurs in a constraint C ′, C ′ is replaced

by

∃γ : cγ ≤ x < c(γ + 1) ∧ C ′′

where C ′′ is derived from C ′ by replacing x mod c by x−
cγ.

5 Evaluation

In order to evaluate the effectiveness of the analysis, we

have analyzed a set of test programs. All tests were per-

formed using aiT for MPC755. Table 3 illustrates how the

WCET changes if path analysis is run without or with the

flow constraints (WCETfc). The last column shows the

number of generated flow facts. The runtime of the flow

constraint analysis on the test programs is presented in fig-

ure 5.

6 Outlook

With the main work done, we now look at possible fu-

ture enhancements and additional uses of the flow constraint

analysis.

6.1 Portability.

We plan to implement the analysis for further microar-

chitectures besides the PowerPC platform. The ARM plat-

form is a natural extension since the slicing component al-

ready exists for it.

6.2 Nonlinear slices.

Furthermore, it seems worthwhile to examine nonlinear

slices to find out whether new opportunities for optimiza-

tion arise if the linearity constraint is dropped. Nonlinear

slices may be handled by using a data-flow analysis that

propagates the node conditions and subsequently combines

all conditions associated with a node. However, the risk is

very high that the resulting expressions grow too large for

the Omega library and that the runtime increases by several

orders of magnitude.

6.3 Theorem-prover interface.

In addition to this, other theorem provers could be eval-

uated by providing an interface to the flow constraint anal-

ysis. An alternative prover could provide a performance su-

perior to Omega in some cases or offer more functionality

such as floating-point support.

6.4 Elimination of unreachable code.

With a simple extension, flow constraint analysis is able

to detect some cases of unreachable code and to exclude the

respective code blocks from the subsequent analyses, e.g.,

pipeline analysis. For that, a condition of a child node is

compared to that of its direct parent. If they are equivalent

or complementary, one of the two successors of the child

node can be marked as infeasible.

6.5 PAG.

Unreachable code elimination as described above is an

example how the information gathered by flow constraint

analysis can be used for additional purposes. Another use

case is PAG-generated analyzers [3] whose precision can be

improved by path exclusions.

7 Conclusion

We have presented a method to find path implications

within a given control flow graph for machine code pro-

grams. This information has been used to generate con-

straints which are then added to the ILP of the path analysis.

The so-called flow constraints contribute to an improvement

of the WCET prediction by excluding paths which cannot

occur at runtime.

A tool which implements the algorithm presented in this

paper has been successfully integrated into a WCET frame-

work. It represents another phase in the workflow of the aiT

WCET analyzer and fits seemlessly into the existing infras-

tructure. The tool has been used to conduct several tests

which show both the effectiveness of the flow constraint

analysis (ppcbrunch) on industrial programs as well as the

moderate runtime increase of the complete WCET analysis

as can be seen in figure 6.

References

[1] AbsInt Angewandte Informatik GmbH. ait: Worst-case exe-

cution time analyzers.

4



Program WCET WCETfc Improvement Constraints

Synth. example 1 1440 cycles 1154 cycles 19.9 % 4

Synth. example 2 1140 cycles 819 cycles 28.2 % 5

avionic 1 1480 cycles 1420 cycles 4.1 % 1

avionic 2 3178 cycles 3050 cycles 4.0 % 8

zlib 6706 cycles 5242 cycles 21.8 % 2

Table 3. Results for several test programs

Program Instructions Basic Blocks Size [Bytes] Type

Synth. example 1 44 13 912 Mach-O

Synth. example 2 38 13 792 Mach-O

avionic 1 764 40 26232192 ELF

avionic 2 523 14 433472 ELF

zlib 163 40 1700 Mach-O

Table 4. Sizes of the test programs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

S1 S2 A1 A2 Z

R
u
n
ti
m

e
 i
n

 s

Program

Benchmark

Figure 5. Runtime of the flow constraint analysis for several test programs

5



56%

2%

2%

2%

8%

8%

2%

10%

5%

0%

2%

2%

1%

exec2crl

crl2crl

crl2crl

powerdaan (loop)

powerdaan (value)

ppcbrunch

crl2crl

ppcpipe

pathan

lp_solve

solve2chg

cr2crl

cr2gdl

Figure 6. Overall runtime of the WCET anal-

ysis for avionic 2 broken down into subpro-

grams

[2] Esterel Technologies. Scade suite – the standard for the devel-

opment of safety-critical embedded software in the avionics

industry.

[3] F. Martin. Pag - an efficient program analyzer generator. In-

ternational Journal on Software Tools for Technology Trans-

fer, 2(1):46–67, 1998.

[4] Omega Project Team. The omega project: Frameworks and

algorithms for the analysis and transformation of scientific

programs. 2007.

[5] M. Schlickling. Generisches slicing auf maschinencode. Mas-

ter’s thesis, Universität des Saarlandes, Saarbrücken, 2005.

6


	1 Introduction
	2 Overview
	3 The Flow Constraint Analysis
	4 Limitation to n bits
	5 Evaluation
	6 Outlook
	6.1 Portability.
	6.2 Nonlinear slices.
	6.3 Theorem-prover interface.
	6.4 Elimination of unreachable code.
	6.5 PAG.

	7 Conclusion

