Extracting Visibility Information by Following
Walls

Anna Yershova, Benjamin Tovar, and Steven M. LaValle

Department of Computer Science, University of Illinois, Urbana, IL 61801 USA
{yershova,btovar,lavalle}@uiuc.edu

Summary. This paper presents an analysis of a simple robot model, called Bitbot.
The Bitbot has limited capabilities; it can reliably follow walls and sense a contact
with a wall. Although the Bitbot does not have a range sensor or a camera, it is
able to acquire visibility information from the environment, which is then used to
solve a pursuit-evasion task. Our developments are centered on the characterization
of the information the Bitbot acquires. At any given moment, due to the sensing
uncertainty, the robot does not know the current state. In general, uncertainty in
the state is one of the central issues in robotics; therefore, the Bitbot model serves
as an example of how the notion of information space naturally handles uncertainty.
We show that state estimation with the Bitbot is a challenging problem, related to
the well-known open problem of characterizing visibility graphs in computational
geometry. However, state estimation becomes unnecessary to the achievement of
the Bitbot’s visibility tasks. We show how pursuit-evasion strategy is derived from
a careful manipulation with histories of observations, and present analysis of the
algorithm and experimental results.

1 Introduction

This paper analyzes the capabilities of a very simple robot, the Bitbot, which
has severe sensors and actuators limitations. In fact, the Bitbot can only fol-
low walls, and indicate if it is in contact with a wall or not. The capabilities
of the robot are so limited that a precise knowledge of its state is unattain-
able. Nevertheless, this paper shows that the precise knowledge of the state is
not needed for the Bitbot to complete some complicated robotic tasks. Par-
ticularly, the Bitbot can generate an environment representation from which
visibility information can be inferred. This information is obtained without
any range sensor, a camera, or any type of odometry.

The study for such simple robots is motivated by our interest in dealing
with uncertainty in robotic systems. Classically, uncertainty is not addressed
directly during the design of algorithms. During execution, it is trusted that
the state estimator will produce an error small enough so that the estimated

Dagstuhl Seminar Proceedings 06421
Robot Navigation
http://drops.dagstuhl.de/opus/volltexte/2007 /867

2 Anna Yershova, Benjamin Tovar, and Steven M. LaValle

state can be taken as the current state. While this approach is adequate for
several robotic tasks, it does not incorporate the inherent uncertainty in the
design of the algorithm. Moreover, as it is the case for the Bitbot, an estimate
of the state is by itself a very difficult open problem. It would seem that such
lack of a state estimate makes the Bitbot quite useless.

Instead of focusing on the state estimation, we focus the algorithm develop-
ment on particular tasks, so that a robot like the Bitbot can solve complicated
tasks. The key idea is to incorporate the uncertainty in the design of the par-
ticular algorithms through an information space. In this case, the algorithms
manipulate information states until a certain goal information state is reached.
Instead of operating on current state estimates, the algorithm operates on the
histories of observations and actions performed by the robot. For a full de-
velopment of information spaces the reader is referred to [9]. Such approach
has been used before in the context of manipulation [3, 4], for example, by
orienting polygonal parts with a sensorless system [1, 5, 6]. Information spaces
also appear (sometimes implicitly) in algorithms for robot localization [2]. A
careful study of such information spaces allows very limited robots to localize
themselves in polygonal environments [10, 11].

Since an information space encodes the state of the whole robotic task,
rather than only the state of the robot, it provides natural description for
the visibility-based pursuit-evasion problem. In this task the pursuer tries to
visually detect an evader, which in turn tries actively to hide. The problem
here is the uncertainty in the position of the evader, and the pursuer should
move to reduce such uncertainty. A strategy was presented in [7] for a pursuer
robot with perfect knowledge of a particular environment, and with omni-
directional, infinite range vision. When the environment is not known this
imperfect information adds to the uncertainty of the state. Examples of such
scenarios were studied in [8, 13]. Here, not only the pursuers did not know
the environment, but had severe sensor limitations.

In the present paper we develop a full analysis of the information space of
the Bitbot. We have shown in [14] that a single Bitbot placed in an unknown
environment can learn enough information about the environment to localize
itself with respect to a special representation, called the cut diagram. The cut
diagram stores information about all of the reflex and convex vertices together
with the extensions from reflex vertices to the edges in the polygon. We also
briefly presented the strategy for locating evaders by a Bitbot. The current
paper presents a first and complete analysis of the visibility information that
is gathered with the limited sensing capabilities of a Bitbot. One of the goals
of this work is to show what visibility information can be inferred from the cut
diagram and how a Bitbot can use this information to solve visibility tasks.

The problem of finding environments consistent with a cut diagram is
similar to that of finding polygons consistent with a given visibility graph [12].
This has been long known as an open problem in computational geometry.
However, in this paper we continue to pursue an idea that to solve a task with
a robot it is not necessary to estimate the state. That is, to find all of the

Visibility Information by Following Walls 3

evaders in the environment it is not necessary to know the exact geometry of
a polygon the robot is in. Partial information, in this case the cut diagram of
the polygon, is enough.

2 The Model

The Bitbot is modeled as a point moving in the polygonal environment F € &,
in which E is a bounded, open set in R?, and the boundary OF is assumed a
simple closed and connected polygonal curve. The set £ is the set of all such
environments. The circular sequence of vertices V¥ = {v; | i =0,...,n — 1}
along OF is assumed to be clockwise ordered. A vertex of F is called reflex
if its incident edges form an angle strictly greater than 7. We denote the set
of reflex vertices of F with V,F. A vertex in V¥ \ V.¥ is called convez.

The Bitbot can choose among two types of movements. First, it can follow
the walls in either direction. Second, when approaching a reflex vertex, it can
choose to go straight of the reflex vertex following a straight line, until OF is
reached again. This straight line has the same slope as the last edge followed in
the polygon before arriving at the reflex vertex. The Bitbot is equipped with
a contact sensor, which indicates whether or not there is a contact with the
boundary of the environment. These movements and sensor capabilities allow
a Bitbot to differentiate between the situations in which it is in the contact
with the walls or in which it is traveling in the interior of the environment.
With this information it can be easily determined whether the Bitbot is in
contact with a reflex vertex or not. During the present analysis, we assume
that the contact sensor is powerful enough to detect convex vertices. The
analysis still holds if this assumption is removed, with a natural increase in
the uncertainty of the Bitbot state!.

Given two vertices u,v € OF, assume that u and v are consecutive in
VE. Furthermore, assume that u is a reflex vertex. Suppose, that the Bitbot
has just visited v, traveled towards u, and at w it decided to keep straight
with the same slope as the edge wv. Call u; the point the Bitbot hits in OF
(Figure 1.a). The segment uw; is called a cut at u, with u; being the cut’s
endpoint. It is said that the cut is incident to the edge of OF containing u;.
If the environment F is divided into two parts along the cut at u, the vertex
u does not belong to the polygon containing the vertex v. Instead, u lies on
the edge ;. We call this polygon a cave of the cut at u. Note, that there are
exactly two cuts per reflex vertices. If u precedes v in the order given in Vg,
the polygon containing v is called the left cave at u, and the cut wu; is called
the left cut. Otherwise, if u follows v, the right cave and the right cut uw, at u
are obtained. An example of a polygon with the set of all of its cuts is shown

! Incidentally, the name Bitbot originated in the absence of this assumption.
Loosely speaking, the sensing is reduced to one bit of information that indicates
whether the robot is in contact with a wall or not.

4 Anna Yershova, Benjamin Tovar, and Steven M. LaValle

Vv

(b)

Fig. 1. (a) A polygon and all of its cuts are shown. For the left cut wu; its left cave
is shaded. (b) The corresponding cut diagram.

@ (b)
visibility region gap recontamination segments
v({% (shadow component “ u,
o X v, v
’_ bitangent

Fig. 2. (a) Visibility region, V (z), shadow region, e\ V (z), and gaps for the point x
are shown. (b) The bitangent uv between the two reflex vertices u and v, if extended
outward generates two bitangent complements, uu, and vv,, correspondingly.

on Figure 1.a. We make the general position assumption that no three vertices
of OF lie in the same line, thus, the point u; cannot be a vertex itself. The
set of all of the cuts is denoted as C¥, and the set of all of the cuts endpoints
is denoted as V.F. The state space of the robot is X = R? x S1. Given that
the Bitbot can only recognize if it is in contact with a wall, at a vertex, or at
an endpoint of a cut, the state space can be collapsed into a discrete set of
states, namely X, = VFUVE.

For any point x € E, let V(x) C E be the visibility region of x, that is, the
set of all of the points y € E such that the line segment Ty does not intersect
OF (see Figure 2.a). Call E\ V(z) the shadow region, which is the set of all of
the points in E that are not visible from x. There may be several connected
components in the shadow region. Each of them can be associated with some
reflex vertex in the environment. We call each of them a shadow component.

Consider now two mutually visible reflex vertices, u and v, in the environ-
ment F. It is said that the segment wv is a bitangent if it can be extended
outwards from both endpoints without lying outside the polygon. Now con-
sider the two maximal extensions, uu, and vv,, of the bitangent uv. These

Visibility Information by Following Walls 5

segments are called bitangent complements at u and v respectively (see Fig-
ure 2.b).

3 Cut Diagram

In this section we consider the cut diagram data structure, the environment
representation the Bitbot generates. The method for constructing the cut
diagram by the Bitbot is described in [14]. In the following sections, we explain
how the Bitbot uses it to recover visibility information. The cut diagram
represents the adjacencies of vertex and edges of OF together with all the cut
incidences of the polygon. Formally, the cut diagram is defined as follows:

Definition 1. A tuple D = (s,V,C) is called a cut diagram of a polygon E
iff

s is a simple closed curve.
V' C s is a finite set of points.
Each c € C is a line segment with endpoints in V', such that it intersects
s at ezactly two points (the endpoints).

e There is a bijection g, : VF UVE — V such that the clockwise ordering
of points along OF is preserved along the curve s.

e There is a bijection g. : C¥ — O, such that for a cut ¢ = w € C,
6e(T) = u () g (v).

Thus, a polygon together with its cuts is itself a cut diagram. A cut di-
agram can be drawn canonically as follows. Let s to be the unit circle, and
choose V as |V¥ U V.F| equidistant points on s. The cuts incidences are then
added in the natural way as chords in the circle, choosing their endpoints in
the same clockwise order in the incident edge. An example of a cut diagram
corresponding to a polygon is shown on Figure 1.b. From now on we refer to
a circle arc U110, as the arc on the circle s connecting vertex v, and vertex wvo,
which corresponds to edge v103 in OF.

The cut diagram provides some information about the geometry of the
polygon. For example, the chords in the cut diagram provide the points on
the boundary of the polygon which are visible to each other. Therefore, the
cut diagram is closely related to the notion of the visibility graph. It is yet
an open problem to determine the geometry of a polygon corresponding to
a given visibility graph. We conjecture that for cut diagrams this problem
is easier, given that relaxing the need for straight edges in the environment
boundary, it becomes trivial. However, we could not find a satisfying solution
vet. As an example, the three different polygons having the same cut diagram
are shown on Figure 3.

6 Anna Yershova, Benjamin Tovar, and Steven M. LaValle

Fig. 3. Some polygons having the same cut diagram, shown on Figure 1.b.

3.1 Cut diagram properties

From the cut diagram, the Bitbot can infer visibility information. Such infor-
mation can be recovered by recognizing a few properties of the cut diagram.
The first property relates intersections of the cuts in the polygon with inter-
sections of chords in the diagram:

Proposition 1. Draw a segment between each pair of mutually visible points
on the boundary of a polygon. These segments intersect pairwise in the polygon
if the corresponding chords intersect pairwise in the cut diagram.

Proof: When two segments, T1x3 and §193, intersect in the polygon, then the
ordering of the corresponding endpoints along the boundary of the polygon is
determined. For the closed curve that is going through all of the four endpoints
without intersecting the segments and self-intersections, the ordering must be
either (z1,y1,x2,y2), or (z1, Y2, T2,y1). Since the bijection function preserves
the ordering of the endpoints on the boundaries of both the polygon and the
closed curve, the corresponding chords always intersect in the cut diagram. il

Corollary 1. Two cuts intersect in the polygon if and only if they intersect
in the cut diagram.

Therefore, the cut diagram preserves the two-intersections of the cuts.
Unfortunately, this is not the case with three-intersections. That is, if two
intersecting chords are intersected by a third chord, the order in which the
cuts intersect in the polygon may be different from the order in which the
corresponding chords intersect in the cut diagram (see Figure 4).

3.2 Bitangents in a Cut Diagram

While there is no direct information about the location of bitangents and and
their complements in the cut diagram, there is a necessary condition for ex-
istence of a bitangent between two vertices. Such condition is exploited for
detecting possible bitangents in the cut diagram by the Bitbot. This becomes
the base for the pursuit-evasion algorithm presented in Section 5. This impor-
tant condition is expressed in the following proposition.

Visibility Information by Following Walls 7

X

Fig. 4. The cut diagram does not always preserve three-intersections of the cuts.
The order in which the cuts Zz;, uw,, and vv; intersect in the polygon is different
from the order in which the corresponding chords intersect in the cut diagram.

Fig. 5. The reflex vertex v belongs only to the cave, of the reflex vertex u and not
to the cave;. Similarly, u lies only in cave, and not in cave; of vertex v. Therefore,
the necessary condition for bitangent existence between vertices v and v is satisfied.
However, there is no bitangent between the two vertices.

Proposition 2. If a bitangent exists between two reflex vertices, then each of
the reflex vertices is inside exactly one of the caves of the other vertex.

Proof: If any of the vertices is in both of the caves, then the extension of
the bitangent will lie outside the polygon. |

Unfortunately, this is a necessary, but not a sufficient condition for the
existence of a bitangent. Figure 5 shows a polygon in which a bitangent does
not exist between the two reflex vertices u and v, even though the above
condition is satisfied.

Consider now the set of all of the pairs of the reflex vertices in the polygon.
Those pairs satisfying the previous condition are called (bitangent) candidate
pairs. The set of candidate pairs includes the bitangent pairs as a subset.
Therefore, using the above condition, it is possible to find the candidate pairs
given a cut diagram, but it is not possible to discriminate the bitangent pairs.
Figure 6 shows all of the possible configurations of the cuts in the cut diagram
which produce candidate pairs.

8 Anna Yershova, Benjamin Tovar, and Steven M. LaValle

Fig. 6. All of the possible configurations of the cuts (dashed blue lines) of the two
reflex vertices in an environment resulting in a candidate pair. In case the two reflex
vertices are the only reflex vertices in the polygon, the corresponding approximations
of the bitangent complements are also shown in bold (red).

Fig. 7. The cut diagram has only two reflex vertices in the environment, forming the
bitangent. Some of such cases are shown, together with the corresponding bitangent
complements.

4 Inferring the Environment Geometry

This section is dedicated to the information about the bitangent complements
that can be inferred from the cut diagram. Proposition 3 provides a first
approximation on the location of the bitangent complements. In some cases
the estimate can be further improved with some other properties of the cut
diagram. To introduce these properties, consider a polygon with reflex vertices,
u, and v, and their corresponding cuts’ ends, u,, u;, v, and v;. Throughout
all of this section, assume that v belongs to the cave of the cut wu,. This is
always true up to symmetry. Also, assume that u belongs to the cave of the
cut vv,, in which ¢ is either [or 7. Thus, the two vertices form a candidate
pair by Proposition 2.

Proposition 3. If a bitangent exists between vertices u, and v, then the bi-
tangent complement uu, in the cut diagram s the chord that connects u with
a point inside the circular arc uu,..

Visibility Information by Following Walls 9

@

u

Fig. 8. If a straight line intersects the chord corresponding to the bitangent, then
the bitangent complement must intersect a reduced portion of the arc wu,.

Proof: Since the bitangent wv intersects the straight line containing the
segment uu, at point w, the bitangent complement uw, cannot intersect the
segment wu, in any other point but u, since two lines intersect only at one
point. |

Figure 7 shows an example of different instances of the polygon with the
same cut diagram, with a bitangent complement connecting u with different
points on the arc uu,. Based on the principle, that straight lines must in-
tersect properly in the polygon if they intersect in the cut diagram, we can
reduce the bound on the places where a bitangent complement lies even to
smaller regions, if other cuts are present in the cut diagram (Figure 8). This
is described in the following proposition:

Proposition 4. Let a cut ¢ic3 intersect the chord uv in the cut diagram,
such that ¢; € uu,. If a bitangent exists between u, and v, then the bitangent
complement uit, intersects the arc ucy.

Proof: 1If the bitangent intersects a line of the segment ¢1¢3, then the bi-
tangent complement ww, cannot intersect the segment ¢1¢z, because two lines
cannot intersect in two points (see Figure 8). |

Definition 2. Consider all of the cuts cich,i = 1..p, such that each of them
satisfies the condition of Proposition 4. Consider corresponding arcs uci. Pick

an index k, such that uck is the smallest arc, uc¥ C uct,Vi. The segment @
1s called an approximation of the bitangent complement ut, .

10 Anna Yershova, Benjamin Tovar, and Steven M. LaValle

Proposition 4 provides a bound on the range where the bitangent com-
plement may intersect the boundary of the polygon. We conjecture that this
bound is always tight for a cut diagram.

Conjecture 1. If a bitangent exists between u, and v, then, for any € > 0, there
exists a polygon F, in which an endpoint u, of the bitangent complement
ut, is arbitrarily close to the endpoint ¢} of its approximation uc}, with the

distance between them |u,c¥| < e.

Proposition 5. Let u and v be the only two vertices forming a bitangent
candidate pair in the cut diagram. There always exists a polygon E such that
the endpoint u, is arbitrarily close to the endpoint u,..

Proof: To construct such a polygon, the angle between the lines which
contain the bitangent uv and the inflection wu, have to approach zero, as
shown on Figure 7. |

If two vertices form a candidate pair, but they do not form a bitangent
in the polygon, then the two vertices are not mutually visible. In this case
an approximation of a bitangent complement may not be meaningful for the
given polygon. However, the following proposition is helpful for analyzing this
case:

Proposition 6. If there is no bitangent between the bitangent candidate pair
u and v, then there exist reflex vertices w, z, such that both pairs u, and w, and
v, and z are bitangent pairs (the vertices w and z may be the same verter).

Proof: If u and v are not mutually visible, then its shortest path in E
contains at least one reflex vertex. Call this vertex y. The vertex y always
exists, since, if all of the vertices of the path were convex, then wv would be
inside the polygon, which is a contradiction. If y is visible from wu, then assign
y to w, and the bitangent pair for u has been found. If y is not visible from u,
the previous process is repeated, until a reflex vertex is found, which is visible
from u. This process has to stop, since there is a finite number of vertices.
With a similar analysis the vertex z can be found. |

The intuition behind Proposition 6 is the following. If a candidate pair
does not form a bitangent pair, one of the vertices is 'hidden’ behind a real
bitangent complement of another vertex. While the Bitbot cannot discrimi-
nate between candidates and real bitangents, Proposition 6 allows to make
some inferences about the combinatorial changes of the shadow region. This is
explained in the next section, when the pursuit-evasion algorithm is described.

5 Pursuit-Evasion with Bitbots

In this section we present a pursuit-evasion algorithm using the cut diagram
described in previous sections. Note, that without any additional sensor for

Visibility Information by Following Walls 11

detecting an evader, the Bitbot can never “detect” it in the usual sense. To
resolve this, we provide the Bitbot with a sensor for detecting the presence
(though not the location) of targets. Equivalently, we could consider a slightly
modified pursuit-evasion game, in which the evaders are moving unpredictably,
but are willing to be found (for example, lost people in the building on fire).
When they (the evaders) see the Bitbot, they are considered to be detected.
Both of these approaches lead to the same strategy and provide the ground
for considering pursuit-evasion tasks for Bitbots. To make discussion simpler,
we consider the pursuit-evasion game in which an evader is considered to be
detected as soon as it comes in the line of sight of the pursuer.

5.1 Critical Events in the Cut Diagram

The visibility-based pursuit-evasion problem can be solved by keeping track
of all of the shadow components in the environment, since they are the only
places where the evaders can hide [7]. This is done by labeling each shadow
component as contaminated, if an evader may be hiding behind the gap, or
cleared, otherwise. As the robot moves, the labels of the regions change ac-
cording to certain critical events, and the goal of the algorithm is to find valid
Bitbot movements such that all of the shadow regions are labeled as cleared.
An information state for the pursuit-evasion task is defined as the cut dia-
gram, together with the labeling of the cuts and the position of the Bitbot
with respect to the cut diagram. The goal of the algorithm is to reach an
information state in which all of the cuts are labeled as cleared. The infor-
mation state is defined as the space of all of the possible labelings for a cut
diagram of a polygon, with all of the possible positions of the Bitbot in the
cut diagram. As the Bitbot moves, the information state changes according
to the following critical events:

e Crossing an inflection ray of the polygon. After this event either a new
shadow component appears or an old shadow component disappears.

e Crossing a bitangent complement of the polygon. In this case either two
shadow components merge, or split.

For the Bitbot, crossing an inflection ray corresponds to crossing a cut,
which can be determined in the cut diagram. The second event can be con-
servatively detected, by crossing the approximates of bitangent complements
of the bitangent candidate pairs. If a shadow component appears, it is labeled
as cleared. If one contaminated component merges with a cleared one, the
new shadow component is labeled as contaminated. When a shadow compo-
nent splits, the new shadow component inherits the labeling of the component
that splitted. Each shadow component is associated with the corresponding
cut and cave of the environment (see Figure 9).

A cut of a reflex vertex u is labeled as contaminated if the corresponding
cave may contain an evader in the shadow component associated with wu.

12 Anna Yershova, Benjamin Tovar, and Steven M. LaValle

Fig. 9. For a reflex vertex u the two cuts and corresponding caves are shown. For
positions z1, and x2 of the Bitbot, the gap associated with v and corresponding
shadow component may be only inside one of the caves (the one that does not
contain x1 or xz2). If the shadow component exists, the cut of its cave has the label,
l, corresponding to whether the shadow component is cleared or not. The other cut
has label cleared. For positions x3, and x4, the shadow component associated with
the vertex u does not exist, therefore, the cut labels are cleared. The corresponding
configurations on the cut diagram are also shown.

Otherwise, if the shadow component of u cannot contain an evader, the cut
is labeled as cleared.

Visibility Information by Following Walls 13

cave

s 1=0 5 I=Ilvm m=1Ivm
~ 0-0)

|—=1; m—m

Fig. 10. Critical cut events and relabeling of the cuts.

The Bitbot clears a cut by entering the corresponding cave. This does not
imply that the whole cave is cleared. This would only happens when each of
the shadow components inside of the corresponding cave was cleared. Thus,
at least one of the cuts for each reflex vertex has a label cleared. Note, that
for certain locations both of the caves are labeled as cleared (see Figure 9,
positions x3 and x4). Initially, when the Bitbot has not searched the envi-
ronment yet, the labeling of the cuts marks all of the cuts containing shadow
components as contaminated and others as cleared, according to the patterns
shown on Figure 9.

The cuts are used to conservatively infer the shadow critical events and
labelings. Here, by conservatively we mean that if a critical event exists in
the polygon, it is detected through the cuts, but if there are events detected
through the cuts these events do not necessarily exist in the polygon. When
the Bitbot crosses a cut (Figure 10.a), it can be either entering the cave corre-
sponding to the cut or leaving it. When it enters a cave, the shadow component
that has been in that cave disappears. Therefore, the label of the cut changes
to cleared. When the Bitbot leaves a cave, the shadow component appears in
this cave. This shadow component has just been visible to the Bitbot, there-
fore, the label of the cut remains cleared. When a Bitbot crosses a bitangent
complement (Figure 10.b) and several shadow components merge into one,
the labels of corresponding cuts should all be set to contaminated, if there
was at least one contaminated cut among the merging shadow components.
When a shadow component splits into several, all of them inherit the same
labels they had before (which is the label of the splitting shadow component).

A first difficulty is that the Bitbot does not know the exact location of the
bitangent complements, which are needed to compute the merges and splits
of the shadow components. To overcome this, the approximations described
in Section 4, are used. Another difficulty appears when two vertices in the
candidate pair do not form a bitangent pair. Crossing the corresponding bi-
tangent complements of these vertices will result in relabeling of the cuts,
when merging of shadow regions does not happen. We prove that in this case

14 Anna Yershova, Benjamin Tovar, and Steven M. LaValle

the relabeling that occurs is consistent with the correct labeling of the cuts.
Consider two reflex vertices forming a candidate pair u, and v. Let all of the
assumptions made in Section 4 hold. Imagine that the bitangent between the
vertices does not exist. Based on Proposition 6 there exists a vertex w which
forms a candidate bitangent pair with both of u and v.

Proposition 7. If the bitangent complement of the pair u and w is uTy, and
a bitangent complement of the pair v and v is U, then uxs C Uxy.

Proof: Suppose that the contrary is true, that is ux; C uxz. Then there
must exist a chord Zz; that crosses the chord ww such that =, € urs C uu,
by definition of the approximation of the bitangent complements. Such chord
also crosses wvu. Therefore, the approximation of the bitangent complement of
u and v must be wx7, which contradicts the assumption. |

This means that when the shadow component of v contaminates the
shadow component of u, even though none of the critical events happen in
the polygon, the shadow component of u has already been contaminated by
w, which originally contaminated v.

Note, that the Bitbot cannot process events as they appear. This is be-
cause the three-intersections of the cuts are not preserved in the cut diagram.
An example of several cut events happening while the Bitbot moves from state
x1 to state x5 is shown on Figure 11. When a cut event occurs, only the label
of this cut can be changed. Therefore, the cut events are independent from
each other, and the Bitbot can process all of them in state xo, changing the
labels according to the rules of cut events. Processing labels when crossing a
bitangent complement requires more consideration. The events may be depen-
dent (many cuts can be relabeled when one recontamination happens) and the
order in which they occur is not known. However, since the approximations of
bitangent complements of the same vertex intersect in that vertex, they cannot
intersect inside the cut diagram. Therefore, the three-intersections can occur
only between the approximations of the bitangent complements of three dif-
ferent vertices. Therefore, these events are also independent. An example of
multiple critical events, occurring when the Bitbot moves from state z; to
state xo, and then to state x3, is shown on Figure 12.

5.2 The Algorithm

The algorithm performs a breadth-first search on the information space of all
of the cut diagrams with cut labelings. From the starting information state
(the cut diagram with initial labeling) all of the possible Bitbot moves are
tried, relabeling using the rules described in Section 5 is performed, resulting
information state is computed and checked with the goal state (the cut dia-
gram with all of the cuts cleared). The same procedure is iterated over all of
the resulting information states.

Visibility Information by Following Walls 15

0 00 0

Fig. 11. An example of multiple cut critical events, when the Bitbot moves from
the vertex z1 to x2. All the shadow components become cleared.

The completeness of the algorithm depends on the quality of approxima-
tions used for bitangent complements in the cut diagram.

Proposition 8. If Conjecture 1 is true, then the algorithm presented above is
Bitbot-complete; a Bitbot will find a solution if one exists.

Proof: When the Bitbot relabels the cuts as recontaminated, there exists
a corresponding environment, in which the actual recontamination happens,
by Conjecture 1. Therefore, the algorithm presented above would be com-
plete in the sense that, if there exists a solution for all of the environments
corresponding to the cut diagram, one will be reported. |

6 Implementation and Experimental Results

We have implemented a simulation of the algorithm presented in Section 5.2.
We present experiments with three different environments. The first experi-
ment is shown on Figure 13. We show the cut diagram with all of the cuts
and approximations of the bitangent complements. Using only the cut dia-
gram and the algorithm for pursuit-evasion, the Bitbot generates the plan for
finding all of the evaders in the environment. The produced solution path is
shown. In the experiments shown on Figure 15 the pursuit-evasion algorithm
was used to produce the clearing paths for the other two environments.

16 Anna Yershova, Benjamin Tovar, and Steven M. LaValle

Fig. 12. An example of multiple critical events, when the Bitbot moves from the
state x1 to 2 and then to the state zs.

7 Conclusions

In this paper we introduced very simple robots called Bitbots. The sensor and
control limitations of Bitbots allow careful modeling of the information space

Visibility Information by Following Walls 17

Fig. 13. For the given environment, the cut diagram with all of the cuts and the
approximations of the bitangent complements, generated by our program, is shown
on the left. The solution path for the pursuit-evasion algorithm is shown on the
right.

\pn == .

Fig. 14. Computed solution paths for catching the evaders in the given environ-
ments.

Fig. 15. Computed solution paths for catching the evaders in the given environ-
ments.

arising when presenting visibility tasks to these robots. We have formally
defined the tasks of pursuit-evasion as planning problem in corresponding
information space and presented solution and simulation results.

The notion of information spaces, which is the main theme of this paper,
is fundamental to robotics. However, little or nothing is known about many
aspects of information spaces. Almost no work has been done on characterizing
their topology or geometry. No general techniques are available for planning
in information spaces. Our goal is to continue researching information spaces
arising in robotics.

18 Anna Yershova, Benjamin Tovar, and Steven M. LaValle
References
1. S. Akella, W. H. Huang, K. M. Lynch, and M. T. Mason. Sensorless parts

10.

11.

12.

13.

14.

feeding with a one joint robot. In J.-P. Laumond and M. Overmars, editors,
Algorithms for Robotic Motion and Manipulation, pages 229-237. A K Peters,
Wellesley, MA, 1997.

. G. Dudek and C. Zhang. Vision-based robot localization without explicit object

models. In IEEE Int. Conf. Robot. & Autom., pages 76-82, 1996.

M. Erdmann, M. T. Mason, and Jr. G. Vanééek. Mechanical parts orienting:
The case of a polyedron on a table. Algorithmica, 10:206—247, 1993.

M. A. Erdmann and M. T. Mason. An exploration of sensorless manipulation.
IEEE Trans. Robot. & Autom., 4(4):369-379, August 1988.

K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica,
10:201-225, 1993.

. K. Y. Goldberg and M. T. Mason. Bayesian grasping. In IEEFE Int. Conf. Robot.

& Autom., 1990.

L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. Visibility-
based pursuit-evasion in a polygonal environment. International Journal of
Computational Geometry and Applications, 9(5):471-494, 1999.

T. Kameda, M. Yamashita, and I. Suzuki. On-line polygon search by a six-
state boundary 1-searcher. Technical Report CMPT-TR 2003-07, School of
Computing Science, SFU, 2003.

S. M. LaValle. Planning Algorithms. [Online], 2004. Available at
http://msl.cs.uiuc.edu/planning/.

J. M. O’Kane and S. M. LaValle. Almost-sensorless localization. In IEEFE Int.
Conf. Robot. & Autom., 2005.

J. M. O’Kane and S. M. LaValle. Global localization using odometry. In IEEFE
Int. Conf. Robot. & Autom., 2006.

J. O’Rourke. Visibility. In J. E. Goodman and J. O’Rourke, editors, Discrete
and Computational Geometry, pages 467-481. CRC Press, New York, 1997.

B. Tovar, L. Guilamo, and S. M. LaValle. Gap navigation trees: Minimal rep-
resentation for visibility-based tasks. In Proc. Workshop on the Algorithmic
Foundations of Robotics, 2004.

A. Yershova, B. Tovar, R. Ghrist, and S. M. LaValle. Bitbots: Simple robots
solving complex tasks. In AAAI National Conference On Artificial Intelligence,
2005.

