
Rule-based Model Extraction from Source Code

Rui Correia1,2, Carlos Matos1,2, Mohammad El-Ramly1, and Reiko Heckel1

1 Department of Computer Science, University of Leicester, U.K.
{rmc20, cmm22, mer14, reiko}@mcs.le.ac.uk

2 ATX Software, Portugal

Abstract. In the context of an approach for reengineering legacy soft-
ware systems at the architectural level, we present in this paper a reverse
engineering methodology that uses a model defined as a type graph to
represent source-code subject to a code categorization process. Two al-
ternative methods for referencing the source code are discussed: native
vs. graphical. To represent the code, the native representation uses the
abstract syntax tree while the graphical uses a programming language
metamodel. Two options regarding the way that the graph can relate to
the source code reference model are also considered: association model
vs. direct link. The extraction of the program representation, complying
to the type graph, is based on rules that categorize source code according
to its purpose. The techniques to address this process, such as the code
categorization rules, are shown together with examples.

1 Introduction

In this paper, we present a reverse engineering process that addresses the needs
of a methodology for architectural transformation that is being developed in the
context of Leg2Net project [1]. This reengineering methodology’s goal is to define
a process through which, given a legacy system with some known architecture
and the requirement to transform it into another known target architecture, we
can extract code fragments that correspond to the different source architectural
elements and use them to build the target architecture. This approach aims not
to limit itself to transformations between specific source and target architectures
or programming languages. Our objective on a second project, SENSORIA [2],
is to develop a methodology and tools for transformations that target Service-
Oriented Architectures. This paper will focus on the extraction of a source code
representation. This process is performed according to a set of code categoriza-
tion rules and the model achieved will comply to a metamodel defined as a type
graph. This model representation, which is called Program Representation Graph
(PRG), needs to keep traceability to the source code for reasons concerned with
the reengineering methodology. In the paper we suggest two different approaches
to reference the source code, one based on the Abstract Syntax Tree (AST) and
another one based on a metamodel of the source programming language. The

Dagstuhl Seminar Proceedings 06302
Aspects For Legacy Applications
http://drops.dagstuhl.de/opus/volltexte/2007/881



relation between the program representation graph and the model used to ref-
erence the source code can be a simple link between the two representations or
an association model.

The rest of this paper is organized as follows:

– Section 2 gives an overview of the full reengineering methodology;
– Section 3 and its subsections present the reverse engineering methodology

including the models involved and the rule-based extraction technique;
– Section 4 discusses related work;
– Section 5 presents the conclusions and future work.

2 Reengineering Methodology

Fig. 1: General Approach

The full approach, as shown in Figure 1, is a reengineering solution composed
of three steps derived from the Horseshoe Model [3]:

1. Reverse engineering, in order to achieve a representation of the source code
through its categorization and structuring;

2. Transformation techniques to achieve a representation of the target code
from the source code representation previously accomplished;

3. Generation of the target code based on the combination of the source code
and the target code representation previously achieved.

In this paper we focus on the reverse engineering part of the methodology,
where the source code is divided into blocks that are categorized according to

2



their purpose, for example User Interface Action or Data Definition, using the
information contained in the Categorization Rules (Figure 1). The output of
this process is the Source Program Representation which complies to the model
specified in the Architectural and Technology Paradigm.

The code categories used for the classification are closely related with the
semantics of the source code. They are independent of the architectural and
technology paradigm to which the program belongs. They can be divided in two
types:

– Composed by a concern and a role
– Connectors representing links between concerns

Concerns are conceptual classifications of code that are assigned regarding
its goal. A non-exclusive list of identified concerns is:

– User Interface (UI)
– Business Logic (BL)
– Data

Roles are classifications of code according to its execution processing. Some
of the identified roles are:

– Definition
– Action
– Validation

Concerns and roles are transversal concepts. A code category of this type
can consist of any combination of the two, for example: Business Logic Action
or User Interface Validation.

The connectors are one-way (non-commutative) links between different con-
cerns and include:

– Data storage/retrieval
– Network/communication
– Control: UI to BL
– Control: BL to UI
– Control: BL to Data
– Control: Data to BL

Regarding the rest of the methodology, the transformation techniques are
based in graph transformations, some of which are refactoring [4] primitives.
The target code can be reached by code generation techniques using the source
code and the transformation output. However, this is not the focus of this article.

3 Categorization Process

The categorization process consists of the division of the source code into blocks
that are categorized according to their purpose. The source code is submitted to
a set of categorization rules which result is a program representation expressed
using an instance of the model defined by the Architectural and Technology
Paradigm (Figure 1). The next subsections will detail the elements involved in
this process and examples will be provided.

3



3.1 Architectural and Technology Paradigm

The Architectural and Technology Paradigm contains a model for the program-
ming language paradigm, which is specified by means of a type graph. This model
is called the Program Representation Graph (PRG). In Figure 2, it is possible to
see a simplified model for OO. This is an extension of the type graph presented
by Tom Mens et al in [5]. It was necessary to extend that model in order to
introduce classification attributes and the notion of code block. This had to be
done because we have the need of lower granularity level than the method for
the process of code classification. Since it is necessary to keep traceability to

Fig. 2: Program Representation Graph (type graph) for the OO paradigm (simplified)

the source code for reasons concerned with the full reengineering methodology,
a method to associate it to the PRG has to be considered. Given that we want
the methodology to be as programming language independent as possible we
will not link the PRG directly to the source code. Hence, we are studying two
solutions to address this issue:

1. A native representation based on an Abstract Syntax Tree (AST)
2. A graphical representation using a metamodel for the programming language

ASTs are very well known representations of source code and allow the referenc-
ing that we need. Programming language metamodels are perhaps more difficult

4



to define but are also a solution to take into account. For Java, we can obtain
the AST using an Eclipse API from Java Development Tools (JDT) [6]. As for
the metamodel, an Eclipse Modeling Framework (EMF [7]) based metamodel
for Java called Java EMF Model (JEM) is part of the Eclipse’s Visual Editor
project, but is still in its early development stages [8].

A different issue is the type of relation between the PRG and the model used
to reference the source code. We are considering the following alternatives:

1. An extension to the type graph (PRG) by adding an attribute to the abstract
class CodeFragment that uniquely identifies the equivalent element in the
source code reference model

2. The use of an association model that defines the mapping between elements
of the PRG and corresponding elements of the source code reference model

The first alternative is a straight-forward solution that has a tight relation be-
tween both models. This is a drawback because with this option the PRG will
depend on the chosen source code reference model. Its main advantage is the
simplicity of implementation where no extra models are necessary. To use this
solution the only extension necessary is an extra attribute in the abstract class
CodeFragment of the type graph. The second alternative has greater flexibility
because it uses an association model to link the source code reference model and
the PRG. This is more flexible than the first alternative because it allows the
PRG to be independent of the chosen source code reference model. However, this
flexibility adds complexity since a model for the association is required. By con-
sidering alternatives for the source code reference model and the relation model
used to link it to with the PRG, we get four possible options. We present two
of the alternatives in Figures 3 and 4. Figure 3 shows an example using JEM as
the source code reference model and an association model to the PRG for the

Fig. 3: Example using JEM as the source code reference model and an association model
to the PRG

Fig. 4: Example using the AST from Eclipse JDT and an extra attribute in the PRG
to act as link (the dashed arrow is only for illustrative purposes)

5



element Class. Figure 4 presents an example using the AST from Eclipse JDT
and the PRG extended with an attribute to reference it.

For simplicity reasons, in the rest of the paper only one of the possible four
solutions will be used: the AST as source code reference and the extended PRG
to provide the link between them (as in Figure 4).

3.2 Program Representation

The Program Representation is an abstraction of the code. It is achieved by
mapping the code into the categories defined in the Orthogonal Code Categories,
forming a structure that stores that information together with control / data
dependencies. We are using a graph notation that is an instance of the type
graph previously defined and shown in Figure 2, the PRG, where the code is
categorized and its dependencies are defined. An example can be seen in Figure
5.

Fig. 5: Graph representing a subset of a Java sample application

Figure 5 is an instance of the extended type graph with the ASTNodeID
attribute used to reference the corresponding AST node. This graph is obtained
from the AST presented in Figure 6b. The corresponding source code can be
seen in Figure 6a.

6



import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class DepositMoney extends JInternalFrame

implements ActionListener { // ASTNode0001
private JLabel lbNo /* ASTNode0002 */, lbName,

lbDate, lbDeposit; // ASTNode0010
private JTextField txtNo, txtName, txtDeposit;
private JButton btnSave, btnCancel;
// (...)
public void actionPerformed(ActionEvent ae) {

// ASTNode0003
Object obj = ae.getSource();
if(obj == btnSave) { // ASTNode0005

if(txtNo.getText().equals("")) {
JOptionPane.showMessageDialog(this,

"Customer id", "Empty",
JOptionPane.PLAIN_MESSAGE);

txtNo.requestFocus();
}
else {

if(txtDeposit.getText().equals("")) {
JOptionPane.showMessageDialog(this,

"Amount", "Empty",
JOptionPane.PLAIN_MESSAGE);

txtDeposit.requestFocus();
}
else { // ASTNode0006
editRec();

}
}

}
if(obj == btnCancel) { // ASTNode0007

txtClear();
setVisible(false);
dispose();

}
}
//(...)
void txtClear() { // ASTNode0004

txtNo.setText("");
txtName.setText("");
txtDeposit.setText("");
txtNo.requestFocus();

}
//(...)
public void editRec () {

//(...)
}
//(...)

}

(a) Example source code

PACKAGE: null
IMPORTS(3)
TYPES(1)

TypeDeclaration
ASTNode0001
type binding: DepositMoney
BODY_DECLARATIONS(6)
FieldDeclaration

ASTNode0010
TYPE

SimpleType
type binding:
javax.swing.JLabel

FRAGMENTS(4)
VariableDeclarationFragment

ASTNode0002
variable binding:
DepositMoney.lbNo

(...)
MethodDeclaration

ASTNode0003
method binding:
DepositMoney.actionPerformed()
BODY

IfStatement
ASTNode0005
IfStatement
EXPRESSION
THEN_STATEMENT
ELSE_STATEMENT

IfStatement
EXPRESSION
THEN_STATEMENT
ELSE_STATEMENT

ASTNode0006
IfStatement

ASTNode0007
MethodDeclaration

ASTNode0004
method binding:
DepositMoney.txtClear()

(...)

(b) Example AST

Fig. 6: Source code and AST extracts from a Java sample application.

3.3 Categorization Rules

The rules that are used in the categorization process are based on the source
code characteristics and are applied over the AST. The definition of these rules

7



is not closed but some of them were already obtained. The following examples
can be given in an informal way:

1. Statements that consist of variable/attribute declarations for a type that is
known to belong to a certain concern, will be categorized as belonging to
the same concern and having the role Definition.
Example: the Java statement ’private JLabel lbNo;’ is categorized as UI
Definition because it is known that JLabel belongs to the UI concern;

2. Attributions to variables/attributes that are known to belong to a certain
concern and whose right hand side only includes the use of elements (e.g.
variables or method invocations) that belong to the same concern, will have
that concern and the role Definition.
Example: the Java statement ’lbNo = new JLabel ("Account No:");’ is
categorized as UI Definition because it is known that the attribute lbNo and
the JLabel method/constructor invocation belongs to the UI concern;

3. Variables/attributes/parameters definition/attribution that are used to store
values directly from Data Action methods/functions belong to the Data Ac-
tion category.
Example: the Java statement ’records[rows][i] = dis.readUTF();’ be-
longs to the Data Action because the readUTF operation is know to belong
to that category.

The rules will have to be applied in multiple-pass. The reason for this is the
fact that the application of a rule can enable the application of another. An
example for this need can be given using rule number 2: if a method invocation
that exists in the right hand side of the attribution is not yet categorized, the
rule will not be applied. However, after some other rule categorizes the method,
rule number 2 can be applied. The implementation of an engine that supports
the categorization process will have to contain stop conditions.

The categorization rules are defined formally with left hand side (LHS) and
right hand side expressions (RHS). The LHS consists in the prerequisites that
must be satisfied in order to apply the rule. The RHS is the result of the
rule application. The expressions are based on the architectural and technol-
ogy paradigm models. Both in the LHS and RHS there can be elements from
the AST and the type graph. An example of rule definition and the result of
applying it is presented in the next subsection.

3.4 Example

The rule number 1 (introduced in the previous subsection) can be represented
as shown in Figure 7 for the declaration of attributes of type JLabel. The LHS
expresses the type of nodes that are matched by the rule: all AST nodes of type
FieldDeclaration that have the base type SimpleType and type name JLabel.
In the AST, a field declaration statement has a list of children; each element
corresponds to an attribute being declared in the statement. These are called
declaration fragments. The RHS shows that the rule application results in the

8



creation of a node of type Variable in the instance graph for each of the decla-
ration fragments. This node will have the attributes concern and role with the
values ”UI” and ”Definition”, respectively. The attribute name of the new graph
nodes is the same of the declaration fragments in the AST. The relation between
the graph node and the AST is made via the ASTNodeID attribute.

An example of the application of this rule can be seen by relating Figures 5
and 6b. The LHS of rule number 1 is matched in the AST (Figure 6b) with the
variables instantiated as follows: [α] = ”ASTNode0010”, [β] = ”ASTNode0002”
and [X] = ”lbNo”. The result of applying the rule, as stated by the RHS, is the
creation of the Variable element in the PRG with name = ”lbNo”, concern =
”UI”, role = ”Definition” and ASTNodeID = ”ASTNode0002” (Figure 5). This
last attribute of the new graph element is the one that specifies its relation to
the AST.

Fig. 7: Categorization rule 1 (Variable/attribute declaration of known type) example
definition for the JLabel type. (The dashed arrow is used in this figure only to make
the relation between the graph and the AST more visually explicit.) Note that the text
between square brackets represents variables

4 Related Work

There is a lot of work in the area of source code representation. Here we brief a
few example works to show how this issue is dealt within different contexts.

The Dagstuhl Middle Model (DMM) [9] was developed to solve interoperabil-
ity issues of reverse engineering tools. Like our approach, it keeps traceability

9



to the source code. The DMM is composed by sub-hierarchies that include an
abstract view of the program and a source code model. The chosen way to re-
late these two is via a direct link. The Fujaba (From UML to Java And Back
Again) tool suite [10] uses design pattern [11] recognition. The source code rep-
resentation used for that process is based on an Abstract Syntax Graph (ASG).
Another representation is put forward with the Columbus Schema for C++ [12].
Here an AST conforming to the C++ model/schema is built, and a higher level
semantic information is derived from types. The work of Ramalingam et al, from
IBM research, addresses the reverse engineering of OO data models from pro-
grams written in weakly-typed languages like Cobol. In their work, the links
between the model and the code are represented in a reference table. This table
establishes the link between each model element and the line of code having no
intermediate representation [13].

The ARTISAn framework, described by Jakobac, Egyed and Medvidovic in
[14], like our approach, categorizes source code. The code categories used are:
”processing”, ”data” and ”communication”. The approach differs from ours in
several aspects. Firstly, the goal of the framework is program understanding and
not the creation of a representation that is aimed to be used as input for the
transformation part of a reengineering methodology. Another important differ-
ence is that in ARTISAn the categorization process (called ”labeling”) is based
in clues that result in the categorization of classes only. In our approach we need,
and support, the method and code block granularity levels.

5 Discussion, Conclusions and Future Work

In this paper we presented a specific program representation model for reengi-
neering purposes. Namely, it is necessary that this model keeps source code
traceability and addresses a code categorization process that classifies code
blocks according to their purpose. In this context, we presented a model for
the OO paradigm based on an attributed type graph and provided alternate
ways for source code reference models. Alternatives were also given to the way
that the program representation graph should be linked to the source code refer-
ence model. We discussed the advantages and disadvantages of these alternatives
and provided examples for one of them. The rule-based technique used to obtain
an instance of the program representation was also presented along a sample of
the code categorization rules. The next steps in the development of this reverse
engineering methodology are:

– Researching existing programming language metamodels for Java, starting
with JEM, and then also similar work being done for other languages

– Evaluating empirically the best approach as source code reference model and
the way to link it to the PRG

– Defining a set of code categorization rules that can be applied in a real-world
scenario

– Automating the code categorization process

10



Acknowledgments

R. Correia and C. Matos are Marie-Curie fellows seconded to the University of
Leicester as part of the Transfer of Knowledge, Industry Academia Partnership
Leg2Net (MTK1-CT-2004-003169). This work has also been supported by the
IST-FET IP SENSORIA (IST-2005-16004).

We would like to thank José Luiz Fiadeiro (University of Leicester), Georgios
Koutsoukos and Lúıs Andrade (both from ATX Software) for their contribution
in the reengineering methodology development.

References

1. Leg2Net: From legacy systems to services in the net. (http://www.cs.le.ac.uk/
SoftSD/Leg2Net/)

2. SENSORIA: Software engineering for service-oriented overlay computers.
(http://sensoria.fast.de/)

3. Kazman, R., Woods, S.G., Carrière, S.J.: Requirements for integrating software
architecture and reengineering models: CORUM II. In: Proceedings of the Fifth
Working Conference on Reverse Engineering (WCRE’98), Washington, DC, USA,
IEEE Computer Society (1998) 154–163

4. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Boston, MA, USA (1999)

5. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph
transformation. Software Systems Modeling (SoSyM), to appear (2006)

6. Eclipse: JDT - AST. (http://help.eclipse.org/help30/topic/org.eclipse.jdt.doc.isv/
reference/api/org/eclipse/jdt/core/dom/AST.html)

7. Eclipse: Eclipse modeling framework. (http://www.eclipse.org/emf/)
8. Eclipse: Visual editor project. (http://www.eclipse.org/vep)
9. Lethbridge, T.C., Plödereder, E., Tichelaar, S., Riva, C., Linos, P., Marchenko, S.:

The Dagstuhl Middle Model (DMM). (http://www.ece.queensu.ca/hpages/courses
/elec875/pdf/DMMDescriptionV0006.pdf)

10. Niere, J., Schäfer, W., Wadsack, J.P., Wendehals, L., Welsh, J.: Towards pattern-
based design recovery. In: Proceedings of the Twenty Fourth International Con-
ference on Software Engineering (ICSE’02), Orlando, Florida, USA, ACM Press
(2002) 338–348

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional (1995)

12. Ferenc, R., Árpád Beszédes: Data exchange with the columbus schema for c++.
In: Proceedings of the Sixth European Conference on Software Maintenance and
Reengineering (CSMR’02), Washington, DC, USA, IEEE Computer Society (2002)
59–66

13. Ramalingam, G., Komondoor, R., Field, J., Sinha, S.: Semantics-based reverse
engineering of object-oriented data models. In: Proceeding of the Twenty Eighth
International Conference on Software Engineering (ICSE’06), New York, NY, USA,
ACM Press (2006) 192–201

14. Jakobac, V., Egyed, A., Medvidovic, N.: Improving system understanding via in-
teractive, tailorable, source code analysis. In: Fundamental Approaches to Software
Engineering (FASE’05), Springer Berlin / Heidelberg (2005) 253–268

11


