Face-off: AOP+LMP vs. legacy software

Kris De Schutter, Bram Adams

{KTris.DeSchutter,Bram.Adams } @ UGent.be
Ghislain Hoffman Software Engineering Lab
INTEC, Ghent University, Belgium

ABSTRACT

This paper applies a mix of aspect-oriented programming (AOP)
and logic meta-programming (LMP) to tackle some concerns of/in
legacy environments. We present four different problems, and il-
lustrate —with code— how far AOP+LMP gets us. The legacy
environments subjected to this treatment encompass the two major
players: C, and (of course) Cobol. The aspect code is based on,
respectively, Aspicere and Cobble, two aspect languages (being)
developed by the authors.

1. INTRODUCTION

Modern business applications are characterized by a need for re-
structuring and integration, and this at a much larger scale than ever
before [8, 12]. This follows from the restructuring and integration
of organizations themselves, as they, among other things, strive to
merge their activities and, hence, their ICT infrastructure.

In doing so, there is one major obstacle which keeps popping
up: legacy systems. The term legacy brings with it an intuitive
understanding of the problem, yet it is hard to find a single, fitting
definition. Bennet defines legacy systems informally as,

“large software systems that we don’t know how to
cope with but that are vital to our organisation.” 1]

Brodie and Stonebraker describe it as,

“any information system that significantly resists mod-
ification and evolution to meet new and constantly chang-
ing business requirements.” [3]

Nicholas Gold puts it as follows,

“Legacy software is critical software that cannot be
modified efficiently. A legacy system is a socio-technical
system containing legacy software.” [6]

More definitions exist, but we will focus on two properties shared
between them:

1. The software (or system) is in a state where any modification
requires a large (disproportionate) amount of effort.

2. The software (or system) is of such value to its stakeholders
that they can not put it aside.

This paper will now present a few of these problems, and discuss
whether a mix of aspect-oriented programming (AOP) and logic
meta-programming (LMP) may bring relief. Our discussion will
take place in the context of the two major languages in legacy en-
vironments: C and Cobol. The aspect languages used here are As-
picere and Cobble. We choose not to re-iterate the design of these
—preferring to point the reader to [13, 7]—, but will present the
necessary background when needed.

Dagstuhl Seminar Proceedings 06302
Aspects For Legacy Applications
http://drops.dagstuhl.de/opus/volltexte/2007/888

1 static FILEx fp;

3 Type around tracing (Type) on (Jp):
call (Jp, " (?!.xprintf$|.xscanf$) .xs")
5 && type (Jp, Type) && !is_void(Type)
{
7 Type 1i;

9 fprintf (fp, "before (_%s_in_%s_)\n",
Jp—->functionName, Jp->fileName);

i = proceed ();

fprintf (fp, "after_ (. %s_in_%s_)\n",
15 Jp->functionName, Jp->fileName);

17 return i;
}
19
Type around cleanup (Type,Name) on (Jp):
21 execution (Jp, "main")
&& type (Jp, Type) && !is_void(Type)
23 && logfile(File) && stringify(File,Name)

25 Type 1i;
27 fp = fopen (Name, "a");
i = proceed ();

29 fclose (fp);

31 return i;

Figure 1: Part of a generic tracing aspect.

2. OBLIGATORY TRACING

Tracing is one of the classic examples of (non-functional) cross-
cutting concerns, due to its extremely scattered nature, and cor-
roborated by its apparent simplicity. In legacy environments how-
ever, it might actually prove useful too, as such dedicated tools as
DTRACE [5] do not necessarily exist there.

2.1 The reasoning behind AOP+LMP

What sets procedural programming apart from object-orientation
(00), is its primitive support for subtyping. Whereas classes in
Java are related to each other by inheritance and implementation
relationships, and whereas C++ depends on its powerful template
mechanism, C has none of this. Admittedly, one can always cast to
void-pointers, but this is not as safe as OO-mechanisms.

Such limitations severely impact the introduction of AOP: writ-
ing one generic advice capable of advising calls to procedures with
varying parameter lists and return types, is impossible without bless-

ing Aspicere with reflective powers. Cobol, which does not even
have the “luxury” of void-pointers, needs this even more.

We can access these reflective capabilities through the applica-
tion of logic meta-programming (LMP), complemented with a sim-
ple template mechanism. Briefly, basing the pointcut language on
a logic language (such as Prolog) gives access to a powerful uni-
fication mechanism, allowing binding of data during the matching
phase of the pointcut. This way, information encountered at each
individual advised join point can be bound to logic variables (or
“bindings” for short). Using these bindings both in the advice’s
signature as well as in the advice body, solves the problem of writ-
ing generic advice. For more information on this, see [7, 13].

2.2 A generic tracing aspect...

In figure 1, we have shown part' of a generic tracing aspect writ-
ten in Aspicere. The idea is to trace calls to all procedures ex-
cept for the print £- and scanf-families (line 4) and stream out-
put into a file (£p, declared on line 1) before and after each call
(lines 9 and 14). Opening and closing of the file pointer on line 1 is
achieved by advising the main-procedure (line 21).

Aspects are encapsulated in plain compilation units able to hold
advice constructs. Advice itself features a signature (lines 3 and 20),
a pointcut (lines 4-5 and 21-23) and a body (lines 7-17 and 25—
31). The advice body is written in C, with additions as explained in
the previous subsection.

In figure 1, for example, the return type of the advised procedure
call is bound on lines 5 and 22. These bindings are then used in
the advices’ signatures (lines 3 and 20) as well as in their bodies
(lines 7 and 25). This way, the tracing advice is not limited to
one particular type of procedures, and the file pointer management
is oblivious to the specific signature of the main procedure. The
well-known thisJoinPoint construct from Aspect]-like lan-
guages, can also be accessed through a join point-specific binding
(Jp on lines 3 and 20) and used as such (lines 10 and 15).

Applied to reverse-engineering contexts, using LMP and a tem-
plate mechanism allows non-invasive and intuitive extraction of
knowledge hidden inside legacy systems, without prior investiga-
tion or exploration of the source code [13]. One does not first have
to extract all available types and copy the tracing advice for all of
them, as was experienced in [4].

2.3 ...crosscuts the build system

In [13], we applied this tracing aspect to a large case study (453
KLOC) to enable dynamic analyses. Although we did not need to
delve into the source code (thanks to the generic advice), integrat-
ing Aspicere’s weaving framework into the existing build system
did prove more of a problem.

As source code is the most portable representation of C programs
across several platforms, Aspicere’s weaver transforms base code
and aspects into woven C code and as such acts as a preproces-
sor to a normal C compiler. Because the original makefile hierar-
chy drives the production of object files, libraries and executables,
using a myriad of other tools and preprocessors (e.g. embedded
SQL), and all of these potentially process advised input, it turns out
that Aspicere’s weaver crosscuts the makefile system. We therefore
need to find out what is produced at every stage of the build and un-
ravel accompanying linker dependencies.

Although one does not need to delve into source code for apply-
ing AOP to a legacy system, one does need to find out about the
build system in use. First, an inventory of the included tools, and
their interplay, has to be made. For each of these we must then find

1We do not show advice for void procedures, as these are equivalent to the advices
shown, less the need for a temporary variable to hold the return value.

a way to plug in the weaver.

More specifically, Aspicere’s weaver needs one preprocessed in-
put at a time and its output will be another tool’s input. Addition-
ally, the normal weaving habit is to transform aspects into genuine
C compilation units by converting the advices into (multiple) pro-
cedures. This enables the normal C visibility rules in a natural way,
i.e. the visibility of fp on figure 1 is tied to the module containing
the aspect. To accomplish this modularisation, we need to link this
single transformed aspect into each advised application.

In case all makefiles are automatically generated using, for in-
stance, automake, one could try to replace (i.e. alias) the tools in
use by wrapper scripts which invoke the weaving process prior to
calling the original tool. The problem here is that this is an all-or-
nothing approach. It may be that in some cases weaving is needed
(e.g. a direct call to gcc), and in others not (e.g. when gcc is
called from within esgl). Making the replacement smart enough
to know what to do when is not a trivial task.

In the case of [13], many of the 267 makefiles were indeed gen-
erated. Still, some were manually adapted afterwards, while oth-
ers were written from scratch. Due to issues with the embedded
SQL preprocessor and the irregular presence of certain environ-
ment variables, we wrote some scripts to directly alter the make-
files and “weave in” the right operations on Aspicere’s weaver in-
stead of aliasing the tools themselves. However, detecting where
exactly our tool failed (due to the heterogeneously structured make-
files) and making the necessary manual adaptations still took sev-
eral hours.

Without intimate knowledge of the build system, it was hard to
tell whether source files are first compiled before linking all ap-
plications, or (more likely) whether all applications are compiled
and linked one after the other. As such, our weaving approach
could not be applied. As an ad hoc solution, we opted to move
the transformed advice into the advised base modules themselves.
This meant that we had to declare fp as a local variable of the
tracing advice, resulting in huge run-time overhead due to re-
peated opening and closing of the file. Using a shared library in the
first place seems to be a better solution.

3. BUSINESS RULE MINING

In [9], Isabel Michiels and the first author discuss the possibility
of using dynamic aspects for mining business rules from legacy
applications. Some suggestions as to how this may be done are
presented based on the following fictitious, though realistic case:

“Our accounting department reports that several of
our employees were accredited an unexpected and un-
explained bonus of 500 euro. Accounting rightfully re-
quests to know the reason for this unforeseen expense.”

We will now revisit this case, showing the actual Cobble advices
which may be used to achieve the ideas set forth there.

We start off by noting that we are not entirely in the dark. The
accounting department can give us a list of the employees which
got “lucky” (or rather unlucky, as their unexpected bonus did not
go by unnoticed). We can encode this knowledge as facts:

META-DATA DIVISION.
2 FACTS SECTION.
LUCKY-EID VALUE 7777.
4 LUCKY-EID VALUE 3141.
*> etc.

Furthermore, we can also find the definition of the employee file
which was being processed, in the copy books:

1 DATA DIVISION.

FILE SECTION.
3 FD EMPLOYEE-FILE.
01 EMPLOYEE.
5 05 EID PIC 9(4).
*> etc.

Lastly, from the output we can figure out the name of the data
item holding the employee’s total salary. This data item, BNS-EUR,
turns out to be an edited picture. From this we conclude that it is
only used for pretty printing the output, and not for performing ac-
tual calculations. At some time during execution the correct value
for the bonus was moved to BNS—EUR, and subsequently printed.
So our first task is to find what variable that was.

We go at this by tracing all moves to BNS—-EUR, but only while
processing one of our lucky employees:

FIND-SOURCE-ITEM SECTION.
2 USE BEFORE ANY STATEMENT
AND NAME OF RECEIVER EQUAL TO "BNS-EUR"
4+ AND BIND LOC TO LOCATION
AND IF EID EQUAL TO LUCKY-EID.
6 MY-ADVICE.
DISPIAY EID, ":_", LOC.

—

In short, this advice states that before all statements (line 2) which
have BNS—-EUR as a receiving data item (line 3), and if EID (id for
the employee being currently processed; see data definition higher
up) equals a lucky id (runtime condition on line 5; similar to As-
pect)’s i f condition), we display the location of that statement as
well as the current id.

We now find the possibilities to be one of several string liter-
als (which we can therefore immediately disregard) and a variable
named BNS—-EOY, whose name suggests it holds the total value for
the end-of-year bonus.

Our next step is to figure out how the end value was calculated.
This would allow us to check the figures and maybe spot an error.
‘We set up another aspect to trace all statements modifying the vari-
able BNS—-EQY, but again only while processing a lucky employee.
We do this in three steps. First:

1 TRACE-BNS-EOY SECTION.
USE BEFORE ANY STATEMENT
3 AND NAME OF RECEIVER EQUAL TO "BNS-EOY"
AND BIND LOC TO LOCATION
5 AND IF EID EQUAL TO LUCKY-EID.
MY-ADVICE.
7 DISPLAY EID, ":_statement_at_ ", LOC.

Before execution of any statement (line 2) having BNS-EQY as a
receiving data item (line 3), and when processing a lucky employee
(line 5), this would output the location of that statement. Next:

1 TRACE-BNS-EOY-SENDERS SECTION.
USE BEFORE ANY STATEMENT

3 AND NAME OF RECEIVER EQUAL TO "BNS-EOY"
AND BIND SENDING TO SENDER

5 AND BIND SENDING-NAME TO NAME OF SENDING
AND IF EID EQUAL TO LUCKY-EID.

7 MY-ADVICE.
DISPLAY SENDING-NAME, " _sends_", SENDING.

This outputs the name and value for all sending data items (lines 4
and 5) before execution of any of the above statements. This allows
us to see the contributing values. Lastly, we want to know the new
value for BNS-EOY which has been calculated.

TRACE-BNS-EOY-VALUES SECTION.
2 USE AFTER ANY STATEMENT
AND NAME OF RECEIVER EQUAL TO "BNS-EOY"
4 AND IF EID EQUAL TO LUCKY-EID.
MY-ADVICE.
¢ DISPLAY "BNS-EOY_=_", BNS-EOY.

We now find a data item (cryptically) named B31241, which is
consistently valued 500, and is added to BNS—EOY in every trace.
Before moving on we’d like to make sure we’re on the right track.
We want to verify that this addition of B31241 is only triggered
for our list of lucky employees. Again, a dynamic aspect allows us
to trace execution of exactly this addition and helps us verify that
our basic assumption holds indeed.

We start by recording the location of the “culprit” statement as a
usable fact:

META-DATA DIVISION.
2 FACTS SECTION.
CULPRIT-LOCATION VALUE 666.
4 *> other facts as before

>

The test for our assumption may then be encoded as:

TRACE-BNS-EOY-SENDERS SECTION.
2 USE BEFORE ANY STATEMENT
AND LOCATION EQUAL TO CULPRIT-LOCATION
4 AND IF EID NOT EQUAL TO LUCKY-EID.
MY-ADVICE.
6 DISPLAY EID, ":_back_to_the_drawing _board.".

This tests whether the culprit statement gets triggered during the
process of any of the other employees. If it does, then something
about our assumption is wrong. Or it may be that the accounting
department has missed one of the lucky employees.

Given the verification that we are indeed on the right track, the
question now becomes: why was this value added for the lucky
employees and not for the others? Unfortunately, the logic behind
this seems spread out over the entire application. So to try to figure
out this mess we would like to have an execution trace of each
lucky employee, including a report of all tests made and passed,
up to and including the point where B31241 is added. Dynamic
aspects allow us to get these specific traces.

First, some preliminary work:

WORKING-STORAGE SECTION.

2 01 FLAG PIC 9 VALUE O.
88 FLAG-SET VALUE 1.
4 88 FLAG-NOT-SET VALUE O.

The FLAG data item will be used to indicate when tracing should
be active and when not. For ease of use we also define two “con-
ditional” data items: FLAG-SET and FLAG-NOT-SET. These re-
flect the current state of our flag.

Our first advice is used to trigger the start of the trace:

TRACE-START SECTION.
2 USE AFTER READ STATEMENT
AND NAME OF FILE EQUAL TO "EMPLOYEE-FILE"
4 AND BIND LOC TO LOCATION
AND IF EID EQUAL TO LUCKY-EID.
6 MY-ADVICE.
SET FLAG-SET TO TRUE.
s DISPLAY EID, ":_start,_at_", LOC.

L.e., whenever a new employee record has been read (line 2 and 3),
and that record is one for a lucky employee (line 5), we set the flag
to true (line 7). We also do some initial logging (line 8).
The next advice is needed for stopping the trace when we have
reached the culprit statement:
TRACE-STOP SECTION.
2 USE AFTER ANY STATEMENT
AND LOCATION EQUAL TO CULPRIT-LOCATION.
4 MY-ADVICE.
SET FLAG-NOT-SET TO TRUE.
6 DISPLAY EID, ":_stop_at.", LOC.

Then it is up to the actual tracing. We capture the flow of proce-
dures, as well as execution of all conditional statements:

1 DISPATCHING SECTION.
USE AROUND PROGRAM
3 AND BIND PARA TO PARAGRAPH
AND BIND PARA-NAME TO NAME OF PARA
5 AND IF METHOD-NAME EQUAL TO PARA-NAME.
MY-ADVICE.
7 PERFORM PARA.

9 ENCAPSULATION SECTION.
USE AROUND PROGRAM.
11 MY-ADVICE.
PERFORM ERROR-HANDLING.
13 EXIT PROGRAM.

Figure 2: Aspect for procedure encapsulation.

TRACE-PROCEDURES SECTION.
2 USE AROUND PROCEDURE
AND BIND PROC TO NAME
4+ AND BIND LOC TO LOCATION
AND IF FLAG-SET.
6 MY-ADVICE.
DISPLAY EID, ":_before_ ", PROC, "_at_", LOC.
s PROCEED.
DISPLAY EID, ":_after_", PROC, "_at_", LOC.

TRACE-CONDITIONS SECTION.

12 USE AROUND ANY STATEMENT

AND CONDITION
14 AND BIND LOC TO LOCATION

AND IF FLAG-SET.
16 MY-ADVICE.

DISPLAY EID, ": before_condition_at_", LOC.
18 PROCEED.

DISPLAY EID, ":_ after_condition_at_", LOC.

From this trace we can then deduce the path that was followed
from the start of processing a lucky employee, to the addition of
the unexpected bonus. More importantly, we can see the condi-
tions which were passed, from which we can (hopefully) deduce
the exact cause.

This is where the investigation ends. For those curious, we refer
to the original paper for the solution [9]. Whatever the cause of the
problem, AOP+LMP provided us with a flexible and powerful tool
to perform our investigation.

4. ENCAPSULATING PROCEDURES

In [11], Harry and Stephan Sneed talk about creating web ser-
vices from legacy host programs. They argue that while there exist
tools for wrapping presentation access and database access for use
in distributed environments,

“the accessing of [...] the business logic of these pro-
grams, has not really been solved.”

In an earlier paper, [10], Harry Sneed discusses a custom tool
which allowed the encapsulation of Cobol procedures, to be able
to treat them as “methods”, a first step towards wrapping business
logic. Part of that tool has the responsibility of creating a switch
statement at the start of the program, which performs the requested
procedure, depending on the method name.

4.1 The basic wrapping aspect...

Figure 2 shows how encapsulation of procedures (or “business
logic”) can be achieved, in a generic way, using AOP and LMP.
The aspect shown here, written in Cobble, consists of two advices:
one named DISPATCHING, the other ENCAPSULATION.

The first advice (lines 1-7) takes care of the dispatching. It acts
around the execution of the entire program (line 2), and once for
every paragraph in this program (line 3). The latter effect is caused
by the ambiguousness of the PARAGRAPH selector, as it applies to
any paragraph. Rather than just picking one, what Cobble does is
pick them all: the advice gets activated for every possible solution
to its pointcut, one after the other.

Furthermore, the DISPATCHING advice will only get triggered
when METHOD-NAME matches the name of the selected paragraph
(extraction of this name is seen on line 4). This is encoded in a run-
time condition on line 5. Finally, the advice body, when activated,
simply calls the right paragraph (PERFORM statement on line 7).

The second advice (lines 9-13) serves as a generic catch-all. It
captures execution of the entire program (line 10), but replaces this
with a call to an error handling paragraph (line 12) and an exit of
the program (line 13). The net effect is that whenever the value
in METHOD-NAME does not match any paragraph name in the pro-
gram, the error will be flagged and execution will end. This, to-
gether with the first advice, gives us the desired effect.

We are left with the question of where METHOD-NAME is de-
fined, and how it enters our program. The answer to the first ques-
tion is simply this: any arguments which get passed into a Cobol
program from the outside must be defined in a linkage section. l.e.:

I LINKAGE SECTION.
01 METHOD-NAME PIC X (30) VALUE SPACES.

Furthermore, the program division needs to declare that it expects
this data item as an input from outside:

PROGRAM DIVISION USING METHOD-NAME.

4.2 ... is hard to wrap up

This begs the question as to how this input parameter was in-
serted in an AOP-like way. Simply: it was not. We tacitly as-
sumed our aspect to be defined inside the target program (a so-
called “intra-aspect”), which dismissed the need for any added in-
troduction mechanism. Of course, for a truly generic aspect (an
“inter-aspect”) we need to remedy this.

Definition of the METHOD-NAME data item is no big problem.
We can simply define it within an aspect module, which, upon
weaving, would extend the target program (modulo some alpha-
renaming to prevent unintended name capture):

| IDENTIFICATION DIVISION.
ASPECT-ID. PROCEDURE-WRAPPING.

DATA DIVISION.
5 LINKAGE SECTION.
01 METHOD-NAME PIC X (30) VALUE SPACES.

From this, it becomes pretty obvious that METHOD-NAME should
be used as an input parameter. The concept of a linkage section
makes no sense for an external aspect module, as an aspect will
never be called in such a way. Indeed, we might even say that it
should not be used that way. Therefore the appearance of a linkage
section is a sufficient declaration of intent.

The hard part lies with the semantics of declaring extra input data
items on another program. What do we expect to happen?

e Does the introduction of an input data item by the aspect
replace existing input items in the advised program, or is it
seen as an addition to them?

e If it is added to them, then where does it go into the existing
list of inputs? At the front? At the back?

e What happens when multiple aspects define such input items?
In what order do they appear?

e How do we handle updating the sites where the woven pro-
gram gets called? The addition of an extra input item will
have broken these.

Consider the C/Java/...equivalent of this: what does it mean to
introduce new parameters on procedures/methods? More to the
point, should we allow this?

4.3 Full encapsulation

The complexity of the problem increases when we consider an-
other important feature of Sneed’s tool (ignored until now):

“For each [encapsulated] method a data structure is
created which includes all variables processed as in-
puts and outputs. This area is then redefined upon a
virtual linkage area. The input variables become the
arguments and the output variables the results.” [10]

Put another way, we must find all data items on which the en-
capsulated procedures depend. These are then gathered in a new
record (one per procedure), which redefines a “virtual linkage area”
(in C terms: a union over all newly generated typedefs). This link-
age area must then also be introduced as an input data item of the
whole program.

Such a requirement seems far out of the scope of AOP. While
it has a crosscutting concern in it (cfr. “for each method”), this
concern can not be readily defined using existing AOP constructs.

Instead, figure 3 shows a different approach to the problem. It is
encoded neither in Cobble or Aspicere, opting for a different view
on the AOP+LMP blend. Whereas the previous examples were
based on LMP embedded in AOP, figure 3 is based on embedding
AOQOP in LMP, similar to the approach in [2].

The code can be read as follows. Whatever you find enclosed
in curly brackets ({...}) is (aspect-)code which is to be gener-
ated. This can be further parameterized by placing variables in
“fishgrates” (<...>), which will get expanded during processing.
Everything else is Prolog, used here to drive the code generation.

Let us apply this to the code in figure 3. Lines 1 and 2 declare
the header of our aspect, while lines 4-6 define the linkage sec-
tion as discussed before. Lines 8—15 calculate all slices (s1ice/2
on line 11) for all paragraphs (paragraph/2 on line 10). From
each of these we extract the working-storage section (wss/2 on
line 12), which gives us the required in- and output parameters,
collected in A11InOut (line 14). From this we extract the size of
the largest one (max_size/2 on line 17) which is used next in the
definition of the virtual storage space (line 18).

Next, for each paragraph (i.e. for each member of A11InOut),
we generate a redefinition of the virtual space to include all data
items on which that paragraph depends (lines 20-26). The redef-
inition can be seen on line 21, where it is given a unique name
(i.e. SLICED-paragraph-name). Its structure is defined by going
over all records in the working-storage section for that paragraph
(line 22), cloning each record under a new, unique name while
updating the level number (line 23), and then outputting this new
record (line 24). This concludes the data definition.

Next, the procedure division is put down, declaring the necessary
parameters (line 28). We then generate advice similar to figure 2,
but now some extra work is needed. First, the data from the virtual
storage space as redefined for the paragraph must be transferred
to the original records defined for the program (lines 37-39). The
original paragraph may then be called without worry (line 40). Af-
terwards, the calculated values are retrieved by moving them back

{ IDENTIFICATION DIVISION.
2 ASPECT-ID. PROCEDURE-WRAPPING.

4 DATA DIVISION.
LINKAGE SECTION.
6 01 METHOD-NAME PIC X (30) VALUE SPACES. },

s findall (
[Name, Para, Wss],
10 (paragraph (Name, Para),
slice (Para, Slice),
12 wss (Slice, Wss)

)y
14 AllInOut

) ’

max_size (A1l1InOut, VirtualStorageSize),
18 { 01 VSPACE PIC X (<VirtualStorageSize>). },

20 all (member ([Name, Para, Wss], AllInOut), (
{ 01 SLICED-<Name> REDEFINES VSPACE.},

22 all((record(R, Wss), name (R, RName)), (
clone_and_shift (R, "<RName>-<Name>", SR),
24 { <SR> }

))

26)),

28 { PROGRAM DIVISION USING METHOD-NAME, VSPACE.
DECLARATIVES. },
30
all (member ([Name, Para, Wss], AllInOut), (

32 { WRAPPING-FOR-<Name> SECTION.
USE AROUND PROGRAM

34 AND IF METHOD-NAME EQUAL TO "<Name>".
WRAPPING-BODY.

36 by

all((top_record(R, Wss), name (R, RName)),
38 { MOVE <RName>-<Name> TO <RName>.}

) 4
40 { PERFORM <Name>. }

all((top_record(R, Wss), name (R, RName)),
42 { MOVE <RName> TO <RName>-<Name>. }

)

“),

46 { ENCAPSULATION SECTION.
USE AROUND PROGRAM.

48 MY-ADVICE.
PERFORM ERROR-HANDLING.
50 EXIT PROGRAM.

END DECLARATIVES. }

Figure 3: Full procedure encapsulation.

to the virtual storage space, again as redefined for the paragraph
(lines 41-43). All that is left is the generic catch-all (lines 46-50),
and the closing of the aspect (line 51).

Despite the inherent complexity of the problem, AOP+LMP al-
lowed us to write down our crosscutting concern with certain ease.
LMP was leveraged to define our aspect by reasoning over the pro-
gram. AOP was leveraged to tackle the actual weaving semantics,
unburdening us from writing program transformations.

Granted, we quite happily made use of a slicing predicate to do
most of the hard work (line 11). Still, the use of libraries which
hide such algorithms is another bonus we can get from LMP.

5. YEAR 2000 SYNDROME

The Y2K-bug is probably the best-known example of problems
related to legacy systems. It is important to understand that at the

heart of this was not a lack of technology or maturity thereof, but
rather the understandable failure to recognize that code written as
early as the sixties would still be around some forty years later.

So might AOP+LMP have helped us out? The problem state-
ment certainly presents a crosscutting concern: whenever a date is
accessed in some way, make sure the year is extended.

This presents our first problem: how do we recognize data items
for dates in Cobol? While Cobol has structured records, and strin-
gent rules for how data is transferred between them, they carry no
semantic information whatsoever. Knowing which items are dates
and which are not requires human expertise. The nice thing about
LMP is that we could have used it to encode this.

In C, where a disaster is expected in 20382 (hence Y2K38), the
recognition problem is less serious because of C’s more advanced
typing mechanisms. A date in (ANSI-)C could be built around the
standard time provisions (in “time.h”), or otherwise some (hope-
fully sensibly named) custom typedef. In the former case, recom-
piling the source code on a system using more than 32 bits to rep-
resent integers solves everything immediately. Whereas all vari-
ables in Cobol have to be declared in terms of the same, low-level
Cobol primitives, C allows variables to be declared as instances of
user-defined types. In this sense, the latter case (custom date type)
represents much less of a problem. The check for a date would be
equivalent to a check for a certain type.

Second problem for Cobol: given the knowledge of which data
items carry date information, how do we know which part encodes
the year? It may be that some item holds only the current year, or
that it holds everything up to the day. A data item may be in Gre-
gorian form (i.e. “yyddd”) rather than standard form (“yymmdd”).
Of course, that “standard” may vary from locale to locale (the au-
thors would write it as “ddmmyy”’). But again, we could use LMP
to encode this knowledge.

Let us assume we can check for data items which hold dates, and
that these have a uniform structure (in casu “yymmdd”). Then we
might write a date expansion aspect using a century window, like:

1 AN-YYMMDD-FIX SECTION RETURNING MY-DATE.
USE AROUND SENDING-DATA-ITEM

3 AND SENDING-DATA-ITEM IS DATE.
MY-ADVICE.

5 MOVE PROCEED TO MY-DATE (3:8) .
IF MY-DATE (3:4) GREATER THAN 50 THEN

7 MOVE 19 TO MY-DATE (1:2)
ELSE
9 MOVE 20 TO MY-DATE(1:2).

This advice has two problems. One is the definition of MY-DATE
(referred to as a return value on line 1, and assumed to have a
“yyyymmdd” format). In Cobol, all data definitions are global.
Hence, MY-DATE is a unique data item which gets shared between
all advices. While this is probably safe most of the time, it could
lead to subtle bugs whenever we have nested execution of such ad-
vice.® The same is true for all advices in Cobble. Only, in this case,
the need for a specific return value makes it surface more easily. Of
course, in this case, the fix would be to require duplication of this
data item for all advice instantiations.

The greater problem lies in the weaving. When committed to a
source-to-source approach, as we are with Cobble, weaving any-
thing below the statement level becomes impossible. As Cobol
lacks the idea of functions*, we can not replace access to a data

2More details on http://www.merlyn.demon.co.uk/critdate.htm
3Though not in this case, as the structure of the advice body only refers to the data
item after the PROCEED statement.

4Functions can be written in later versions of Cobol. Our focus on legacy systems,
however, rules these out for use here.

item with a call to a procedure (whether advice or the original kind)
as we could do in C. The remedy for this would be to switch to
machine-code weaving, but we are reluctant to do so, as we would
lose platform independence. Common virtual machine solutions
(e.g. as with ACUCobol) are not widespread either.

6. CONCLUSION

We discussed four problems with legacy software, and showed
how three of these, might be aided through a mix of AOP and LMP.
Tracing in C and business rule mining in Cobol went smoothly, us-
ing LMP as a pointcut mechanism in AOP. Encapsulation of proce-
dures in Cobol required a more generative approach, by embedding
AOP in LMP.

As for the Y2K problem in Cobol, only very advanced, nearly
weaver-level pointcuts in synergy with various cooperating intro-
ductions might manage this. As it is, the semantics of Cobol, espe-
cially its lack of typing, present too much of a limitation. In C, the
Y2K38 problem can still be managed reasonably, precisely because
it does feature such typing.

All in all, AOP+LMP proves a useful, flexible and strong tool to
tackle the ills of legacy software.

7. ACKNOWLEDGEMENTS

Kris De Schutter received support within the Belgian research
project ARRIBA, sponsored by the IWT, Flanders. Bram Adams is
supported by a BOF grant from Ghent University.

8. BIBLIOGRAPHY

[1] K. Bennett. Legacy systems: Coping with success. IEEE
Software, 12(1):19-23, 1995.

[2] J. Brichau, K. Mens, and K. De Volder. Building composable
aspect-specific languages with logic metaprogramming. In
GPCE, pages 110-127, 2002.

[3] M. L. Brodie and M. Stonebraker. Migrating Legacy
Systems. Morgan Kaufmann, 1995.

[4] M. Bruntink, A. van Deursen, and T. Tourwé. An initial
experiment in reverse engineering aspects. In WCRE, pages
306-307. IEEE Computer Society, 2004.

[5] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
instrumentation of production systems. In USENIX Annual
Technical Conference, General Track, pages 15-28, 2004.

[6] N. Gold. The meaning of “legacy systems”, 1998.

[7] R. Lammel and K. D. Schutter. What does Aspect Oriented
Programming mean to Cobol? In AOSD 05, pages 99-110,
New York, NY, USA, 2005. ACM Press.

[8] L. Michiels, D. Deridder, H. Tromp, and A. Zaidman.
Identifying problems in legacy software: Preliminary
findings of the ARRIBA project. In ELISA, ICSM’03.

[9] I. Michiels, T. D’Hondt, K. De Schutter, and G. Hoffman.
Using dynamic aspects to distill business rules from legacy
code. In Dynamic Aspects Workshop, pages 98—102, 2004.

[10] H. M. Sneed. Encapsulating legacy software for use in
client/server systems. In WCRE, page 104, 1996.

[11] H. M. Sneed and S. H. Sneed. Creating web services from
legacy host programs. In WSE, pages 59-65, 2003.

[12] S. Tichelaar. Modeling Object-Oriented Software for Reverse
Engineering and Refactoring. PhD thesis, Berne, 2001.

[13] A.Zaidman, B. Adams, K. De Schutter, S. Demeyer,
G. Hoffman, and B. De Ruyck. Regaining lost knowledge
through dynamic analysis and Aspect Orientation - an
industrial experience report. In CSMR, 2006.

