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Abstract. The paper proposes a logical systematization of the notion of counts-
as which is grounded on a very simple intuition about what counts-as statements
actually mean, i.e., forms of classification. Moving from this analytical thesis the
paper disentangles three semantically different readings of statements of the type
X counts as Y in context C, from the weaker notion of contextual classification
to the stronger notion of constitutive rule. These many ways in which counts-as
can be said are then formally addressed by making use of modal logic techniques.
The resulting framework allows for a formal characterization of all the involved
notions and their reciprocal logical relationships.
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1 Introduction

The term “counts-as” derives from the paradigmatic formulation that in [1] and [2] is
attributed to the non-regulative component of institutions, i.e., constitutive rules:

[...] “institutions” are systems of constitutive rules. Every institutional fact is
underlain by a (system of) rule(s) of the form “X counts as Y in context C”
( [1], pp.51-52).

In legal theory the non-regulative component of normative systems has been labeled in
ways that emphasize a classificatory, as opposed to a normative or regulative, character:
conceptual rules( [3]), qualification norms( [4]), definitional norms( [5]). Constitutive
rules are definitional in character:

The rules for checkmate or touchdown must ‘define’checkmate in chessor
touchdown in American Football[...] ( [1], p.43).

With respect to this feature, a first reading of counts-as is thus readily available: it is
plain that counts-as statements express classifications. For example, they express what
is classifiedto be a checkmate in chess, or a touchdown in American Football. However,
is this all that is involved in the meaning of counts-as statements?

The interpretation of counts-as in merely classificatory terms does not do justice
to the notion which is stressed in the label “constitutive rule”, that is, the notion of
constitution. Aim of the paper is to show that this notion, as it is presented in some work
in legal and social theory, is amenable to formal characterization and that the theory we
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developed in [6,7] provides a ground for its understanding. The paper disentangles and
analyzes three precise senses in which it can be said that “X counts as Y in context
C”. For each of these different senses of counts-as a formal semantics is developed by
making use of standard modal logic techniques. From a methodological point of view,
we will proceed as recommended here:

“[. . . ] it seems to me obvious that the only rational approach to such problems
would be the following: [1] We should reconcile ourselves with the fact that we
are confronted, not with one concept, but with several different concepts which
are denoted by one word; [2] we should try to make these concepts as clear as
possible (by means of definition, or of an axiomatic procedure, or in some other
way); [3] to avoid further confusions, we should agree to use different terms for
different concepts; and then we may proceed to a quiet and systematic study
of all concepts involved, which will exhibit their main properties and mutual
relations” ( [8], p. 355).

The structure of the paper reflects its method. Section2 disentangles three different
meanings of counts-as statements and exposes a first informal analysis. In Section3
a modal logic of contextual classification is introduced and by means of it a formal
analysis of the classificatory view of counts-as is provided. The two remaining senses of
counts-as are formally analyzed in Sections5 and6. Finally, the relationships between
the three readings are studied in Section7. Conclusions follow in Section8.

2 Counts-as between Classification and Constitution

Consider the following reasoning pattern.

Example 1.It is a rule of normative systemΓ that conveyances transporting people or
goods count as vehicles; it is always the case that bikes count as conveyances trans-
porting people or goods but not that bikes count as vehicles; therefore, in the context of
normative systemΓ , bikes count as vehicles.

This is an instance of a typical reasoning pattern involving constitutive rules. The
counts-as locution occurs three times. However, the second premise states a gener-
ally acknowledged classification (“bikes count as conveyances transporting people or
goods”), while the conclusion states classification which is considered to hold only
with respect to the normative system at issue (“according to normative systemΓ , bikes
count as vehicles”). The first premise expresses something yet different, a classifica-
tion which is brought about —constituted— by the normative system: “conveyances
transporting people or goods are classified as vehicles” is one of the rules ofΓ .

2.1 The classificatory reading of counts-as

The fact that “bikes count as conveyances transporting people or goods” can be readily
analyzed as a form of classification: the concept ‘bike’ is a subconcept of the concept
‘conveyance transporting people or goods’. ( [6,9,10]).
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In Example1 one of the premises was that bikes do not always count as vehicles.
In other words, there are contexts in which ‘bike’ is not a subconcept of ‘vehicle’. This
suggests that a notion of context is necessary because classifications holding for a nor-
mative system are not of a universal kind, they do not hold in general. The classificatory
reading of counts-as statements of the form “X counts-asY in contextc” runs thus as
follows: “X is a subconcept ofY in contextc”. Following much literature on context
theory (see for instance [11, 12]) we conceive of a context simply as set of situations
(possible worlds). What precisely these situations have to be in order to be considered
a context will be clarified soon discussing the notion of constitutive rule (Section2.3).

Classificatory counts-as will be formally studied in Section3. A more extensive dis-
cussion of the intuitions underpinning the classificatory reading of counts-as statements
can be found in [6,7].

2.2 Counts-as statements as proper classifications

The analytic literature on constitutive norms often comes to emphasize the following
characteristic feature: counts-as statements are not just classifications but “new” clas-
sifications, that is, classifications which would not hold without the normative system
stating them:

“Where the rule is purely regulative, behaviour which is in accordance with the
rule could be given the same description or specification (the same answer to
the question “What did he do?”) whether or not the rule existed, provided the
description or specification makes no explicit reference to the rule. But where
the rule (or system of rules) is constitutive, behaviour which is in accordance
with the rule can receive specifications or descriptions which it could not re-
ceive if the rule did not exist” ( [1], p.35).

This was the case for the conclusion of the inference in Example1: “in the context of
normative systemΓ , bikes count as vehicles” although this is not generally the case.
In this view, counts-as statements do not only state contextual classifications, but they
state new classifications which would not otherwise hold.

Observation 1 Counts-as statements are classifications which hold with respect to a
context (set of situations) but which do not hold in general (i.e., with respect to all
situations).

We call counts-as statements intended in the sense of Observation1 proper contextual
classifications. In other words,X counts asY in contextc becauseX is classified
asY in c but also because this does not hold in general, i.e., in the global context.
They state that something new is brought about and in this sense the notion of proper
contextual classification already captures a precise notion of constitution: the fact that
X is classified asY is constituted by contextc in the sense that out of contextc it might
not hold. Proper contextual classifications will be formally studied in Sections4.1 5.
A more detailed exposition of the intuitions behind the proper classificatory view on
counts-as can be found in [7].



2.3 Counts-as statements as constitutive rules

Example1 sketched an inference grounded on a constitutive rule: “It is a rule of norma-
tive systemΓ that conveyances transporting people or goods count as vehicles”. First
of all, this statement expresses a classification which is brought about by the normative
systemΓ (“conveyances transporting people or goods count as vehicles”), that is, what
we called in the previous section a proper contextual classification. There is however
something more. It explicitly states that a classification is one of the rules ofΓ . This se-
mantic ingredient is not captured by the classificatory and proper classificatory readings
sketched in the previous sections and it involves two essential aspects.

The first one is that counts-as statements of the constitutive type are always part of
asetof similar statements, the system of rulesΓ .

“Rules are constitutive if and only if they are part of a set of rules. Strictly
speaking, there is no such thing asa rule that is constitutive in isolation” ( [13],
p.5).

The second aspect concerns the relation between, on the one hand, the notion of a
set of rulesΓ , i.e., normative system or institution, and on the other hand the notion of
set of situationsc, or contextc. A Γ constitutes a contextc by means of its rules. The
set of classifications stated as constitutive rules by a normative system (for instance,
“conveyances transporting people or goods count as vehicles”) can be thought of as the
set of situations which make that set of classifications true. Hence, the set of constitutive
rules of any normative system can be seen as a set of situations. And a set of situations
—we have seen— is what is called a context in much literature on context theory (see
for instance [11, 12]). To put it in a nutshell, a context is a set of situations, and if
the constitutive rules of a given normative systemΓ are satisfied by all and only the
situations in a given set, then that set of situations isthe context defined byΓ . This
simple observation allows us to think of contexts as “systems of constitutive rules” ( [1],
p.51). Notice that this is no exotic thought. In fact, this idea has been neatly advanced
—informally— in some literature on the theory of institutions:

“A set of constitutive rules defines a logical space” ( [13], p.6).

A logical space is nothing but a set of states, i.e., a context. Getting back to Example
1, consider the statement concluding the argument: “according toΓ , bikes count as
vehicles”. In this light such a statement just says that “in the set of situations defined by
the rules of systemΓ , bike is a subconcept of vehicle”.

The discussion above is distilled in the following observation.

Observation 2 A constitutive counts-as statement is a proper contextual classification
such that: (a) it is an element of the set of rules specifying a given normative system
Γ ; (b) the set of rules ofΓ define the context (set of situations) to which the counts-as
statement pertains.

Constitutive counts-as statements will be formally studied in Sections4.2and6.
To recapitulate, we distinguished betweenconstitutive counts-as statements, proper

classificatory counts-as statementsandclassificatory counts-as statements. When state-
ments “X counts asY in the contextc of normative systemΓ ” are read as constitutive
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rules, what is meant is that the classification ofX underY is considered to be an ex-
plicit promulgation of the normative systemΓ defining contextc. Instead, when they
are read as proper classificatory statements they are meant to denote classifications that
are constituted, or brought about, by the context at issue in the sense that they might not
hold if another context is considered. Finally, when they are read as mere contextual
classification, they are meant to denote classificatory statements that are just the case in
the given context .

3 Modal logic of Classificatory Counts-as

This section summarizes the results presented in [6]. We first introduce the languages
we are going to work with: propositional n-modal languagesMLn ( [14]). The alpha-
bet ofMLn contains: a countable setP of propositional atomsp; the set of boolean
connectives{¬,∧,∨,→}; a finite non-empty set ofn (context) indexesC, and the op-
erator[ ]. Metavariablesi, j, ... are used for denoting elements ofC. The set of well
formed formulasφ of MLn is then defined by the following BNF:

φ ::= ⊥ | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | [i]φ.

We will refer to formulaeφ in which at least one modal operator occurs as modalized
formulae. We call instead objective formulae in which no modal operator occur and we
denote them using the metavariablesγ1, γ2, . . ..

3.1 Semantics

Semantics for these languages is given via structuresM = 〈F , I〉, where:

– F is a CXT frame, i.e., a structureF = 〈W, {Wi}i∈C〉, whereW is a finite set of
states (possible worlds) and{Wi}i∈C is a family of subsets ofW .

– I is an evaluation functionI : P −→ P(W ) associating to each atom the set of
states which make it true.

Such frames model thus n different contextsi which might be inconsistent, if the cor-
responding setWi is empty, or global ifWi coincides withW itself. This implements
in a straightforward way the thesis developed in context modeling according to which
contexts can be soundly represented as sets of possible worlds ( [11]).

The satisfaction relation, then, results in the following.

Definition 1. (Satisfaction based on CXT frames)
LetM be a model built on aCXT frame.

M, w |= [i]φ iff ∀ w′ ∈Wi : M, w′ � φ

M, w |= 〈i〉φ iff ∃w′ ∈Wi : M, w′ � φ.

The obvious boolean clauses are omitted. Validity in a model, in a frame and in a class
of frames are defined as usual.



It is instructive to make a remark about the[i]-operator clause, which can be seen as
the characterizing feature of the modeling of contexts as sets of worlds1. It states that
the truth of a modalized formula abstracts from the point of evaluation of the formula.
In other words, the notion of “truth in a contexti” is a global notion: [i]-formulae are
either true in every state in the model or in none. This reflects the idea that what is
true or false in a context does not depend on the world of evaluation, and this is what
we would intuitively expect especially for contexts interpreted as normative systems:
what holds in the context of a given normative system is not determined by the point of
evaluation but just by the system in itself, i.e., by its rules: the fact that inΓ bikes count
as vehicles depends only on the rules ofΓ .

3.2 Axiomatics

The multi-modal logic that corresponds, i.e., that is sound and complete with respect
to the class of CXT frames, is a system we call hereK45ij

n. It consists of a logic
weaker than the logicKD45ij

n investigated in [6] in that the semantic constraint has
been dropped which required the sets in family{Wi}i∈C to be non-empty. As a conse-
quence the D axiom is eliminated. To put it in a nutshell, the system is the very same
logic for contextual classification developed in [6] except for the fact the we want to al-
low here the representation of empty contexts as well. In the knowledge representation
setting we are working in, where contexts can be identified with the normative sys-
tems defining them, this amounts to accept the possibility of normative systems issuing
inconsistent constitutive rules.

Logic K45ij
n is axiomatized via the following axioms and rules schemata:

(P) all tautologies of propositional calculus

(K) [i](φ1 → φ2) → ([i]φ1 → [i]φ2)
(4ij) [i]φ→ [j][i]φ
(5ij) ¬[i]φ→ [j]¬[i]φ

(Dual ) 〈i〉φ↔ ¬[i]¬φ

(MP) φ1, φ1 → φ2 / φ2

(N) φ / [i]φ

wherei, j denote elements of the set of indexesC. The system is a multi-modal homo-
geneousK45 with the two interaction axioms4ij and5ij . Soundness and completeness
are proven in Section9.

A remark is in order especially with respect to axiomata4ij and5ij . In fact, what the
two schemata do, consists in making the nesting of the operators reducible which, leav-
ing technicalities aside, means that truth and falsehood in contexts ([i]φ and¬[i]φ) are
somehow absolute because they remain invariant even if evaluated from another con-
text ([j][i]φ and[j]¬[i]φ). In other words, they express the fact that whether something
holds in a contexti is not something that a contextj can influence. This is indeed the
kind of property to be expected given the semantics presented in the previous section.

1 Propositional logics of context without this clause are investigated in [15,16].
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3.3 Classificatory Counts-as formalized

Using a multi-modal logicK45ij
n on a languageMLn, the formal characterization of

the classificatory view on counts-as statements runs as follows.

Definition 2. (Classificatory counts-as:⇒cl
c )

“ γ1 counts asγ2 in contextc” is formalized in a multi-modal languageMLn as the
strict implication between two objective sentencesγ1 andγ2 in logic K45ij

n:

γ1 ⇒cl
c γ2 := [c](γ1 → γ2)

These properties for⇒cl
c follow.

Proposition 1. (Properties of⇒cl
c )

In logic K45ij
n, the following formulas and rules are valid:

γ2 ↔ γ3 / (γ1 ⇒cl
c γ2) ↔ (γ1 ⇒cl

c γ3) (1)

γ1 ↔ γ3 / (γ1 ⇒cl
c γ2) ↔ (γ3 ⇒cl

c γ2) (2)

((γ1 ⇒cl
c γ2) ∧ (γ1 ⇒cl

c γ3)) → (γ1 ⇒cl
c (γ2 ∧ γ3)) (3)

((γ1 ⇒cl
c γ2) ∧ (γ3 ⇒cl

c γ2)) → ((γ1 ∨ γ3) ⇒cl
c γ2) (4)

γ ⇒cl
c γ (5)

(γ1 ⇒cl
c γ2) ∧ (γ2 ⇒cl

c γ3) → (γ1 ⇒cl
c γ3) (6)

(γ1 ⇒cl
c γ2) ∧ (γ2 ⇒cl

c γ1) → [c](γ1 ↔ γ2) (7)

(γ1 ⇒cl
c γ2) → (γ1 ∧ γ3 ⇒cl

c γ2) (8)

(γ1 ⇒cl
c γ2) → (γ1 ⇒cl

c γ2 ∨ γ3) (9)

We omit the proofs, which are straightforward via application of Definition2. This sys-
tem validates all the intuitive syntactic constraints isolated in [17] (validities 1-4). In
addition, this semantic-oriented approach to classificatory counts-as enables the four
validities 6-9. Besides, this analysis shows that counts-as conditionals, once they are
viewed as conditionals of a classificatory nature, naturally satisfy reflexivity (5), tran-
sitivity (6), and a form of “contextualized” antisymmetry (7), strengthening of the an-
tecedent (8) and weakening of the consequent (9).

4 Beyond Classificatory Counts-as

Aim of this section is to provide formal counterparts to Observations1 and2 which
can work as intermediate step towards the development of suitable modal logics for
the analysis of proper classificatory counts-as (Section5) and constitutive counts-as
(Section6).

4.1 From classification to proper classification

As usual, model-theoretic considerations can give us crucial hints. Let us define the set
T(X) of all formulae which, given a model, are satisfied by all worlds in a set of worlds
X:

T(X) = {φ | ∀w ∈ X : M, w |= φ}.



and letT→(X) be the set of all implications between objective formulaeγ1 andγ2

which are satisfied by all worlds in a set of worldsX:

T
→(X) = {γ1 → γ2 | ∀w ∈ X : M, w |= γ1 → γ2}.

Obviously, for everyX: T→(X) ⊆ T(X). In the classificatory reading, given a model
M where the set of worldsWc ⊆ W models contextc, the set of all classificatory
counts-as statements holding inc, which we denote asCL(Wc), can be defined as the
setT→(Wc):

CL(Wc) := T
→(Wc).

Hence, it is easy to see that:T→(W ) ⊆ CL(Wc) ⊆ T(Wc). In other words, the set of
classificatory counts-as statements is:

– A subset of all the truths ofWc;
– A superset of all conditional truths ofW , that is, of the “global” or “universal”

context of modelM.

While the first point represents a quite banal semantic constraint to which any formal
characterization of counts-as should adhere, the second one is much more questionable.
Indeed, what is true anyway is not characteristic of any context (except of the global
one), and it cannot be properly said to represent any new truth. In other words, inter-
preting counts-as statements as mere classifications, as it has been done in Section3
make them inherit all trivial classifications which hold globally in the model. This is
the reason why classificatory counts-as, as shown in Proposition1, behaves classically
enjoying antecedent strengthening as well as transitivity and reflexivity.

These considerations suggest thus a readily available strategy to specify the set of
proper classificatory counts-as holding in a contextc on the basis ofT→(Wc). The
problem boils down to eliminate from the set of classificatory counts-asCL for a context
Wc those classifications which hold globally, that is, which hold with respect to the
global contextW . We obtain, in this way, the set ofproper classificatory counts-as
statements, orproper contextual classifications, holding in contextc in a CXT model
M.

Definition 3. (Set of proper classificatory counts-as inc)
The setCL+(Wc) of proper classificatory counts-as statements of a contextc in a CXT

modelM is defined as follows:

CL
+(Wc) := T

→(Wc) \ T(W ). (10)

Intuitively, the set of proper classificatory count-as holding inc corresponds to the set
of implications between objective formulae which hold inc, minus those implications
which hold universally. Or, to put it otherwise, the set of proper classificatory count-as
holding inc corresponds to the set of classificatory counts as ofc, minus those implica-
tions which hold universally:CL+(Wc) := CL(Wc) \ T(W ). This is the most natural
amendment of the classificatory view toward the specification of a stronger notion of
contextual classification along the lines of Observation1.



Dagstuhl Seminar on Normative Multiagent Systems 9

4.2 From proper classification to constitution

Let us now focus on Observation2. What comes to play a role is the notion of adefini-
tion of the context of a counts-as statement. A definition of a contextc, in a CXT model
M, is a set of objective formulae2 Γ such that∀w ∈W :

M, w |= Γ iff w ∈Wc (11)

that is, the set of formulaeΓ such that all and only the worlds inWc satisfyΓ in M.
Observation2 can now get a formal formulation. Given the set of formulaeΓ , we

say that any formulaγ1 → γ2 ∈ Γ is a constitutive counts-as statement w.r.t. contextc
iff Γ defines contextc andγ1 → γ2 belongs to the set of proper contextual classifica-
tions ofc.

Definition 4. (Set of constitutive counts-as inc w.r.t. definitionΓ )
The setCO(Γ,Wc) of constitutive counts-as statements of a contextc defined byΓ in a
CXT modelM is:

CO(Γ,Wc) := {γ1 → γ2 ∈ Γ | γ1 → γ2 ∈ CL+(Wc)
and∀w(M, w |= Γ iff w ∈Wc)} (12)

Notice thatCO(Γ,Wc) is defined taking as domain the set of implicative statements of
Γ . Notice also that as a result of this definition ifΓ does not define contextWc then
CO(Γ,Wc) = ∅. In fact, Formula12can be restated as follows:

CO(Γ,Wc) =
{
CL

+(Wc) ∩ Γ, if Γ definesWc

∅, otherwise.

Section6 is devoted to the development of a modal logic based on this definition.
The definitions discussed are summarized in the table below.

Cxt Classification CL(Wc) = T→(Wc)
Proper Cxt Classification CL

+(Wc) = CL(Wc) \ T(W )

Constitution CO(Γ,Wc) =
{
CL

+(Wc) ∩ Γ, if Γ definesWc

∅, otherwise.

The table pinpoints the dependencies between the formal characterizations of the three
different senses of counts-as which has been taken into consideration: the notion of
constitution builds on the notion of proper contextual classification which in its turn
builds on the notion of contextual classification. The modal logic analysis of contextual
classification developed in Section3 can thus be used as a sound starting point for the
modal logic analysis of the two notions introduced in this section.

2 This is no arbitrary choice since it can be easily seen that contextual formulae, since they
denote global properties of the models, are as a matter of fact irrelevant for the definition of
sets of worldsWi such that∅ ⊂ Wi ⊂ W , that is, those sets which denote neither the empty
nor the universal contexts. It is therefore natural to restrict definitions to objective formulae.



4.3 A methodological note

Before rendering the insights of Sections4.1and4.2in modal logic, it is worth making a
methodological remark. We are here concerned with a term, “counts-as”, which appears
to have different meanings. At this point we had two main ways to pursue the formal
characterization of counts-as we were aiming at. We could proceed axiomatically by
trying to single out intuitive syntactic properties of counts-as statements? Or rather
semantically, by trying to enrich the semantic characterization of classificatory counts-
as exposed in the previous sections in order to capture further semantic nuances? While
formal approaches to counts-as ( [17–19]) have been, up to now, characterized by an
axiomatic perspective, we have instead chosen for a semantics-driven solution. This
choice has been inspired by considering the methodological standpoint of fundamental
work in philosophical logic such as [8,20].

The same issue we are facing here in analyzing counts-as lies also at the ground of
the Tarskian characterization of the notion of truth and consists in the polysemy of the
to-be-analyzed term. Because of the inherent polysemy of the predicate “to be true”,
Tarski found it unconvincing to proceed introducing the predicate as a primitive and
then axiomatizing it:

“[. . . ] the choice of axioms always has rather accidental character, depending
on inessential factors (such as e.g. the actual state of our knowledge). [. . . ] a
method of constructing a theory does not seem to be very natural [. . . ] if in
this method the role of primitive concepts —thus of concepts whose mean-
ing should appear evident— is played by concepts which have led to various
misunderstanding in the past” ( [20], pag. 405-406).

Instead, he preferred to first isolate a precise sense of the predicate, i.e., truth as corre-
spondence to reality, and then to define it in terms of a better understood notion, i.e.,
the notion of satisfaction of a formula by a model. An axiomatic analysis of counts-as
statements runs the danger alluded to in the quote: since it is not clear what counts-as
statements actually mean, an axiomatization of them could result in mixing under the
the same logical representation different semantic flavors that, from an analytical point
of view, should be kept separated. A systematic discussion of this issue, specifically in
relation with the proposal advanced in [17], can be found in [7].

The work presented in this paper is the result of the application of this method
to the notion of counts-as: in Section2 we first disentangled different meanings of
the term “counts-as” providing a first map of its polysemy; in Section3 we formally
analyzed the first and more basic of these meanings explaining it in terms of a better-
understood notion (strict implication within a context); in this section we have pointed
at a first semantic characterization of the other two meanings and in the coming next two
sections we will explain them by making use of better-understood modal logic notions:
the negation of global statements (proper classificatory counts-as) and the definition of
a context (constitutive counts-as).

5 Modal Logic of Counts-as as Proper Contextual Classification

In the following section a modal logic is developed which implements the definition
stated in Formula10 above. By doing this we will capture the intuitions discussed in
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Section2 concerning the intuitive reading of counts-as statements in proper classifica-
tory terms. At the same time we will maintain the possible worlds semantics of context
exposed in Section3 and developed in order to account for the purely classificatory
view of counts-as.

5.1 Expansion ofLn and semantics

LanguageLn is expanded as follows. The set of context indexesC is such that it always
contains the special context indexu denoting the universal (or global) context. We call
this languageLu

n.
LanguagesLu

n are given a semantics via a special class of CXT frames, namely
the class of CXT framesF = 〈W, {Wi}i∈C〉 such thatW ∈ {Wi}i∈C . That is, the
frames in this class, which we call CXT>, always contain the global context among
their contexts. The definition of the satisfaction relation for languageLu

n follows.

Definition 5. (Satisfaction based on CXT> frames)
LetM be a model built on aCXT> frame.

M, w |= [u]φ iff ∀ w′ ∈W : M, w′ |= φ

M, w |= [c]φ iff ∀ w′ ∈Wc : M, w′ |= φ

whereu is the universal context index andc ranges on the context indexes inC. The
obvious boolean clauses and the clauses for the dual modal operators are omitted.

The new clause states that the[u] operator is interpreted on the universal 1-frame con-
tained in each CXT> frame. It is therefore nothing but aS5necessity operator.

5.2 Axiomatics

We callCxtu the logic characterizing the class of CXT> frames. LogicCxtu results
from the unionK45ij

n ∪ S5u ∪ {⊆ .ui)}, that is, from the union ofK45ij
n with the

S5u logic for the [u] operator together with the interaction axiom⊆ .ui below. The
axiomatics runs thus as follows:

(P) all tautologies of propositional calculus

(Ki) [i](φ1 → φ2) → ([i]φ1 → [i]φ2)
(4ij) [i]φ→ [j][i]φ
(5ij) ¬[i]φ→ [j]¬[i]φ
(Tu) [u]φ→ φ

(⊆ .ui) [u]φ→ [i]φ
(Dual ) 〈i〉φ↔ ¬[i]¬φ

(MP) IF ` φ1 AND ` φ1 → φ2 THEN ` φ2

(Ni) IF ` φ THEN ` [i]φ



wherei, j denote elements of the set of indexesC andu denotes the universal context
index inC. The interaction axiom⊆ .ui states something quite intuitive concerning the
interaction of the[u] operator with all other context operators: what holds in the global
context, holds in every context. Soundness and completeness of this axiomatization
w.r.t. CXT> frames are proven in Section9.

5.3 Proper classificatory counts-as formalized

Using a multi-modal logicCxtu on a languageLu
n, the proper classificatory reading of

counts-as statements can be formalized as follows.

Definition 6. (Proper classificatory counts-as:⇒cl+
c )

“ γ1 counts asγ2 in contextc”, with γ1 andγ2 objective formulae, is formalized in the
logic Cxtu on a multi-modal languageLu

n as:

γ1 ⇒cl+
c γ2 := [c](γ1 → γ2) ∧ ¬[u](γ1 → γ2)

Notice that this definition is nothing but the translation in theLu
n language of Formula

10.
What properties of counts-as are lost interpreting it as proper contextual classifica-

tion? And what properties are instead still valid? The following two propositions answer
these questions.

Proposition 2. (Properties of⇒cl+
c : invalidities)

The⇒cl+
c versions of reflexivity, strengthening of the antecedent, weakening of the con-

sequent, transitivity and cautious monotonicity are not valid:

γ ⇒cl+
c γ (13)

(γ1 ⇒cl+
c γ2) → (γ1 ∧ γ3 ⇒cl+

c γ2) (14)

(γ1 ⇒cl+
c γ2) → (γ1 ⇒cl+

c γ2 ∨ γ3) (15)

((γ1 ⇒cl+
c γ2) ∧ (γ2 ⇒cl+

c γ3)) → (γ1 ⇒cl+
c γ3) (16)

((γ1 ⇒cl+
c γ2) ∧ (γ1 ⇒cl+

c γ3)) → ((γ1 ∧ γ2) ⇒cl+
c γ3) (17)

We do not provide all the proofs, which can be obtained by constructing appropriate
countermodels. We show a countermodel for Formula16: ∀w ∈W ,M, w |= γ1 → γ3;
∀w ∈ Wc, M, w |= γ1 → γ2 andM, w |= γ2 → γ3; and∃w′, w′′ s.t.M, w′ |=
γ1 ∧ ¬γ2 ∧ γ3 andM, w′′ |= ¬γ1 ∧ γ2 ∧ ¬γ3.

It might be instructive to provide at this point also an intuitive example for the failure
of transitivity. Before 9/11/2001, it was the case that many legal systems did not specify
a legal notion of terrorism. In the context of the legal systems that did, the following
were therefore proper contextual classifications since they were not holding in general:
“the use or threat of action designed to influence the government and advance a political
cause counts as terrorism” and “terrorism counts as a criminal activity”. However, it
could not be inferred from them that “the use or threat of action designed to influence
the government and advance a political cause counts as a criminal activity” was a proper
contextual classification, because what stated was anyway the case also in those legal
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systems disregarding a notion of terrorism. Intuitively, transitivity fails just because it is
possible to constitute local middle terms, e.g., terrorism, for classifications which hold
globally in the model.

Proposition 3. (Properties of⇒cl+
c : validities)

In logic Cxtu the⇒cl+
c variants of Formulae 1-4 of Proposition1 are valid:

γ2 ↔ γ3 / (γ1 ⇒cl+
c γ2) ↔ (γ1 ⇒cl+

c γ3) (18)

γ1 ↔ γ3 / (γ1 ⇒cl+
c γ2) ↔ (γ3 ⇒cl+

c γ2) (19)

((γ1 ⇒cl+
c γ2) ∧ (γ1 ⇒cl+

c γ3)) → (γ1 ⇒cl+
c (γ2 ∧ γ3)) (20)

((γ1 ⇒cl+
c γ2) ∧ (γ3 ⇒cl+

c γ2)) → ((γ1 ∨ γ3) ⇒cl+
c γ2) (21)

Contextualized antisymmetry, i.e., Formula 7 of Proposition1 holds in the following
form:

(γ1 ⇒cl+
c γ2) ∧ (γ2 ⇒cl+

c γ1) → [c](γ1 ↔ γ2) ∧ ¬[u](γ1 ↔ γ2) (22)

Cumulative transitivity (alias cut) is also valid:

((γ1 ⇒cl+
c γ2) ∧ ((γ1 ∧ γ2) ⇒cl+

c γ3)) → (γ1 ⇒cl+
c γ3) (23)

Conditional versions of antecedent strengthening, consequent weakening and transitiv-
ity are valid:

¬[u](γ1 ∧ γ3 → γ2) → ((γ1 ⇒cl+
c γ2) → (γ1 ∧ γ3 ⇒cl+

c γ2)) (24)

¬[u](γ1 → γ2 ∨ γ3) → ((γ1 ⇒cl+
c γ2) → (γ1 ⇒cl+

c γ2 ∨ γ3)) (25)

¬[u](γ1 → γ3) → ((γ1 ⇒cl+
c γ2) ∧ (γ2 ⇒cl+

c γ3)) → (γ1 ⇒cl+
c γ3) (26)

We provide the deduction of Formula24as an example.

1. (P) (γ1 → γ2) → (γ1 ∧ γ3 → γ2)
2. (N), (K), (MP), 1 [c](γ1 → γ2) → [c](γ1 ∧ γ3 → γ2)
3. (P) ¬[u](γ1 ∧ γ2 → γ3)

→ (¬[u](γ1 → γ3) → ¬[u](γ1 ∧ γ2 → γ3))
4. (P), (MP), (Def. 6), 2, 3 ¬[u](γ1 ∧ γ3 → γ2)

→ ((γ1 ⇒cl+
c γ2) → (γ1 ∧ γ3 ⇒cl+

c γ2))

Propositions2and3, though very simple, are of key importance for putting our char-
acterization of counts-as as proper contextual classification in perspective with other
proposals. Such a comparison is elaborated in detail in [7].

Formulae24-26 are also of interest since they show that some quite standard prop-
erties of contextual classifications are inherited by proper contextual classification in
a conditionalized form, the condition being an assertion of invalidity (¬[u]). Proper
classificatory counts-as statements are still monotonic, provided that the strengthened
version of the antecedent does not universally imply the consequent. Similarly they are
still transitive, provided that the implication betweenγ1 andγ3 is not a validity of the
model. It is worth emphasizing the importance of these results from the perspective of



conceptual analysis and their clarifying power. An alleged intuitive example of tran-
sitivity for counts-as statements, in a proper classificatory sense, is such only if the
appropriate condition is assumed to hold. Consider again the example about terrorism
discussed above. The example could be in fact legitimately be read as an instance of
transitivity once it is also accepted that “the use or threat of action designed to influence
the government and advance a political cause counts as a criminal activity” is not some-
thing which is already globally the case. Similar considerations hold in particular for
the conditionalized version of antecedent strengthening. This property will be further
discussed in Section7.1.

6 Modal Logic of Constitutive Counts-as

In this section a modal logic is developed which implements Definition4. Again, the
possible world semantics developed in order to account for the classificatory view of
counts-as lies at the ground of the proposed framework.

6.1 ExpandingLu
n

LanguageLu
n, which has been used in the previous section to deal with proper con-

textual classification, needs now further expansion to enable the necessary expressivity.
The language is expanded along two lines.

First, the set of context indexesC contains now a setK of m atomic indexesc
among which the universal context indexu, and the set of the negations−c of the
atomic contexts, i.e., of the elements ofK: C = K ∪ {−c | c ∈ K}. The cardinalityn
of C is therefore equal to2m.

Second, the language needs also to contain a setN of nominalss disjoint from
the setP of propositional atoms. Nominals are names for states in the model or, in
other words, formulae that can be satisfied by only one state in the model. They can be
freely combined with propositions to form well-formed formulae. The BNF is therefore
extended as follows:

φ ::= > | p | s | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | [i]φ | 〈i〉φ.

Metavariables for nominals are written asν1, ν2, . . .. Modal languages containing nom-
inals have been recently object of thorough study and are known as hybrid languages
( [21]). The language obtained is calledLu,−

n .
Nominals are needed in order to provide a sound and complete axiomatization of

the logic based on the semantics presupposed by Definition4. To be more precise,
they are necessary in order to axiomatize the notion of complement of a context3. This
will become evident by exposing the axiomatics (Section6.3) and especially, from a
technical point of view, in proving its completeness (Section9).

3 For this purpose nominals were first introduced by the so-called “Sofia school” of modal logic
( [22,23]) in order to axiomatize the complement and the intersection of accessibility relations,
especially in a dynamic logic setting. In fact, the axiomatics we present in Section6.3is strictly
related with the systems studied in their works.
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6.2 Semantics

LanguagesLu,−
n are given a semantics via a special class of CXT frames, namely

the class of CXT framesF = 〈W, {Wi}i∈C〉 such that there always exists aWu ∈
{Wi}i∈C s.t.Wu = W ; and such that for any atomic indexc ∈ K Wu\Wc ∈ {Wi}i∈C .
That is, the frames in this class, which we call CXT>,\, always contain the global con-
text among their contexts and the complement of every atomic context.

The semantics forLu,−
n is thus obtained interpreting the formulae on models built

on CXT>,\ frames. However, because of the introduction of nominals, the evaluation
function I should be redefined as a functionI : P ∪ N −→ P(W ) satisfying the
following constraints:

– For all nominalss ∈ N, I(s) is a singleton set, that is, nominals always denote one
and only one state in the model.

– For all statesw ∈ W , there exists a nominals ∈ N such thatI(s) = w, that is,
each state has a name. In other words, the restriction of the interpretation function
I on the set of nominals (NeI) is a surjection on the set of all singletons ofW .

The definition of the satisfaction relation for languageLu,−
n runs as follows.

Definition 7. (Satisfaction based on CXT>,\ frames)
LetM be a model built on aCXT>,\ frame.

M, w |= s iff I(s) = {w}
M, w |= [u]φ iff ∀ w′ ∈Wu : M, w′ |= φ

M, w |= [c]φ iff ∀ w′ ∈Wc : M, w′ |= φ

M, w |= [−c]φ iff ∀ w′ ∈W\Wc : M, w′ |= φ.

whereu is the universal context index andc ranges on the context indexes inC, ands is
a nominal. The obvious boolean clauses and the clauses for the dual modal operators
are omitted.

The first clause states the satisfaction relation for nominals: a nominals is true in a
statew in modelM iff the evaluation function associatesw to s. Nominals are there-
fore objective formulae which are true in at most one world. The second clause, which
was already introduced in Definition5, states that the[u] operator is interpreted on the
universal frame contained in each CXT>,\ frame. The third one is just the standard
clause for contextual truth introduced in Definition1. Finally, the last and new clause
states that the[−c] operators range over the complements of the setsWc on which[c]
operators range instead.

Some observations are in order. First of all, let us comment upon the semantics of
the [−c]-operators. In fact, the[c] operator specifies a lower bound on what holds in
contextc (‘something more may hold inc’), that is, a formula[c]φ means thatφ at
leastholds in contextc. The [−c] operator, instead, specifies an upper bound on what
holds inc (‘nothing more holds inc’), and a[−c]¬φ formula means therefore thatφ at
mostholds inc, i.e.,¬φ at leastholds in the complement ofc. It becomes thus possible
in CXT>,\ frames to express context definitions by means of modalLu,−

n formulae



interpreted on CXT>,\ models. A set of objective formulaeΓ defines contextc in a
CXT>,\ modelM iff:

M |= [c]Γ ∧ [−c]¬Γ (27)

where¬Γ has to be intended in the obvious sense of the disjunction of the negations of
all formulae inΓ . Formula27 is an object language modal translation of the property
stated in Formula11.

Proposition 4. (Equivalence of Formulae11and27)
LetM be aCXT model andM′ be aCXT>,\ such that:M′ is based on a frame having
the same domain of the frame on whichM is based, and containing all its contexts;
M′ has the same evaluation function ofM. It is the case that, given a set of objective
formulaeΓ and a contextWc ∈ {Wi}i∈C :

M, w |= Γ iff w ∈Wc is equivalent to M′ |= [c]Γ ∧ [−c]¬Γ.

Proof. The proof is based on the semantics provided in Definition7. By construction
of M′, the clause “ifw ∈ Wc thenM, w |= Γ ” is equivalent to “ifw ∈ Wc then
M′, w |= Γ ”, and therefore equivalent toM′ |= [c]Γ . Analogously, the clause “if
w 6∈ Wc thenM, w 6|= Γ ” is equivalent to “ifw ∈ W\Wc thenM′, w |= ¬Γ ”, and
therefore equivalent toM′ |= [−c]¬Γ .

It might be instructive to notice that in practice we are making use, in a different setting
but with exactly analogous purposes, of a well-known technique developed in the modal
logic of knowledge, i.e., the interpretation of modal operators on “inaccessible states”
typical, for instance, of the “all that I know” epistemic logics ( [24]). In our case, the
set of inaccessible states is nothing but the complement of a context.

6.3 Axiomatics

To axiomatize the above semantics an extension of logicK45ij
n is needed which can

characterize nominals as names for modal states and, consequently, context comple-
mentation. The extension, which we call logicCxtu,−, results from the unionK45ij

n ∪
S5u, that is, from the union ofK45ij

n with theS5u logic for the[u] operator together
with a group of two axioms (Least andMost ) and one rule (Name) which axiomatize
nominals, and a group of two axioms (Covering andPacking ) which axiomatize
context complementation. The axiomatics runs as follows:

(P) all tautologies of propositional calculus

(Ki) [i](φ1 → φ2) → ([i]φ1 → [i]φ2)
(4ij) [i]φ→ [j][i]φ
(5ij) ¬[i]φ→ [j]¬[i]φ
(Tu) [u]φ→ φ

(⊆ .ui) [u]φ→ [i]φ
(Least ) 〈u〉 ν
(Most ) 〈u〉 (ν ∧ φ) → [u](ν → φ)
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(Covering ) [c]φ ∧ [−c]φ→ [u]φ
(Packing ) 〈−c〉 ν → ¬〈c〉 ν

(Dual ) 〈i〉φ↔ ¬[i]¬φ

(Name) IF ` ν → θ THEN ` θ
(MP) IF ` φ1 AND ` φ1 → φ2 THEN ` φ2

(Ni) IF ` φ THEN ` [i]φ

wherei, j are metavariables for the elements ofK, c denotes elements of the set of
atomic context indexesC, u is the universal context index,ν ranges over nominals, and
θ in rule Namedenotes a formula in which the nominal denoted byν does not occur.
The proofs of soundness and completeness of the axiomatization w.r.t. CXT>,\ frames
are provided in Section9.

The new axioms and rules deserve some comments. Let us start with the axiomati-
zation of nominals. AxiomLeast states just that every nominal denotesat leastone
state. Vice versa, axiomMost states that nominals denoteat mostone state. Intuitively
it says that, if there is a state namedν whereφ holds, thenφ holds if ν is the case. Fi-
nally, ruleName, which we borrowed from standard hybrid logic ( [21]), states that all
states are nominated. It does that by saying that if it is provable that a formulaθ holds at
an arbitrary stateν —the state is arbitrary since the rule requiresν not to occur inθ—
thenθ itself is provable since there is no world that falsifies it. From a technical point
of view, as observed in [23], this rules states a sufficient condition for functionNeI) to
be a surjection on the set of all singletons ofW 4. To sum up, axiomsLeast andMost
with rule Nameaxiomatize the conditions holding on the interpretation functionI as
exposed in Section6.2.

Let us now discuss the axioms that are more central to the modeling aim we are
pursuing: axiomsCovering andPacking . They characterize context complementa-
tion. AxiomCovering states that if some formula holds in bothc and−c, than it holds
globally. In other words, it states that the universal context iscoveredby the contexts
denoted byc and, respectively,−c. Axiom Packing states instead that the contexts
denoted byc and−c are strongly disjoint, in the sense that they do not contain the same
states or. Theypackthe universal context in two disjoint subcontexts. They are thus just
modal formulations of the two properties characterizing the bipartition of a given set.
Notice that nominals are necessary in the formulation of thePacking axiom. It is easy
to see that, without the possibility of naming individual states, it would be impossible
to axiomatize disjointness.

6.4 A remark: Cxtu,− as hybrid logic

Before putting the formalism at work it might be instructive to make one last technical
remark. In logicCxtu,− a family of@ν operators is definable, by means of which it is
possible to express that a formulaφ holds in the state named byν: @νφ. This operator

4 RuleNameplays a central role in the completeness proof for CXT>,\ (see the proof of Lemma
9 in Section9).



is known in hybrid logics ( [21]) as thesatisfaction operator. Its semantics is given in
terms of the following satisfaction clause:

M, w |= @νφ iff M, I(ν) |= φ.

The property of “holding in a state” is thus a global property, that is, it is independent
of the point of evaluation. The clause states more precisely that, whatever the state of
evaluation is, it is the case that ifν holds thenφ also holds. In fact, the satisfaction
operator can be defined in any logic enabling nominals and a universal modality ( [25],
[26]) as follows:

@νφ := [u](ν → φ) (28)

where@ν is a nominal andφ a formula. Leaving technicalities aside, this means that
logicCxtu,− has sufficient expressive means to represent statements of the type “in sit-
uation (or state)ν state-of-affairsφ holds”. This expressive capability of logicCxtu,−

will turn out useful to represent intuitive reasoning patterns involving constitutive counts-
as statements (see Proposition6).

6.5 Constitutive Counts-as formalized

Using a multi-modal logicCxtu,− on a languageLu,−
n , the constitutive reading of

counts-as statements can now be formalized.

Definition 8. (Constitutive counts-as:⇒co
c,Γ )

Given a set of formulaeΓ such thatγ1 → γ2 ∈ Γ , the constitutive counts-as statement
“ γ1 counts asγ2 in the contextc defined byΓ ” is formalized in a multi-modal logic
Cxtu,\ on languageLu,−

n as follows:

γ1 ⇒co
c,Γ γ2 := [c]Γ ∧ [−c]¬Γ ∧ ¬[u](γ1 → γ2)

with γ1 andγ2 objective formulae.

The definition implements in modal logic the intuition summarized in Observation2,
and formalized in Definition4: constitutive counts-as statements correspond to those
non trivial classifications which are stated by the definitionΓ of the contextc. In fact
the following can be proven.

Proposition 5. (Equivalence of Definitions8 and4)
LetM be aCXT>,\ frame andΓ a set of objective formulae. It is the case that:γ1 →
γ2 ∈ CO(Γ,Wc) iff γ1 → γ2 ∈ {γ1 → γ2 ∈ Γ | M |= γ1 ⇒co

c,Γ γ2 }. To put it
otherwise:

CO(Γ,Wc) = {γ1 → γ2 ∈ Γ | M |= γ1 ⇒co
c,Γ γ2}

Proof. The proof follows from Proposition4.

A detailed comment of Definition8 is in order. The most important consequence of
it is that it is possible to talk about constitutive counts-as only once a setΓ is given. As
already stressed in Section4.2, there is no formula that is constitutive in isolation. This
logic of constitutive rules takes therefore the warning raised in [27] very seriously: “no
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logic of norms without attention to a system of which they form part” ( [27], pag. 29).
As a result, constitutive counts-as statements can also be viewed as forms of speech
acts creating a context: given thatγ1 → γ2 is a formula ofΓ , γ1 ⇒co

c,Γ γ2 could be
read as “let it be thatγ1 → γ2 with all the statements ofΓ and only ofΓ or, using
the terminology of [28], “fiatΓ and onlyΓ ”. On the other hand, a constitutive counts-
as is false if eitherΓ does not define the context denoted byc, or if it expresses a
classification which is valid in the model.

This is precisely the distinctive feature of constitutive counts-as with respect to its
two classificatory relatives. While the classificatory versions of counts-as express what
at least holds in a context (contextual classification) and, respectively, what at least hold
in a context which is not globally true (proper contextual classification), the constitutive
version expresses also what at most holds in a context, thereby making explicit what
the context actually is in terms of a set of formulae of the language. We can have a
constitutive counts-as statement only if it is known what the definition is of the context
the statement refers to. In the classificatory versions of counts-as this knowledge is
absent since it is only partially known what the context explicitly is. Classificatory
and proper classificatory counts-as statements presuppose the existence of a context of
which only some information is available. This issue is discussed in more detail in [7]
where classificatory and proper classificatory counts-as statements are related with the
notion of enthymeme, i.e., of argument with unstated premises.

From a technical point of view, this linguistic dependence amounts to the fact that
expressions of the formγ1 ⇒co

c,Γ γ2 whereγ1 → γ2 6∈ Γ are just undefined. Only
the classifications that belong toΓ can be evaluated as constitutive counts-as. In other
words⇒co

c,Γ conditionals are not “logical” in the sense of yielding a truth value for
any pair of formulae(γ1, γ2). Because of this there is no logic, in a proper sense, of
constitutive statements pertaining to one context description. Given a set of⇒co

c,Γ state-
ments, nothing can be inferred about⇒co

c,Γ statements which are not already contained
in the setΓ . It is therefore not possible to study⇒co

c,Γ conditionals from a structural
perspective like it has been done for the other forms of counts-as in Propositions1, 2
and3.

How awkward this might sound it is perfectly aligned with the intuitions on the
notion of constitution which backed Definition8: constitutive counts-as are those clas-
sifications which are explicitly stated in the specification of the normative system. In
a sense, constitutive statements are just given, and that is it. This does not mean, how-
ever, that constitutive statements cannot be used to perform reasoning. The following
example depicts the most typical form of reasoning involving constitutive counts-as
statements.

Proposition 6. (⇒co
c,Γ and@ν)

The following formula is valid inCXT>,\ frames for anyΓ containingγ1 → γ2:

γ1 ⇒co
c,Γ γ2 → ((@νΓ ∧@νγ1) → @νγ2) (29)

Proof. Follows from Definition4, Formula28and propositional logic.

This property shows how constitutive rules work in providing grounds for inferring
the occurrence of new states-of-affairs: it is a rule of the normative system of Utrecht



University that if the promotor pronounces the PhD. student to be a doctor then this
counts as the PhD. student to be a doctor (γ1 ⇒co

c,Γ γ2); the current situationν falls
under the rules of Utrecht University (@νΓ ) and in the current situation the promotor
pronounces a PhD. student to be a doctor (@νγ1), hence in the current situation the
PhD. student is a doctor (@νγ2). Formula29 perfectly captures the logical pattern of
“conventional generation” as it is described in [29]:

“Act-token A of agent G conventionally generates act-token B [. . . ] only if the
performance of A [. . . ], together with a rule R saying that A [. . . ] counts as B,
guarantees the performance of B” ( [29], p. 25).

It is instructive to notice that, besides formulaγ1 ⇒co
c,Γ γ2, what plays an essential

role here is formula@νΓ (i.e., [u](ν → Γ )), which states that situationν is one of the
situations in contextc. Without the notion of context definition and the availability of
nominals, this could not be expressed.

Complex reasoning patterns involving constitutive counts-as statements arise also
in relation with the other two notions of counts-as. The following section investigates
the logical relationships between the three different senses of counts-as.

7 Relating the many faces of counts-as

This section is devoted to pursuing the last goal mentioned in the quote from [8] men-
tioned in Section1: “and then we may proceed to a quiet and systematic study of all
concepts involved, which will exhibit their main properties and mutual relations.”

The logical relations between⇒co
c,Γ ,⇒cl+

c and⇒cl
c can be studied in logicCxtu,\

which extends bothK45ij
n, i.e., the logic in which⇒cl

c has been defined, andCxtu,
i.e., the logic in which⇒cl+

c has instead been defined.

Proposition 7. (⇒cl
c vs⇒cl+

c vs⇒co
c,Γ )

In logic Cxtu,\ the following formulae are valid:

(γ1 ⇒cl+
c γ2) → (γ1 ⇒cl

c γ2) (30)

(γ1 ⇒cl+
c γ2) → (γ1 ∧ γ3 ⇒cl

c γ2) (31)

((γ1 ⇒cl+
c γ2) ∧ (γ2 ⇒cl+

c γ3)) → (γ1 ⇒cl
c γ3) (32)

(γ1 ⇒co
c,Γ γ2) → (γ1 ⇒cl+

c γ2) (33)

provided thatγ1 → γ2 ∈ Γ .

Proofs are omitted and can be easily obtained by application of Definitions2 and6 and
Proposition1.

Let us have a look at the intuitive meaning of the formulae just proven. Formula
30 states something very simple: proper contextual classification implies contextual
classification. This corresponds, in the model-theoretic notation used in Section4, to
the following inclusion relation:CL+(Wc) ⊆ CL(Wc).

Formulae31 and32 are particularly interesting. If we forget that the two operators
⇒cl+

c and⇒cl
c denote two different notions and we read both expressionsγ1 ⇒cl+

c γ2
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andγ1 ⇒cl
c γ2 just as “γ1 counts asγ2”, these formulae would sound as statements

of the property of antecedent strengthening and of the transitivity of “counts-as”. How-
ever, our formal analysis based on the acknowledgment that counts-as hides different
senses has shown that transitivity and antecedent strengthening hold for⇒cl

c but not
for ⇒cl+

c . On the other hand, and this is what Proposition7 shows, their logical inter-
actions display patterns clearly reminiscent of those properties. In a sense, we showed
that questions such as “is transitivity a meaningful property for a characterization of
counts-as?” are flawed by the possibility of confusing under the label counts-as differ-
ent notions which enjoy different logical behaviors. This is a concrete example of the
methodological concerns raised in Section4.3.

More specifically, Formula31 expresses that given a counts-as statement inter-
preted as a proper classification, a contextual classification can be inferred having as
antecedent a strengthened version of the antecedent of the first statement, and this
although proper contextual classification does not enjoy antecedent strengthening. In
other words, although⇒cl+

c does not enjoy antecedent strengthening, it is nonetheless
grounds for performing monotonic reasoning via⇒cl

c . Analogous considerations apply
to Formula32. Proper contextual classification does not enjoy transitivity but reasoning
via transitivity remains valid shifting from⇒cl+

c to⇒cl
c .

Finally, Formula33 translates the following intuitive fact: the promulgation of a
constitutive rule guarantees the possibility of applying specific classificatory rules. If it
is a rule ofΓ that self-propelled conveyances count as vehicles (constitutive sense) then
self-propelled conveyances count as vehicles in the contextc defined byΓ in a proper
classificatory sense.

With respect to the relation between constitution and classification, another inter-
esting consequence of Definition6 is the following one.

Proposition 8. (Impossibility of⇒cl+
u and⇒co

u,Γ )
Proper classificatory counts-as statements and constitutive counts-as statements are
impossible with respect to the universal contextu. In fact, the following formulae are
valid:

(γ1 ⇒cl+
u γ2) → ⊥ (34)

(γ1 ⇒co
u,Γ γ2) → ⊥ (35)

provided thatγ1 → γ2 ∈ Γ .

The proof is easily obtained from Definition6.
Intuitively, Formula34 states that what holds in general can not be the product of

constitution, it can not be a “new” classification. This is indeed a very intuitive property:
the fact that apples are classified as fruit cannot be a proper classification because it is
something that always holds. Formula35 states something slightly different: if some-
thing holds globally then it can not be used to constitute a context. Universal truths hold
in all contexts, and therefore, can not be specific of any context. To put it otherwise, the
statement “apple count as fruits” can not be a constitutive rule. Notice that contextual
classificatory statements are instead perfectly sound also with respect to the universal
context. Formulaγ1 ⇒cl

u γ2 is a satisfiable formula in logicCxtu,\.
Let us now take into consideration properties displaying more complex reasoning

patterns.



Proposition 9. (From⇒co
c,Γ to⇒cl

c and⇒cl+
c via⇒cl

u )
The following formulae are valid:

(γ2 ⇒co
c,Γ γ3) → ((γ1 ⇒cl

u γ2) → (γ1 ⇒cl
c γ3)) (36)

(γ2 ⇒co
c,Γ γ3) → (((γ1 ⇒cl

u γ2) ∧ ¬[u](γ1 → γ3)) → (γ1 ⇒cl+
c γ3)) (37)

provided thatγ1 → γ2 ∈ Γ .

The proof is straightforward by application of Definitions2 and8, and Propositions3
and1. These properties represent typical forms of reasoning patterns involving consti-
tutive rules.

Formula36: if it is a rule of Γ that γ2 → γ3 (“self-propelled conveyances count
as vehicles”) and it is always the case thatγ1 → γ2 (“cars count as self-propelled
conveyances”), thenγ1 → γ3 (“cars count as vehicles”) holds in the contextc defined
by normative systemΓ . Formula37: if it is a rule of Γ thatγ2 → γ3 (“conveyances
transporting people or goods count as vehicles”) and it is always the case thatγ1 →
γ2 (“bikes count as conveyances transporting people or goods”) but it is not always
the case thatγ1 → γ3 (“bikes count as vehicles”), thenγ1 → γ3 (“bikes count as
vehicles”) holds as a constituted classification in the contextc defined by normative
systemΓ . Notice that while “cars count as self-propelled conveyances” in Formula36is
a classificatory counts-as, since it might still be the case that cars are globally classified
as vehicles, “bikes count as vehicles” in Formula37 is instead a proper classificatory
counts-as since it is explicitly stated that such classification is not a validity. Formula37
represents nothing but the form of the reasoning pattern that has been used as starting
point of our analysis (Example1).

The very remarkable aspect about these properties is that they neatly show how
the three senses of counts-as all play a role in the kind of reasoning we perform with
constitutive rules. In particular, they show that the constitutive sense, though enjoying
extremely poor logical properties, grounds in fact all the rich reasoning patterns proper
of classificatory reasoning.

7.1 Thetransfer problemin the light of ⇒cl
c , ⇒cl+

c and ⇒co
c,Γ

The ‘transfer problem’ has been introduced in [17] as a landmark for testing the intu-
itive adequacy of formalizations of counts-as. It can be exemplified as follows: suppose
that somebody brings it about —for instance by coercion— that a priest effectuates a
marriage, does this count as the creation of a state of marriage? Does anything imply-
ing that a priest effectuates a marriage count as the creation of a state of marriage? In
other words, is the possibility to create a marriage transferable to anybody who brings
it about that the priest effectuates the ceremony? In our framework, these questions get
a triple formulation, one for each of the different senses of counts-as.

The transfer problem and ⇒cl
c . In [17], the transfer problem has been used as

grounds for the rejection of the property of antecedent strengthening for counts-as
conditionals. It is beyond doubt that a characterization of counts-as which enjoys the
strengthening of the antecedent also exhibits the transfer problem: if that property holds,
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then the fact that the performance of the ceremony counts as the creation of a state of
marriage implies that also a coerced performance does. As already noticed in [6], con-
textual classification (⇒cl

c ), which enjoys the strengthening of the antecedent (Proposi-
tion 1), does exhibit the transfer problem: whatever situation in which a priest performs
a marriage ceremony is classified as a situation in which a marriage state comes to be.
And this is precisely what we intuitively expect given the notion of contextual classi-
fication as informally introduced in Section2. In other words, contextual classification
shouldexhibit the transfer problem or, to put it another way, it should display atransfer
property: the bringing about of a state of marriage should be transferable to any state in
which a priest performs the ceremony.

The transfer problem and ⇒cl+
c . It has been shown that the characterization of

proper contextual classification (⇒cl+
c ) does not enjoy the strengthening of the an-

tecedent (Proposition2). Interestingly enough, it still exhibits the transfer problem, as
shown in Proposition3 where Formula24 has been proven valid:¬[u](γ1 → γ3) →
((γ1 ⇒cl+

c γ2) ∧ (γ2 ⇒cl+
c γ3)) → (γ1 ⇒cl+

c γ3).
Intuitively, this formula expresses what follows. If the fact that a priest effectuates

a marriage (γ1) under coercion of a third party (γ3) is not globally classified as giving
rise to a state of marriage (γ2) —which is the case, given the intuitive reading of the
scenario at issue— then it is safe to say that if the priest’s performance of the marriage
counts as (in a proper classificatory sense) a marriage, then a coerced performance of
the marriage counts also as a marriage.

Notice that this is again something perfectly intuitive given the assumptions about
proper contextual classification exposed in Section2: if a contextc makes a classifica-
tion γ1 → γ2 true, which does not hold in general, then also the strengthened version
of it γ1∧γ3 → γ2 is true in that context. Besides, if the strengthened version is also not
true in general, it then follows thatγ1 ∧ γ3 → γ2 is also a novel classification which is
brought about by contextc. Exhibiting the transfer problem is also for proper contextual
classification not problematic.

From a technical point of view, Proposition3 shows that a characterization of
counts-as, which does not enjoy the strengthening of the antecedent, can still exhibit
the transfer problem. This is equivalent to say that a notion of counts-as which gen-
uinely rejects the transfer problem should not only reject antecedent strengthening, but
some yet weaker property.

The transfer problem and ⇒co
c,Γ . The ‘transfer property’ does not hold, instead, for

the constitutive reading of counts-as statements. In this view, counts-as statements rep-
resent the rules specifying a normative system. So, all that it is explicitly stated by the
‘institution of marriage’ is that if the priest performs the ceremony then the couple is
married, while no rule belongs to that normative system which states that the action of
a third party bringing it about that the priest performs the ceremony also counts as a
marriage. Our formalization fully captures this feature. Let the ‘marriage institution’c
be sketched by the set of rulesΓ = {p → m}, i.e., by the rule “if the priest performs
the ceremony, then the couple is married”. Let thent represent the fact that a third party
brings it about thatp. For Definition8 the counts-as(t∧p) ⇒co

c,Γ m is just an undefined



expression, because((t∧p) → m) 6∈ Γ , that is, because the ‘marriage institution’ does
not state such a classification. This seems to suggest that the transfer problem, rather
than having to do with the structural properties of a logical connective, concerns instead
whether a rule is part of the promulgations of a normative system or not, that is to say,
whether a counts-as statement is a constitutive rule or not.

8 Conclusions

Moving from hints provided by the literature on legal and social theory concerning
constitutive rules, the paper has analyzed counts-as statements as forms of contextual
classifications. This analytical option, which we have studied from a formal semantics
perspective, has delivered three semantically precise senses (Definitions2, 6 and8) in
which counts-as statements can be interpreted, which we calledclassificatory, proper
classificatoryand constitutivereadings. The three readings have then been formally
analyzed making use of modal logic.

The classificatory reading resulted in a strong logic of counts-as conditionals en-
abling many properties which are typical of reasoning with concept subsumptions such
as, in particular, reflexivity, strengthening of the antecedent and weakening of the con-
sequent (Proposition1). In fact, the logic obtained is nothing but a modal logic version
of the contextual terminological logic we investigated in [9,10].

The characterization of proper contextual classification resulted, instead, in a much
weaker logic rejecting reflexivity, transitivity and antecedent strengthening (Proposi-
tion 2), but retaining cumulative transitivity (Proposition3). Noticeably, this notion
corresponds to the counts-as characterized in [17] once transitivity is substituted with
cumulative transitivity. Finally, the notion of proper contextual classification has of-
fered some new insights on the transfer problem (Section7.1) showing that it cannot be
genuinely avoided just by means of rejecting the strengthening of the antecedent in a
conditional logic setting. This result motivated the investigation of a yet stronger form
of counts-as which we developed in [30], and which stems nevertheless from the same
analytical option backing the present work.

The formal analysis of constitutive counts-as (Definition8) has neatly shown, with
formal means, in what sense constitutive rules are never constitutive in isolation, but
only as parts of systems of rules, and how constitutive rules work in providing grounds
for attributing institutional properties to situations (Proposition6). Constitutive counts-
as has also been shown to imply the two classificatory readings (Proposition7). Other
logical interrelationships between the three notions of counts-as have also been stud-
ied (Propositions8 and9) showing also that the logical relations between them could
actually be grounds for fallacies in the formal characterization of counts-as once the
polysemy of the term “counts-as” is overlooked.

9 Appendix: Soundness and Completeness Results

The appendix provides soundness and completeness results for the logics introduced in
the paper:K45ij

n, Cxtu andCxtu,−. Completeness will be proven via the canonical
model technique.
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9.1 Preliminaries

In all the logics considered the axiomatization of every modality[i] contains all tau-
tologies of propositional calculus, axiomK and is closed under rulesMPandN. We will
therefore make use of some general results of completeness theory for normal modal
logics. We refer the reader to [21] for further details.

Recall first some facts about maximal consistent sets. LetΛ be a multi-modal nor-
mal logic. A maximalΛ-consistent set of formulae on a multi-modal languageLn is a
setΦ s.t.: (a)⊥ is not derivable inΛ from Φ (i.e.,Λ-consistency ofΦ); (b) every set
properly includingΦ is Λ-inconsistent. Every maximalΛ-consistent setΦ is such that:
Λ ⊆ Φ; Φ is closed under ruleMP; for all formulaeφ eitherφ ∈ Φ or ¬φ ∈ Φ; for all
formulaeφ, ψ : φ ∨ ψ ∈ Φ iff φ ∈ Φ orψ ∈ Φ.

We can now report the notion of canonical model for a logicΛ.

Definition 9. (Canonical model for logicΛ)
The canonical modelMΛ for a normal modal logicΛ in the multi-modal languageLn

is the structure
〈
WΛ, {RΛ

i }1≤i≤n, IΛ
〉

where:

1. The setWΛ is the set of all maximalΛ-consistent sets.
2. The anonical relationsRΛ

i ∈ {RΛ
i }1≤i≤n are defined as follows: for allw,w′ ∈

WΛ, if for all formulaeφ, φ ∈ w′ implies〈i〉φ ∈ w, thenwRΛ
i w

′.
3. The canonical interpretationIΛ is defined byIΛ(p) = {w ∈WΛ | p ∈ w}.

We briefly recall three key propositions of (modal) completeness theory. For the
proofs we refer the reader to [21].

Lemma 1. (Strong completeness= satisfiability of all consistent sets)
A normal modal logicΛ is strongly complete w.r.t. a class of framesF iff everyΛ-
consistent set of formulae is satisfiable on someF ∈ F, i.e., it has a modelM built on
a frameF in classF.

Lemma 2. (Existence Lemma)
For any normal modal logicΛ and any statew ∈ WΛ, it holds that: if〈i〉φ ∈ w then
there exists a statew′ ∈WΛ such thatwRΛ

i w
′ andφ ∈ w′.

Lemma 3. (Truth Lemma)
For any normal modal logicΛ and any formulaφ, it holds that:MΛ, w |= φ iff φ ∈ w.

Lemma 4. (Canonical Model Theorem)
Any normal modal logicΛ is strongly complete w.r.t. its canonical modelMΛ.

We will also make use of the notion of point-generated subframe. Given a frame
F = 〈W, {Ri}1≤i≤n}〉, a point-generated subframeFw of a frameF is a structure
〈Ww, {Rw

i }1≤i≤n}〉 such that: (a)Ww is the set of statesw′ ∈ W such that there
exists, for anyRi, a finiteRi-path fromw to w′; (b) Rw

i = Ri ∩ (Ww ×Ww), i.e.,
eachRw

i is the restriction ofRi onWw. The following result is of interest.

Lemma 5. (Generated subframes preserve validity)
Let F be a class of frames andg(F) be the class of point-generated subframes of the
frames inF. It holds that, for all formulaeφ on languageLn: F |= φ iff g(F) |= φ.



Finally, we need a way to relate context frames (see Section3.1), that is, structures
of the type〈W, {Wi}i∈C〉 with relational structures of the type〈W, {Ri}i∈C〉. The
bridge is offered bylocally universalrelations. A relationRi on a setW is locally
universal if:

– For allRi ∈ {Ri}i∈C andw ∈W ,Ri is universal onri(w);
– For allw,w′ ∈W , ri(w) = ri(w′), whereri is a function associating to each state
w the set of reachable states via relationRi.

The following representation result holds for this family of relations.

Lemma 6. (Representation of context frames)
A relationRi onW is locally universal iff there exists a setWi ⊆ W such that for all
w,w′, wRiw

′ iff w′ ∈Wi.

Proof. The right to left direction is straightforward. From left to right: for everyw,w′ ∈
W it holds, by the definition of functionr thatwRiw

′ iff w′ ∈ ri(w). SinceRi is
locally universal, it holds that for everyw,w′′ ∈W , ri(w) = ri(w′′). It is now enough
to stipulateWi = ri(w′′) for anyw′′ to obtain the desired result: there exists a set
Wi ⊆W such that for allw,w′, wRiw

′ iff w′ ∈Wi.

Leaving technicalities aside, the property of local universality forces relations in{Ri}i∈C

to cluster the domain of the frame in sets of worlds (contexts), one for each accessibil-
ity relation, and then defines these accessibility relations in such a way that the sets of
accessible worlds correspond, for each world inW , to the clusters.

9.2 Soundness and completeness ofK45ij
n

The proof of soundness is routinary. It is well-known that inference rulesMPand N
preserve validity on any class of frames5. Providing the soundness ofK45ij

n w.r.t. CXT

frames boils than down to checking the validity of axioms4ij and5ij .

Theorem 1. (Soundness ofK45ij
n w.r.t. CXT frames)

LogicK45ij
n is sound w.r.t. the class ofCXT frames.

Proof. The validity of 4ij is proven showing that its contrapositive has no counter-
model. Such countermodelM would contain a statew such that for a given formula
φ, M, w |= 〈j〉 〈i〉φ andM, w |= ¬ 〈i〉φ. Hence, by the semantics,∃w′ ∈ Wi

s.t.M, w |= φ and @w′ ∈ Wi s.t.M, w |= φ, which is impossible. The validity
of 5ij is proven in the same way. Suppose there is a modelM and a statew such
thatM, w |= 〈i〉φ andM, w |= ¬[j] 〈i〉φ. Hence, by the semantics,∃w′ ∈ Wi s.t.
M, w |= φ and@w′ ∈Wi s.t.M, w |= φ.

The proof of completeness is obtained in two steps.

1. First, via the canonical model, it is proven that logicK45ij
n is complete with respect

to the class of i-j transitive (ifwRiw
′ andw′Rjw

′′ thenwRjw
′′), and i-j euclidean

(if wRiw
′ andwRjw

′′ thenw′Rjw
′′) frames6.

5 See [21].
6 In [31], frames with this property are called, respectively, hyper-transitive and hyper-euclidean.
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2. Second, it is proven that ifF is the class of of i-j transitive and i-j euclidean frames,
for everyφ ∈ Ln: F |= φ iff C XT |= φ.

Theorem 2. (Completeness ofK45ij
n)

Logic K45ij
n is strongly complete w.r.t. the class of i-j transitive and i-j euclidean

frames.

Proof. By Lemma1, given aK45ij
n-consistent setΦ of formulae, it suffices to find a

model state pair (M, w) such that: (a)M, w |= Φ, and (b) the frameF on whichM is

based is i-j transitive and i-j euclidean. LetMK45ij
n =

〈
WK45ij

n , {RK45ij
n

i }i∈C , IK45ij
n

〉
be the canonical model of logicK45ij

n, and letΦ+ be any maximal consistent set in
WK45ij

n extendingΦ. By Lemma3 it follows thatMK45ij
n , Φ+ |= Φ, which proves

(a). It remains to be proven that
〈
WK45ij

n , {RK45ij
n

i }i∈C

〉
enjoys i-j transitivity (b.1)

and i-j euclidicity (b.2). To prove (b.1) consider three statesw,w′, w′′ ∈ WK45ij
n such

thatwRK45ij
n

j w′ andw′RK45ij
n

i w′′. Suppose then thatφ ∈ w′′. As w′RK45ij
n

i w′′ and

wR
K45ij

n
j w′, it follows that〈i〉φ ∈ w′ and then that〈j〉 〈i〉φ ∈ w. Now,w is a maximal

consistent set of logicK45ij
n, it therefore contains formula〈j〉 〈i〉φ → 〈i〉φ (i.e., the

contrapositive of axiom4ij), hence〈i〉φ ∈ w and thuswRK45ij
n

i w′′ which completes
the proof of (b.1). Analogously, to prove (b.2) consider three statesw,w′, w′′ ∈WK45ij

n

such thatwRK45ij
n

j w′ andwRK45ij
n

i w′′. Suppose then thatφ ∈ w′′. It follows that
〈i〉φ ∈ w and sincew is a maximal consistent set of logicK45ij

n, it therefore con-
tains formula〈i〉φ → [j] 〈i〉φ (i.e., axiom5ij) and hence[j] 〈i〉φ ∈ w. From this

and fromwR
K45ij

n
i w′′ it follows that 〈i〉φ ∈ w′′, that is to say, for any formulaφ it

is the case that: ifφ ∈ w′ then 〈i〉φ ∈ w′′. Now, by Definition9, this implies that

w′R
K45ij

n
i w′′ which proves (b.2).

Lemma 7. (Semantic equivalence forCXT frames)
Consider the classF of i-j transitive and i-j euclidean frames. For everyφ ∈ Ln, F |= φ
iff CXT |= φ. That is,CXT frames andF frames define the same logic.

Proof. From right to left: for everyφ, CXT |= φ impliesF |= φ. The proof is obtained
showing that ifF is a CXT frame then it is i-j transitive and i-j euclidean. By Lemma
6, for all w,w′ ∈W , w′ ∈Wi iff wRiw

′. To prove i-j transitivity, suppose thatwRiw
′

(w′ ∈ Wi) andw′Rjw
′′ (w′′ ∈ Wj). It follows therefore thatwRjw

′′. The proof
of i-j euclidicity is perfectly analogous. Suppose thatwRiw

′ (w′ ∈ Wi) andwRjw
′′

(w′′ ∈ Wj), hencew′Rjw
′′. From left to right: for everyφ, F |= φ implies CXT |= φ.

In this case, the proof is obtained by showing that every i-j transitive and i-j euclidean
frame, which is also point-generated, is a context frame. By Lemma5, it holds that for
everyφ, F |= φ iff g(F) |= φ. Now, letFw be any frame ing(F) generated by some state
w. In order to prove the desired result, it suffices to show that every i-j transitive and i-j
euclidean frameFw generated by statew is a CXT frame. By Lemma6, this is proven
by showing that for everyRw

i ∈ {Rw
i }i∈C , w′Rw

i w
′′ iff w′′ ∈ rw

i (w). This amounts to
prove that for everyw′, w′′ if there exists anRi-path fromw to w′ and fromw to w′′,



thenw′Riw
′′ iff w′′ ∈ ri(w). From left to right, if there exists anRi-path fromw to

w′ andw′Riw
′′, then by transitivity (which is a special case of i-j transitivity)wRiw

′′,
that is,w′′ ∈ ri(w). From right to left, if there exists anRi-path fromw to w′ and
w′′ ∈ ri(w), thenwRiw

′′ and hence, by euclidicity,w′Riw
′′.

Corollary 1. (Completeness ofK45ij
n w.r.t. CXT frames)

LogicK45ij
n is strongly complete w.r.t. the class ofCXT frames.

Proof. Follows directly from Theorem2 and Lemma7.

9.3 Soundness and completeness ofCxtu

On the grounds of the results of the previous section, the proof of soundness and com-
pleteness ofCxtu w.r.t. CXT> can be easily obtained. Soundness boils down to prove
that axiomsTu and⊆ .ui are valid inCxtu frames.

Theorem 3. (Soundness ofCxtu w.r.t.CXT> frames)
LogicCxtu is sound w.r.t. the class ofCXT> frames.

Proof. Trivial, given the interpretation of the[u]-operator as universal quantification on
all the states in the domainW of the frame.

Let TE∼ be the class of frames satisfying the following properties: they are i-j
transitive, i-j euclidean; they contain an equivalence relationRu such that for alli ∈ C,
Ri ⊆ Ru. Again, completeness w.r.t. the relevant class of frames is proven in two steps.

1. Logic Cxtu is first proven to be complete w.r.t. the class ofTE∼ frames.
2. It is then proven that for any formulaφ onLn: TE∼ |= φ iff C XT>|= φ.

Theorem 4. (Completeness ofCxtu)
LogicCxtu is strongly complete w.r.t. the classTE∼ frames.

Proof. By Lemma1, given aCxtu-consistent setΦ of formulae, it suffices to find a
model state pair (M, w) such that: (a)M, w |= Φ, and (b) the frameF on which
M is based is i-j transitive and i-j euclidean and contains a universal relation. Claim
(a) is proven by making use of Lemma3. It remains to be proven that the frame〈
WCxtu , {RCxtu

i }i∈C

〉
of the canonical model enjoys i-j transitivity and i-j euclidic-

ity (b.1) and that there exists a relationRCxtu

u ∈ {RCxtu

i }i∈C such thatRCxtu

u is an
equivalence relation (b.2) and for everyi ∈ C, Ri ⊆ Ru (b.3). Claim (b.1) follows
from Theorem2 sinceCxtu extendsK45ij

n. As to (b.2), it follows from (b.1) that each
RCxtu

i is transitive and euclidean and, therefore, so isRCxtu

u . The proof of the reflex-
ivity of RCxtu

i is then routinary. Finally, claim (b.3) needs to be proven. Consider two
statesw,w′ ∈ WCxtu such thatwRCxtu

i w′. Suppose then thatφ ∈ w′. It follows that
〈i〉φ ∈ w. Sincew is a maximalCxtu-consistent set, it contains formula〈i〉φ→ 〈u〉φ
(i.e., the contrapositive of axiom⊆ .ui) and therefore〈u〉φ ∈ w. Hence, by Definition
9, wRCxtu

u w′.

Lemma 8. (Semantic equivalence forCXT> frames)
For any formulaφ onLn: TE∼ |= φ iff CXT>|= φ. That is,CXT> frames andTE∼

frames define the same logic.
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Proof. The proof is analogous to the proof of Lemma7. The direction from right to left
(for everyφ, CXT>|= φ impliesTE∼ |= φ) is straightforwardly proven by observing
that every CXT> frame represents a frame containing a universal relationRu. In fact, a
relationRu is universal iff it holds that: for anyw,w′ ∈W ,wRuw

′ iff w′ ∈W (notice
that this is a special case of Lemma6). But every universal relation is an equivalence
relation, which also includes allRi’s for any i ∈ C. That all CXT> frames are i-j
transitive and i-j euclidean follows from Lemma7. This completes the proof of the
right-to-left direction. From left to right: for everyφ, TE∼ |= φ implies CXT>|= φ.
Lemma7 has proven that every i-j transitive and i-j euclidean frame generated by state
w is a CXT frame. Consider now the relationRw

u of the point-generated subframeFw

of a frameF ∈ TE∼ containing an equivalence relationRu such that for alli ∈ C,
Ri ⊆ Ru. To obtain the desired result —via Lemma5— it suffices to show that the
relationRw

u is universal onWw, which is trivial.

Corollary 2. (Completeness ofCxtu w.r.t. CXT> frames)
LogicCxtu is strongly complete w.r.t. the class ofCXT> frames.

Proof. Follows directly from Theorem4 and Lemma8.

9.4 Soundness and completeness ofCxtu,−

The proof of soundness is routinary.

Theorem 5. (Soundness ofCxtu,− w.r.t. CXT>,\ frames)
LogicCxtu is sound w.r.t. the class ofCXT>,\ frames.

Proof. It is to show that axiomsCovering andPacking are valid in CXT>,\ frames
by just noticing that in CXT>,\ frames, for any atomic context indexc, family {Wc,W−c}
is a bipartition of the domainW :W ⊆Wc∪W−c, i.e., family{Wc,W−c} is a covering
of W ; andWc ∩W−c = ∅, i.e.,{Wc,W−c} is a packing ofW .

Let TE∼,\ be the class of frames satisfying the following properties: they are i-j
transitive, i-j euclidean; they contain an equivalence relationRu such that for alli ∈ C,
Ri ⊆ Ru; the set of relations{Ri}i∈C is such that, for any atomic context indexc
and statesw,w′ ∈ W : wRuw

′ implieswRcw
′ or wR−cw

′; andwRcw
′ implies not

wR−cw
′. Again, completeness w.r.t. the CXT>,\ frames is proven in two steps.

1. Logic Cxtu,− is first proven to be complete w.r.t. the class ofTE∼,\ frames.
2. It is then proven that for any formulaφ onLn: TE∼,\ |= φ iff C XT>,\|= φ.

For completeness we need to prove some facts about the canonical model of logic
Cxtu,−. Before stating and proving the desired lemma consider first that, since logic
Cxtu,− extends logicCxtu, we know by Theorem4 that the canonical model of
logic Cxtu,− contains an equivalence relationRCxtu,−

u such that for everyi ∈ C,
RCxtu,−

i ⊆ RCxtu,−

u . Recall also that every equivalence relation yields a partition on
its domain. The cluster of the partition yielded byRCxtu,−

u on WCxtu,−
containing

statew is denoted byrCxtu,−

u (s), that is, the set of states reachable byw viaRCxtu,−

u .



Lemma 9. (Properties of maximalCxtu,−-consistent sets)

LetMCxtu,−
=

〈
WCxtu,−

, {RCxtu,−

i }i∈C , ICxtu,−
〉

be the canonical model of logic

Cxtu,−.

1. All maximalCxtu,−-consistent sets inWCxtu,−
contain at least one nominal;

2. If a nominal is contained in a maximalCxtu,−-consistent setw ∈ WCxtu,−
then

it is not contained in any other maximalCxtu,−-consistent setw′ ∈ WCxtu,−

which is accessible fromw viaRCxtu,−

u . In other words, if two maximalCxtu,−-
consistent sets contain the same nominal, and belong to the same cluster of the
partition ofWCxtu,−

yielded byRCxtu,−

u , then they are the same set.
3. Each nominal inN is contained in at least one maximalCxtu,−-consistent set.

Proof. Clause 1. LetΦ be a maximalCxtu,−-consistent set ofLu,−
n formulae. To prove

the first claim, suppose per absurdum that∀ν ∈ N, ¬ν ∈ Φ. It follows that for everyν
there exists a finite conjunctionθ of formulae fromΦ such that:̀ ν → ¬θ. Now, either
ν occurs inθ and thusν ∈ Φ, or ν does not occur inθ and therefore, by ruleName,
¬θ ∈ Φ which is impossible. Clause 2 is proven in two steps. (a) Given a nominal
ν ∈ Φ, for any maximalCxtu,−-consistent setΦ it is proven that for allφ: φ ∈ Φ iff
[u](ν → φ) ∈ Φ. (b) Given two maximalCxtu,−-consistent setsΦ andΦ′, if ν ∈ Φ,Φ′

andΦRCxtu,−

u Φ′ thenΦ = Φ′. Let us prove (a). From left to right. We assumed a
nominalν ∈ Φ, hence ifφ ∈ Φ thenν ∧ φ ∈ Φ, beingΦ a maximalCxtu,−-consistent
set. The setΦ also contains formulaφ→ 〈u〉φ (i.e., the contrapositive of axiomTu) and
〈u〉 (ν∧φ) → [u](ν → φ) (i.e., axiomMost ) from which it follows that〈u〉 (ν∧φ) ∈ Φ
and hence that[u](ν → φ) ∈ Φ. From right to left: for anyφ ∈ Φ, if [u](ν → φ) ∈ Φ
then by axiomTu we obtainν → φ ∈ Φ and then byMPφ ∈ Φ. Let us prove (b)
per absurdum. SupposeΦ 6= Φ′. Then there should exist a formulaφ such thatφ ∈ Φ
andφ 6∈ Φ′ and hence¬φ ∈ Φ′. From (a) it follows that[u](ν → φ) ∈ Φ and since
ΦRCxtu,−

u Φ′ we obtain thatν → φ ∈ Φ′ and viaMPφ ∈ Φ′, which is impossible.
Clause 3 follows easily from Lemma2 and the fact that every statew ∈ WCxtu,−

contains formula〈u〉 ν (axiomLeast ).

The lemma concerns some key properties of the interpretation of nominals. Clause 1
guarantees that in the canonical model every maximalCxtu,−-consistent set contains a
nominal, that is, thatICxtu,−

is a surjection on the set of singletons ofWCxtu,−
. Clause

2 is particularly interesting. It states that the same nominal can in fact belong to different
maximalCxtu,−-consistent sets if these sets are not related viaRCxtu,−

u . To put it
otherwise, nominals behave as real names only if they refer to sets in a same cluster in
the partition yielded byRCxtu,−

u . It follows that interpreting nominals on a generated
subframe guarantees them to behave like names, and this is precisely enough for our
purposes since generated subframes preserve validity (Lemma5). Finally, Clause 3
states just that all nominals get a denotation.

Theorem 6. (Completeness ofCxtu,−)
Logic Cxtu,− is strongly complete w.r.t. the class ofTE∼,\ frames, that is, frames
satisfying the following clauses:
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1. They are i-j transitive, i-j euclidean.
2. They contain an equivalence relationRu such that for alli ∈ C,Ri ⊆ Ru.
3. The set of relations{Ri}i∈C is such that, for any atomic context indexc and states
w,w′ ∈ W : (3.a)wRuw

′ implieswRcw
′ or wR−cw

′; and (3.b)wR−cw
′ implies

notwRcw
′.

Proof. By Lemma1, given aCxtu,−-consistent setΦ of formulae, it suffices to find
a model state pair (M, w) such that: (a)M, w |= Φ, and (b) the frameF on which
M is based satisfies clauses 1-3. Claim (a) is proven by making use of Lemma3.

It remains to be proven that the frame
〈
WCxtu,−

, {RCxtu,−

i }i∈C

〉
of the canonical

model satisfies clauses 1-3. Clause 1 and Clause 2 are proven to be satisfied by The-
orem 4 sinceCxtu,− extendsK45ij

n andCxtu. Claims (3.a) and (3.b) of clause 3
remain to be proven. To prove claim (3.a) it has to be shown that: for any atomic
context indexc and statesw,w′ ∈ WCxtu,−

, wRCxtu,−

u w′ implieswRCxtu,−

c w′ or
wRCxtu,−

−c w′. Consider two statesw,w′ ∈ WCxtu,−
such thatwRCxtu,−

u w′ and sup-
pose thatφ ∈ w′. Sincew is a maximalCxtu,−-consistent set, it contains formula
〈u〉φ → (〈c〉φ ∨ 〈−c〉φ) (i.e., the contrapositive of axiomCovering ) and there-
fore 〈c〉φ ∨ 〈−c〉φ ∈ w. For the properties of maximal consistent sets it follows that
either 〈c〉φ ∈ w or 〈−c〉φ ∈ w, and hence by Definition9, eitherwRCxtu,−

c w′ or
wRCxtu,−

−c w′, which proves (3.a). As to (3.b), it should be proven that for any atomic

context indexc and statesw,w′ ∈ WCxtu,−
, wRCxtu,−

−c w′ implies notwRCxtu,−

c w′.

Suppose thatwRCxtu,−

−c w′. By Clause 1 in Lemma9 we know thatw′ should contain
at least one nominal. Since all nominals denote at least one state (Clause 3 in Lemma9)
we can pick a nominalν and suppose it to be the nominal contained inw′. By Clause
2 of this theorem, fromwRCxtu,−

−c w′ it follows thatwRCxtu,−

u w′ and from this, by

Clause 2 in Lemma9, we know that there is now′′ ∈ rCxtu,−

u (w) such thatν ∈ w′′.
By Definition 9 it follows that 〈−c〉 ν ∈ w. Now,w is a maximalCxtu,−-consistent
set and it contains thus formula〈−c〉 ν → ¬〈c〉 ν (i.e., axiomPacking ). It follows
that¬ 〈c〉 ν ∈ w and it is therefore not the case thatwRCxtu,−

c w′, which proves claim
(3.b).

Lemma 10. (Semantic equivalence forCXT>,\ frames)
For any formulaφ onLn: TE∼,\ |= φ iff CXT>,\|= φ. That is,CXT>,\ frames and
TE∼,\ frames define the same logic.

Proof. The proof is analogous to the proof of Lemmata7 and8. From right to left:
for everyφ, CXT>,\|= φ impliesTE∼,\ |= φ. The results follow by the application of
Proposition6. FromW = Wc ∪W−c for any atomic context identifierc, it follows that
for everyw,w′ ∈W ,wRuw

′ implieswRcw
′ orwR−cw

′. And fromWc∩W−c = ∅ for
any atomic context identifierc, it follows that for everyw,w′ ∈ W , wR−cw

′ implies
notwRcw

′. From left to right: for everyφ, TE∼,\ |= φ implies CXT>,\|= φ. It suffices
to show that every point-generated subframe of anyTE∼,\ frame is a CXT>,\ frame.
The desired result follows then from Lemma5. Consider a frameFw ∈ g(TE∼,\)
generated by statew. We show thatFw is a CXT>,\ frame. Building on the proofs
of Lemma7 and on the fact thatTE∼,\ already contain a universal relation, it just



needs to be shown that for any atomic indexc: (a) Ww ⊆ rc(w) ∪ r−c(w) and (b)
rc(w) ∩ r−c(w) ⊆ ∅. Both claims are straightforwardly proven by observing that for
any atomic context indexc and statesw′, w′′ ∈ Ww: w′Rw

uw
′′ (i.e., w′′ ∈ Ww )

impliesw′Rw
c w

′′ (i.e.,w′′ ∈ rc(w) ) or w′Rw
−cw

′′ (i.e.,w′′ ∈ r−c(w)); andw′Rw
c w

′′

(i.e.,w′′ ∈ rc(w)) implies notw′Rw
−cw

′′ (i.e.,w′′ 6∈ r−c(w)).

Corollary 3. (Completeness ofCxtu,− w.r.t. CXT>,\ frames)
LogicCxtu,− is strongly complete w.r.t. the class ofCXT>,\ frames.

Proof. Follows directly from Theorem6 and Lemma10.
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