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Abstract. The paper proposes a logical systematization of the notion of counts-
as which is grounded on a very simple intuition about what counts-as statements
actually mean, i.e., forms of classification. Moving from this analytical thesis the
paper disentangles three semantically different readings of statements of the type
X counts as Y in context C, from the weaker notion of contextual classification
to the stronger notion of constitutive rule. These many ways in which counts-as
can be said are then formally addressed by making use of modal logic techniques.
The resulting framework allows for a formal characterization of all the involved
notions and their reciprocal logical relationships.
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1 Introduction

The term “counts-as” derives from the paradigmatic formulation that in [1] and [2] is
attributed to the non-regulative component of institutions, i.e., constitutive rules:

[...] “institutions” are systems of constitutive rules. Every institutional fact is
underlain by a (system of) rule(s) of the form “X counts as Y in context C”

([1], pp-51-52).

In legal theory the non-regulative component of normative systems has been labeled in
ways that emphasize a classificatory, as opposed to a normative or regulative, character:
conceptual rule¢[3]), qualification normg [4]), definitional normg [5]). Constitutive

rules are definitional in character:

The rules for checkmate or touchdown must ‘definkeéckmate in chessr
touchdown in American Footbdll..] ([1], p.43).

With respect to this feature, a first reading of counts-as is thus readily available: it is
plain that counts-as statements express classifications. For example, they express what
is classifiedo be a checkmate in chess, or a touchdown in American Football. However,

is this all that is involved in the meaning of counts-as statements?

The interpretation of counts-as in merely classificatory terms does not do justice
to the notion which is stressed in the label “constitutive rule”, that is, the notion of
constitution Aim of the paper is to show that this notion, as it is presented in some work
in legal and social theory, is amenable to formal characterization and that the theory we
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developed in [6, 7] provides a ground for its understanding. The paper disentangles and
analyzes three precise senses in which it can be said that “X counts as Y in context
C”. For each of these different senses of counts-as a formal semantics is developed by
making use of standard modal logic techniques. From a methodological point of view,
we will proceed as recommended here:

“[...]it seems to me obvious that the only rational approach to such problems
would be the following: [1] We should reconcile ourselves with the fact that we
are confronted, not with one concept, but with several different concepts which
are denoted by one word; [2] we should try to make these concepts as clear as
possible (by means of definition, or of an axiomatic procedure, or in some other
way); [3] to avoid further confusions, we should agree to use different terms for
different concepts; and then we may proceed to a quiet and systematic study
of all concepts involved, which will exhibit their main properties and mutual
relations” ([8], p. 355).

The structure of the paper reflects its method. Sec®ialisentangles three different
meanings of counts-as statements and exposes a first informal analysis. In Section
a modal logic of contextual classification is introduced and by means of it a formal
analysis of the classificatory view of counts-as is provided. The two remaining senses of
counts-as are formally analyzed in Secti@asnd6. Finally, the relationships between

the three readings are studied in Secfio€onclusions follow in Sectio8.

2 Counts-as between Classification and Constitution

Consider the following reasoning pattern.

Example 1.1t is a rule of normative syster that conveyances transporting people or
goods count as vehicles; it is always the case that bikes count as conveyances trans-
porting people or goods but not that bikes count as vehicles; therefore, in the context of
normative systend”, bikes count as vehicles.

This is an instance of a typical reasoning pattern involving constitutive rules. The
counts-as locution occurs three times. However, the second premise states a gener-
ally acknowledged classification (“bikes count as conveyances transporting people or
goods”), while the conclusion states classification which is considered to hold only
with respect to the normative system at issue (“according to normative systbrkes

count as vehicles”). The first premise expresses something yet different, a classifica-
tion which is brought about —constituted— by the normative system: “conveyances
transporting people or goods are classified as vehicles” is one of the rulées of

2.1 The classificatory reading of counts-as

The fact that “bikes count as conveyances transporting people or goods” can be readily
analyzed as a form of classification: the concept ‘bike’ is a subconcept of the concept
‘conveyance transporting people or goods’. ( [6,9, 10]).
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In Examplel one of the premises was that bikes do not always count as vehicles.
In other words, there are contexts in which ‘bike’ is not a subconcept of ‘vehicle’. This
suggests that a notion of context is necessary because classifications holding for a nor-
mative system are not of a universal kind, they do not hold in general. The classificatory
reading of counts-as statements of the fotkh Counts-ag” in contextc” runs thus as
follows: “X is a subconcept of” in contextc”. Following much literature on context
theory (see for instance [11, 12]) we conceive of a context simply as set of situations
(possible worlds). What precisely these situations have to be in order to be considered
a context will be clarified soon discussing the notion of constitutive rule (Se2t®n

Classificatory counts-as will be formally studied in Sect3oA more extensive dis-
cussion of the intuitions underpinning the classificatory reading of counts-as statements
can be found in [6, 7].

2.2 Counts-as statements as proper classifications

The analytic literature on constitutive norms often comes to emphasize the following
characteristic feature: counts-as statements are not just classifications but “new” clas-
sifications, that is, classifications which would not hold without the normative system
stating them:

“Where the rule is purely regulative, behaviour which is in accordance with the
rule could be given the same description or specification (the same answer to
the question “What did he do?”) whether or not the rule existed, provided the
description or specification makes no explicit reference to the rule. But where
the rule (or system of rules) is constitutive, behaviour which is in accordance
with the rule can receive specifications or descriptions which it could not re-
ceive if the rule did not exist” ([1], p.35).

This was the case for the conclusion of the inference in Exathpiie the context of
normative systeni’, bikes count as vehicles” although this is not generally the case.
In this view, counts-as statements do not only state contextual classifications, but they
state new classifications which would not otherwise hold.

Observation 1 Counts-as statements are classifications which hold with respect to a
context (set of situations) but which do not hold in general (i.e., with respect to all
situations).

We call counts-as statements intended in the sense of Obser¥aifoper contextual
classifications In other words, X counts asY” in contextc becauseX is classified

asY in ¢ but also because this does not hold in general, i.e., in the global context.
They state that something new is brought about and in this sense the notion of proper
contextual classification already captures a precise notion of constitution: the fact that
X is classified a¥” is constituted by contextin the sense that out of contexit might

not hold. Proper contextual classifications will be formally studied in Secdohs.

A more detailed exposition of the intuitions behind the proper classificatory view on
counts-as can be found in [7].



2.3 Counts-as statements as constitutive rules

Examplel sketched an inference grounded on a constitutive rule: “It is a rule of norma-
tive systeml” that conveyances transporting people or goods count as vehicles”. First
of all, this statement expresses a classification which is brought about by the normative
systemi” (“conveyances transporting people or goods count as vehicles”), that is, what
we called in the previous section a proper contextual classification. There is however
something more. It explicitly states that a classification is one of the rulEsDhis se-
mantic ingredient is not captured by the classificatory and proper classificatory readings
sketched in the previous sections and it involves two essential aspects.

The first one is that counts-as statements of the constitutive type are always part of
asetof similar statements, the system of rulés

“Rules are constitutive if and only if they are part of a set of rules. Strictly
speaking, there is no such thingaaule that is constitutive in isolation” ([13],

p.5).

The second aspect concerns the relation between, on the one hand, the notion of a
set of rulesl’, i.e., normative system or institution, and on the other hand the notion of
set of situationg, or contextc. A I" constitutes a contextby means of its rules. The
set of classifications stated as constitutive rules by a normative system (for instance,
“conveyances transporting people or goods count as vehicles”) can be thought of as the
set of situations which make that set of classifications true. Hence, the set of constitutive
rules of any normative system can be seen as a set of situations. And a set of situations
—we have seen— is what is called a context in much literature on context theory (see
for instance [11, 12]). To put it in a nutshell, a context is a set of situations, and if
the constitutive rules of a given normative systéhare satisfied by all and only the
situations in a given set, then that set of situationthés context defined b¥/. This
simple observation allows us to think of contexts as “systems of constitutive rules” ([1],
p.51). Notice that this is no exotic thought. In fact, this idea has been neatly advanced
—informally— in some literature on the theory of institutions:

“A set of constitutive rules defines a logical space” ( [13], p.6).

A logical space is nothing but a set of states, i.e., a context. Getting back to Example
1, consider the statement concluding the argument: “according, teikes count as
vehicles”. In this light such a statement just says that “in the set of situations defined by
the rules of systend’, bike is a subconcept of vehicle”.

The discussion above is distilled in the following observation.

Observation 2 A constitutive counts-as statement is a proper contextual classification
such that: (a) it is an element of the set of rules specifying a given normative system
I; (b) the set of rules of " define the context (set of situations) to which the counts-as
statement pertains.

Constitutive counts-as statements will be formally studied in Sectidtasnd®6.

To recapitulate, we distinguished betweammstitutive counts-as statememisper
classificatory counts-as statemeatxliclassificatory counts-as statementghen state-
ments “X counts ag” in the context of normative systeni™ are read as constitutive
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rules, what is meant is that the classification®0funderY” is considered to be an ex-

plicit promulgation of the normative systefm defining context. Instead, when they

are read as proper classificatory statements they are meant to denote classifications that
are constituted, or brought about, by the context at issue in the sense that they might not
hold if another context is considered. Finally, when they are read as mere contextual
classification, they are meant to denote classificatory statements that are just the case in
the given context .

3 Modal logic of Classificatory Counts-as

This section summarizes the results presented in [6]. We first introduce the languages
we are going to work with: propositional n-modal languagd<’,, ( [14]). The alpha-

bet of ML,, contains: a countable sBtof propositional atomg; the set of boolean
connectiveg—, A, vV, —1}; a finite non-empty set of (context) indexeg€”, and the op-
erator[ ]. Metavariables, j, ... are used for denoting elements @f The set of well
formed formulasp of ML, is then defined by the following BNF:

¢u=L[p|=¢|pr Ada| 1V 2| P — 2] [ilo.

We will refer to formulaep in which at least one modal operator occurs as modalized
formulae. We call instead objective formulae in which no modal operator occur and we
denote them using the metavariablgs~s, . . ..

3.1 Semantics
Semantics for these languages is given via structiwtes: (F, Z), where:

— Fis a CT frame, i.e., a structur& = (W, {W; },cc), wherel is a finite set of
states (possible worlds) addV; };c¢ is a family of subsets of.

— 7 is an evaluation functiof : P — P(1¥/) associating to each atom the set of
states which make it true.

Such frames model thus n different contektshich might be inconsistent, if the cor-
responding setV; is empty, or global ifi¥; coincides withlV itself. This implements
in a straightforward way the thesis developed in context modeling according to which
contexts can be soundly represented as sets of possible worlds ([11]).

The satisfaction relation, then, results in the following.

Definition 1. (Satisfaction based onXg@ frames)
Let M be a model built on &€xT1 frame.

Mw E [i]¢ iff Vw' e W, : Myw' E ¢
M,w = (i) ¢ iff Fw' € W, : M, w' E ¢.

The obvious boolean clauses are omitted. Validity in a model, in a frame and in a class
of frames are defined as usual.



It is instructive to make a remark about thigoperator clause, which can be seen as
the characterizing feature of the modeling of contexts as sets of woldsgates that

the truth of a modalized formula abstracts from the point of evaluation of the formula.
In other words, the notion of “truth in a conteitis a global notion: [i]-formulae are
either true in every state in the model or in none. This reflects the idea that what is
true or false in a context does not depend on the world of evaluation, and this is what
we would intuitively expect especially for contexts interpreted as normative systems:
what holds in the context of a given normative system is not determined by the point of
evaluation but just by the system in itself, i.e., by its rules: the fact thAthikes count

as vehicles depends only on the ruled of

3.2 Axiomatics

The multi-modal logic that corresponds, i.e., that is sound and complete with respect
to the class of &T frames, is a system we call hek€45Y. It consists of a logic
weaker than the logi& D451 investigated in [6] in that the semantic constraint has
been dropped which required the sets in fanfil/; },c - to be non-empty. As a conse-
quence the D axiom is eliminated. To put it in a nutshell, the system is the very same
logic for contextual classification developed in [6] except for the fact the we want to al-
low here the representation of empty contexts as well. In the knowledge representation
setting we are working in, where contexts can be identified with the normative sys-
tems defining them, this amounts to accept the possibility of normative systems issuing
inconsistent constitutive rules.

Logic K454 is axiomatized via the following axioms and rules schemata:

(P) all tautologies of propositional calculus

(K) [i](¢1 — ¢2) — ([ilo1 — [i]2)
(47) [il¢ — [illile
(57) =[il¢ — [j]-[il¢
(Dual) (i) ¢ < —[i]=¢

(MP @1, ¢1 — ¢2 [ ¢2
(N) ¢/ lilo

wherei, j denote elements of the set of indeXesThe system is a multi-modal homo-
geneoudK 45 with the two interaction axiom¥” and5% . Soundness and completeness
are proven in Sectiof.

Aremark is in order especially with respect to axiomgitaand5% . In fact, what the
two schemata do, consists in making the nesting of the operators reducible which, leav-
ing technicalities aside, means that truth and falsehood in conféxta6d—[i|¢) are
somehow absolute because they remain invariant even if evaluated from another con-
text (j][¢]¢ and[j]—[i]¢). In other words, they express the fact that whether something
holds in a context is not something that a contextcan influence. This is indeed the
kind of property to be expected given the semantics presented in the previous section.

! Propositional logics of context without this clause are investigated in [15, 16].
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3.3 Classificatory Counts-as formalized

Using a multi-modal logid<45% on a languageM L,,, the formal characterization of
the classificatory view on counts-as statements runs as follows.

Definition 2. (Classificatory counts-as:><')
“~1 counts asys in contextc” is formalized in a multi-modal languagé1£,, as the
strict implication between two objective sentengeandy, in logic K454:
N =y = [dn — )
These properties for-¢ follow.

Proposition 1. (Properties of=¢)
In logic K454, the following formulas and rules are valid:

Y2 =3/ (=8 ) < (=6 73) 1)
=73/ (n id 72) (73 => V2) )
(= 72) A1 =T ) = (n = (2 A %)) )
(1 = 12) A (13 = 72)) = (1 Vs) = 72) (4)
v =>¢ ) (5)
(= 72) A (2 = ) — (=8 s) (6)
(71 = 72) (72 == ’Yl) — [c](m1 < 72) (7)
(1 = 72) = (n Avs =8 72) (8)
(11 = 12) = (n = 72 V) 9)

We omit the proofs, which are straightforward via application of Definifiomhis sys-

tem validates all the intuitive syntactic constraints isolated in [17] (validities 1-4). In
addition, this semantic-oriented approach to classificatory counts-as enables the four
validities 6-9. Besides, this analysis shows that counts-as conditionals, once they are
viewed as conditionals of a classificatory nature, naturally satisfy reflexivity (5), tran-
sitivity (6), and a form of “contextualized” antisymmetry (7), strengthening of the an-
tecedent (8) and weakening of the consequent (9).

4 Beyond Classificatory Counts-as

Aim of this section is to provide formal counterparts to Observatibiasid 2 which

can work as intermediate step towards the development of suitable modal logics for
the analysis of proper classificatory counts-as (Sedioand constitutive counts-as
(Section6).

4.1 From classification to proper classification

As usual, model-theoretic considerations can give us crucial hints. Let us define the set
T(X) of all formulae which, given a model, are satisfied by all worlds in a set of worlds
X:

T(X)={¢|Vwe X : M,w = ¢}.



and letT—(X) be the set of all implications between objective formulaeand -
which are satisfied by all worlds in a set of worlds

T7(X)={m—n|VweX : MwEmn — 1}

Obviously, for everyX: T—(X) C T(X). In the classificatory reading, given a model
M where the set of world$/, C W models context, the set of all classificatory
counts-as statements holdingdnwhich we denote a€L (1V.), can be defined as the
setT—(W,):

CL(W,) :=T7(W,).

Hence, it is easy to see thdt—” (W) C CL(W,) C T(W,). In other words, the set of
classificatory counts-as statements is:

— A subset of all the truths diV/,;
— A superset of all conditional truths &¥/, that is, of the “global” or “universal”
context of modelM.

While the first point represents a quite banal semantic constraint to which any formal
characterization of counts-as should adhere, the second one is much more questionable.
Indeed, what is true anyway is not characteristic of any context (except of the global
one), and it cannot be properly said to represent any new truth. In other words, inter-
preting counts-as statements as mere classifications, as it has been done in3Section
make them inherit all trivial classifications which hold globally in the model. This is
the reason why classificatory counts-as, as shown in Propodgitinehaves classically
enjoying antecedent strengthening as well as transitivity and reflexivity.

These considerations suggest thus a readily available strategy to specify the set of
proper classificatory counts-as holding in a contexin the basis off — (17..). The
problem boils down to eliminate from the set of classificatory countstai®r a context
W. those classifications which hold globally, that is, which hold with respect to the
global contextlV. We obtain, in this way, the set @iroper classificatory counts-as
statements, oproper contextual classificationfolding in contexic in a CxT model
M.

Definition 3. (Set of proper classificatory counts-as:)n
The setCL" (W) of proper classificatory counts-as statements of a comtaxa CxT
modelM is defined as follows:

CLY(We) := T~ (W) \ T(W). (10)

Intuitively, the set of proper classificatory count-as holding torresponds to the set

of implications between objective formulae which holdciminus those implications
which hold universally. Or, to put it otherwise, the set of proper classificatory count-as
holding inc corresponds to the set of classificatory counts as wifinus those implica-
tions which hold universallyCL " (W,.) := CL(W,) \ T(W). This is the most natural
amendment of the classificatory view toward the specification of a stronger notion of
contextual classification along the lines of Observafion
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4.2 From proper classification to constitution

Let us now focus on Observati@ What comes to play a role is the notion afiefini-
tion of the context of a counts-as statement. A definition of a corterta CxT model
M, is a set of objective formuldd™ such that/w € W:

M,w E T iff we W, (11)

that is, the set of formulag such that all and only the worlds iy, satisfyl” in M.
Observatior2 can now get a formal formulation. Given the set of formulgeve
say that any formulg; — ~- € ' is a constitutive counts-as statement w.r.t. context
iff I" defines context andy; — 2 belongs to the set of proper contextual classifica-

tions ofc.

Definition 4. (Set of constitutive counts-as inw.r.t. definitionI™)
The setCO(I', W,) of constitutive counts-as statements of a conteldfined by in a
CXT modelM is:

CO(INWe) :i={m1 =2 € I'| 1 — 72 € CLT (W)
andvVw(M,w = I'iff w € W,)} (12)

Notice thatCO(I, W) is defined taking as domain the set of implicative statements of
I". Notice also that as a result of this definition/ifdoes not define conteXt’. then
CO(I,W,) = 0. In fact, Formulal2 can be restated as follows:

+ - .
CO(I, W,) = CL™ (W) nr, if I" definesiV,.
(0, otherwise.
Section6 is devoted to the development of a modal logic based on this definition.
The definitions discussed are summarized in the table below.

Cxt Classification CL(W,) = T~ (W,)
Proper Cxt Classification CLT(W,) = CL(W,)\ T(W)
+ . .
Constitution CoO(I,w,) = {gﬂ‘ oEr‘jZCr?/v?sg’ if I" definesiv

The table pinpoints the dependencies between the formal characterizations of the three
different senses of counts-as which has been taken into consideration: the notion of
constitution builds on the notion of proper contextual classification which in its turn
builds on the notion of contextual classification. The modal logic analysis of contextual
classification developed in Secti@mran thus be used as a sound starting point for the
modal logic analysis of the two notions introduced in this section.

2 This is no arbitrary choice since it can be easily seen that contextual formulae, since they
denote global properties of the models, are as a matter of fact irrelevant for the definition of
sets of worldg¥; such that) C W; C W, that is, those sets which denote neither the empty
nor the universal contexts. It is therefore natural to restrict definitions to objective formulae.



4.3 A methodological note

Before rendering the insights of Sectighd and4.2in modal logic, it is worth making a
methodological remark. We are here concerned with a term, “counts-as”, which appears
to have different meanings. At this point we had two main ways to pursue the formal
characterization of counts-as we were aiming at. We could proceed axiomatically by
trying to single out intuitive syntactic properties of counts-as statements? Or rather
semantically, by trying to enrich the semantic characterization of classificatory counts-
as exposed in the previous sections in order to capture further semantic nuances? While
formal approaches to counts-as ( [17—19]) have been, up to now, characterized by an
axiomatic perspective, we have instead chosen for a semantics-driven solution. This
choice has been inspired by considering the methodological standpoint of fundamental
work in philosophical logic such as [8, 20].

The same issue we are facing here in analyzing counts-as lies also at the ground of
the Tarskian characterization of the notion of truth and consists in the polysemy of the
to-be-analyzed term. Because of the inherent polysemy of the predicate “to be true”,
Tarski found it unconvincing to proceed introducing the predicate as a primitive and
then axiomatizing it:

“[...] the choice of axioms always has rather accidental character, depending
on inessential factors (such as e.g. the actual state of our knowledge). [...] a
method of constructing a theory does not seem to be very natural [...] if in
this method the role of primitive concepts —thus of concepts whose mean-
ing should appear evident— is played by concepts which have led to various
misunderstanding in the past” ( [20], pag. 405-406).

Instead, he preferred to first isolate a precise sense of the predicate, i.e., truth as corre-
spondence to reality, and then to define it in terms of a better understood notion, i.e.,
the notion of satisfaction of a formula by a model. An axiomatic analysis of counts-as
statements runs the danger alluded to in the quote: since it is not clear what counts-as
statements actually mean, an axiomatization of them could result in mixing under the
the same logical representation different semantic flavors that, from an analytical point
of view, should be kept separated. A systematic discussion of this issue, specifically in
relation with the proposal advanced in [17], can be found in [7].

The work presented in this paper is the result of the application of this method
to the notion of counts-as: in Sectiéghwe first disentangled different meanings of
the term “counts-as” providing a first map of its polysemy; in Sec8ome formally
analyzed the first and more basic of these meanings explaining it in terms of a better-
understood notion (strict implication within a context); in this section we have pointed
at a first semantic characterization of the other two meanings and in the coming next two
sections we will explain them by making use of better-understood modal logic notions:
the negation of global statements (proper classificatory counts-as) and the definition of
a context (constitutive counts-as).

5 Modal Logic of Counts-as as Proper Contextual Classification

In the following section a modal logic is developed which implements the definition
stated in Formuld 0 above. By doing this we will capture the intuitions discussed in
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Section2 concerning the intuitive reading of counts-as statements in proper classifica-
tory terms. At the same time we will maintain the possible worlds semantics of context
exposed in Sectio and developed in order to account for the purely classificatory
view of counts-as.

5.1 Expansion of£,, and semantics

Language’,, is expanded as follows. The set of context indeXes such that it always
contains the special context indexdenoting the universal (or global) context. We call
this languageC®.

LanguagesC? are given a semantics via a special class afr Grames, namely
the class of @T framesF = (W, {W,}.cc) such that € {W,},cc. That is, the
frames in this class, which we callx@ ", always contain the global context among
their contexts. The definition of the satisfaction relation for langugigéllows.

Definition 5. (Satisfaction based onx@ ™ frames)
Let M be a model built on &£x1 " frame.

Mw = [u]¢ iff V' e W : M,w' | ¢
Mow ¢ iff Vw' e W, : M,w' = ¢

wherew is the universal context index antgranges on the context indexesdh The
obvious boolean clauses and the clauses for the dual modal operators are omitted.

The new clause states that thé operator is interpreted on the universal 1-frame con-
tained in each &T " frame. It is therefore nothing but$6 necessity operator.

5.2 Axiomatics

We call Cxt" the logic characterizing the class ok€' frames. LogicCxt" results
from the unionK454 U S5,, U {C .ui)}, that is, from the union oK45% with the
S5, logic for the [u] operator together with the interaction axiagm.ui below. The
axiomatics runs thus as follows:

(P) all tautologies of propositional calculus
(K') [il(¢1 = d2) — ([Jor — [i]¢2)
(47) [io — [ilile
(5) —[i]o [] [i]¢
(T) [ulp —
(€ ui) [ulp — []
(Dual) (i) ¢ < =li]~¢

(MP IF F ¢1 AND F ¢1 — ¢ THEN I ¢
(NY) IF F ¢ THEN I [i]¢



wherei, j denote elements of the set of indexggndw denotes the universal context
index inC'. The interaction axion& .u: states something quite intuitive concerning the
interaction of thgu] operator with all other context operators: what holds in the global
context, holds in every context. Soundness and completeness of this axiomatization
w.r.t. CxT " frames are proven in Secti@n

5.3 Proper classificatory counts-as formalized

Using a multi-modal logi€Cxt" on a languag&?, the proper classificatory reading of
counts-as statements can be formalized as follows.

Definition 6. (Proper classificatory counts-as:!*)
“~1 counts asy, in contextc”, with ~v; and~; objective formulae, is formalized in the
logic Cxt" on a multi-modal languag€® as:

71 =8y = [y — v2) A — )

Notice that this definition is nothing but the translation in ffjelanguage of Formula
10.

What properties of counts-as are lost interpreting it as proper contextual classifica-
tion? And what properties are instead still valid? The following two propositions answer
these questions.

Proposition 2. (Properties of=¢*: invalidities)
The=-¢'* versions of reflexivity, strengthening of the antecedent, weakening of the con-
sequent, transitivity and cautious monotonicity are not valid:

y =t (13)
(1 =>”l+ 72) = (1 Avs =8 y2) (14)
(=8 ) = (= 2 V) (15)
((m =>CZ+ Y2) A (2 =8 y3)) = (1 = ) (16)
(1 =" 72) Ay =8 73)) = (1 Ae) =8 9s) 17)

We do not provide all the proofs, which can be obtained by constructing appropriate
countermodels. We show a countermodel for Form@larw € W, M, w = v1 — ~3;
Yw € We, Myw E 71 — ypand M, w | v — v3; and 3w, w” st. M, w' |E
Y1 A =y2 Ays and M, w” | =y Ay A s,

It might be instructive to provide at this point also an intuitive example for the failure
of transitivity. Before 9/11/2001, it was the case that many legal systems did not specify
a legal notion of terrorism. In the context of the legal systems that did, the following
were therefore proper contextual classifications since they were not holding in general:
“the use or threat of action designed to influence the government and advance a political
cause counts as terrorism” and “terrorism counts as a criminal activity”. However, it
could not be inferred from them that “the use or threat of action designed to influence
the government and advance a political cause counts as a criminal activity” was a proper
contextual classification, because what stated was anyway the case also in those legal
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systems disregarding a notion of terrorism. Intuitively, transitivity fails just because it is
possible to constitute local middle terms, e.g., terrorism, for classifications which hold
globally in the model.

Proposition 3. (Properties of=¢*: validities)
In logic Cxt" the=-¢"* variants of Formulae 1-4 of Propositidhare valid:

Y2 ey /) (n =IF ) o (=T ) (18)
N s/ (n =8 ) o (=8 %) (19)
(=8 1) A =8 13) = (n =87 (12 A1) (20)
(1 =8 ) A (13 =8 12)) = (1 V) =8 72) (21)

Contextualized antisymmetry, i.e., Formula 7 of Propositidmolds in the following
form:

(m = 1) A (e =T ) = [din = 72) Alu](n < ) (22)
Cumulative transitivity (alias cut) is also valid:

(1 =8 ) A Av) =8 y3)) = (1 =0 9s) (23)

Conditional versions of antecedent strengthening, consequent weakening and transitiv-
ity are valid:
Sful(a Avs = 72) = ((n =8 32) = (A =8 7)) (24)
“lu)(m =12 Vaz) = (0 =87 12) = (=0T 2 V) (25)
“lul(n = y3) = (=8 R A= 13) = (n =0T ) (26)

We provide the deduction of Formual as an example.

. (P) (11 —=72) = (M A —92)
2. (N),(K),(MB, 1 [eJ(m1 = 2) = [d(v1 Avs — 2)
(P) —[ul(y1 Ay — 3)

= (2[u](n = y8) = ~ul(n Ave — 3))
4. (P),(MP, (Def.6),2,3 =[u](y1 Az — 72)
= (=8 1) = (A= Rw)

Proposition and3, though very simple, are of key importance for putting our char-
acterization of counts-as as proper contextual classification in perspective with other
proposals. Such a comparison is elaborated in detail in [7].

Formulae24-26 are also of interest since they show that some quite standard prop-
erties of contextual classifications are inherited by proper contextual classification in
a conditionalized form, the condition being an assertion of invaliditju)). Proper
classificatory counts-as statements are still monotonic, provided that the strengthened
version of the antecedent does not universally imply the consequent. Similarly they are
still transitive, provided that the implication betwegnand~s is not a validity of the
model. It is worth emphasizing the importance of these results from the perspective of



conceptual analysis and their clarifying power. An alleged intuitive example of tran-
sitivity for counts-as statements, in a proper classificatory sense, is such only if the
appropriate condition is assumed to hold. Consider again the example about terrorism
discussed above. The example could be in fact legitimately be read as an instance of
transitivity once it is also accepted that “the use or threat of action designed to influence
the government and advance a political cause counts as a criminal activity” is not some-
thing which is already globally the case. Similar considerations hold in particular for
the conditionalized version of antecedent strengthening. This property will be further
discussed in Section 1

6 Modal Logic of Constitutive Counts-as

In this section a modal logic is developed which implements DefindioAgain, the
possible world semantics developed in order to account for the classificatory view of
counts-as lies at the ground of the proposed framework.

6.1 Expandingl}

Languagel}, which has been used in the previous section to deal with proper con-
textual classification, needs now further expansion to enable the necessary expressivity.
The language is expanded along two lines.

First, the set of context index&s contains now a sek’ of m atomic indexes:
among which the universal context index and the set of the negationsc of the
atomic contexts, i.e., of the elementsif C = K U {—c| ¢ € K}. The cardinalityn
of C is therefore equal tdm.

Second, the language needs also to contain &lseft nominalss disjoint from
the setP of propositional atoms. Nominals are names for states in the model or, in
other words, formulae that can be satisfied by only one state in the model. They can be
freely combined with propositions to form well-formed formulae. The BNF is therefore
extended as follows:

pu=TI[p|s[=Q[d1AG2 |1V P2 |1 — d2|[i]o] (i) .

Metavariables for nominals are writtenas v-, . . .. Modal languages containing nom-
inals have been recently object of thorough study and are known as hybrid languages
([21]). The language obtained is call&g} .

Nominals are needed in order to provide a sound and complete axiomatization of
the logic based on the semantics presupposed by Defindtidio be more precise,
they are necessary in order to axiomatize the notion of complement of a corftieist
will become evident by exposing the axiomatics (Secta®) and especially, from a
technical point of view, in proving its completeness (Secfipn

% For this purpose nominals were first introduced by the so-called “Sofia school” of modal logic
([22,23]) in order to axiomatize the complement and the intersection of accessibility relations,
especially in a dynamic logic setting. In fact, the axiomatics we present in Séc8astrictly
related with the systems studied in their works.



Dagstuhl Seminar on Normative Multiagent Systems 15

6.2 Semantics

LanguagesC~ are given a semantics via a special class afr Grames, namely
the class of QT framesF = (W, {W,};cc) such that there always existslH, €
{W,}ice s.t.W,, = W; and such that for any atomic indexe K W,,\W, € {W, }icc.
That is, the frames in this class, which we cak'C -\, always contain the global con-
text among their contexts and the complement of every atomic context.

The semantics fo£® ~ is thus obtained interpreting the formulae on models built
on CxT "\ frames. However, because of the introduction of nominals, the evaluation
function Z should be redefined as a functidgn: P UN — P(W) satisfying the
following constraints:

— For all nominalss € N, Z(s) is a singleton set, that is, nominals always denote one
and only one state in the model.

— For all statesv € W, there exists a nominal € N such thatZ(s) = w, that is,
each state has a name. In other words, the restriction of the interpretation function
7 on the set of nominal\]Z) is a surjection on the set of all singletonsi&f.

The definition of the satisfaction relation for languagfe— runs as follows.

Definition 7. (Satisfaction based onx@ "\ frames)
Let M be a model built on £x1 7\ frame.

Mw = s iff Z(s) = {w}
M,w = [ug iff Yu' € W, : Myw' = ¢
Mw = [do iff V' e We: Mw' | ¢
Mw = [=d¢ iff Vu' € W\W. : M,w' [ 6.

whereu is the universal context index ardanges on the context indexes(ifands is
a nominal. The obvious boolean clauses and the clauses for the dual modal operators
are omitted.

The first clause states the satisfaction relation for nominals: a nomiisatrue in a
statew in model M iff the evaluation function associatasto s. Nominals are there-

fore objective formulae which are true in at most one world. The second clause, which
was already introduced in Definitidh states that thé:] operator is interpreted on the
universal frame contained in eachk€'\ frame. The third one is just the standard
clause for contextual truth introduced in Definiti@nFinally, the last and new clause
states that thé—c| operators range over the complements of the Bét®n which|c]
operators range instead.

Some observations are in order. First of all, let us comment upon the semantics of
the [—c]-operators. In fact, thé] operator specifies a lower bound on what holds in
contextc (‘something more may hold in’), that is, a formulalc]¢ means that) at
leastholds in context. The[—c| operator, instead, specifies an upper bound on what
holds inc (‘nothing more holds ir’), and a|—c|—¢ formula means therefore thatat
mostholds inc, i.e.,—¢ at leastholds in the complement ef It becomes thus possible
in CxT "\ frames to express context definitions by means of madat formulae



interpreted on T\ models. A set of objective formulaE defines context in a
Cx1 "\ model M iff:
ME [T A [—¢-T 27)

where—I" has to be intended in the obvious sense of the disjunction of the negations of
all formulae inI". Formula27 is an object language modal translation of the property
stated in Formuld 1.

Proposition 4. (Equivalence of Formulagl and27)

Let M be aCxT model andM’ be aCxT "\ such that:M’ is based on a frame having
the same domain of the frame on whitt is based, and containing all its contexts;
M’ has the same evaluation function.®f. It is the case that, given a set of objective
formulael” and a contextV, € {W,};cc:

M,w = Tiffw e W, isequivalentto M’ =[] A [—c]-T.

Proof. The proof is based on the semantics provided in DefinifioBy construction
of M, the clause “ifw € W. then M,w = I is equivalent to “ifw € W, then
M ,w = I'™, and therefore equivalent t&1’ = [c]I". Analogously, the clause “if
w ¢ W, then M, w [~ I'" is equivalent to “ifw € W\W, thenM',w = —I"", and
therefore equivalent tdA’ = [—c]-T".

It might be instructive to notice that in practice we are making use, in a different setting
but with exactly analogous purposes, of a well-known technique developed in the modal
logic of knowledge, i.e., the interpretation of modal operators on “inaccessible states”
typical, for instance, of the “all that | know” epistemic logics ( [24]). In our case, the
set of inaccessible states is nothing but the complement of a context.

6.3 Axiomatics

To axiomatize the above semantics an extension of [Bgi&Y is needed which can
characterize nominals as names for modal states and, consequently, context comple-
mentation. The extension, which we call logisct ™ —, results from the uniolK454 U

S5, that is, from the union 0K 454 with the S5,, logic for the[u] operator together

with a group of two axiomsl(east andMost ) and one rulellame which axiomatize
nominals, and a group of two axiom&dvering andPacking ) which axiomatize
context complementation. The axiomatics runs as follows:

(P) all tautologies of propositional calculus

(K) [i](¢1 — ¢2) — ([i]pr — [il¢2)
(47) [ilo — [ilile
(57) =g — []-lile
(T%) [ul¢ — ¢

(€ ui) [u]¢ — [i]o

(Least ) (u)v
(Most) (u) (v A @) — [u](v — ¢)
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(Covering ) [c]¢ A [—cl¢ — [u]o
(Packing ) (-c)v — —{c)v

(Dual') (i) ¢ < —[i]=¢

(Name IF Fv — 6 THEN F 0
(MB IF F ¢1 AND F ¢1 — ¢2 THEN F oo
(NY) IF F ¢ THEN  [i]p

wherei, j are metavariables for the elements/of ¢ denotes elements of the set of
atomic context indexeS, u is the universal context index,ranges over nominals, and
0 in rule Namedenotes a formula in which the nominal denotedvbgoes not occur.
The proofs of soundness and completeness of the axiomatization wr.t. Cframes
are provided in Sectiof.

The new axioms and rules deserve some comments. Let us start with the axiomati-
zation of nominals. AxiomLeast states just that every nominal deno&tdeastone
state. Vice versa, axiofost states that nominals denaiemostone state. Intuitively
it says that, if there is a state nameavhere¢ holds, thenp holds if v is the case. Fi-
nally, ruleName which we borrowed from standard hybrid logic ( [21]), states that all
states are nominated. It does that by saying that if it is provable that a fofrholds at
an arbitrary state —the state is arbitrary since the rule requiressot to occur ing—
thend itself is provable since there is no world that falsifies it. From a technical point
of view, as observed in [23], this rules states a sufficient condition for funttidr) to
be a surjection on the set of all singletondf. To sum up, axiomseast andMost
with rule Nameaxiomatize the conditions holding on the interpretation funcfices
exposed in Sectiof.2

Let us now discuss the axioms that are more central to the modeling aim we are
pursuing: axiom€overing andPacking . They characterize context complementa-
tion. Axiom Covering states that if some formula holds in betand—c, than it holds
globally. In other words, it states that the universal contexbigeredby the contexts
denoted by and, respectively-c. Axiom Packing states instead that the contexts
denoted by: and—c are strongly disjoint, in the sense that they do not contain the same
states or. Thepackthe universal context in two disjoint subcontexts. They are thus just
modal formulations of the two properties characterizing the bipartition of a given set.
Notice that nominals are necessary in the formulation oPtheking axiom. Itis easy
to see that, without the possibility of naming individual states, it would be impossible
to axiomatize disjointness.

6.4 Aremark: Cxt"~ as hybrid logic

Before putting the formalism at work it might be instructive to make one last technical
remark. In logicCxt"~ a family of @, operators is definable, by means of which it is
possible to express that a formuyldholds in the state named by @, ¢. This operator

4 RuleNameplays a central role in the completeness proof farC'\ (see the proof of Lemma
9in Section9).



is known in hybrid logics ( [21]) as thsatisfaction operatarlts semantics is given in
terms of the following satisfaction clause:

Mow | @,8iff M,I(v) = 6.

The property of “holding in a state” is thus a global property, that is, it is independent
of the point of evaluation. The clause states more precisely that, whatever the state of
evaluation is, it is the case thatif holds theng also holds. In fact, the satisfaction
operator can be defined in any logic enabling nominals and a universal modality ( [25],
[26]) as follows:

Q,¢ = [ul(v — ¢) (28)

where@,, is a nominal and a formula. Leaving technicalities aside, this means that
logic Cxt™~ has sufficient expressive means to represent statements of the type “in sit-
uation (or statey state-of-affairsp holds”. This expressive capability of logi€xt™~

will turn out useful to represent intuitive reasoning patterns involving constitutive counts-
as statements (see Proposit&)n

6.5 Constitutive Counts-as formalized

Using a multi-modal logicCxt"~ on a languageC-—, the constitutive reading of
counts-as statements can now be formalized.

Definition 8. (Constitutive counts-ass¢°-

Given a set of formulaé’ such thaty; — ~2 € I, the constitutive counts-as statement
“~1 counts asy, in the context: defined byl™ is formalized in a multi-modal logic
Cxt™\ on language.®~ as follows:

Y = 2 = [T A [T A =[u] (71 — 72)
with 7, and~, objective formulae.

The definition implements in modal logic the intuition summarized in Observation
and formalized in Definitior: constitutive counts-as statements correspond to those
non trivial classifications which are stated by the definitiof the context. In fact

the following can be proven.

Proposition 5. (Equivalence of Definition8 and 4)
Let M be aCxT "\ frame andI” a set of objective formulae. It is the case that: —
Y2 € COLLWe) iffy1 = 2 € {m1 = 2 € I'| M E 7 =% 72 ). Toputit
otherwise:

COIWe) ={n = e ' | M Ev = 72}

Proof. The proof follows from PropositioA.

A detailed comment of DefinitioB is in order. The most important consequence of
it is that it is possible to talk about constitutive counts-as only once A s&given. As
already stressed in Sectidt?, there is no formula that is constitutive in isolation. This
logic of constitutive rules takes therefore the warning raised in [27] very seriously: “no
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logic of norms without attention to a system of which they form part” ( [27], pag. 29).

As a result, constitutive counts-as statements can also be viewed as forms of speech
acts creating a context: given that — - is a formula ofI”, v1 ={% ~2 could be

read as “let it be that; — 7o with all the statements of’ and only ofI" or, using

the terminology of [28], “fiatl” and onlyI™. On the other hand, a constitutive counts-

as is false if eithed” does not define the context denoted dyor if it expresses a
classification which is valid in the model.

This is precisely the distinctive feature of constitutive counts-as with respect to its
two classificatory relatives. While the classificatory versions of counts-as express what
at least holds in a context (contextual classification) and, respectively, what at least hold
in a context which is not globally true (proper contextual classification), the constitutive
version expresses also what at most holds in a context, thereby making explicit what
the context actually is in terms of a set of formulae of the language. We can have a
constitutive counts-as statement only if it is known what the definition is of the context
the statement refers to. In the classificatory versions of counts-as this knowledge is
absent since it is only partially known what the context explicitly is. Classificatory
and proper classificatory counts-as statements presuppose the existence of a context of
which only some information is available. This issue is discussed in more detail in [7]
where classificatory and proper classificatory counts-as statements are related with the
notion of enthymeme, i.e., of argument with unstated premises.

From a technical point of view, this linguistic dependence amounts to the fact that
expressions of the form; =% y2 wherey; — v ¢ I" are just undefined. Only
the classifications that belong focan be evaluated as constitutive counts-as. In other
words =¢%- conditionals are not “logical” in the sense of yielding a truth value for
any pair of formulagy,,~2). Because of this there is no logic, in a proper sense, of
constitutive statements pertaining to one context description. Given a=s€rpfstate-
ments, nothing can be inferred abesf’- statements which are not already contained
in the setl". It is therefore not possible to study - conditionals from a structural
perspective like it has been done for the other forms of counts-as in Propoditians
and3.

How awkward this might sound it is perfectly aligned with the intuitions on the
notion of constitution which backed Definitid constitutive counts-as are those clas-
sifications which are explicitly stated in the specification of the normative system. In
a sense, constitutive statements are just given, and that is it. This does not mean, how-
ever, that constitutive statements cannot be used to perform reasoning. The following
example depicts the most typical form of reasoning involving constitutive counts-as
statements.

Proposition 6. (=% and@,)
The following formula is valid ifCxT -\ frames for anyl” containingy; — 7a:

Y1 :>Z?F Y2 — ((Q,I'A Q1) — @Q,79) (29)
Proof. Follows from Definition4, Formula28 and propositional logic.

This property shows how constitutive rules work in providing grounds for inferring
the occurrence of new states-of-affairs: it is a rule of the normative system of Utrecht



University that if the promotor pronounces the PhD. student to be a doctor then this
counts as the PhD. student to be a doctar £ 72); the current situation falls
under the rules of Utrecht University( ") and in the current situation the promotor
pronounces a PhD. student to be a doct@p+;), hence in the current situation the
PhD. student is a doctof@(,~5). Formula29 perfectly captures the logical pattern of
“conventional generation” as it is described in [29]:

“Act-token A of agent G conventionally generates act-token B [...] only if the
performance of A [...], together with a rule R saying that A [...] counts as B,
guarantees the performance of B” ([29], p. 25).

It is instructive to notice that, besides formufa = 72, what plays an essential
role here is formul&, I" (i.e., [u](v — I)), which states that situatianis one of the
situations in context. Without the notion of context definition and the availability of
nominals, this could not be expressed.

Complex reasoning patterns involving constitutive counts-as statements arise also
in relation with the other two notions of counts-as. The following section investigates
the logical relationships between the three different senses of counts-as.

7 Relating the many faces of counts-as

This section is devoted to pursuing the last goal mentioned in the quote from [8] men-
tioned in Sectiorl: “and then we may proceed to a quiet and systematic study of all
concepts involved, which will exhibit their main properties and mutual relations.”

The logical relations betwees %, =<+ and=-¢' can be studied in logi€xt"\
which extends botfiK454, i.e., the logic in which=¢ has been defined, ar@xt",
i.e., the logic in which=-¢* has instead been defined.

Proposition 7. (=¢ vs =¢+ vs=¢%)
In logic Cxt™\ the following formulae are valid:

(=8 ) = (n = 1) (30)
(11 =8 72) = (1 Avs =¢ 72) (31)
(1 = 72) A (v2 =8 73)) = (11 = ) (32
(m =& 12) = (n éc” 72) (33)

provided thaty; — v, € I

Proofs are omitted and can be easily obtained by application of DefinRiangd6 and
Propositionl.

Let us have a look at the intuitive meaning of the formulae just proven. Formula
30 states something very simple: proper contextual classification implies contextual
classification. This corresponds, in the model-theoretic notation used in Sdction
the following inclusion relationClL ™ (W,) C CL(W,).

Formulae31 and32 are particularly interesting. If we forget that the two operators
=+ and=-¢< denote two different notions and we read both expressjpns-c'* ~,
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andy; =¢ v, just as %, counts asy,”, these formulae would sound as statements

of the property of antecedent strengthening and of the transitivity of “counts-as”. How-
ever, our formal analysis based on the acknowledgment that counts-as hides different
senses has shown that transitivity and antecedent strengthening helgfeaut not

for =¢*. On the other hand, and this is what Proposiffashows, their logical inter-
actions display patterns clearly reminiscent of those properties. In a sense, we showed
that questions such as “is transitivity a meaningful property for a characterization of
counts-as?” are flawed by the possibility of confusing under the label counts-as differ-
ent notions which enjoy different logical behaviors. This is a concrete example of the
methodological concerns raised in Sectib@

More specifically, Formul&81 expresses that given a counts-as statement inter-
preted as a proper classification, a contextual classification can be inferred having as
antecedent a strengthened version of the antecedent of the first statement, and this
although proper contextual classification does not enjoy antecedent strengthening. In
other words, althougks¢* does not enjoy antecedent strengthening, it is nonetheless
grounds for performing monotonic reasoning w&'. Analogous considerations apply
to Formula32. Proper contextual classification does not enjoy transitivity but reasoning
via transitivity remains valid shifting froms¢+ to =¢.

Finally, Formula33 translates the following intuitive fact: the promulgation of a
constitutive rule guarantees the possibility of applying specific classificatory rules. If it
is a rule ofI" that self-propelled conveyances count as vehicles (constitutive sense) then
self-propelled conveyances count as vehicles in the contéafined byl" in a proper
classificatory sense.

With respect to the relation between constitution and classification, another inter-
esting consequence of Definitiérs the following one.

Proposition 8. (Impossibility of =¢/+ and=7"r)

Proper classificatory counts-as statements and constitutive counts-as statements are
impossible with respect to the universal contextn fact, the following formulae are

valid:

(=) — L (34)
(m=ur)—L (35)

provided thaty; — v, € I

The proof is easily obtained from Definitidh

Intuitively, Formula34 states that what holds in general can not be the product of
constitution, it can not be a “new” classification. This is indeed a very intuitive property:
the fact that apples are classified as fruit cannot be a proper classification because it is
something that always holds. Formuia states something slightly different: if some-
thing holds globally then it can not be used to constitute a context. Universal truths hold
in all contexts, and therefore, can not be specific of any context. To put it otherwise, the
statement “apple count as fruits” can not be a constitutive rule. Notice that contextual
classificatory statements are instead perfectly sound also with respect to the universal
context. Formulay, =¢ ~, is a satisfiable formula in logi€xt™\.

Let us now take into consideration properties displaying more complex reasoning
patterns.



Proposition 9. (From=-¢. to =< and=-¢'* via =¢')
The following formulae are valid:

(2 =& 13) = (n = 72) = (n = 73)) (36)
(2 =& 1) = (1 =8 ) A-lul(n = 73)) = (1 =T 7)) (37)
provided thaty; — v, € I

The proof is straightforward by application of DefinitioBsand8, and Proposition8
andl. These properties represent typical forms of reasoning patterns involving consti-
tutive rules.

Formula36: if it is a rule of I" that~, — ~3 (“self-propelled conveyances count
as vehicles”) and it is always the case that — ~- (“cars count as self-propelled
conveyances”), they; — 3 (“cars count as vehicles”) holds in the contexdefined
by normative systeni’. Formula37: if it is a rule of I" that~, — 3 (“conveyances
transporting people or goods count as vehicles”) and it is always the casg that
~2 (“bikes count as conveyances transporting people or goods”) but it is not always
the case that; — ~3 (“bikes count as vehicles”), thef, — ~3 (“bikes count as
vehicles”) holds as a constituted classification in the contedéfined by normative
systeml". Notice that while “cars count as self-propelled conveyances” in Forgtig
a classificatory counts-as, since it might still be the case that cars are globally classified
as vehicles, “bikes count as vehicles” in Form@lais instead a proper classificatory
counts-as since it is explicitly stated that such classification is not a validity. FoBWula
represents nothing but the form of the reasoning pattern that has been used as starting
point of our analysis (Exampl®).

The very remarkable aspect about these properties is that they neatly show how
the three senses of counts-as all play a role in the kind of reasoning we perform with
constitutive rules. In particular, they show that the constitutive sense, though enjoying
extremely poor logical properties, grounds in fact all the rich reasoning patterns proper
of classificatory reasoning.

7.1 Thetransfer problemin the light of =&, =¢+ and =29,

The ‘transfer problem’ has been introduced in [17] as a landmark for testing the intu-
itive adequacy of formalizations of counts-as. It can be exemplified as follows: suppose
that somebody brings it about —for instance by coercion— that a priest effectuates a
marriage, does this count as the creation of a state of marriage? Does anything imply-
ing that a priest effectuates a marriage count as the creation of a state of marriage? In
other words, is the possibility to create a marriage transferable to anybody who brings
it about that the priest effectuates the ceremony? In our framework, these questions get
a triple formulation, one for each of the different senses of counts-as.

The transfer problem and =>§‘. In [17], the transfer problem has been used as

grounds for the rejection of the property of antecedent strengthening for counts-as
conditionals. It is beyond doubt that a characterization of counts-as which enjoys the
strengthening of the antecedent also exhibits the transfer problem: if that property holds,
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then the fact that the performance of the ceremony counts as the creation of a state of
marriage implies that also a coerced performance does. As already noticed in [6], con-
textual classification=6-¢'), which enjoys the strengthening of the antecedent (Proposi-
tion 1), does exhibit the transfer problem: whatever situation in which a priest performs
a marriage ceremony is classified as a situation in which a marriage state comes to be.
And this is precisely what we intuitively expect given the notion of contextual classi-
fication as informally introduced in Secti@ In other words, contextual classification
shouldexhibit the transfer problem or, to put it another way, it should displasresfer
property. the bringing about of a state of marriage should be transferable to any state in
which a priest performs the ceremony.

The transfer problem and =-¢+. It has been shown that the characterization of
proper contextual classification=(:*) does not enjoy the strengthening of the an-
tecedent (Propositio). Interestingly enough, it still exhibits the transfer problem, as
shown in Propositior8 where Formul&24 has been proven valid:[u](y; — ~v3) —
(1 = 12) A (2 =8 73)) = (11 =8 73).

Intuitively, this formula expresses what follows. If the fact that a priest effectuates
a marriage ;) under coercion of a third partyyf) is not globally classified as giving
rise to a state of marriage{) —which is the case, given the intuitive reading of the
scenario at issue— then it is safe to say that if the priest’s performance of the marriage
counts as (in a proper classificatory sense) a marriage, then a coerced performance of
the marriage counts also as a marriage.

Notice that this is again something perfectly intuitive given the assumptions about
proper contextual classification exposed in Secfpifia contextc makes a classifica-
tion v; — -5 true, which does not hold in general, then also the strengthened version
of it 1 A3 — 7o is true in that context. Besides, if the strengthened version is also not
true in general, it then follows that A v3 — 75 is also a novel classification which is
brought about by context Exhibiting the transfer problem is also for proper contextual
classification not problematic.

From a technical point of view, Propositidh shows that a characterization of
counts-as, which does not enjoy the strengthening of the antecedent, can still exhibit
the transfer problem. This is equivalent to say that a notion of counts-as which gen-
uinely rejects the transfer problem should not only reject antecedent strengthening, but
some yet weaker property.

The transfer problem and =-¢°%.. The ‘transfer property’ does not hold, instead, for

the constitutive reading of counts-as statements. In this view, counts-as statements rep-
resent the rules specifying a normative system. So, all that it is explicitly stated by the
‘institution of marriage’ is that if the priest performs the ceremony then the couple is
married, while no rule belongs to that normative system which states that the action of
a third party bringing it about that the priest performs the ceremony also counts as a
marriage. Our formalization fully captures this feature. Let the ‘marriage institution’

be sketched by the set of rulés= {p — m}, i.e., by the rule “if the priest performs

the ceremony, then the couple is married”. Let thegpresent the fact that a third party
brings it about thap. For Definition8 the counts-agt Ap) =¢° m is just an undefined



expression, becaus& A p) — m) ¢ I', thatis, because the ‘marriage institution’ does

not state such a classification. This seems to suggest that the transfer problem, rather
than having to do with the structural properties of a logical connective, concerns instead
whether a rule is part of the promulgations of a normative system or not, that is to say,
whether a counts-as statement is a constitutive rule or not.

8 Conclusions

Moving from hints provided by the literature on legal and social theory concerning
constitutive rules, the paper has analyzed counts-as statements as forms of contextual
classifications. This analytical option, which we have studied from a formal semantics
perspective, has delivered three semantically precise senses (Defigljtband8) in

which counts-as statements can be interpreted, which we ca#isslificatory proper
classificatoryand constitutivereadings. The three readings have then been formally
analyzed making use of modal logic.

The classificatory reading resulted in a strong logic of counts-as conditionals en-
abling many properties which are typical of reasoning with concept subsumptions such
as, in particular, reflexivity, strengthening of the antecedent and weakening of the con-
sequent (Propositioh). In fact, the logic obtained is nothing but a modal logic version
of the contextual terminological logic we investigated in [9, 10].

The characterization of proper contextual classification resulted, instead, in a much
weaker logic rejecting reflexivity, transitivity and antecedent strengthening (Proposi-
tion 2), but retaining cumulative transitivity (Propositic). Noticeably, this notion
corresponds to the counts-as characterized in [17] once transitivity is substituted with
cumulative transitivity. Finally, the notion of proper contextual classification has of-
fered some new insights on the transfer problem (Se@tityrshowing that it cannot be
genuinely avoided just by means of rejecting the strengthening of the antecedent in a
conditional logic setting. This result motivated the investigation of a yet stronger form
of counts-as which we developed in [30], and which stems nevertheless from the same
analytical option backing the present work.

The formal analysis of constitutive counts-as (Definit®)rhas neatly shown, with
formal means, in what sense constitutive rules are never constitutive in isolation, but
only as parts of systems of rules, and how constitutive rules work in providing grounds
for attributing institutional properties to situations (PropositipnConstitutive counts-
as has also been shown to imply the two classificatory readings (PropdAitiother
logical interrelationships between the three notions of counts-as have also been stud-
ied (Propositions8 and9) showing also that the logical relations between them could
actually be grounds for fallacies in the formal characterization of counts-as once the
polysemy of the term “counts-as” is overlooked.

9 Appendix: Soundness and Completeness Results

The appendix provides soundness and completeness results for the logics introduced in
the paperK454, Cxt" andCxt"~. Completeness will be proven via the canonical
model technique.
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9.1 Preliminaries

In all the logics considered the axiomatization of every modalitgontains all tau-
tologies of propositional calculus, axiokhand is closed under rulédPandN. We will
therefore make use of some general results of completeness theory for normal modal
logics. We refer the reader to [21] for further details.

Recall first some facts about maximal consistent sets/Alg¢ a multi-modal nor-
mal logic. A maximalA-consistent set of formulae on a multi-modal languéges a
setd s.t.: (a)_L is not derivable inA from & (i.e., A-consistency ofp); (b) every set
properly including® is A-inconsistent. Every maximal-consistent sep is such that:
A C &; ¢ is closed under ruldP for all formulae¢ either¢ € @ or ¢ € &; for all
formulaeg, v : ¢ vV ¢p € Piff p € Pory € .

We can now report the notion of canonical model for a lagjic

Definition 9. (Canonical model for logict)
The canonical modeM for a normal modal logicA in the multi-modal languagég,,
is the structurg W4, { R} <;<,,, Z%) where:

1. The set¥4 is the set of all maximafi-consistent sets.

2. The anonical relations?!! € {R},<;<, are defined as follows: for alb, w’ €
WA, if for all formulae ¢, ¢ € w' implies(i) ¢ € w, thenwRAw'.

3. The canonical interpretatio* is defined byZ* (p) = {w € W4 | p € w}.

We briefly recall three key propositions of (modal) completeness theory. For the
proofs we refer the reader to [21].

Lemma 1. (Strong completeness satisfiability of all consistent sets)

A normal modal logicA is strongly complete w.r.t. a class of framgsff every A-
consistent set of formulae is satisfiable on sofne 3, i.e., it has a modeM built on
a frameXF in classg.

Lemma 2. (Existence Lemma)
For any normal modal logicl and any states € T4, it holds that: if (i) ¢ € w then
there exists a state’ € W such thatwRAw’ and¢ € w'.

Lemma 3. (Truth Lemma)
For any normal modal logict and any formulap, it holds that: M*, w = ¢ iff ¢ € w.

Lemma 4. (Canonical Model Theorem)
Any normal modal logicl is strongly complete w.r.t. its canonical moded.

We will also make use of the notion of point-generated subframe. Given a frame
F = (W,{Ri}1<i<n}), a point-generated subfranf&” of a frameF is a structure
(W {R¥}1<i<n}) such that: (@}V* is the set of states’ € W such that there
exists, for anyR;, a finite R;-path fromw to w’; (b) R = R, N (W™ x W%), i.e.,
eachRY is the restriction of?; on W™. The following result is of interest.

Lemma 5. (Generated subframes preserve validity)
Let § be a class of frames ang¥) be the class of point-generated subframes of the
frames ing. It holds that, for all formulaeb on language’,.: § | ¢ iff ¢(F) = ¢.



Finally, we need a way to relate context frames (see Se8tinthat is, structures
of the type (W, {W;}icc) with relational structures of the typ@V, {R;}icc). The
bridge is offered bylocally universalrelations. A relationR; on a setlV is locally
universal if:

— ForallR; € {R;}icc andw € W, R; is universal on-;(w);
— Forallw,w" € W, r;(w) = r;(w"), wherer; is a function associating to each state
w the set of reachable states via relati®n

The following representation result holds for this family of relations.

Lemma 6. (Representation of context frames)
A relation R; on W is locally universal iff there exists a s&t; C W such that for all
w,w , wR;w' iff w € W;.

Proof. The right to left direction is straightforward. From left to right: for evaryw’ €

W it holds, by the definition of functiom thatwR;w’ iff w' € r;(w). SinceR; is
locally universal, it holds that for every, w” € W, r;(w) = r;(w”). Itis now enough

to stipulateW; = r;(w") for any w” to obtain the desired result: there exists a set
W; C W such that for alw, w’, wR;w' iff w’ € W;.

Leaving technicalities aside, the property of local universality forces relatidi3;ijcc

to cluster the domain of the frame in sets of worlds (contexts), one for each accessibil-
ity relation, and then defines these accessibility relations in such a way that the sets of
accessible worlds correspond, for each worldilinto the clusters.

9.2 Soundness and completeness Ki45

The proof of soundness is routinary. It is well-known that inference riviBand N
preserve validity on any class of franieBroviding the soundness Bf454 w.r.t. CxT
frames boils than down to checking the validity of axio#i’sand5® .

Theorem 1. (Soundness d&454 w.r.t. CxT frames)
Logic K451 is sound w.r.t. the class aExT frames.

Proof. The validity of 47 is proven showing that its contrapositive has no counter-
model. Such countermodgi would contain a stater such that for a given formula
o, Myw | (§) (i) and M,w = — (i) ¢. Hence, by the semanticSp’ € W;

st M,w | ¢ andPw’ € W; s.t. M,w = ¢, which is impossible. The validity
of 5% is proven in the same way. Suppose there is a mgdeand a statev such
that M,w = (i) ¢ and M, w = —[j] (i) ¢. Hence, by the semanticSy’ € W, s.t.
M, w = ¢ andfw’ € W; st. M, w |= 6.

The proof of completeness is obtained in two steps.

1. First, via the canonical model, it is proven that lokid54 is complete with respect
to the class of i- transitive (i R;w" andw’ R;jw” thenwR;w"), and i-j euclidean
(if wR;w’" andwR;w" thenw’ R;w") frames.

5 See [21].
5 1n[31], frames with this property are called, respectively, hyper-transitive and hyper-euclidean.
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2. Second, itis proven that § is the class of of i-j transitive and i-j euclidean frames,
foreveryg € L,: § | ¢ iff CXT | ¢.

Theorem 2. (Completeness d€45Y)
Logic K454 is strongly complete w.r.t. the class of i-j transitive and i-j euclidean
frames.

Proof. By Lemmal, given aK45%4-consistent sef of formulae, it suffices to find a
model state pairf1, w) such that: (a)\, w = @, and (b) the framéF on which M is

based is i-j transitive and i-j euclidean. Let¥45: — <WK45§3, {RI45n }iec,zK45§>
be the canonical model of logiK45Y, and leté be any maximal consistent set in
WK45: extending®d. By Lemma3 it follows that M¥4%: &+ |= &, which proves

(a). It remains to be proven thxélW K45, {Rf“sg }i€c> enjoys i-j transitivity (b.1)
and i-j euclidicity (b.2). To prove (b.1) consider three states, w” € WKff53 such
that wR¥*®* ' andw’ RE*®*w". Suppose then that € w”. As w RE* " and

j i i
K454
wR »

;- rw', itfollows that(i) ¢ € w’ and then thatj) (i) ¢ € w. Now,w is a maximal
consistent set of logi&45Y, it therefore contains formuléj) (i)¢ — (i) ¢ (i.e., the
contrapositive of axiom/), hence(i) ¢ € w and thuswRX4®= " which completes

the proof of (b.1). Analogously, to prove (b.2) consider three states, w” € WK

such thatwa“Ew’ and wa{453w”. Suppose then that € w”. It follows that
(i) ¢ € w and sincew is a maximal consistent set of logi€454, it therefore con-

tains formula(i) ¢ — [5] (i) ¢ (i.e., axiom5) and hence{j] (i) ¢ € w. From this

and fromef‘lsgw” it follows that (i) ¢ € w”, that is to say, for any formula it
is the case that: ip € w’ then (i) ¢ € w”. Now, by Definition9, this implies that

K454
w/R n

)

w” which proves (b.2).

Lemma 7. (Semantic equivalence f@xT frames)
Consider the clas§ of i-j transitive and i-j euclidean frames. For evepye L,,, § = ¢
iff CXT = ¢. That is,CxT frames andy frames define the same logic.

Proof. From right to left: for every, CXT |= ¢ implies§ = ¢. The proof is obtained
showing that if 7 is a CxT frame then it is i-j transitive and i-j euclidean. By Lemma

6, for all w,w’ € W, w’ € W; iff wR;w’. To prove i-j transitivity, suppose thatR,w’

(w' € W;) andw'R;w” (w” € Wj). It follows therefore thatvR;w”. The proof

of i-j euclidicity is perfectly analogous. Suppose thak;w’ (v’ € W;) andwR;w”

(w” € W;), hencew’ R;w"”. From left to right: for everyp, § = ¢ implies CXT = ¢.

In this case, the proof is obtained by showing that every i-j transitive and i-j euclidean
frame, which is also point-generated, is a context frame. By LeBritdolds that for
everyo, § = ¢iff g(F) = ¢. Now, letF* be any frame ig(§) generated by some state
w. In order to prove the desired result, it suffices to show that every i-j transitive and i-j
euclidean frameF™ generated by state is a CxT frame. By Lemmé, this is proven

by showing that for everRy’ € {R} };icc, w' R w" iff w” € r¥(w). This amounts to
prove that for everyy’, w” if there exists ark;-path fromw to w’ and fromw to w”,



thenw’ R;w"” iff w” € r;(w). From left to right, if there exists aR;-path fromw to
w’ andw’ R;w"”, then by transitivity (which is a special case of i-j transitivityR,;w"’,
that is,w” € r;(w). From right to left, if there exists aR;-path fromw to w’ and
w” € r;(w), thenwR;w"” and hence, by euclidicityy’ R;w”.

Corollary 1. (Completeness €454 w.r.t. CxT frames)
Logic K454 is strongly complete w.r.t. the class 6T frames.

Proof. Follows directly from Theorer?2 and Lemma/.

9.3 Soundness and completeness Gfkt"

On the grounds of the results of the previous section, the proof of soundness and com-
pleteness o€xt" w.r.t. CxT " can be easily obtained. Soundness boils down to prove
that axiomsT* andC .us are valid inCxt" frames.

Theorem 3. (Soundness dBxt" w.r.t.CxT " frames)
Logic Cxt" is sound W.r.t. the class dExT " frames.

Proof. Trivial, given the interpretation of thigz]-operator as universal quantification on
all the states in the domali” of the frame.

Let T&~ be the class of frames satisfying the following properties: they are i-j
transitive, i-j euclidean; they contain an equivalence relafigrsuch that for alf € C,
R; C R,. Again, completeness w.r.t. the relevant class of frames is proven in two steps.

1. Logic Cxt" is first proven to be complete w.r.t. the classt@™ frames.
2. Itis then proven that for any formutaon £,,: T¢~ = ¢ iff CXT " |= ¢.

Theorem 4. (Completeness &xt")
Logic Cxt" is strongly complete w.r.t. the clagst™ frames.

Proof. By Lemmal, given aCxt"-consistent se® of formulae, it suffices to find a
model state pair/f1, w) such that: (a)M,w = @, and (b) the frameF on which

M is based is i-j transitive and i-j euclidean and contains a universal relation. Claim
(a) is proven by making use of Lemn® It remains to be proven that the frame
(WO {REx"},cc) of the canonical model enjoys i-j transitivity and i-j euclidic-
ity (b.1) and that there exists a relatidf>*" € {RE*t"},cc such thatRC*t" is an
equivalence relation (b.2) and for everye C, R; C R, (b.3). Claim (b.1) follows
from Theoren® sinceCxt" extendsK454. As to (b.2), it follows from (b.1) that each
RE*" is transitive and euclidean and, therefore, s®§&t". The proof of the reflex-
ivity of R?xt" is then routinary. Finally, claim (b.3) needs to be proven. Consider two
statesw, w’ € WE*" such thatw RE**"w’. Suppose then that € w’. It follows that

(i) ¢ € w. Sincew is a maximalCxt"-consistent set, it contains formulg ¢ — (u) ¢

(i.e., the contrapositive of axiom .u:) and thereforéu) ¢ € w. Hence, by Definition

9, wRS*" '

Lemma 8. (Semantic equivalence f@xT1 ' frames)
For any formulag on £,,: T¢~ = ¢ iff CxTT = ¢. That is,CxT " frames and3&™
frames define the same logic.
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Proof. The proof is analogous to the proof of Lemmarhe direction from right to left
(for every¢, CxT T = ¢ impliesT¢™ = ¢) is straightforwardly proven by observing
that every &T T frame represents a frame containing a universal reldtigrin fact, a
relationR,, is universal iff it holds that: for anw, w’ € W, wR,w' iff w’ € W (notice
that this is a special case of LemrBa But every universal relation is an equivalence
relation, which also includes al;’s for anyi € C. That all XT " frames are i-j
transitive and i-j euclidean follows from Lemn¥a This completes the proof of the
right-to-left direction. From left to right: for every, T¢™~ = ¢ implies XT' = ¢.
Lemma7 has proven that every i-j transitive and i-j euclidean frame generated by state
w is a CXT frame. Consider now the relatid® of the point-generated subfranfé’

of a frameF € TE™ containing an equivalence relatidd, such that for al € C,

R; C R,. To obtain the desired result —via LemrBa- it suffices to show that the
relationR;! is universal orl/*, which is trivial.

Corollary 2. (Completeness @@xt" w.rt. CxT " frames)
Logic Cxt" is strongly complete w.r.t. the class 6T T frames.

Proof. Follows directly from Theorem and LemmaB.

9.4 Soundness and completeness Gfkt"—
The proof of soundness is routinary.

Theorem 5. (Soundness dExt™~ w.r.t. CxT "\ frames)
Logic Cxt" is sound w.rt. the class aExT "\ frames.

Proof. It is to show that axiom€overing andPacking are valid in &T '\ frames
by just noticing thatin @T -\ frames, for any atomic context indexfamily {W.., W_.}
is a bipartition of the domaif’: W C W, UW__, i.e., family{W., W__} is a covering
of W;andW,.NnW_. =0, i.e.,{W., W_.} is a packing ofiV.

Let T¢™\ be the class of frames satisfying the following properties: they are i-j
transitive, i-j euclidean; they contain an equivalence relakigrsuch that for ali € C,
R; C R,; the set of relationg R; },c¢ is such that, for any atomic context index
and statesv,w’ € W: wR,w’ implieswR.w’ or wR_.w'; andwR. w’ implies not
wR_.w'. Again, completeness w.r.t. thex€ "\ frames is proven in two steps.

1. Logic Cxt™~ is first proven to be complete w.r.t. the clasS@™\ frames.
2. Itis then proven that for any formutaon £,,: T¢™~\ = ¢ iff CxT T\ = ¢.

For completeness we need to prove some facts about the canonical model of logic
Cxt"~. Before stating and proving the desired lemma consider first that, since logic
Cxt™~ extends logicCxt", we know by Theorem that the canonical model of
logic Cxt™~ contains an equivalence relatid®C*t"" such that for every € C,
RExt™™ C RCxt™"  Recall also that every equivalence relation yields a partition on
its domain. The cluster of the partition yielded B>t~ on WE*t"" containing
statew is denoted by-Cxt"~ (s), that is, the set of states reachabledoyia RS*¢" ™.

u



Lemma 9. (Properties of maximaCxt" ~-consistent sets)
Let MCxt™ ™ — <W0xt“’7 ARG Ve, IO > be the canonical model of logic
Cxt™ .

1. All maximalCxt™ ~-consistent sets iii’ ©xt""~ contain at least one nominal;

2. If a nominal is contained in a maxim&xt™~-consistent sety € WC*t"" then
it is not contained in any other maxim@xt™~-consistent sety’ € WExt""
which is accessible fromw via RE*"" . In other words, if two maximalCxt™ -
consistent sets contain the same nominal, and belong to the same cluster of the
partition of WC*t"" yielded byRC*t" ", then they are the same set.

3. Each nominal inN is contained in at least one maxim@ixt" ~—-consistent set.

Proof. Clause 1. Le® be a maximaCxt" ~-consistent set of -~ formulae. To prove
the first claim, suppose per absurdum tiiatc N, - € &. It follows that for every
there exists a finite conjunctighof formulae frome such thatt- v — —6. Now, either

v occurs inf and thusy € &, or v does not occur i¥ and therefore, by ruldlame

-6 € & which is impossible. Clause 2 is proven in two steps. (a) Given a nominal
v € @, for any maximalCxt™~-consistent seb it is proven that for alky: ¢ € @ iff
[u](v — ¢) € P. (b) Given two maximaCxt™~-consistent setg and®’, if v € §, P’
and PRC*t"" ¢ thend = &'. Let us prove (a). From left to right. We assumed a
nominalv € &, hence ifp € @ thenv A ¢ € @, being® a maximalCxt™ ~-consistent
set. The seb also contains formula — (u) ¢ (i.e., the contrapositive of axioift*) and

(u) (VAQ) — [u](v — ¢) (i.e., axiomMost ) from which it follows that{u) (vA¢p) €
and hence thgu](v — ¢) € &. From right to left: for any € &, if [u](v — ¢) €
then by axiomT* we obtainv — ¢ € ¢ and then byMP¢ € &. Let us prove (b)
per absurdum. Suppoge# ¢'. Then there should exist a formutasuch thatp € ¢
and¢ ¢ &' and hence-¢ € &'. From (a) it follows thafu](v — ¢) € & and since
PRC*"" ¢’ we obtain thatr — ¢ € ¢ and viaMP¢ € &', which is impossible.
Clause 3 follows easily from Lemmaand the fact that every state € WExt""
contains formulgu) v (axiomLeast ).

The lemma concerns some key properties of the interpretation of nominals. Clause 1
guarantees that in the canonical model every max{tha™:— -consistent set contains a
nominal, thatis, thaf©*t" " is a surjection on the set of singletondB°*t" " . Clause

2 is particularly interesting. It states that the same nominal can in fact belong to different
maximal Cxt™~-consistent sets if these sets are not relatedRff&t" . To put it
otherwise, nominals behave as real names only if they refer to sets in a same cluster in
the partition yielded byRS*t" " . It follows that interpreting nominals on a generated
subframe guarantees them to behave like nhames, and this is precisely enough for our
purposes since generated subframes preserve validity (Leshnknally, Clause 3
states just that all nominals get a denotation.

Theorem 6. (Completeness &@xt™ )
Logic Cxt™~ is strongly complete w.r.t. the class 8™\ frames, that is, frames
satisfying the following clauses:
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=

They are i-j transitive, i-j euclidean.

They contain an equivalence relatidt), such that for al € C, R; C R,,.

3. The set of relation$ R; } ;¢ is such that, for any atomic context inde&and states
w,w’ € W:(3.a)wR,w" implieswR.w’' or wR_.w'; and (3.b)wR_.w’ implies
notwR.w'.

N

Proof. By Lemmal, given aCxt"~-consistent se® of formulae, it suffices to find
a model state pair¥t, w) such that: (a)M,w = &, and (b) the frameF on which
M is based satisfies clauses 1-3. Claim (a) is proven by making use of L&nma

It remains to be proven that the fran<éVC"t"’7, {R?Xtuyi}iec> of the canonical
model satisfies clauses 1-3. Clause 1 and Clause 2 are proven to be satisfied by The-
orem4 since Cxt™~ extendsK454 and Cxt". Claims (3.a) and (3.b) of clause 3
remain to be proven. To prove claim (3.a) it has to be shown that: for any atomic
context indexc and statesv, w’ € W™ wREX™ /" implies wRS**™ w' or
wREX™ W', Consider two states, w’ € W™ such thatw RS**" ™ w’ and sup-
pose thatp € w’. Sincew is a maximalCxt*~-consistent set, it contains formula
(uyp — ({c)d V (—c) @) (i.e., the contrapositive of axior@overing ) and there-

fore (c) ¢ V (—c) ¢ € w. For the properties of maximal consistent sets it follows that
either (¢) ¢ € w or (—c) ¢ € w, and hence by Definitiod, eitherwRS*t" " w’ or
wRCX™ ™ w’, which proves (3.a). As to (3.b), it should be proven that for any atomic
context indexc and statesy, w’ € WO~ RCXt" "4/ implies notw RS>t w'.
Suppose thaw RS*t" " w’. By Clause 1 in Lemma we know thatw’ should contain

at least one nominal. Since all nominals denote at least one state (Clause 3 in Bgmma
we can pick a nominal and suppose it to be the nominal containea/inBy Clause

2 of this theorem, fromoRCX*"" /' it follows thatwRS**" w’ and from this, by

Clause 2 in Lemma, we know that there is ne” € r$**"" (w) such thaty € w"”.
By Definition 9 it follows that (—c) v € w. Now, w is @ maximalCxt™~-consistent
set and it contains thus formula-c) v — = (c) v (i.e., axiomPacking ). It follows
that— (c) v € w and it is therefore not the case thaRS**"" w’, which proves claim
(3.b).

Lemma 10. (Semantic equivalence f@xt "\ frames)
For any formulag on £,,: T¢™~\ = ¢ iff CxT""\|= ¢. That is,CxT "\ frames and
Te~\ frames define the same logic.

Proof. The proof is analogous to the proof of Lemma&tand 8. From right to left:
for everyg, CxT "\ = ¢ impliesT¢™\ = ¢. The results follow by the application of
Proposition6. FromW = WU W__ for any atomic context identifier, it follows that
for everyw, w’ € W,wR,w' implieswR.w’ orwR_.w'. And fromW,.NW_,. = 0 for
any atomic context identifiet, it follows that for everyw, w’ € W, wR_.w’ implies
notwR.w'. From left to right: for everyp, T¢&™\ = ¢ implies CxT \I= ¢. It suffices
to show that every point-generated subframe of @gy~\ frame is a &1 "\ frame.
The desired result follows then from LemnbaConsider a frameF” € g(Te™\)
generated by state. We show thatF* is a CxT "\ frame. Building on the proofs
of Lemma?7 and on the fact thaE&™~\ already contain a universal relation, it just



needs to be shown that for any atomic indexa) W% C r.(w) U r_.(w) and (b)
re(w) Nr_.(w) C (. Both claims are straightforwardly proven by observing that for
any atomic context index and statesv’,w” € W¥: w'R¥w” (i.e.,w” € W*)
impliesw’ R¥w" (i.e.,w” € r.(w)) orw R* w" (i.e.,w” € r_.(w)); andw' R¥w"
(i.e.,w” € ro(w)) implies notw' R w” (i.e.,w” & r_.(w)).

Corollary 3. (Completeness dExt™~ w.rt. CxT "\ frames)
Logic Cxt™~ is strongly complete w.r.t. the class 6T "\ frames.

Proof. Follows directly from Theorerd and Lemmal0.
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