Variational Bayesvia Propositionalization
(extended abstract)

Taisuke SATO, Yoshitaka KAMEYA, and Kenichi KURIHARA

_ Tokyo Institute of Technology
2-12-1 Ookayama Meguro-ku Tokyo Japan 152-8552

1 Introduction

In this paper, we propose a unified approach to VB (variational Bayes) [1] in symbolic-
statistical modeling via propositionalization®. By propositionalization we mean, broadly,
expressing and computing probabilistic models such as BNs (Bayesian networks) [2]
and PCFGs (probabilistic context free grammars) [3] in terms of propositional logic
that considers propositional variables as binary random variables.

Our proposal is motivated by three observations. The first one is that propositional-
ization, or more precisely PPC (propositionalized probability computation), i.e. prob-
ability computation formulated in a propositional setting, has turned out to be general
and efficient when variable values are sparsely interdependent. Examples include (dis-
crete) BNs, PCFGs and more generally PRISM [4, 5] which is a probabilistic logic pro-
gramming language we have been developing that computes probabilities using graphi-
cally represented AND/OR boolean formulas. Efficacy of PPC is already proved by the
Inside-Outside algorithm in the case of PCFGs and by recent PPC approaches to BNs
such as the one by Chavira et al. that exploits 0 probability and CSI (context specific
independence) [6]. Mateescu et al. introduced AND/OR search tress which is a propo-
sitional representation of bucket trees and revealed that PPC is a general computation
machanism for BNs [7].

Second of all, while VB has been around for sometime as a powerful tool for
Bayesian modeling [1], it’s use is restricted to somewhat simple models such as BNs
and HMMs (hidden Markov models) [8] though its usefulness is established through
a variety of applications from model selection to prediction. On the other hand it is
already proved that VB can be extended to PCFGs and efficiently implementable us-
ing dynamic programming [9]. Note that PCFGs are just one class of PPC and much
more general PPC is already realized in PRISM. Accordingly if VB is combined with
PRISM’s PPC, we will obtain VVB for general probabilistic models, far wider than BNs
and PCFGs.

The last observation is that currently deriving and implementing a VB algorithm
is an error-prone time-consuming process. In addition ensuring its correctness beyond
PCFGs seems a non-trivial task. However once VB becomes available in PRISM, it will
save considerable time and effort. That is, we do not have to derive a new VB algorithm
from scratch nor have to implement it. All we have to do is just to write a probabilistic

L In this paper, models are assumed to be discrete.

Dagstuhl Seminar Proceedings 07161
Probabilistic, Logical and Relational Learning - A Further Synthesis
http://drops.dagstuhl.de/opus/volltexte/2008/1386

model at predicate level. The rest of work will be carried out automatically in a uniform
manner by the PRISM system as is the case with EM learning in PRISM.

Hence introducing VB to PRISM will make Bayesian modeling much less painful
and also make exploring order-made Bayesian models much easier. In the following, we
first review PPC in PRISM in Section 2 and then derive a variational Bayes algorithm
for PRISM in Section 3. Section 4 is conclusion.

2 Propositionalized probability computation in PRISM

PRISM? is a Prolog-based modeling language to describe and learn symbolic-statistical
models. PRISM programs define distributions in terms of clauses and a probabilistic
built_in predicate msw/2, the only probabilistic predicate in PRISM, that simulates prob-
abilistic choices such as coin tossing. msw(7, v) asserts that sampling a discrete random
variable named 7 returns a value v. i and v are arbitrary (ground) terms. The following
PRISM program describes how one’s ABO blood type is determined by genes inherited
from the parents.

val ues_x(gene,[a,b,0],[0.5,0.2,0.3]).

bl codt ype(P) : - % genotype <X, Y> determ ns phenotype P
genotype(X Y),
(X=Y -> P=X; X=0 -> P=Y ; Y=0 -> P=X; P=ab).

genotype(X,Y) :- %gene X fromfather, Y from nother
msw(gene, X), msw(gene, Y).

Fig. 1. ABO blood type program

val ues x(gene,[a, b,0],[0.5,0.2,0.3]) declaresthatmrsw gene, X)
returns in the logical variable X one of {a, b, o} with probabilities 0.5, 0.2 and 0.3
respectively. In other words we define P(msw(gene,a)) = 0.5 P(msw(gene,b)) =
0.2 and P(msw(gene,0)) = 0.3. These probabilities are called parameters. Given a
top-goal ?- bl oodt ype(a), the program is executed exactly like Prolog except that
nmsw(gene, X) returns in X a value probabilistically chosen from {a, b, 0}.

To compute the probability P(bloodtype(a)), bl oodt ype(a) is reduced to an
equivalent AND/OR propositional formula shown in Fig. 2 through SLD search applied
to bl oodt ype(a) using the program in Fig. 1.3

P(bloodtype(a)) is then computed isomorphically to Fig. 2 from the probabilities
(parameters) which are declared by val ues x/ 3 predicate as follows.

Zhttp://sato-ww. cs.titech.ac.jp/prisn.

3 When atoms contain variables, they are expanded to ground conjunctions during the SLD
search. Soq(a, Y) isexpanded to g(a,b1) V- --Vq(a,b,) where by, ...,b, are appropriate
ground terms.

bl oodt ype(a) <=>genotype(a,a) v genotype(a, o) v genotype(o, a)
genotype(a, a) <=>nsw gene,a) & nmsw(gene, a)
genot ype(a, 0) <=>nmsw(gene, a) & nsw gene, 0)
genot ype(o, a) <=>nsw gene, 0) & nmsw(gene, a)

Fig. 2. Reduced propositional formula for bl oodt ype(a)

P(bloodtype(a)) = P(genotype(a,a))+ P(genotype(a,o)) + P(genotype(o,a))
P(msw(gene, a)) - P(msw(gene, a))
= 0.5%0.5

P(genotype(a, a))

In general, to compute P(G), the probability of a goal G defined by the distribution
semantics of PRISM [5], we first reduce G to a propositional AND/OR formula such
that G < E; Vv ---V E,* (n > 0) where each E; (1 < i < n) is a conjunction
mswy; A --- A mswg, (k; > 0) of ground msw atoms. F; is called an explanation for
G. We use ¢(G) = {En,...,E,} for the set of explanations for G. Then P(G) is
computed by

PG) =Y P(E)

P(E;) = H P(msw;) where E; =msw; A--- Amswy,

Jj=1

Notice first that we need the probabilities of nsw atoms (parameters), to compute
P(G) but they are declared by val ues x in a program or learned from data.

Notice second that this way of probability computation is justified only when the
exclusiveness of the explanations and the independence of the nswatoms in every ex-
planation are guaranteed [5]. They are guaranteed if, roughly speaking, the program
describes a generative process of possible outcomes in which every choice is proba-
bilistically made by nswatoms and there is no failed or infinite computation.

There is another concern. Converting a given goal to an equivalent propositional for-
mula may blows up the size of expressions. In the case of PCFGs for example, there are
exponentially many parse trees for one sentence. So if a goal G representing a sentence
is reduced to a set o (G) of explanations such that each explanation in ¢(G) represents
a possible probabilistic derivation, the size of ¢(G) will also be exponential. Fortu-
nately we can suppress the explosion, though not always successful, by reorganizing
»(G). We introduce intermediate atoms representing subexpressions of in ¢(G) and
eliminate redundancy by having formulas in ¢(G) share common subexpressions. The
compressed expression, represented as a set propositional AND/OR formulas, is called

4 This equivalence is two-fold. First both sides have the same truth value and they are equal as
binary random variables in terms of the distribution semantics of PRISM [5].

an explanation graph for G and denoted by Expl(G). There is more than one way of
constructing Expl(G) but we construct it in a top-down manner using tabled search
that avoids repetition of the same search [10].

Finally we must point out that msw atoms are enough to represent discrete random
variables and use their values in a program. Suppose there is a random variable X tak-
ing a value v; € Vx = {v1,...,v,} with probability 0, (1 <i<n,0; +---+6, =1
). Corresponding to X, we declare val ues x(" X", [v1,...,v,], [601,...,0:])
in the program where X" is a constant naming X, and introduce » binary random vari-
ables msw(" X", v;) which is true with probability 6, if-and-only-if X = v; happens
(1 <4 < n). We require that those msw(" X", v;) s are exhausting and exclusive. l.e.
msw(" X', v1) VooV mew"X', v,) and -(msw(" X", v;)) Amsw(" X', v,))
(1 <i#j <mn)hold.

Hence, althoughonly nsw atoms, binary random variables, are available in PRISM,
which does not pose any restriction on probabilistic modeling as long as models are dis-
crete. In addition, the use of msw atoms provides not only a uniform way of probability
computation by way of explanation graphs but statistical learning such as ML(maximum
likelihood) estimation as well [5].

3 Parameter learningand VB in PRISM

In this section, assuming the reader is familiar with VB [1], we explain VB in PRISM.

3.1 ML estimation

Suppose there is a program DB that describes how observable atoms are generated by a
series of probabilistic choices made by mswatoms. Let nsw(4, -) be a msw predicate
used in DB. It corresponds to a random variable whose name is 4 that takes on a value
(term) in the value set V; = {v1, ..., vy, }. We call §; , = P(mewW(4, v)) (v € V;) the
parameter associated with msw(4, v) and use 8; = (v, ..., vy,)) to denote the set of
parameters associated with msw(4, -) and @ as the set of all parameters in a program.

Let o(G) be the set of explanations for an observed goal G. We do not know which
explanation E in ¢(G) is true. Forgetting for the moment that £ is a conjunction of nsw
atoms, we consider £ as a hidden variable and G as an observed variable, respectively.
Let 7 be the set of names for nswatoms used in a program and V; (i € I) be the value
set for msw(¢, -) . Denote by o, ,,(E;) the number of occurrences of msw(¢, v) in E.
Then according to the distribution semantics of PRISM [5], the distribution of E and G
is given by

T, v E
Hie[Hve% ei,v)
P(E,G|06) = if E is an explanation for G
0 otherwise

Now the problem of parameter learning is stated as follows: Given a sequence G =
G1,...,Gp of observed goals (repetition possible), estimate parameters @ associated
with msw atoms in a program for the above distribution by ML estimation, i.e. 8 =

argmaxg]_[tT=1 P(G | 8). We solve this estimation problem by using the EM algorithm
generalized for logic programs which considers explanations as hidden variables. The
ML estimation can be efficiently done by the propositionalized probability computation
approach described in Section 2 using dynamic programming [5].

3.2 Thegraphical VB-EM algorithm

It is well-known that ML suffers the over-fitting problem when there is not enough
data. One can avoid this problem by adopting the Bayesian approach that imposes a
prior distribution on the set of model parameters. With the same purpose in mind we in-

troduce a Dirichlet distribution Dir(as 4y, - - -, Qi vy, ‘) for each parameter set (vector)
0, = {0iu,..., emw> associated with msw(7, -) . So the prior distribution is written
as

1 i
P(Owl, .. .,017@“/” | ai) = 7 H 91-;1)' !

v veV;
5 _ ey, Tai)
/ r (Z'Ue‘/i aiv”)
where o; = (@, ;- - - ,aq;ﬂ,w) is the set of hyper parameters for (0, .,,, . . . iy).

The next task in the Bayesian approach is to integrate out parameters to compute the
marginal likelihood but it is intractable. We therefore resort to a deterministic approx-
imation by VB [1]. VB applied to the exponential family yields an iterative algorithm
called the VB-EM algorithmwhich is similar to the EM algorithm but iteratively updates
hyper parameters.

While (discrete) VB was applied to fairly simple models initially [1], their exten-
sions have been pursued and now it is proved VB is applicable to PCFGs [9]. We further
extend VB and generalize the VB-EM algorithm described in [9] to the distribution se-
mantics of PRISM, yielding the following naive VB-EM algorithm.

1: procedure naive VB-EM(DB, G)
2: begin
3: foreachi e I,v € V;do
al®) = a;, (initial values);

m := 0,
repeat

fort:=1to7 do

foreach E; € ¢(Gy) do

q(E; | Gi) x exp (Ziel > vev, Tio(Et) ('I/(az(.jz)) v (Zv'em a;’z/))))

/ = ZE‘ E .
10: Zlv 1 @, Zt 1 +€p(Gt) Q(t | Gt)ai,v(Et),
11: m:=m++1
12 until every a(,"”) (m—1)

7,V 7,V

© N2 O R

<e€

13: foreachi € I,v € V; do
14 af,=a Y
15: end
where ¢(E; | G,) is a probability computed by ¢(E; | G;) = ZE;EZ((i:;Gtzf()‘Eéth
¥ (z) is the digamma function defined by ¥ (z) = £ I'(x).

By “naive” we mean this algorithm is mathematically correct but needs computa-
tional refinement. This is because there are exponentially many explanations for a goal,
and hence it will take exponential time per iteration (see line 8). However put

o = (w102 -0 (o))

v’ €V

5
) and

and rewrite ¢(E¢|G¢) as follows.

q(Ey | Gy) o exp (Z > oiu(E) <W(a§§’}’) .y (3 045,715’?»)

€l veEV; v’ EV;

0iv(Et)
“[I] e ((mﬁ:}h v (3 ag:y)))

el veV; v'eV;

=IIT1 ()™

el veV;

This rewriting suggests us that the quantity ¢(F; | G¢) can be computed exactly the
same way as p(E: | G¢) is computed in PRISM. The only difference is that the model
parameters 6, ,, specifying p(E, | G¢) are replaced by the 7r§fﬁ)6. Therefore, just like the
graphical EM algorithm is derived from the naive EM algorithm for PRISM [5], we can
derive the graphical VB-EM algorithm (gVB-EM algorithm), a dynamic programming
version of the naive VB-EM algorithm as shown in Appendix: gvVB-EM. It computes
inside and outside values similar to inside-outside probabilities using hyper parameters
by dynamic programming, and the time complexity per iteration is proportional to the
size of explanation graphs for the input goals.

4 Conclusion

We have derived the gVB-EM algorithm for the distribution semantics of PRISM. It
is a generalization of the gEM algorithm used in PRISM for EM learning to discrete
Bayesian learning using Dirichlet distributions. We believe that gVB-EM helps us avoid
the over-fitting problem and gives us a reliable measure for model selection.

® q(E:, G,) itself is computed according to the right-hand side of line 9 in the naive VB-EM
algorithm.

® Note that 2 vev; 771(;’}) = 1 does not necessarily hold. So we cannot consider 7r§f;’}) as proba-

bilities.

References

n

10.

Ghahramani, Z., Beal, M.: (Graphical models and variational methods)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)
Wetherell, C.S.: Probabilistic languages: a review and some open questions. Computing
Surveys 12 (1980) 361-379

Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: Proceed-
ings of the 15th International Joint Conference on Atrtificial Intelligence (IJCAI’97). (1997)
1330-1335

Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical model-
ing. Journal of Artificial Intelligence Research 15 (2001) 391-454

Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure. In: Proceed-
ings of the 19th International Joint Conference on Atrtificial Intelligence (IJCAI’05). (2005)
1306-1312

Mateescu, R., Dechter, R.: The relationship between AND/OR search spaces and variable
elimination. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence
(UAI’05). (2005) 380-387

Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77 (1989) 257-286

Kurihara, K., Sato, T.: An application of the variational bayesian approach to probabilistic
context-free grammars. In: IJCNLP-04 Workshop Beyond shallow analyses. (2004)

Zhou, N.F., Sato, T.: Efficient fixpoint computation in linear tabling. In: Proceedings of
the 5th ACM-SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’03). (2003) 275-283

Appendix: gvVB-EM

1: procedure Learn-gVBEM(DB, G) 1: procedure Get-Inside-Values(DB, G)
2: begin 2: begin
3: foreachi e I,v € V;do 3: fort¢:=1toT dobegin
4 ol = a;, (initial values); 4: Let ¢ = Gi;
5: m = 0; 5: for k := K downto 0 do begin
6: repeat 6: Plt, 7} == 0;
7 Get-Inside-Values(DB, G); 7 foreach S € ¢pp (1) do begin
8: Get-Outside-Values(DB, G); 8: Let S ={A1, As,..., A5}
9: Get-Expectations(DB, G); 9: R[t, 7L, §] =1
10: foreachi € I,v € V; do 10: for I := 1to|S| do
11: o = a4 i, v]; 11: if A =nmswW(i, -, v) then
12: m:=m + (1;) - 12: TI',E!T:) = exp (LP(OL,E,T:))*
13: untilevery o, — ;7 <& , m).
14; foreachi € I:v € Vi do 13 f(z”/evf ag»”/)))’
15. al, = a{™D 14 RIt, 7, 5] *=)
16: end ’ ’ 15: dseR[t, 7E, S x= P, Ail;
16: Plt, mt] += RIt, 7, 5]
17: end /* foreach S */
18: end /* for k */
19: end/*for ¢ */
20: end
1: procedure Get-Expectations(DB, G) 1: procedure Get-Outside-Values(DB, G)
2: begin 2: begin
3: foreachi e I,v e V;do 3: fort¢t:=1toT dobegin
4 i, v] == 0; 4 Let ¢ = Gy ; Q[t, 18] == 1;
5. for ¢:=1toT do begin 5: for k:=1to K; do Q[t, 7f] := 0;
6: Let ¢ = Gy; 6: for k:=0to K,
7. fork:=0to K, 7: foreach S € vpp () dobegin
8: foreach S € vpp(r!) dobegin 8: Let S ={A1,As,..., A5}
9: Leth{A17A27~~~7A‘§‘}; 9: for 1 := 1to|S| do
10: for 1 :=1to|S|do 10: if A; % mswW(4, -, v) then
11: if A; =nmswW 4, -, v) then 11 oft, Ai]+=
12: nli,v] += 12: Q[t, 7f] - R[t, £, S]/Plt, Al
13: Olt, 7] - RIt, i, S]/P[t, Gi] [13: end /* foreach S */
14 end /* foreach S */ 14: end/*for k*/
15: end/* for ¢ */ 15: end/*for ¢ */
16: end 16: end

