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Abstract. In this paper, an overview of the potential use of validated techniques
for the analysis and design of controllers for linear and nonlinear dynamical sys-
tems with uncertainties is given. In addition to robust pole assignment for linear
dynamical systems with parameter uncertainties, mathematical system models
and computational techniques are considered in which constraints for both state
and control variables are taken into account. For that purpose, the use of inter-
val arithmetic routines for calculation of guaranteed enclosures of the solutions
of sets of ordinary differential equations and for the calculation of validated sen-
sitivity measures of state variables with respect to parameter variations are dis-
cussed. Simulation results as well as further steps towards the development of a
general-purpose interval arithmetic framework for the design and verification of
systems in control engineering are summarized.

1 Introduction

Modern techniques for the design and analysis of control strategies for nonlinear dy-
namical systems are often based on the simulation of the open-loop as well as the
closed-loop behavior of suitable mathematical models described by continuous-time
and discrete-time state-space representations. In addition to sets of ordinary differen-
tial equations (ODEs) and difference equations, sets of differential algebraic equations
(DAEs) are commonly used in control engineering. Since we will focus on computa-
tional techniques which are applicable to the design and mathematical verification of
controllers for lumped parameter systems, i.e., systems which do not contain elements
with distributed parameters, partial differential equations will not be considered in this
paper.

The prerequisite for the design and robustness analysis of each control system is the
identification of mathematical models which describe the dynamics of the plant to be
controlled as well as the available measurement devices with a sufficient accuracy. The
model identification task comprises the derivation of physically motivated state equa-
tions, their parameterization based on measured data, the identification of uncertainties,
as well as simplifications to apply specific approaches for controller design.

Since dynamical system models are subject to uncertain parameters and uncertain
initial conditions in most practical applications, detailed mathematical specifications
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of the desired dynamics of the controlled system are necessary. These involve the def-
inition of robustness with respect to uncertainties. For linear system representations,
robustness is commonly specified in terms of regions in the complex domain contain-
ing all admissible poles of the closed-loop transfer functions (Γ -stability) or in terms of
specifications of worst-case bounds for the frequency response (B-stability) [1, 10].

However, these specifications do not allow for inclusion of state constraints in the
time-domain which are often available if controllers are designed for safety-critical
applications. In general, pole assignment after linearization of the state equations is not
sufficient for nonlinear systems since the asymptotic stability of the resulting closed-
loop dynamics has to be proven regardless which eigenvalues are chosen.

In Section 2, an interval arithmetic framework for the design of robust controllers
for linear systems with parameter uncertainties is introduced. This approach provides
a guaranteed solution for Γ -stability-based robust controller design by calculating both
inner and outer enclosures of the admissible parameters of controllers with a predefined
structure. Using the time-domain approach summarized in Section 3, constraints for
both the state and control vectors can be mapped into the parameter space. In contrast
to the Γ -stability approach, it is directly applicable to nonlinear systems. Possible com-
binations with routines for robust pole assignment and optimal control are highlighted.
In Section 4, an extension of the validated initial value problem solver VALENCIA-
IVP is introduced to compute differential sensitivities of the trajectories of all state
variables with respect to variations of system parameters as well as the adaptation of
controller parameters. This approach is used to analyze a feedforward control strategy
for a simplified model of biological wastewater treatment plants in Section 5. Finally,
conclusions and an outlook on future research are given in Section 6.

2 Robust Pole Assignment Using Interval Techniques

In this paper, the design of closed-loop controllers for dynamical systems described by
sets of ODEs

ẋ(t) = f (x(t) , p(t) ,u(t)) with x ∈ Rnx , p ∈ Rnp , u ∈ Rnu (1)

is discussed. First, robust pole assignment for linear dynamical systems

ẋ(t) = A(p) · x(t)+B(p) ·u(t) (2)

will be addressed, where the control laws under consideration are given by

u(t) =−k · x(t) with k ∈ Rnu×nx . (3)

It is well known that for linear, fully state-controllable systems with exactly known
parameters p, suitable feedback gain matrices k can be determined such that the closed-
loop system has any desired eigenvalues. For single-input-single-output systems, a
closed-form expression for pole assignment has been derived by Ackermann [1]. How-
ever, for systems with multiple control inputs, this problem is underdetermined such
that additional assumptions (which are related to certain robustness or optimality crite-
ria as well as decoupling properties) are necessary to find a unique parameterization of
the control law (3).
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For linear systems with bounded uncertainties of the parameters p, pole assignment
can be generalized to the assignment of domains of admissible eigenvalues. In control
engineering, such specifications are usually referred to as Γ -stability domains. Let the
characteristic polynomial of the closed-loop control system be defined by

a(s, p,k) := det(s · I−AR (p,k)) with AR (p,k) := A(p)−B(p) · k . (4)

The roots of the family of polynomials

A(s, p,k) := {a(s, p,k)| p ∈ [p] , k ∈ [K]} (5)

with
[K] :=

{
ki j

∣∣ki j ∈
[
ki j ; ki j

]
, i = 1, . . . ,nu, j = 1, . . . ,nx

}
(6)

are denoted by

Roots [A(s, p,k)] := {v ∈ C|a(v, p,k) = 0, a(s, p,k) ∈ A(s, p,k)} . (7)

A linear dynamical system is Γ -stable if all roots of its characteristic polynomial have
strictly negative real parts and if they are completely included in a region Γ ⊂ C− for
all possible parameters p ∈ [p] and at least one k, i.e., if Roots [A(s, p,k)] ⊆ Γ ⊂ C−

holds. Based on this definition, Ackermann and Kaesbauer developed an approach to
determine the set of all controller parameters k which are consistent with a prescribed
region Γ , see e.g. [1]. This approach is based on mapping so-called real root bound-
aries, complex root boundaries, and infinite root boundaries into the parameter space,
where all coefficients ai, i = 0,1, . . . ,nx, of the characteristic polynomial a(s, p,k) are
real, non-negative, and continuously depending upon p and k. Since this approach, as
it is implemented in the MATLAB toolbox PARADISE [10], is mostly a graphical pro-
cedure which makes use of the boundary crossing theorem of Frazer and Duncan [2],
due to which the roots of a(s, p,k) depend continuously on continuous variations of p
and k, it is limited to a small number of controller parameters. For higher-dimensional
problems, gridding of the parameter space is usually unavoidable.

To avoid this shortcoming and to make routines for robust pole assignment available
for systems with coefficients ai which do not depend continuously upon the parame-
ters p, an interval arithmetic routine has been developed to exclude intervals [k] ⊂ [K]
for the controller gains from an a-priori given enclosure [K] if at least one eigenvalue is
certainly not included in Γ for at least one p ∈ [p] and for every possible k ∈ [k].

In Fig. 1, the interval algorithm for pole assignment which has been implemented
in MATLAB using the interval arithmetic toolbox INTLAB [9] is summarized. In this al-
gorithm, the roots of a(s, p,k) are enclosed by the interval boxes [λR,i (k)], i = 1, . . . ,nx.

For a subdivision of [K] into several subintervals [k] ⊂ [K] obtained by application
of the criteria from Fig. 1, the inner interval enclosure of the set of admissible controller
gains is given by

KΓ ,i :=
{
[k]

∣∣∣ [λR,i (k)]⊆ Γ , ∀ p ∈ [p] , ∀ k ∈ [k]⊂ [K] , i = 1, . . . ,nx

}
. (8)

Its outer enclosure, for which KΓ ,i ⊆ KΓ ,o holds, results from eigenvalues [λR,i (k)]
which are not completely outside of Γ according to

KΓ ,o :=
{
[k]

∣∣∣ [λR,i (k)]∩Γ 6= /0, ∀ p ∈ [p] , ∀ k ∈ [k]⊂ [K] , i = 1, . . . ,nx

}
. (9)
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Enclosure is tight enough

Gershgorin discs as an a-priori enclosure of the eigenvalues of the matrix AR ([p] , [k])

Non-validated computation of eigenvalues and eigenvectors of the matrix
AR (pnom,mid{[k]}) using the MATLAB routine eigs

– Initialization of verifyeig provided by INTLAB for the computation of the
corresponding validated eigenvalue enclosures

– Evaluation of verifyeig for the matrix AR (pnom, [k]) =⇒ [λR,i] for all i = 1, . . . ,nx
– Test whether the intervals [λR,i] overlap with the given domain Γ =⇒ distinction of 3 cases

Case distinction

– Case 1: All eigenvalue enclosures [λR,i], i = 1, . . . ,nx, are included completely in the
interior of the domain Γ =⇒ guaranteed admissible controller parameterization for pnom

– Case 2: At least one eigenvalue enclosure [λR,i] is completely outside of Γ

=⇒ guaranteed inadmissible comtroller parameterization
– Case 3: Overlapping of all enclosures [λR,i] with Γ or no solution using verifyeig

Improvement of the eigenvalue enclosures [λR,i] in the case 3

– Verified evaluation of LU-decomposition of [Aλ ] := [λR,i] · I−AR (pnom, [k])
– Check whether there exists a zero of the characteristic polynomial det([Aλ ]) = 0 for

λ ∈ [λR,i] by calculating the determinant of [Aλ ] using validated LU-decomposition
– Splitting of eigenvalue enclosures and elimination of subintervals of [λR,i] which certainly

do not contain any zeros of the characteristic polynomial

Repeated test for admissibility of [λR,i] with respect to the domain Γ after validated
LU-decomposition and splitting of eigenvalue enclosures into subintervals

Splitting of the intervals of the controller gains k until the enclosure is tight enough

Repeated interval splitting and test for admissibility for further specific parameter
values from [p], e.g. p, p, as well as the complete parameter interval [p]

Fig. 1: Interval algorithm for robust pole assignment with given eigenvalue domains Γ ⊂ C−.

In the following, the double integrating plant

ẋ(t) =
[

0 α

0 0

]
x(t)+

[
0
1

]
u(t) with α ∈ [α] := [0.9 ; 1.1] (10)

and u :=−k ·x =
[
k1 k2

]
·x, k ∈ [K] =

[
[−10 ; 10] [−10 ; 10]

]
is considered as a simple

application scenario to visualize the interval routine for robust pole assignment. Using
this procedure, guaranteed interval enclosures of the regions of admissible controller
gains have been determined for both the nominal system parameter αnom = 1.0 and the
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(a) Controller gains for α = αnom.
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(b) Comparison of admissible controller gains
for α = αnom and α ∈ [α].

ℑ{s} limitation of
bandwidth

absolute
stability
margin

minimum
damping

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0

−2.0

−1.0

0.0

1.0

2.0

ℜ{s}

Γ

ℜ{s}= 0

(c) Eigenvalues corresponding to the inner en-
closure in Fig. 2(a), α = αnom.

ℑ{s}

−5.0 −4.0 −3.0 −2.0 −1.0 0.0 1.0

−2.0

−1.0

0.0

1.0

2.0

ℜ{s}

Γ

(d) Eigenvalues corresponding to the inner en-
closure in Fig. 2(b), α ∈ [α].

Fig. 2: Enclosures of the controller gains k1 and k2 which are consistent with the Γ -stability
domain and visualization of the corresponding eigenvalues for αnom = 1.0 and [α] = [0.9 ; 1.1]
with a limited number of subdivisions of the a-priori enclosure [K].

uncertain parameter [α]. In Fig. 2, the inner and outer enclosures of the admissible con-
troller gains defined in (8) and (9) are depicted together with the resulting eigenvalues
for gain factors from the enclosures KΓ ,i. The domain Γ is defined as shown in the
Figs. 2(c) and 2(d). For illustration purposes, the eigenvalues have only been computed
for the vertices of the interval boxes [k] of the corresponding inner enclosures.

As shown in this example, the controller parameterization is usually not unique,
since arbitrary gain factors from the computed inner interval enclosures KΓ ,i are con-
sistent with the robustness specifications. At the end of the following Section, possible
further criteria are discussed which can be applied to obtain a unique parameterization.
Furthermore, it should be pointed out that the interval arithmetic routine presented in
this Section does not make any assumptions whether the eigenvalue domain Γ consists
of a single region or of the union of several disconnected domains.
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3 Time-Domain Approach for Robust Controller Design

In contrast to robust pole assignment, the time-domain approach presented in the fol-
lowing is also applicable to nonlinear systems without the necessity to linearize the state
equations for parameterization of controllers with a given structure. As for the interval
arithmetic approach for robust pole assignment, a-priori bounds [K] for the feedback
gain matrix in (3) are assumed to be given. In addition to linear controllers, any other
parameterized control law can be considered. The time-domain approach relies on cal-
culating guaranteed enclosures of the trajectories of the states of the control system

ẋ(t) = f
(

x(t) , p(t) ,u(x(t) ,w(t) ,k)
)

with p ∈ [p] , w(t) ∈ [w(t)] , k ∈ [k] (11)

over a finite time horizon t ∈
[
t0 ; t f

]
. In (11), w(t) denotes a given reference signal.

To compute guaranteed state enclosures, validated ODE solvers such as COSY VI,
VALENCIA-IVP, VNODE, or VSPODE are applicable [4]. Starting from the com-
plete a-priori enclosure [K], the intervals for the controller gains are successively split
into subintervals [k]. All subintervals which certainly lead to a violation of prescribed
time-domain constraints X (t) according to

[x(t)]∩X (t) = /0 for at least one t ∈
[
t0 ; t f

]
(12)

are excluded. For all other subintervals [k] two cases have to be distinguished. First,
intervals [k] belong to the desired inner enclosure of admissible controller gains if

KT,i :=
{
[k]

∣∣∣ [x(t)]⊆X (t) for all t ∈
[
t0 ; t f

]}
(13)

holds. Second, the corresponding outer interval enclosure is defined by

KT,o :=
{
[k]

∣∣∣ [x(t)]∩X (t) 6= /0 for all t ∈
[
t0 ; t f

]}
. (14)

All subintervals which neither belong to the list of inadmissible intervals nor to the
inner enclosure KT,i have to be split further to assign them to one of these two lists.

Since this approach relies on pure time-domain specifications of robustness, it is ap-
plicable to arbitrary nonlinear systems which can be handled by the above-mentioned
validated ODE solvers. Especially for control laws for linear systems, which can also be
parameterized efficiently using the Γ -stability approach presented in Section 2 (resp. the
B-stability approach), a combination of these different types of restrictions for the gain
factors is straightforward by intersecting the resulting interval enclosures KΓ and KT .

As a simple demonstration example, again the double integrating plant (10) with a
linear state controller u(x(t) ,w(t) ,k) =

[
k1 k2

]
· (w(t)− x(t)) and the reference signal

w(t) =
[
1 0

]T = const is considered. The initial conditions are x(t0 = 0) =
[
0 0

]T . In
Fig. 3(a) those subintervals from the a-priori bounds [K1] := [0 ; 5], [K2] := [0 ; 5] of
the controller gains are depicted that are consistent with the time-domain constraints

X (t) :=


−1.0 ·10−5 ≤ x1 (t)≤ 1.2 for 0≤ t < 0.75

0.5≤ x1 (t)≤ 1.2 for 0.75≤ t < 1.0
0.8≤ x1 (t)≤ 1.2 for t ≥ 1.0

x2 = unbounded for t ≥ 0 .

(15)
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(a) Admissible gain factors
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(b) Time response for k = k∗

with α ∈ [α].
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(c) Evaluation of the perfor-
mance index J for α = αnom.

Fig. 3: Robust controller parameterization using time-domain constraints for
[
t0 ; t f

]
:= [0 ; 1].

In this example, the underlying validated evaluation of the state equations has been
performed using VALENCIA-IVP for both α = αnom = 1.0 and α ∈ [α] := [0.9 ; 1.1].
The time-domain constraints X (t) are guaranteed to be fulfilled for arbitrary controller
gains k from the inner interval enclosure KT,i. In Fig. 3(b) the time response for x1 (t)
is shown for k = k∗ = [2.7340 0.3125]T ∈KT,i for selected α ∈ [α].

Instead of choosing an arbitrary gain vector k which is consistent with the con-
straints X (t), systematic approaches such as optimality criteria can be used. In the
previous example, validated evaluation of the integral performance index

J =

t f∫
t0

(
(x1 (t)−1)2 + x2 (t)2 +(k1 · (1− x1 (t))− k2 · x2 (t))2

)
dt != min (16)

for all k ∈KT,i using VALENCIA-IVP leads to the interval enclosures [J] depicted in
Fig. 3(c). The cost function (16) quantifies the deviation of the system states x(t) from
the desired final state x1 = 1 and x2 = 0 as well as the required effort for the control
action over the time horizon

[
t0 ; t f

]
. A general framework for interval arithmetic struc-

ture and parameter optimization for dynamical systems with both nominal and uncertain
parameters has been presented by the authors in [7]. Using the definition of optimality
for uncertain systems which has been introduced therein, a gain factor is optimal if it
leads to the smallest upper bound of the performance index for all possible p ∈ [p].

In addition to optimality criteria, also sensitivity measures for the system states x(t)
and as well as the performance index J with respect to the uncertain parameters can
be taken into account to find a unique robust controller parameterization. In Section 4,
an interval-based approach for calculation of guaranteed enclosures of such differential
sensitivity measures is introduced using an extension of VALENCIA-IVP.

4 Validated Sensitivity Analysis Using VALENCIA-IVP

In the following, ODEs ẋ(t) = f (x(t) , p) are considered which describe both the open-
loop and closed-loop system behavior, where the vector p consists of all time-invariant
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system parameters as well as all controller parameters. The differential sensitivities of
the solution x(t) with respect to the parameters p are defined by the state equations

ṡi (t) =
∂ f (x(t) , p)

∂x
· si (t)+

∂ f (x(t) , p)
∂ pi

for all i = 1, . . . ,np . (17)

The new state vectors si (t) in (17) are given by

si (t) :=
∂x(t)
∂ pi

∈ Rnx with si (t0) =
∂x(t0, p)

∂ pi
. (18)

For initial states x(t0) which are independent of p the equality si (t0) = 0 holds for the
corresponding initial conditions of si. In VALENCIA-IVP, the ODEs (17) do not need
to be derived symbolically, since all required partial derivatives are computed by algo-
rithmic differentiation using FADBAD++. To obtain guaranteed enclosures of si (t),
the ODEs (17) are evaluated for the validated state enclosures [x(t)] containing all
reachable states. For both exactly known and uncertain values of the parameters p and
the initial states x(t0), the intervals [si (t)] are determined such that the partial deriva-
tives of all reachable states with respect to all possible pi are included. For time-varying
parameters p(t), the sensitivities si (t) are computed with respect to time-invariant vari-
ables εi ≈ 0 after substituting p(t)+ ε with ε ∈ Rnp for the parameters p(t).

5 Sensitivity Analysis of a Wastewater Treatment Process

The procedure for validated sensitivity analysis is demonstrated for the subsystem model
of biological wastewater treatment depicted in Fig 4 which is a simplification of the Ac-
tivated Sludge Model No. 1 of the International Water Association [3]. The concentra-
tion S of biodegradable organic substrate is reduced by heterotrophic bacteria with the
concentration X under external oxygen supply with the flow rate uO2. The concentration
of dissolved oxygen in the aeration tank is denoted by SO. The bacteria concentration
in the settler, which is modeled as a perfect separator of sludge and purified water, is
denoted by XSet . A portion of the activated sludge is fed back into the aeration tank with
the flow rate QRS of return sludge. The excess sludge QEX is removed from the process.

According to [6, 8], this process is described by the nonlinear ODEs

Ṡ =
QW

VA
(SW −S)− µ̂H

S
S +KS

SO

SO +KOS

1
Y

X

Ẋ =− QW

VA
X +

QRS

VA
(XSet −X)+

(
µ̂H

S
S +KS

SO

SO +KOS
−b

)
X

ṠO =
QW

VA
(SOW −SO)− µ̂H

S
S +KS

SO

SO +KOS

1−Y
Y

X +
ρO2

VA

(
1− SO

SO,sat

)
uO2

ẊSet =
QW +QRS

VSet
X − QEX +QRS

VSet
XSet .

(19)

Assuming a constant oxygen concentration SO = ŜO = const, i.e., ṠO = 0, the cor-
responding feedforward control for the oxygen input rate uO2 is defined by

uO2 =
VA

ρO2

SO,sat

SO,sat− ŜO

(
µ̂H

S
S +KS

ŜO

ŜO +KOS

1−Y
Y

X − QW

VA

(
SOW − ŜO

))
. (20)
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aeration tank
volume: VA

S, X , SO

settler
volume: VSet

XSet

QW QW +QRS

QRS

uO2
QW −QEX

QEX

Fig. 4: Block diagram of a simplified biological wastewater treatment process.

The design and parameterization of controllers which compensate variations of
states caused by parameter uncertainties relies on the adaptation of the available con-
trol variables. These are the oxygen input rate uO2, related to ŜO via (20), and the flow
rate of return sludge. The differential sensitivities of the state variables S, X , and XSet
w.r.t. variations ∆SO and ∆QRS of the control variables and w.r.t. variations ∆ µ̂H with

SO := ŜO · (1+∆SO)
µ̂H := µ̂H,nom · (1+∆ µ̂H)

QRS := QRS,nom · (1+∆QRS)
QEX := QEX ,nom−QRS ·∆QRS

(21)

provide the required information. For ŜO = 3.5 · 10−3 kg
m3 , these sensitivities have been

computed using VALENCIA-IVP for three different growth rates of substrate consum-
ing bacteria. The results of these simulations are shown in Fig. 5, where each curve
represents the guaranteed enclosure for one of the considered values of µ̂H . Note that
the diameters of the resulting enclosures are below the resolution of these graphs.

According to Fig. 5, a reduced rate of the reduction of the substrate concentration S
caused by smaller growth rates µ̂H of the bacteria (leading also to a smaller concentra-
tion X) can be compensated by increasing ŜO and/ or reducing QRS to meet legal per-
formance requirements for wastewater treatment plants which are specified e.g. in [5].

6 Conclusions and Outlook on Future Research

In this paper, basic interval routines for the design and analysis of controllers have
been presented which are the prerequisite for nonlinear controller design. For nonlinear
systems, often properties such as differential flatness or exact input-output as well as
input-to-state linearizability are exploited. To generalize design procedures and to ac-
count for uncertainties and modeling errors in these cases, further interval techniques
for simulation and optimization of both ODE and DAE systems will be developed in fu-
ture work. VALENCIA-IVP is currently being extended to DAE systems to determine
open-loop control laws matching predefined output signals in spite of uncertainties.
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