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ABSTRACT. Covering problems are fundamental classical problems in optimization, computer sci-
ence and complexity theory. Typically an input to these problems is a family of sets over a finite
universe and the goal is to cover the elements of the universe with as few sets of the family as pos-
sible. The variations of covering problems include well known problems like SET COVER, VERTEX

COVER, DOMINATING SET and FACILITY LOCATION to name a few. Recently there has been a lot of
study on partial covering problems, a natural generalization of covering problems. Here, the goal
is not to cover all the elements but to cover the specified number of elements with the minimum
number of sets.
In this paper we study partial covering problems in graphs in the realm of parameterized complex-
ity. Classical (non-partial) version of all these problems have been intensively studied in planar
graphs and in graphs excluding a fixed graph H as a minor. However, the techniques developed for
parameterized version of non-partial covering problems cannot be applied directly to their partial
counterparts. The approach we use, to show that various partial covering problems are fixed param-
eter tractable on planar graphs, graphs of bounded local treewidth and graph excluding some graph
as a minor, is quite different from previously known techniques. The main idea behind our approach
is the concept of implicit branching. We find implicit branching technique to be interesting on its own
and believe that it can be used for some other problems.

1 Introduction

Covering problems are basic, fundamental and widely studied problems in algorithms and

combinatorial optimizations. In general these problems ask for selecting a least sized family

of sets to cover all the elements. One of the prominent covering problem is the classical

SET COVER problem. SET COVER problem consists of a family F of sets over a universe

U and the goal is to cover this universe U with the least number of sets from F . Other

classical problems in the framework of covering include well known problems like VER-

TEX COVER, DOMINATING SET, FACILITY LOCATION, k-MEDIAN, k-CENTER problems, on

which hundreds of papers have been written.

In this paper we study the generalization of these problems to the partial covering prob-

lems, where the objective is not to cover all the elements but to cover the pre-specified num-

ber of elements with minimum number of objects. More precisely, in the partial covering
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2 IMPLICIT BRANCHING AND PARAMETERIZED PARTIAL COVER PROBLEMS

problem, for a given integer t ≥ 0, we want to cover at least t elements rather than cov-

ering all the elements. For an example, in PARTIAL VERTEX COVER (PVC), the goal is to

cover at least t edges with minimum number of vertices not all the edges while in PARTIAL

SET COVER (PSC) the goal is to cover at least t elements of U with minimum number of

sets from F . Other problems are defined similarly. Partial covering problems are studied

intensively not only because they generalize classical covering problems, but also because

of many real life applications. They have received a lot of attention recently, see, for exam-

ple [4, 5, 7, 18].

While different variations of PSCwere studied intensively andmany approximation al-

gorithm and non-approximability results exist in the literature, only few things are known

on their parameterized complexity. In this paper we fill this gap by initiating parameter-

ized algorithmic study of these problems on structural graphs like planar graphs, graphs

of bounded genus and graphs of bounded local treewidth. In parameterized algorithms,

for decision problems with input size n, and a parameter k, the goal is to design an algo-

rithm with runtime τ(k) · nO(1), where τ is a function of k alone. Problems having such an

algorithm are said to be fixed parameter tractable (FPT). There is also a theory of hardness

using which one can identify parameterized problems that are not amenable to such algo-

rithms. This hardness hierarchy is represented by W[i] for i ≥ 1. For an introduction and

more recent developments see the books [15, 17, 21]. In this paper, we always parameterize

a problem by the size of the partial set cover, i.e. all our algorithms for finding a partial set

cover of size k that cover at least t sets with input of size n are of running time τ(k) · nO(1).

Our Approach and Results. The main ideas behind our approach can be illustrated by

planar instances of PARTIAL VERTEX COVER and PARTIAL DOMINATING SET. Let a planar

graph G = (V, E) on n vertices, and integers k, t, be an instance of PARTIAL VERTEX COVER.

Let S be the set vertices in G of degree at least t/k. If S is sufficiently big, say, its size is

at least 4k, then (by the Four color theorem), the subgraph of G induced on S contains an

independent set of size at least k. This yields that there are k vertices of S that are pairwise

non-adjacent in G, and since each of these vertices covers at least t/k edges, we have that in

total they cover at least t edges. If the size of S is less than 4k, we apply explicit branching.

The crucial observation here is that if G has a partial vertex cover of size at most k, then

this cover must contain at least one vertex of S. Thus by making a guess on the vertices

x ∈ S, whether x is in a partial vertex cover of size at most k, we can guarantee, that if the

problem has a solution, then at least one of our guesses is correct. For each of the guesses x,

we create a new subproblem for PARTIAL VERTEX COVER, where the input is the subgraph

of G induced on V \ {x} and we are asked to cover t− deg(x) edges by k− 1 vertices, where

deg(x) is the number of edges adjacent to x. The number of subproblems we generate in this

way is at most 4k, and we call the procedure recursively on each subproblem. The depth

of the recursion is at most k, and the number of recursive calls at each steps is at most 4k,

resulting in total running time (4k)k · nO(1). Actually, in our arguments we used planarity

only to conclude that a graph has large independent set. Definitely, this approach is valid

for many other graph classes with large independent sets, like bipartite graphs, degenerate

graphs and graphs excluding some graph as a minor. (We provide detailed consequences of

this approach in Section 5.)

The main drawback of explicit branching is that we cannot use it for many partial cov-
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ering problems, in particular for PARTIAL DOMINATING SET. Even for planar graphs, the

existence of a large independent set of vertices of degree at least t/k does not imply that k

vertices can dominate at least t vertices. To overcome this obstacle, we do the following. We

start as in the case of PARTIAL VERTEX COVER, by selecting the set S consisting of vertices

of degree at least t/k. If there are more than k vertices in S which are at distance at least

three from each other, we have the solution. Otherwise, we know that at least one vertex

from S should be in a partial dominating set but we cannot use explicit branching by trying

all vertices of S because the size of S can be too large. However, we show in this case that

the graph formed by S and their neighbors is of small diameter, and thus, by well known

properties of planar graphs, has small treewidth. (Very loosely small here means bounded

by some function of k.) In this case we apply implicit branching, which means that we do not

create a new subproblem for every vertex of S, but instead for every i, 1 ≤ i ≤ k, we make a

guess that exactly i vertices of S are in a partial dominating set. Thus we branch on k cases

and try to solve the problem recursively. We formulate these ideas in details in Sections 3.1

and 3.2 and show how it is sufficient to just know the size of an intersection of an optimal

partial dominating set with S rather than the actual intersection itself to solve the problem.

Again, the only property of planar graphs we mentioned here was the property that

non-existence of a large set of pairwise remote vertices in a graphs yields a small treewidth.

But this property can be shown not only for planar graphs, but more generally for graphs of

bounded local treewidth, the class of graphs containing planar graphs, graphs of bounded

genus, graphs of bounded vertex degree, and graphs excluding an apex graph as a mi-

nor. With more additional work we show that similar ideas can be used to prove that much

more general problem, namely a weighted version of the PARTIAL (k, r, t)-CENTER problem,

where the goal is to cover at least t elements by balls of radius r centered around at most k

vertices, is FPT on graphs of bounded local treewidth. This result can be found in Section 3.2.

This is mainly of theoretical interest because the running time of the algorithm is 2k
O(k) · nO(1).

Such a huge running time is due to the bounds on the treewidth of a graph, which is used

in implicit branching. Due to the generality of the result for graphs with bounded local

treewidth, we do not see any reasonable way of overcoming this problem. But because of

numerous application, we find it is worth to search for faster practical algorithms on sub-

classes of graphs of bounded local treewidth, in particular on planar graphs. As a step

in this direction, we obtain much better combinatorial bounds on the treewidth of planar

graphs in implicit branching, which results in algorithms of running time 2O(k) · nO(1) on

planar graphs. The combinatorial arguments used for the exponential speedup (Section 3.3)

are interesting on their own. In Section 4, we show that the PARTIAL (k, r, t)-CENTER prob-

lem is FPT on graphs excluding a fixed graph as a minor. The proof of this result is based

on the decompositions theorem of Robertson and Seymour from Graph Minors [24]. The

algorithm is quite involved, it uses two levels of dynamic programming and two levels of

implicit branching, and can be seen as a non-trivial extension of the algorithm of Demaine

et al. [10] for classical covering problems to partial covering problems.

Finally, let us remark that while DOMINATING SET is FPT on d-degenerated graphs

[3], there are strong arguments that our results cannot be extended to this class of sparse

graphs. This is because Golovach and Villanger [19] showed that PARTIAL DOMINATING

SET is W[1]-hard on d-degenerated graphs.
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2 Preliminaries

Let G = (V, E) be an undirected graph where V (or V(G)) is the set of vertices and E (or

E(G)) is the set of edges. We denote the number of vertices by n and number of edges

by m. For a subset V ′ ⊆ V, by G[V ′] we mean the subgraph of G induced by V ′. By

N(u) we denote (open) neighborhood of u that is set of all vertices adjacent to u and by

N[u] = N(u)∪{u}. Similarly, for a subsetD ⊆ V, we define N[D] = ∪v∈DN[v]. The distance
dG(u, v) between two vertices u and v of G is the length of the shortest path in G from u to

v. The diameter of a graph G, denoted by diam(G), is defined to be the maximum length of

a shortest path between any pair of vertices of V(G). By an abuse of notation, we define

diameter of a graph as the maximum of the diameters of its connected components. For

r ≥ 0, the r-neighborhood of a vertex v ∈ V is defined as Nr
G[v] = {u | dG(v, u) ≤ r}. We also

let Br(v) = Nr
G[v] and call it a ball of radius r around v. Similarly Br(A) = ∪v∈AN

r
G[v] for

A ⊆ V(G). Given a weight function w : V → R and A ⊆ V(G), w(Br(A)) = ∑u∈Br(A) w(u).

Given an edge e = (u, v) of a graph G, the graph G/e is obtained by contracting the

edge (u, v) that is we get G/e by identifying the vertices u and v and removing all the loops

and duplicate edges. Aminor of a graphG is a graph H that can be obtained from a subgraph

of G by contracting edges. A graph class C is minor closed if any minor of any graph in C is

also an element of C. A minor closed graph class C is H-minor-free or simply H-free if H /∈ C.
We use the standard definitions of treewidth and tree decomposition. We use tw(G)

to denote the treewidth of a graph G. The definition of treewidth can be generalized to

take into account the local properties of G and is called local treewidth [16, 20]. The local

treewidth of a graph G is the function ltwG : N → N that associates with every integer

r ∈ N the maximum treewidth of an r-neighborhood of vertices of G, i.e., ltwG(r) =
maxv∈V(G)

{

tw(G[Nr
G[v]])

}

. A graph class G has bounded local treewidth, if there exists a

function f : N → N such that for each graph G ∈ G , and for each integer r ∈ N, we have

ltwG(r) ≤ f (r). The class G has linear local treewidth, if in addition the function f can be cho-

sen to be linear, that is f (r) = crwhere c ∈ R is a constant. For a given function f : N → N,

G f is the class of all graphs G of local tree-width at most f , that is, ltwG(r) ≤ f (r) for every
r ∈ N. A well known graph classes which are known to have bounded local treewidth are

planar graphs, graphs of bounded genus, and graphs of bounded maximum degree. By a

result of Robertson and Seymour [22], f (r) can be chosen as 3r for planar graphs. Similarly

Eppstein [16] showed that f (r) can be chosen as cgg(Σ)r for graphs embeddable in a sur-

face Σ, where g(Σ) is the genus of the surface Σ and cg is a constant depending only on the

genus of the surface. Demaine and Hajiaghayi [11] extended this result and showed that the

concept of bounded local treewidth and linear local treewidth are the same for minor closed

families of graphs.

3 FPT Algorithms for Weighted Partial-(k, r, t)-Center Problem

3.1 Developing a Step by Step Procedure

In this section we give a template of a generic algorithm for partial covering problems aris-

ing on graphs. We use this later to show that partial covering problems arising on graphs are

fixed parameter tractable in graphs of bounded local treewidth. We formulate the template
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through the following problem.

WEIGHTED PARTIAL-(k, r, t)-CENTER (WP-(k, r, t)-C): Given an undirected graph

G = (V, E), with weight function w : V → {0, 1} and integers k, r and t. The

problems asks whether there exists a C ⊆ V of size at most k (k centers), such

that w(Br(C)) ≥ t. Here k and r are the parameters.

When all the vertices have weight 1 this is a PARTIAL-(k, r, t)-CENTER (P-(k, r, t)-C)

problem, and for r = 1 and w(v) = 1 for all v ∈ V this is PARTIAL DOMINATING SET

problem. To formulate PSC problem as WP-(k, r, t)-C problem, we consider the incidence

bipartite graph associated with the instance of PSC problem and give weights 1 to the ver-

tices associated with elements and 0 to the vertices associated with sets. Since PVC can

be transformed to PSC problem, WP-(k, r, t)-C also generalizes PVC. One defines PARTIAL

HITTING SET similarly.

Unlike the non-partial and non-weighted version of WP-(k, r, t)-C problem, the first

major challenge in partial covering problems is: which t elements we choose to cover? To

find an answer to this we define the following set S and the corresponding graph G, which

forms the first step of the algorithm:

(T1) Define S = {v | v ∈ V, w(Br(v)) ≥ t/k} and G =
⋃

v∈S G[Br(v)].

The basic observation is that if there exists a subset C ⊆ V of size at most k such that

w(Br(C, r)) ≥ t then C ∩ S 6= ∅. Given the graph G our second idea is to:

(T2) Check the diameter of G, and if diam(G) is large then we argue that this is a YES

instance by providing a subset C of size at most k and w(Br(C)) ≥ t.

Now when the diam(G) is small, the treewidth of the graph G is bounded and hence dy-

namic programming over graphs with bounded treewidth can be used. But we still do not

know whether we can find the desired C among the vertices of G. Hence even if we find

out that there is no X ⊆ S such that |X| ≤ k and w(Br(X)) ≥ t, we can not guarantee that

this is a NO instance of the problem. So to overcome this difficulty we resort to an implicit

branching by using the earlier observation that there is no desired Cwhose intersection with

S is empty. Before we go further, given a vertex set S and G (as defined above), we define

µ(S, i) = maxA⊆S,|A|=i{w(Br(A))}.
(T3) Using dynamic programming over graphs with bounded treewidth, compute µ(S, i)

for G for 1 ≤ i ≤ k as well as a subset Ai ⊆ S such that w(Br(Ai)) = µ(S, i).
(T4) Now we make k recursive calls to reduce the size of k on the fact that if there exists a

C then its intersection with S is between 1 ≤ i ≤ k. Now we reduce the parameters t

to t− µ(S, i) and k to k− i and try to solve the problem recursively.

In the recursive steps, we follow the above steps and either wemove forward to a larger

G or we get a desired solution for the problem. More precisely, suppose we are at the ith step

of recursion then we do as follows:

(T5) Enlarge G by adding some new vertices to S. Let Si be the set of new vertices added

to S that is those set of vertices which are not in S and w(Br(v)) ≥ t/k where t and k

are the current parameters obtained after reductions done in previous recursive calls.

(T6) Either we bound the diameter and hence the treewidth of G. Else, we select a set C

of at most k vertices such that w(Br(C)) ≥ t and C respects the guesses made on the

number of vertices we need to select from Sj, 1 ≤ j ≤ i − 1. That is, the possible

number of vertices in C ∩ Sj.
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This completes the framework in which we will be working. In the next Section we

prove that WP-(k, r, t)-C Problem is FPT in graphs with bounded local treewidth by proving

the necessary technical lemmas needed for this generic algorithm to work.

3.2 An Algorithm for WP-(k, r, t)-C in Graphs of Bounded Local Treewidth

We first give an upper bound on the treewidth of G, the graphs we obtained in the recursive

calls which is crucial for analysis of the algorithm.

LEMMA 1. Let G be a graph on n vertices and m edges and H be an induced subgraph of
G such that the diameter of each of the connected components of H is at most ℓ. Let C be
a subset of V(H) of size at most k and A be a subset of V(G). Then there exists a function
g(k, r, ℓ) such that if diam(G[Br(A) ∪ H]) > g(k, r, ℓ), then there is a subset T ⊆ A such that
(a) |T| ≥ k; (b) for all u, v ∈ T, dG(u, v) ≥ 2r + 1; and (c) for all u ∈ T and for all v ∈ C,
dG(u, v) ≥ 2r + 1. In particular, one can take g(k, r, ℓ) = (6r + 2)2kℓ and find the desired set
T in O(m + n) time.

PROOF. Since C is a subset of size at most k, we have that it intersects at most k connected

components of H. Let these connected components be H1, . . . ,Hr, where r ≤ k. We contract

each of these connected components to a vertex and obtain a new graph G′. Let the contrac-
tions of H1, . . . ,Hr correspond to vertices vH1

, · · · , vHr in our new graph G′ and this set of

vertices be called X. For a vertex v ∈ V(G), we define its image, im(v), in G′ as vHi
if it is in

Hi for 1 ≤ i ≤ r and v otherwise. For a subsetW ⊆ V, its image im(W) in V(G′), is defined
as the set {im(v) | v ∈ W}.

For any subset W ⊆ V(G), we claim that diam(G′[im(W) ∪ X]) ≥ diam(G[W ∪ H])/ℓ

(let us remind that we define the diameter of the graph as the maximum diameter of its

connected components).

To prove the claim we observe that a path P′ in G′[im(W) ∪ X] can be lifted to a path

P in G[W ∪ H] by replacing every vertex in X on path P′ by local paths in each connected

component Hj of H. As the diameter of each Hj is bounded by ℓ, in this way, the length

of a path can only be increased by at most a constant multiplicative factor ℓ. This gives us

diam(G[W ∪ H]) ≤ ℓ · diam(G′[im(W) ∪ X]), which completes the proof of the claim.

To finish the proof of the lemma we proceed as follows: We apply the above claim to

the subsetW = Br(A). Since diam(G[Br(A) ∪ H]) > g(k, r, ℓ) = (6r + 2)2kℓ, we have that

diam(G′[im(Br(A)) ∪ X]) ≥ diam(G[Br(A) ∪ H])

ℓ
>

g(k, r, ℓ)

ℓ
= 2(6r + 2)k.

Thus there is a connected component C of G′[im(Br(A)) ∪ X] of diameter more than 2(6r +
2)k. Let im(v1), . . . , im(vκ), κ ≤ k, be the image of vertices of C in this component. Observe

that im(A) ∪ {im(v1), . . . , im(vκ)} form an r-center in C. Since the diameter of this compo-

nent is at least 2(6r + 2)k, we can find a subset Y ⊆ im(A) ∪ {im(v1), . . . , im(vκ)} of size at

least 2k such that for any two vertices u, v ∈ Y, dG′(u, v) ≥ 4r + 1. To see this, let us assume

that P = u0u1u2 · · · uq, q ≥ 2(6r + 2)k, is a path which realizes this diameter. Let Vi ⊆ V(C)
be the subset of vertices of distance exactly i from u0. Since im(A) ∪ {im(v1), . . . , im(vκ)}
forms an r-center, its intersection with

⋃i+2r
j=i Vi, 1 ≤ i ≤ q − 2r, is non-empty. Now one
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can form Y by selecting a vertex of im(A) ∪ {im(v1), . . . , im(vκ)} from ∪2r
i=0Vi and then

alternately not selecting any vertex from next 4r + 1 Vi’s and then selecting a vertex of

im(A) ∪ {im(v1), . . . , im(vκ)} from one of the next 2r + 1 blocks of Vi’s, and so on.

We put Z = Y ∩ {im(v1), . . . , im(vκ)}. Let us remark that, for each vertex v in {im(v1),
. . . , im(vκ)} \ Z there is at most one vertex v in Y \ Z such that dG′(u, v) ≤ 2r. Otherwise it

will violate the condition that the distance between any two vertices from Y is at least 4r+ 1

in G′. We construct the set T′ by removing all vertices from Y \ Z which are at distance

at most 2r from {im(v1), . . . , im(vκ)} \ Z. The subset T′ ⊆ im(A) satisfies the following

conditions: (a) |T′| ≥ k; (b) for all u, v ∈ T′, dG′(u, v) ≥ 2r + 1; and (c) for all u ∈ T′ and for

all im(vj), 1 ≤ j ≤ k, dG′(u, im(vj)) ≥ 2r + 1.

Lifting the subset T′ to G one gets a T (by taking inverse image of vertices in T′) of the
desired kind.

Another essential part of our algorithm is dynamic programming on graphswith bounded

treewidth which will be used in (T6). To do so we use a variation of the Theorem 4.1 of [9].

THEOREM 2. [⋆]∗ Let G be a graph on n vertices, given with (a) a weight function w : V →
{0, 1}, (b) a tree decomposition of width ≤ b, and (c) positive integers k, r and t. Further-
more let S1, · · · , Sp be disjoint subsets of V(G) with an associated positive integer ai for
1 ≤ i ≤ p and ∑

p
i=1 ai = a. Then we can check the existence of a weighted partial-(k, r, t)-

center such that it contains ai elements from Si, 1 ≤ i ≤ p, in O((2r + 1)
3b
2 2

a
2 · nt) time and,

in case of a positive answer, construct a weighted partial-(k, r, t)-center of G in the same
time.

The rest of the section is devoted to the proof of the following theorem.

THEOREM 3. Let f : N → N be a given function. ThenWP-(k, r, t)-C problem can be solved
in timeO(τ(k, r) · t · (m+ n)) for graphs in G f , where τ is a function of k and r. In particular,
WP-(k, r, t)-C problem is FPT for planar graphs, graphs of bounded genus and graphs of
bounded maximum degree.

Let us remark that for fixed k, r and t, our algorithm runs in linear time.

PROOF. The proof of the theorem is divided into three parts: Algorithm, correctness and

the time complexity. We first describe the algorithm.

Algorithm: First we set up notations used in the algorithm. By S we mean a family of

pairs (X, i) where X is a subset of V(G), i is a positive integer, and for any two elements

(X1, i1), (X2, i2) ∈ S , X1 ∩ X2 = ∅. Given a family S , we define ρ(S) = ∑(X,i)∈S i and

µ(w,S) = max
{

w(Br(D))
∣

∣

∣
D ⊆ V(G), |D| = ρ(S), ∀(X, i) ∈ S |D ∩ X| = i

}

,

that is a subset D ⊆ ⋃

(X,i)∈S X of size ρ(S), under the additional constraint that for each

element (X, i) of S we pick exactly i elements in X. A subset D realizing µ(w,S) will be

called an S-center. Our detailed algorithm is given in Figure 1.

Correctness: The correctness of the algorithm follows (almost directly) from its detailed

descriptions in the earlier sections and hence we remark on the necessary points of the

proof. Whenever we answer YES, we output a set C which has weight at least t that is

w(Br(C)) ≥ t and C is of size at most k and hence these steps do not require any justification.

∗Results marked with [⋆] will appear in the long version of the paper.
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Algorithm PCentre(G, r, k, t, w, S , C, S, µ(w,S))
(The algorithms takes as an input (a) a graph G = (V, E) ∈ G f , (b) positive integers k, r and t, (c) a

weight function w : V → {0, 1}, (d) a family S of pairs (X, i), (e) an S-center C, ( f ) a set S which is
equal to ∪(X,i)∈SX and (g) the value of µ(w,S). It returns either a set C such that w(Br(C)) ≥ t or
returns NO, if no such set exists. The algorithm is initialized with PCentre(G, r, k, t,w,∅,∅,∅, 0)).
Step 0 : If µ(w,S) ≥ t, then answer YES and return C.
Step 1: If k = 0 and µ(w,S) < t, then return NO and EXIT.
Step 2: First define A as follows: A = {v | v ∈ V , v /∈ S,w(Br(v)) ≥ t/k}. If A is empty return NO

and EXIT. Else let S = S ∪ A and define G =
⋃

v∈S G[Br(v)].
Step 3: Compute the diameter, diam, of G.
Step 4: If diam > ((12r + 4)(k + ρ(S)))|S|+1 then apply Lemma 1 to find the subset T ⊆ A of size

k such that: (a) for all u, v ∈ T, dG(u, v) ≥ 2r + 1; and (b) for all u ∈ T and for all v ∈ C,
dG(u, v) ≥ 2r + 1 and return C = C ∪ T and EXIT.

Step 5: Else, the graph G has bounded local treewidth, compute a tree decomposition of width
f (diam) of G.

Step 6: For every 1 ≤ p ≤ k, using the dynamic programming of Theorem 2, compute a
S ∪ {(A, p)}-center Dp of weight µ(w,S ∪ {(A, p)}). If for some recursive calls, 1 ≤ p ≤ k,
PCentre(G, r, k− p, t− µ(w,S ∪ {(A, p)}), w, S ∪ {(A, p)}, Dp, S, µ(w,S ∪ {(A, p)}))
returns a set C then answer YES and return C else answer NO and EXIT.

Figure 1: Algorithm for Weighted Partial Center Problem

Our observation is that if there exists a subset C such that w(Br(C)) ≥ t and |C| ≤ k, then C

and A = {v | v ∈ V, w(Br(v)) ≥ t/k} have non empty intersection. Hence we recursively

solve the problem with an assumption that |C ∩ A| = p, p ∈ {1, 2, · · · , k}. In recursive

steps we have a family S of pairs (X, i) such that we want to compute C with additional

constraints that for all (X, i) ∈ S , |C ∩ X| = i. At this stage the only way we can have

solution is when there exists a non-empty set A such that

C ∩ A 6= ∅ where A =
{

v
∣

∣

∣
v ∈ V , v /∈ (∪(X,i)∈SX),w(Br(v)) ≥ t−µ(w,S)

k−ρ(S)

}

6= ∅.

Now based on the diameter of the graph G =
⋃

v∈S G[Br(v)], where S = A ∪(X,i)∈S X, we

either apply Lemma 1 or make further recursive calls.

(1.) When we apply Lemma 1, the diameter of the graph is more than ((12r + 4)k)|S|+1, and

hence we obtain a set T ⊆ A such that T is of cardinality k− ρ(S) and the distance between

any two vertices in T and distance between vertices of T and C, C a S-center, is at least

2r + 1. In |C ∪ T| = |C| + |T| ≤ ρ(S) + k− ρ(S) ≤ k, and

w(Br(C ∪ T)) = w(Br(C)) + w(Br(T)) ≥ µ(w,S) + (k− ρ(S))× t−µ(w,S)
k−ρ(S)

≥ t.

(2.) Else the diameter and hence the treewidth of the graph G is at most f (((12r+ 4)k)|S|+1).
Hence in this case there is a solution to the problem precisely when there exists p, 1 ≤ p ≤
k− ρ(S), for which recursive call to PCentre returns a solution in Step 6 of the algorithm.

This completes the correctness of the algorithm.

Time Complexity: The running time depends on the number of recursive calls wemake and

the upper bound on the treewidth of the graphs G which we obtain during the execution of

the algorithm. First we bound the number of recursive calls. An easy bound is kk since the

number of recursive calls made at any step is at most k and the depth of the recursion tree is

also at most k. This bound can be improved as follows. Let N(k) be the number of recursive



AMINI, FOMIN AND SAURABH FSTTCS 2008 9

calls. Then N(k) satisfies the recurrence N(k) ≤ ∑
k
i=1 N(k− i), which solves to 2k.

At every recursive call we perform a dynamic programming algorithm and since the

size of the family S is at most k− 1, the diameter of the graph does not exceed ((12r + 4)k)k

at any step of the algorithm. Let h(r, k) = 3 · f (((12r + 4)k)k)/2. Then the dynamic pro-

gramming algorithm can be performed inO((2r+ 1)h(r,k)2
k
2 · (n+m)t) time in any recursive

step of the algorithm. Hence the total time complexity of the algorithm is upper bounded

by O((2r + 1)h(r,k)2
3k
2 · (n + m)t). This completes the proof.

3.3 Improved Algorithm for Planar Graphs

In the last section we gave an algorithm for WP- (k, r)-C problem in graphs of bounded

local treewidth. The time complexity of the algorithm was dominated by the upper bound

on the treewidth of the graph G, which were considered in the recursive steps of the algo-

rithm. If the input to the algorithm Algorithm PCentre is planar, then a direct application

of Lemma 1 gives us that the treewidth of the graph G, obtained in the recursive steps of the

algorithm, is bounded by O((rk)O(rk)). In this section we reduce this upper bound to O(rk)
using grid arguments. We also need to slightly modify Algorithm PCenter by replacing the

diameter arguments with treewidth based arguments. We give the modified steps here:
Modified Step 3: Compute the treewidth of G.
Modified Step 4: If tw(G) > g(r, k) (to be specified later) find a subset T ⊆ A of size k such that: (a)

for all u, v ∈ T, dG(u, v) ≥ 2r + 1; and (b) for all u ∈ T and for all v ∈ C, dG(u, v) ≥ 2r + 1 and
return C = C ∪ T and EXIT.

Modified Step 5: Else, the graph G has bounded treewidth, compute a tree decomposition of width

at most g(r, k) of G.
To give the combinatorial bound on the treewidth of the graph G, we need the following

relation between the size of grids and the treewidth of the planar graph.

LEMMA 4.[23] Let s ≥ 1 be an integer. The treewidth of every planar graph G with no
(s× s)-grid as a minor is upper bounded by 6s− 4.

The notations used in the next lemma is the same as in Algorithm PCentre.

LEMMA 5. [⋆] Let G = (V, E) be a planar graph on n vertices and m edges. Let k, r and t be
positive integers, and w be a weight function w : V → {0, 1}. Suppose that at some step in
AlgorithmPCentrewe are given a family S of pairs (X, i), an S-centerC, a set S = ∪(X,i)∈SX
and the value of µ(ω,S). Furthermore let A = {v | v ∈ V , v /∈ S,w(Br(v)) ≥ t/k′} 6= ∅,
S∗ = S ∪ A, where k′ = k− ∑(X,i)∈S i. Finally, let G =

⋃

v∈S∗ G[Br(v)]. Then either there is a
subset T ⊆ A of size k′ such that (a) for all u, v ∈ T, dG(u, v) ≥ 2r + 1; and (b) for all u ∈ T

and for all v ∈ C, dG(u, v) ≥ 2r + 1 or tw(G) ≤ O(rk).

Let us set g(r, k) = 6h(r, k). We can compute in O(|G|4) time a tree decomposition of

width ω of G such that tw(G) ≤ ω ≤ 1.5tw(G) [25]. Moreover, given a graph G, one can

also construct a grid minor of size (b/4)× (b/4) where the largest grid minor possible in G
is of order b× b, in time O(|G|2 log |G|) [6]. Hence if ω > g(r, k) then the tw(G) > 4h(r, k)
and then by applying the polynomial time algorithm to compute grid minor, we can obtain

a grid of size 4
24h(r, k). Let us finally observe that the proof of Lemma 5 is constructive, in a
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sense that given the grid H, we can construct the desired set T in polynomial time. Hence

by setting h(r, k) = O(rk) in the time complexity analysis of Theorem 3 , we obtain the

following theorem.

THEOREM 6. WP-(k, r, t)-C problem can be solved in timeO(2O(kr) · nO(1)) on planar graphs.

4 H-minor free graphs

The arguments of the previous sectionswere based on a specific graph class property, namely,

that a graph with small diameter has bounded treewidth. Thus the natural limit of our

framework is the class of graphs of bounded local treewidth. We overcome this limit and

extend the framework on the class of graphs excluding a fixed graph H as minor. To do so

we need to use the structural theorem of Robertson and Seymour [24] and an algorithmic

version of this theorem by Demaine et al. [13]. The algorithm is quite involved, it uses two

levels of dynamic programming and two levels of implicit branching, and can be seen as a

non-trivial extension of the algorithm of Demaine et al. [10] for classical covering problems

to partial covering problems.

THEOREM 7. [⋆] PDS is fixed parameter tractable for the class of H-minor free graphs and
the algorithm takes time O(τ(k) · t · nCH ), where τ is the function of k only and CH is the
constant depending only on the size of H.

5 Partial Vertex Cover

While the results of the previous section can be used to prove that PVC is FPT on H-minor

free graphs, we do not need that heavy machinery for this specific problem. In this section

we show how implicit branching itself does the job, even for more general classes of graphs.

We present a simple modification to our framework developed in the Section 3.1 and use it

to show that PVC problem is FPT in triangle free graphs. Given a graph G = (V, E) and a

subset S ⊆ V, by ∂S ⊆ E we denote the set of all edges having at least one end-point in S.

Our modification in the generic algorithm is in step (T2).

(T2′) Bound the size of S as a function of the parameter in every recursive step.

We call a graph class G hereditary if for any G ∈ G , all the induced subgraphs of G also

belong to G . Let ξ : N → N be an increasing function. We say that a hereditary graph class

G has the ξ-bounded independent set property, or simply the property ISξ , if for any G ∈ G

there exists an independent set X ⊆ V(G) such that |V(G)| ≤ ξ(|X|) and X can be found in

time polynomial in the input size. There are various graph classes which have the property

of ISξ . Every bipartite graph has an independent set of size at least n/2 and hence we can

choose ξb : N → N as ξb(k) = 2k. A triangle free graph has an independent set of size at

least max{∆, n/(∆ + 1)} where ∆ is the maximum degree of the graph which implies that a

triangle free graphs has an independent set of size at least
√
n/2. In this case we can choose

the function ξt : N → N by ξt(k) = 4k2. Every H-minor free graphs, and in particular

for planar graphs and graphs of bounded genus have chromatic number at most g(H) for

some function depending on H alone. In this case G has an independent set of size at least

n/g(|H|) and we can take ξH(n) = g(H)n. For planar graphs g(H) is 4.
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We can show that if a graph class G has the property ISξ , then in the case of PVC for

every G ∈ G either we can upper bound the size of S used in the implicit branching step by

ξ(k) or we can find a subset V ′ of size at most k such that |∂V ′| ≥ t. The main theorem of

this section is as follows.

THEOREM 8. [⋆] Let G be a hereditary graph class with the property of ISξ for some integer
function ξ. Then PVC can be solved in O(τ(k) · nO(1)) time in G where τ(k) = ξ(k)k.

6 Conclusion

In this paper we obtained a framework to give FPT algorithms for various partial covering

problems in graphs with locally bounded treewidth and graphs excluding a fixed graph

H as a minor. The main idea behind our approach was the concept of implicit branching

which is of independent interest. We believe that it will be useful for other problems as well.

We conclude with some open questions. For planar graphs (and even more generally, for

H-minor free graphs), many non-partial versions of parameterized problems can be solved

in subexponential time [12, 14]. We show that for planar graphs PARTIAL DOMINATING SET

can be solved in time 2O(k) · nO(1). Is this result tight, in a sense that up to some assumption

in the complexity theory, there is no time 2o(k) · nO(1) algorithm solving this problem on

planar graphs?

Many non-partial parameterized problems on planar graphs can be solved by reducing

to a kernel of linear size [2]. This does not seem to be the case for their partial counter-

parts and an interesting question here is, whether PARTIAL DOMINATING SET or PARTIAL

VERTEX COVER can be reduced to polynomial sized kernels on planar graphs.
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