
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 25-36

Some Sieving Algorithms for Lattice
Problems

V. Arvind and Pushkar S. Joglekar
Institute of Mathematical Sciences

C.I.T Campus,Chennai 600 113, India

{arvind,pushkar}@imsc.res.in

ABSTRACT. We study the algorithmic complexity of lattice problems based on the sieving technique
due to Ajtai, Kumar, and Sivakumar [AKS01]. Given a k-dimensional subspace M ⊆ Rn and a full
rank integer lattice L ⊆ Qn, the subspace avoiding problem SAP, defined by Blömer and Naewe [BN07],

is to find a shortest vector in L \ M. We first give a 2O(n+k log k) time algorithm to solve the subspace
avoiding problem. Applying this algorithm we obtain the following results.

1. We give a 2O(n) time algorithm to compute ith successive minima of a full rank lattice L ⊂ Qn

if i is O( n
log n ).

2. We give a 2O(n) time algorithm to solve a restricted closest vector problem CVPwhere the inputs
fulfil a promise about the distance of the input vector from the lattice.

3. We also show that unrestricted CVP has a 2O(n) exact algorithm if there is a 2O(n) time exact
algorithm for solving CVP with additional input vi ∈ L, 1 ≤ i ≤ n, where ‖vi‖p is the ith

successive minima of L for each i.
We also give a new approximation algorithm for SAP and the Convex Body Avoiding problem which
is a generalization of SAP. Several of our algorithms work for gauge functions as metric, where the
gauge function has a natural restriction and is accessed by an oracle.

1 Introduction

Fundamental algorithmic problems concerning integer lattices are the shortest vector prob-

lem (SVP) and the closest vector problem(CVP). Given a lattice L ⊂ Rn by a basis, the

shortest vector problem (SVP) is to find a shortest nonzero vector in L w.r.t. some metric

given by a gauge function in general (usually the ℓp norm for some p). Likewise, the closest

vector problem (CVP) takes as input a lattice L ⊂ Rn and vector v ∈ Rn and asks for a

u ∈ L closest to v w.r.t. a given metric. These problems have polynomial-time approxima-

tion algorithms based on the celebrated LLL algorithm for basis reduction [LLL82].

The fastest known exact deterministic algorithms for SVP and CVP have running time

2O(n log n) [Kan87] (also see [Bl00]). More recently, Ajtai, Kumar and Sivakumar in a semi-

nal paper [AKS01] gave a 2O(n) time randomized exact algorithm for SVP. Subsequently, in

[AKS02] they gave a 2O(n) time randomized approximation algorithm for CVP. Their al-

gorithms are based on a generic sieving procedure (introduced by them) that exploits the

underlying geometry. Recently, Blömer and Naewe [BN07] gave a different 2O(n) time ran-

domized approximation algorithm for CVP, also based on the AKS sieving technique.

For 1 ≤ i ≤ n, the ith successive minima λi(L) is defined as the smallest r such that a

ball of radius r around origin contains at least i linearly independent lattice vectors. The

successive minimas λi(L) are important lattice parameters. A classical problem is the suc-

cessive minima problem SMP of finding for a given lattice L, n linearly independent vectors
c© V. Arvind and Pushkar S. Joglekar; licensed under Creative Commons License-NC-ND

FSTTCS 2008 
IARCS Annual Conference on  
Foundations of Software Technology and Theoretical Computer Science 
http://drops.dagstuhl.de/opus/volltexte/2008/1738



26 SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

v1, v2, . . . , vn ∈ L such that ‖vi‖ is at most λi(L). This problem clearly subsumes the short-

est independent vectors problem SIVP where one wants to find linearly independent vectors

v1, v2, . . . , vn ∈ L such that ‖vi‖ ≤ λn(L). Given a k-dimensional subspace M ⊆ Rn and a

full rank integer lattice L ⊆ Qn, the subspace avoiding problem SAP, is to find a shortest vector

in L \ M. The paper [BN07] gives 2O(n) time approximation algorithm for these problems.

No exact 2O(n) time randomized algorithm is known for CVP or SMP. Recently, Miccian-

cio has shown [Mi08] that CVP is polynomial-time equivalent to several lattice problems,

including SIVP and SMP, under deterministic polynomial time rank-preserving reductions.

This perhaps explains the apparent difficulty of finding a 2O(n) time exact algorithm for CVP

or SMP, because SVP reduces to all of these problems but no reduction is known in the other

direction. In particular, the reductions in [Mi08] yield 2O(n log n) time exact algorithms for

SAP, SMP and SIVP, whereas [BN07] gives 2O(n) time randomized approximation algorithm

for these problems.

Our results

In this paper we consider some natural restrictions of these problems that can be exactly

solved in 2O(n) time. We obtain these results giving a 2O(n+k log k) algorithm to solve SAP

where n is the rank of the lattice and k is the dimension of the subspace.

As our first result we show that given a full rank lattice L ⊂ Qn there is 2O(n) time

randomized algorithm to compute linearly independent vectors v1, v2, . . . , vi ∈ L such that

‖vi‖ = λi(L) if i is O( n
log n ). Given a full rank lattice L ⊂ Qn and v ∈ Qn we also give

a 2O(n) time algorithm to solve CVP(L, v) if the input (v,L) fulfils the promise d(v,L) ≤√
3
2 λO( n

log n )(L).

We show that CVP can be solved in 2O(n) time if there is a 2O(n) time algorithm to com-

pute a closest vector to v in Lwhere v ∈ Qn, L ⊂ Qn is a full rank lattice and v1, v2, . . . , vn ∈
L such that ‖vi‖p is equal to ith successive minima of L for i = 1 to n are given as an ad-

ditional input to the algorithm. As a consequence, we can assume that successive minimas

are given for free as an input to the algorithm for CVP. We believe that using basis reduc-

tion techniques from [Kan87] one might be able to exploit the information about successive

minimas of the lattice to get a better algorithm for CVP.

We give a new 2O(n+k log 1/ǫ) time randomized algorithm to solve 1 + ǫ approximation

of SAP, where n is rank of the lattice and k is the dimension of subspace. We get better

approximation guarantee than the one in [BN07] parametrised on k. We also consider a

generalization of SAP (the convex body avoiding problem) and give a singly exponential ap-

proximation algorithm for the problem.

2 Preliminaries

A lattice L is a discrete additive subgroup of Rn, n is called dimension of the lattice. For

algorithmic purposes we can assume that L ⊆ Qn, and even in some cases L ⊆ Zn. A

lattice is usually specified by a basis B = {b1, · · · , bm}, where bi ∈ Qn and bi’s are linearly

independent. m is called the rank of the lattice. If the rank is n the lattice is said to be a full

rank lattice. Although most results in the paper hold for general lattices, for convenience we



V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008 27

mainly consider only full-rank lattices. For x ∈ Qn let size(x) denote the number of bits for

the standard binary representation as an n-tuple of rationals. Let size(L) denote ∑i size(bi).
Next we recall the definition of gauge functions.

DEFINITION 1.[Si45] A function f : Rn → R is called a gauge function if it satisfies follow-
ing properties:

1. f (x) > 0 for all x ∈ Rn \ {0} and f (x) = 0 if x = 0.
2. f (λx) = λ f (x) for all x ∈ Rn and λ ∈ R.
3. f (x + y) ≤ f (x) + f (y) for all x, y ∈ Rn.

For v ∈ Rn we denote f (v) by ‖v‖ f and call it norm of v with respect to the gauge

function f . It is easy to see that any lp norm satisfies all the above properties. Thus gauge

functions generalize the usual lp norms. A gauge function f defines a natural metric d f

on Rn by setting d f (x, y) = f (x − y) for x, y ∈ Rn. For x ∈ Rn and r > 0, let B f (x, r)
denote the f -ball of radius r with center x with respect to the gauge function f , defined

as B f (x, r) = {y ∈ Rn| f (x − y) ≤ r}. We denote the metric balls with respect to usual

lp norm by Bp(x, r). Unless specified otherwise we always consider balls in Rn. The next

well-known proposition characterizes the class of all gauge functions.

PROPOSITION 2.[Si45] Let f : Rn → R be any gauge function then a unit radius ball around
origin with respect to f is a n dimensional bounded O-symmetric convex body. Conversely,
for any n dimensional bounded O-symmetric convex body C, there is a gauge function
f : Rn → R such that B f (0, 1) = C.

Given an f -ball of radius r around origin with respect to a gauge function f , from the

Proposition 2 it follows that B f (0, r) is an O-symmetric convex body. It is easy to check that

for any r > 0 and any constant c we have vol(B f (0, cr)) = cnvol(B f (0, r)), where vol(C)
denotes the volume of the corresponding convex body C (see e.g. [Si45]).

We now place a natural restriction on gauge functions. A gauge function f , given by

oracle access, is a nice gauge function if it satisfies the following property: For some poly-

nomial p(n), B2(0, 2−p(n)) ⊆ B f (0, 1) ⊆ B2(0, 2p(n)), i.e. there exists a Euclidean sphere

of radius 2−p(n) inside the convex body B f (0, 1), and B f (0, 1) is contained inside a Eu-

clidean sphere of radius 2p(n). Note that if f is a nice gauge function and v ∈ Qn we have

size( f (v))=poly(n,size(v)). For a nice gauge function f we can sample points from convex

body B f (0, r) almost uniformly at random in poly(size(r),n) time using the Dyer-Frieze-

Kannan algorithm [DFK91]. It is easy to check that all lp norms p ≥ 1 define nice gauge

functions. The ith successive minima of a lattice L with respect to ℓp norm is smallest r > 0

such that Bp(0, r) contains at least i linearly independent lattice vectors. It is denoted by

λ
p
i (L).

Remarks: In this paper we consider lattice problems with respect to nice gauge functions.

Let L be a lattice with basis {b1, b2, . . . , bn} and f be a nice gauge function. Suppose B is a

full rank n× n matrix with columns b1, b2, . . . , bn. Note that the linear transformation B−1

maps lattice L isomorphically to the standard lattice Zn. Furthermore, it is easy to see that

the set C = B−1(B f (0, 1)) is an O-symmetric convex body. Hence, by Proposition 2 it follows

that C = Bg(0, 1) for some gauge function g. As f is a nice gauge function, it easily follows

that g is also a nice gauge function.



28 SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

Thus, our algorithms that work for nice gauge functions can be stated for the the stan-

dard lattice Zn and a nice gauge function g. However, some of our results hold only for ℓp

norms. Thus, to keep uniformity we allow our algorithms to take arbitrary lattices as input

even when the metric is give by a nice gauge function.

3 A Sieving Algorithm for SAP

In this section we present a different analysis of the AKS sieving [AKS01, Re04] applied

to the Subspace Avoiding Problem (SAP). Our analysis is quite different from that due to

Blömer and Naewe [BN07] and gives us improved running time for computing a 1 + ǫ

approximate solution.

Recall that an input instance of the subspace avoiding problem (SAP) consists of (L,M)
where L ⊂ Qn is a full rank lattice and M ⊂ Rn is a subspace of dimension k. The SAP

problem is to find a vector v ∈ L \ M with least norm with respect to a nice gauge function

f .

We give an intuitive outline of our approximation algorithm: Our analysis of AKS siev-

ing will use the fact that the sublattice L ∩ M of L is of rank k. We will use the AKS sieving

procedure to argue that we can sample 2O(n+k log(1/ǫ)) points from some coset of L ∩ M in

2O(n+k log(1/ǫ)) time. We can then apply a packing argument in the coset (which is only k-

dimensional) to obtain points in the coset that are close to each other. Then, with a standard

argument following the original AKS result [AKS01] we can conclude that their differences

will contain a good approximation.

Suppose, without loss of generality, that the input lattice L ⊆ Rn is n-dimensional

given by a basis {b1, · · · , bn}, so that L = ∑
n
i=1 Z · bi. Let us fix a nice gauge function f and

let v ∈ L denote a shortest vector in L \ M with respect to gauge function f , i.e. f (x) for

x ∈ L \M attains minimum value at x = v. Let s = size(L,M) denote the input size (which

is the number of bits for representing the vectors bi and the basis for M). As v is a shortest

vector inL\M and f is a nice gauge function it is quite easy to see that size( f (v)) is bounded
by a polynomial in s. Thus, we can scale the lattice L to ensure that 2 ≤ f (v) ≤ 3. More

precisely, we can compute polynomially many scaled lattices from L, so that 2 ≤ f (v) ≤ 3

holds for at least one scaled lattice. Thus, we can assume that 2 ≤ f (v) ≤ 3 holds for the

lattice L.
We first describe the AKS sieving procedure [AKS01] for any gauge function, analyze

its running time and explain its key properties. The following lemma is crucially used in

the algorithm.

LEMMA 3.[Sieving Procedure] Let f : Rn → R be any gauge function. Then there is a
sieving procedure that takes as input a finite set of points {v1,v2,v3, . . . , vN} ⊆ B f (0, r),

and in NO(1) time it outputs a subset of indices S ⊂ [N] such that |S| ≤ 5n and for each
i ∈ [N] there is a j ∈ S with f (vi − vj) ≤ r/2.

Proof. The sieving procedure is exactly as described in Regev’s lecture notes [Re04]. The

sieving procedure is based on a simple greedy strategy. We start with S = ∅ and run the

following step for all elements vi, 1 ≤ i ≤ N. At the ith step we consider vi. If f (vi − vj) >

r/2 for all j ∈ S include i in the set S and increment i. After completion, for all i ∈ [N]



V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008 29

there is a j ∈ S such that f (vi − vj) ≤ r/2. The bound on |S| follows from a packing

argument combined with the fact that vol(B f (0, cr)) = cnvol(B f (0, r)) for any r > 0 and

a constant c > 0. More precisely, for any two points vi, vj ∈ S we have f (vi − vj) > r/2.

Thus, all the convex bodies B f (vi, r/4) for vi ∈ S are mutually disjoint and are contained

in B f (0, r + r/4). Also note that vol(B f (0, dr)) = dnvol(B f (0, r)) for any constant d > 0. It

follows that 5nvol(B f (vi, r/4)) ≥ vol(B f (0, r + r/4)). Hence, |S| ≤ 5n. The second property

of S is guaranteed by the sieving procedure.

Next, our algorithm follows the usual AKS random sampling procedure. Let R =
n ·maxi‖bi‖ f . It is clear that size(R) is polynomial in s since f is a nice gauge function. Let

B f (0, 2) denote the f -ball of radius 2 around the origin. Since we have an oracle for mem-

bership in B f (0, 2) and f is a nice gauge function we can almost uniformly sample from

B f (0, 2) using the Dyer-Frieze-Kannan algorithm [DFK91]. Let x1, x2, · · · , xN denote such

a random sample, for N = 2c·(n+k log(1/ǫ)) · logR where the constant c > 0 will be suitably

chosen. Now, using the lattice L we can round off the points xi. More precisely, we express

xi = Σjαijbj for rationals αij. Then, from each vector xi we compute the vector yi = Σjβijbj,

where 0 ≤ βij < 1, by adding appropriate integral multiples of the bj’s to the expression

for xi. Thus, the points y1, · · · , yN are in the interior of the fundamental parallelepiped of L,
and each xi − yi ∈ L. We denote this by yi = xi(mod L). We now have the set of N pairs

P = {(xi, yi) | i ∈ [N]}, where xi − yi are lattice points. Since yi lie inside the fundamental

parallelepiped we have ‖yi‖ f ≤ n ·maxi‖bi‖ f = R for i = 1 to N.

Now, we apply the AKS sieving procedure in Lemma 3 to the set {y1, y2, · · · , yN}. The
result is a subset S ⊂ [N] of at most 5n indices such that for each i ∈ [N] there is some

j ∈ S such that f (yi − yj) ≤ R/2. We remove from P all (xj, yj) for j ∈ S and replace each

remaining (xi, yi) ∈ P by a corresponding (xi, yi − (yj − xj)), where j ∈ S is the first index

such that f (yi − yj) ≤ R/2. After the sieving round, the set P has the property that for each

(xi, zi) ∈ P we have xi − zi ∈ L and f (xi − zi) ≤ 4 + R/2, and P has shrunk in size by at

most 5n. We continue with O(log R) sieving rounds so that we are left with a set P with

N −O(log R)5n pairs (xi, zi) such that xi − zi ∈ L and f (xi − zi) ≤ 8. We can ensure that

|P| ≥ 2c
′(n+k log(1/ǫ)) for an arbitrary constant c′ by appropriately choosing constant c. The

vectors, xi − zi for (xi, zi) ∈ P follows some distribution among lattice points inside B f (0, 8).
Next, we need following simple proposition.

PROPOSITION 4. Let L ⊂ Rn be a rank n lattice, v ∈ L such that 2 ≤ f (v) ≤ 3 for a
nice gauge function f . Consider the convex regions C = B f (−v, 2) ∩ B f (0, 2) and C′ =

B f (v, 2) ∩ B f (0, 2). Then C′ = C + v and vol(C) = vol(C′) = Ω(
vol(B f (0,2))

2O(n) ).

Proposition 4 is easy to prove since B f (−v/2, 1/2) ⊆ C, B f (v/2, 1/2) ⊆ C′. Note that

we have picked x1, . . . , xN uniformly at random from B f (0, 2),where N = 2c·(n+k log(1/ǫ)) ·
logR. By Proposition 4, the point xi is in C with probability at least 2−O(n). Hence by

choosing the constant c large enough we can ensure that with high probability there is a

subset Z ⊆ P such that |Z| ≥ 2c1(n+k log(1/ǫ)) for a constant c1 and for all (xi, zi) ∈ Z, xi ∈ C.

We now prove the main theorem of this section.



30 SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

THEOREM 5. Let L ⊂ Qn be a full rank lattice and let v ∈ L \M such that 2 ≤ f (v) ≤ 3 for a
given gauge function f and f (v) ≤ f (x) for all x ∈ L\M. Let ǫ > 0 be an arbitrary constant.
Then there is a randomized algorithm that in time 2O(n+klog(1/ǫ)).poly(size(L)) computes a
set P of pairs (xi, zi) such that |P| ≥ 2c

′·(n+k log(1/ǫ)) for a constant c′ and f (xi − zi) ≤ 8 for
all (xi, zi) ∈ P. Moreover, zi − xi ∈ L are such that with probability 1− 2−O(n) there is a pair
of points (xi, zi), (xj, zj) ∈ P such that v + u = (xi − zi) − (xj − zj) for a vector u ∈ L ∩ M

with f (u) ≤ ǫ.

Proof.

Consider the set P of pairs (xi, zi), obtained after the AKS sieving as described above,

such that |P| ≥ 2c
′(n+k log(1/ǫ)), and f (xi − zi) ≤ 8 for all (xi, zi) ∈ P. We know that by

choosing c large enough we can ensure that with high probability there is Z ⊆ P such that

|Z| ≥ 2c1(n+k log(1/ǫ)) for any constant c1 and for all (xi, zi) ∈ Z, xi ∈ C.

Note that L ∩ M is a rank k sublattice of L. We will now analyze Z using the cosets of

the sublattice L ∩ M.

Write Z as a partition Z =
⋃m

j=1 Zj, where for each Zj there is a distinct coset (L∩M) +
vj of L ∩ M in L such that zi − xi ∈ (L ∩ M) + vj for all (xi, zi) ∈ Zj. Let Z′

j = {zi − xi |
(xi, zi) ∈ Zj}. Suppose uj ∈ Z′

j ⊆ (L ∩ M) + vj for j = 1 to m.

CLAIM 6.[Coset sampling] By choosing constant c1 large enough we can ensure that there
is an index t, 1 ≤ t ≤ m such that |Zt| ≥ 2c2(n+k log(1/ǫ)) for any constant c2.

Proof of Claim Note that ui and uj for i 6= j lie in different cosets of L ∩ M. So ui − uj /∈ M.

Since v is a shortest f-vector in L \Mwith 2 ≤ f (v) ≤ 3, we have f (ui − uj) ≥ 2. Hence unit

radius f -balls around ui’s are disjoint. Note that B f (ui, 1) ⊂ B f (0, 9) for i = 1 to m. Since

vol(B f (0, 9))/vol(B f (0, 1)) ≤ 2dn for some constant d, we have m ≤ 2dn. We have |Z| ≥
2c1(n+k log(1/ǫ)) and Z is partitioned as Z =

⋃m
j=1 Zj. So it is clear that by choosing c1 large

enough we can ensure that there is an index t, 1 ≤ t ≤ m such that |Zt| ≥ 2c2(n+k log(1/ǫ)) for

any constant c2.

By renumbering the indices assume that Zt = {(x1, z1), . . . , (xq, zq)}, q ≥ 2c2(n+k log(1/ǫ)).

Let βi = zi − xi for (xi, zi) ∈ Zt. Thus, each such βi lies in the same coset (L ∩ M) + vℓ.

CLAIM 7.[Packing argument] By choosing the constant c2 large enough we can ensure that
there exists (xi, zi), (xj, zj) ∈ Zt, i 6= j such that f (βi − β j) ≤ ǫ.

Proof of Claim Suppose for all (xi, zi), (xj, zj) ∈ Zt, i 6= j f (βi − β j) ≥ ǫ. We also have

f (βi − β j) ≤ 16 for i, j ∈ [q]. Let γi = βi − vℓ ∈ L ∩ M ⊂ M for i = 1 to q. It is clear

that f (γi − γj) = f (βi − β j) for i, j ∈ [q]. Let {b1, . . . , bk} be an orthonormal basis of M.

Consider the linear transformation T : M → Rk such that T(bi) = ei for i = 1 to k, where

{e1, e2, . . . , ek} is a standard basis of Rk. Let δi = T(γi) for i = 1 to q. By standard linear

algebra it follows that T preserves distances between points with respect to any norm. In

particular, we have f (γi − γj) = f (δi − δj) for i, j ∈ [q]. So we have ǫ/2 ≤ f (δi − δj) ≤
16. As δi ∈ Rk for i ∈ [q], it follows that k-dimensional balls of radius ǫ/2 around δi’s are

mutually disjoint. By a packing argument it follows that |Zt| ≤ (16+ǫ/2)k

(ǫ/2)k
= 2 f (k log(1/ǫ))

for a constant f . This is a contradiction since choosing c2 large enough we can ensure that

|Zt| ≥ 2c2(n+k log(1/ǫ)) > 2 f (k log(1/ǫ)).



V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008 31

We now complete the proof with a standard argument from [AKS01, Re04] using a

modified distribution.

We have (xi, zi), (xj, zj) ∈ Zt ⊂ Z, i 6= j, xi, xj ∈ C such that f (βi − β j) ≤ ǫ and βi −
β j ∈ L ∩ M. Now, we apply the argument as explained in Regev’s notes [Re04] to reason

with a modified distribution of the xi. Note that in the sieving procedure described before

Theorem 5, each xi is picked independently and uniformly at random from B f (0, 2). Now,

notice that we can replace the original distribution of xi with a modified distribution in

which we output xi if it lies in B f (0, 2) \ (C ∪ C′) and if xi ∈ C it outputs either xi or xi +
v with probability 1/2 each. Similarly, if xi ∈ C′ = C + v it outputs either xi or xi − v

with probability 1/2 each. By Proposition 4 it follows that this modified distribution is also

uniform on B f (0, 2) (indeed, this distribution is required only for the purpose of analysis).

Furthermore, we can replace each xi by the modified distribution just before it is used in

the algorithm for the first time. The reason we can do this is because the distribution of yi’s

remains same even if we replace xi by the modified distribution because yi = xi(modL)
and v ∈ L. This is explained further in Regev’s notes [Re04]. Now recall that we have

(xi, zi), (xj, zj) ∈ Z with xi, xj ∈ C and f (βi − β j) ≤ ǫ. Putting it together with the above

argument, it follows that with good probability the points (xi, zi) and (xj + v, zj) are in the

set P, where P is the set of pairs left after the sieving. This is easily seen to imply that with

high probability we are likely to see the vector v + (βi − β j) as the difference of zi − xi and

zj− xj for some two pairs (xi, zi), (xj, zj) ∈ P. The theorem now follows since f (βi − β j) ≤ ǫ.

By choosing M as the 0-dimensional subspace we get a 2O(n) algorithm for SVP with

respect to any nice gauge function. As an immediate consequence of Theorem 5we get a 1+

ǫ approximation algorithm for SAP problem that runs in time 2O(n+k log 1
ǫ ) · poly(size(L,M)).

Remarks: The 1+ ǫ approximation algorithm in [BN07] for SAP has running time 2O(n log 1
ǫ ) ·

poly(size(L,M))). Our algorithm has running time 2O(n+k log 1
ǫ ) for computing 1+ ǫ approx-

imate solution. Put another way, for k = o(n) we get a 2O(n) time algorithm for obtaining

1+ 2−n/k approximate solutions to SAP.

There is a crucial difference in our analysis of the AKS sieving and that given in [BN07].

In [BN07] it is shown that with probability 1− 2−O(n) the sieving procedure outputs a 1+ ǫ

approximate solution u ∈ L \ M.

On the other hand, we show in Claim 6 that with probability 1 − 2−O(n) the sieving

procedure samples 2O(n+k log(1/ǫ) lattice points in some coset of the sublattice L ∩ M in L.
Then we argue that with probability 1− 2−O(n) the sample contains a lattice point u in L ∩
M + v such that such that d(u, v) is small, for some shortest vector v in L \ M. We argue

this in Claim 7 by a packing argument in the coset of L ∩ M. As L ∩ M has rank k, the

packing argument in k dimensions gives the improved running time for our approximation

algorithm for the problem.

The fact that the AKS sampling contains many points from the same coset of L ∩ M

also plays crucial role in our exact algorithm for SAP shown in Theorem 12.



32 SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

COROLLARY 8. Given a rank n lattice L and a k-dimensional subspace M ⊂ Rn, there
is 1 + ǫ randomized approximation algorithm for SAP (for any nice gauge function) with

running time 2O(n+k log 1
ǫ ) · poly(size(L,M)).

Proof. The algorithm will examine all (zi − xi) − (zj − xj) for (xi, zi), (xj, zj) ∈ P obtained

after sieving and output that element inL\M ofminimum f -value. The proof of correctness

and running time guarantee follows immediately from Theorem 5.

4 Convex Body Avoiding Problem

In this section we consider a generalization of SAP: given a lattice L and a convex body C

the problem is to find a shortest vector (w.r.t. ℓp norm) in L \ C. We consider convex bodies

C that are bounded and O-symmetric. We refer to this problem as the Convex body Avoiding

Problem (CAP).

A set S ⊆ Rn is O-symmetric if x ∈ S if and only if −x ∈ S. Notice that a subspace

M ⊆ Rn is convex and O-symmetric (but not bounded).

The input to CAP is the lattice L and the convex body C, where C is given by a mem-

bership oracle. An algorithm can query the oracle for any x ∈ Rn to test if x ∈ C.

We give an approximation algorithm to solve CAP.

THEOREM 9. Given an integer lattice L of rank n and an O-symmetric convex body C in Rn

given by a membership oracle, there is 1 + ǫ factor approximation algorithm to solve CAP
(w.r.t. any ℓp norm) with running time 2O(n)·log(1/ǫ) · poly(size(L)).

Proof. It suffices to solve the problem for the case when C is n-dimensional. To see this,

suppose C is contained in some k-dimensional subspace M of Rn. We can find a basis for

M with high probability by sampling vectors from C using the polynomial-time almost

uniform sampling algorithm described in [DFK91]. Next, we compute the sublattice L ∩ M

and find a (1 + ǫ) approximate solution u for the k-dimensional convex body avoidance

for the lattice L ∩ M and C. We also solve the SAP instance (L,M) and find a (1 + ǫ)
approximate solution v ∈ L \ M using Theorem 5. The shorter of vectors u and v is clearly

a (1+ ǫ) approximate solution for the input CAP instance.

Thus, we can assume C is n-dimensional. Let v be a shortest vector in L \ C which, as

before, we can assume satisfies 2 ≤ ‖v‖p ≤ 3 by considering polynomially many scalings

of the lattice and the convex body. As in Theorem 5, we pick random points x1, · · · , xN
from Bp(0, 2) for N = 2cn log(1/ǫ) · poly(s). The constant c > 0 will be suitably chosen later.

Let yi = xi(mod L) for i = 1 to N. We apply several rounds of the AKS sieving on the

set {(x1, y1), · · · , (xN , yN)} until we are left with a set S of 2c1n log(1/ǫ) pairs (xi, zi) such that

‖xi − zi‖p ≤ 8. From proposition 4 it follows easily that with good probability we have

Z ⊆ S such that |Z| ≥ 2c2n log(1/ǫ) and for all (xi, zi) ∈ Z we have xi ∈ D ∪ D′ where

D = Bp(0, 2) ∩ Bp(−v, 2) and D′ = Bp(0, 2) ∩ Bp(v, 2). Note that the the constant c2 can be

chosen as large as we like by appropriate choice of c. Let Z′ = {zi − xi | (xi, zi) ∈ Z}. Now

consider ℓp ball of radius ǫ/2 centered at each lattice point β ∈ Z′. It is clear that for all β ∈
Z′, Bp(β, ǫ/2) ⊆ Bp(0, 8+ ǫ/2). If for all β ∈ Z′ ℓp balls Bp(β, ǫ/2) are mutually disjoint, by

packing argument we get |Z′| ≤ (8+ǫ/2)n

(ǫ/2)n
= 2c

′n log(1/ǫ) for a constant c′. We choose constant



V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008 33

c appropriately to ensure that c2 > c′. This implies that there exists tuples (xi, zi), (xj, zj) ∈ Z

such that ‖βi − β j‖ ≤ ǫ, where βi = zi − xi and β j = zj − xj. Let β = βi − β j. We claim that

it is not possible that both β + v, β − v lie inside the convex body C. Because this implies

v− β ∈ C since C is O-symmetric. Therefore v = (β+v)+(v−β)
2 ∈ C, which contradicts with

assumption v /∈ C. So without loss of generality assume that β + v /∈ C. Note that without

loss of generality we can also assume that xi ∈ D′ with good probability. Now, we apply the

argument as explained in [Re04] to reason with a modified distribution of the xi. As xi ∈ D′

we can replace xi by xi − v. It is easy to see that after sieving with good probability there

exists tuples (xi, zi), (xj, zj) ∈ S such that ri,j = (zi − xi) − (zj − xj) = v + βi − β j. Hence,

ri,j = v + β /∈ C and, clearly, ‖ri,j‖p ≤ (1 + ǫ)‖v‖p since ‖βi − β j‖p ≤ ǫ. It is easy to see

that the algorithm runs in time 2O(n log(1/ǫ))poly(size(L)). This completes the proof of the

theorem.

5 Applications

The results of this section are essentially applications of ideas from Theorem 5 and Section 3.

First we describe an exact algorithm for SAP for ℓp norms. We prove our result for full

rank lattices, but it is easy to see that the result holds for general lattices as well. Let L ⊂ Qn

be a full rank integer lattice given by a basis {b1, · · · , bn} and let M ⊆ Rn is a subspace of

dimension k < n. For any ℓp norm we give a randomized 2O(n+k log k)poly(s) time algorithm

to find a shortest vector in L \ M, where s = size(L,M). Our exact algorithm uses the same

sieving procedure and analysis described in the proof of Theorem 5 in Section 3. As before,

by considering polynomially many scalings of the lattice, we can assume that a shortest

vector v ∈ L \ M satisfies 2 ≤ ‖v‖p ≤ 3. We now describe the algorithm.

1. Let N = 2cn log(n.maxi‖bi‖p). Pick x1, x2, · · · , xN uniformly at random from Bp(0, 2).
2. Let yi = xi(mod L). Apply AKS sieving to the set {(x1, y1), · · · , (xN , yN)} as described

in Section 3 until ‖xi − zi‖p ≤ 8 for each pair (xi, zi) left after the sieving.
3. Let P = {(xi, zi)|i ∈ T}, T ⊂ [N] be the set of tuples left after the sieving procedure.

For all i, j ∈ T compute lattice points vi,j = (zi − xi) − (zj − xj).
4. Let wi,j be a closest lattice vector to vi,j in the rank k lattice L ∩ M (found using Kan-

nan’s exact CVP algorithm [Kan87]), and let ri,j = vi,j − wi,j. Output a vector of least

nonzero ℓp norm among all the vectors ri,j for i, j ∈ T.

First we prove the correctness of the algorithm.

LEMMA 10. For an appropriate choice of the constant c in the algorithm, it outputs a shortest
nonzero vector in L \ M with respect to ℓp norm.

Proof. Let v be a shortest vector in L \M. Consider the set of pairs P = {(xi, zi)|i ∈ T}, T ⊂
[N], that remains after the sieving procedure in Step 3 of the algorithm. If we choose ǫ

as a constant in Theorem 5, it follows that there is a constant c such that with probability

1− 2−O(n) there exists (xi, zi), (xj, zj) ∈ P such that v + u = βi − β j for some u ∈ L ∩ M

where βi = zi − xi and β j = zj − xj. Hence, in Step 3 of the algorithm we have some

vi,j = v + u for some vector u ∈ L ∩ M, i.e. vi,j and v lie in same coset of L ∩ M.

Let wi,j ∈ L∩M be a closest vector to vi,j. So we have d(vi,j,wi,j) ≤ d(vi,j, u) = ‖v‖p, i.e.
‖vi,j − wi,j‖p ≤ ‖v‖p. But since we have vi,j /∈ L ∩ M and wi,j ∈ L ∩ M clearly vi,j − wi,j /∈



34 SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

L ∩ M and since v is a shortest vector in L \ M, this implies ‖vi,j − wi,j‖p = ‖v‖p. So with

probability 1− 2−O(n) the algorithm will output (in Step 4) a vector ri,j with ‖ri,j‖p = ‖v‖p.
This proves the correctness of the algorithm.

Next we argue that the running time of the algorithm is 2O(n+k log k) · poly(s) where s is

the input size. In Step 1 of the algorithm we are sampling N = 2O(n) points from Bp(0, 2),
a ball of radius 2 with respect to lp norm. Since Bp(0, 2) is a convex body, the task can be

accomplished using Dyer-Frieze-Kannan algorithm [DFK91] in time 2O(n) · poly(s). It easily
follows that the sieving procedure in Step 2 can be performed in 2O(n) time. Note that L∩M

is a rank k lattice and a basis for it can be computed efficiently. We need the following easy

lemma from [Mi08].

LEMMA 11.[Mi08, Lemma 1] There is a polynomial-time algorithm that takes as input a
lattice L ⊂ Qn and a subspace M ⊂ Rn of dimension k < n outputs a basis for rank k lattice
L ∩ M.

From the above lemma it is clear that a basis for L ∩ M can be efficiently computed in

polynomial time. In Step 4 of the algorithm we are solving 2O(n) many instances of CVP

for the rank k lattice L ∩ M. For i, j ∈ S a closest vector to vi,j in the rank k lattice L ∩
M can be computed in 2O(k log k) time using Kannan’s algorithm for CVP [Kan87]. Hence

the Step 4 takes 2O(n+k log k) time. Therefore the overall running time of the algorithm is

2O(n+k log k) · poly(s). Note that by repeating above algorithm 2O(n) times we can make the

success probability of the algorithm exponentially close to 1.

THEOREM 12. Given a full rank lattice L ⊂ Qn and a subspace M ⊆ Rn of dimension
k < n, There is a randomized algorithm to finds v ∈ L \ M with least possible lp norm.

The running time of the algorithm is 2O(n+k log k) times a polynomial in the input size and it
succeeds with probability 1− 2−cn for an arbitrary constant c.

Blömer and Naewe [BN07] gave 2O(n) time 1 + ǫ factor approximation algorithms to

solve the SMP and SIVP problems. As a simple consequence of Theorem 12 we get a 2O(n)

time randomized algorithm to “partially” solve SMP: we can compute the firstO( n
log n ) suc-

cessive minima in 2O(n) time. More precisely, we can compute a set of i linearly independent

vectors {v1, v2, . . . , vi} ⊂ L such that ‖vj‖p = λ
p
j (L) for j = 1 to i if i is O( n

log n ).

Given a lattice L, let M = 0 ⊂ Rn be the zero-dimensional subspace in Rn and consider

the SAP instance (L,M). Clearly, v1 is a shortest vector in L \ M. Hence, by Theorem 12

we can compute v1 in 2O(n) time. Now, inductively assume that we have computed linearly

independent vectors v1, v2, . . . , vk ∈ L such that ‖vj‖p = λ
p
j (L). Consider the instance

(L,M) of SAP where M is the space generated by v1, . . . , vk and compute v ∈ L \ M using

Theorem 12 in time 2O(n+k log k). It is clear that ‖v‖p = λ
p
k+1(L) and as v /∈ M the vectors

v1, v2, . . . , vk, v are linearly independent. If k is O( n
log n ) it is clear that algorithm takes 2O(n)

time. This proves Corollary 13.

COROLLARY 13. Given a full rank lattice L ⊂ Qn and a positive integer i ≤ cn
log n for

a constant c, there is a randomized algorithm with running time 2O(n) · poly(size(L)) to



V. ARVIND AND PUSHKAR S. JOGLEKAR FSTTCS 2008 35

compute linearly independent vectors v1, v2, . . . , vi ∈ L such that ‖vj‖p = λ
p
j (L) for j = 1

to i.

The CVP problem is polynomial-time reducible to SAP, as noted in [BN07]. Miccian-

cio [Mi08] has shown that CVP, SAP and SMP are all polynomial-time equivalent. Our

algorithm computes v ∈ L \ M with least norm by solving 2O(n) instances of CVP. We have

basically given a randomized 2O(n) time Turing reduction from SAP to CVP. An interesting

property of our reduction is that we are solving instance (L,M) of SAP by solving 2O(n)

many CVP instances (L∩ M, v) where L ∩ M is a rank k lattice, where k is dimension of M.

In contrast, for the CVP instance (N, v) produced by the SAP to CVP reduction in [BN07]

the lattice N has rank O(n).
As a consequence of this property of our reduction we obtain Corollary 14 which states

that it suffices to look for a 2O(n) randomized exact algorithm for CVP that can access all

successive minimas of the input lattice.

COROLLARY 14. Suppose for all m there is a 2O(m) randomized exact algorithm for CVP
that takes as input a CVP instance (M, v) where M is full rank lattice of rank m and v ∈ Rm

(along with the extra input vi ∈ M such that |vi|p = λ
p
i (M) for i = 1 to m where λ

p
i (M) is

ith successive minima in M). Then, in fact, there is a 2O(n) randomized exact algorithm for
solving CVP on any rank n lattice.

Proof. By [Mi08], CVP is polynomial-time equivalent to SMP (the successive minima prob-

lem). Consider the full rank lattice L ⊂ Qn as input to SMP. It suffices to compute linearly

independent vectors v1, . . . , vn ∈ L with ‖vi‖p = λ
p
i (L) for i = 1 to n in 2O(n) time. We

proceed as in the proof of Corollary 13. Inductively assume that we have computed linearly

independent vectors v1, . . . , vk ∈ L with ‖vi‖p = λ
p
i (L). Let M be the space generated by

v1, . . . , vk. As in proof of Theorem 12 we can solve the SAP instance (L,M) by solving 2O(n)

many instances of CVP (L ∩ M, v′). Note that L ∩ M is rank k lattice and it is clear that

‖vi‖pλ
p
i (L ∩ M) for i = 1 to k. Hence we can solve these instances in 2O(n) time (although

L∩M is not full rank lattice, but it is not difficult to convert all these instances of CVP to full

rank by applying a suitable linear transformation). This takes time 2O(n+k) which is at most

2O(n). Hence, it is clear that we can compute linearly independent vectors v1, . . . , vn ∈ L
such that ‖vi‖p = λ

p
i (L) in time n · 2O(n).

In the next corollary we give a 2O(n) time algorithm to solve certain CVP instances

(L, v) for any ℓp norm. We prove the result only for ℓ2 norm and it is easy to generalize it

for general ℓp norms. Let λi(L) denote i th successive minima of the lattice L with respect

to ℓ2 norm.

COROLLARY 15. Let (L, v) be a CVP instance such that L is full rank with the promise
that d(v,L) <

√
3/2λt(L), t ≤ cn

log n . Then there is a 2O(n) · poly(size(L)) time randomized

algorithm that solves such a CVP instance exactly.

Proof. By Corollary 13 we first compute λt(L). We now use ideas from Kannan’s CVP to

SVP reduction [Kan87]. Let b1, b2, · · · , bn be a basis for L. We obtain new vectors ci ∈ Qn+1

for i = 1 to n by letting cTi = (bTi , 0). Likewise, define u ∈ Qn+1 as uT = (vT,λt/2). Let

M be the lattice generated by the n + 1 vectors u, c1, c2, · · · cn. Compute the vectors vj ∈ M



36 SOME SIEVING ALGORITHMS FOR LATTICE PROBLEMS

such that ‖vj‖2 = λj(M) for j = 1 to t using Corollary 13 in time 2O(n) · poly(size(L)). Write

vectors vj as vj = uj + αju, uj ∈ L(c1, · · · , cn) and αj ∈ Z. Clearly, |αj| ≤ 1 since u has λt/2

as its (n + 1)th entry. As d(v,L) <
√
3/2λt(L) we have d(u,M) < λt(L). Hence, there

is at least one index i, 1 ≤ i ≤ t such that |αi| = 1. Consider the set S = {ui | 1 ≤ i ≤
t, |αi| = 1}and let uj be the shortest vector in S. Writing uj = (wT

j , 0), it is clear that the

vector −wj ∈ L is closest vector to v if αj = 1 and wj is a closest vector to v if αj = −1.

References

[AKS01] M. AJTAI, R. KUMAR, D. SIVAKUMAR, A sieve algorithm for the shortest lattice

vector. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
266-275, 2001.

[AKS02] M. AJTAI, R. KUMAR, D. SIVAKUMAR, Sampling short lattice vectors and the clos-

est lattice vector problem. In Proceedings of the 17th IEEE Annual Conference on Com-
putational Complexity-CCC, 53-57, 2002.

[Bl00] J. BLÖMER, Closest vectors, successive minima, and dual HKZ-bases of lattices. In
Proceedings of th 17th ICALP, LectureNotes in Computer Science 1853, 248-259, Springer,

2000.

[BN07] J. BLÖMER, S. NAEWE Sampling Methods for Shortest Vectors, Closest Vectors and

Successive Minima of lattices. In Proceedings of ICALP, 65-77, 2007.
[DFK91] M. DYER, A. FRIEZE, R. KANNAN A random polynomial time algorithm for ap-

proximating the volume of convex bodies. Journal of the ACM , 38(1):1-17, 1991.
[Kan87] R. KANNAN Minkowski’s convex body theorem and integer programing. Mathe-

matics of Operational Rearch ,12(3):415-440, 1987.
[LLL82] A. K. LENSTRA, H. W. LENSTRA, JR. AND L. LOVASZ, Factoring Polynomials with

Rational Coefficients, Mathematische Annalen, 261:515-534, 1982.
[MG02] D. MICCIANCIO, S. GOLDWASSER, Complexity of Lattice Problems. A Crypto-

graphic Perspective, Kluwer Academic Publishers, 2002.

[Mi08] D. MICCIANCIO, Efficient reductions among lattice problems,SODA,2008,84-93

[Re04] O. REGEV, Lecture Notes — Lattices in Computer Science, lecture 8. Available at the

website: http://www.cs.tau.ac.il/ odedr/teaching/lattices fall 2004/index.html.

[Si45] C. L. SIEGEL Lectures on Geometry of Numbers. Springer-Verlag publishing com-
pany, 1988.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.




