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ABSTRACT. We study the algorithmic complexity of lattice problems based on the sieving technique
due to Ajtai, Kumar, and Sivakumar [AKS01]. Given a k-dimensional subspace M C R” and a full
rank integer lattice £ C Q", the subspace avoiding problem SAP, defined by Blomer and Naewe [BN07],
is to find a shortest vector in £\ M. We first give a 20("+k108k) time algorithm to solve the subspace
avoiding problem. Applying this algorithm we obtain the following results.

1. We give a 20(") time algorithm to compute i*" successive minima of a full rank lattice £ C Q"

ifiis O(logn)'

2. We give a 20(") time algorithm to solve a restricted closest vector problem: CVP where the inputs
fulfil a promise about the distance of the input vector from the lattice.

3. We also show that unrestricted CVP has a 20(") exact algorithm if there is a 2°(") time exact
algorithm for solving CVP with additional input v; € £,1 < i < n, where ||v;|, is the i
successive minima of £ for each i.

We also give a new approximation algorithm for SAP and the Convex Body Avoiding problem which
is a generalization of SAP. Several of our algorithms work for gauge functions as metric, where the
gauge function has a natural restriction and is accessed by an oracle.

1 Introduction

Fundamental algorithmic problems concerning integer lattices are the shortest vector prob-
lem (SVP) and the closest vector problem(CVP). Given a lattice £ C R” by a basis, the
shortest vector problem (SVP) is to find a shortest nonzero vector in £ w.r.t. some metric
given by a gauge function in general (usually the £, norm for some p). Likewise, the closest
vector problem (CVP) takes as input a lattice £ C R" and vector v € R" and asks for a
u € L closest to v w.r.t. a given metric. These problems have polynomial-time approxima-
tion algorithms based on the celebrated LLL algorithm for basis reduction [LLL82].

The fastest known exact deterministic algorithms for SVP and CVP have running time
20(nlogn) [Kan87] (also see [B100]). More recently, Ajtai, Kumar and Sivakumar in a semi-
nal paper [AKSO1] gave a 20(1) time randomized exact algorithm for SVP. Subsequently, in
[AKS02] they gave a 29" time randomized approximation algorithm for CVP. Their al-
gorithms are based on a generic sieving procedure (introduced by them) that exploits the
underlying geometry. Recently, Blomer and Naewe [BN07] gave a different 2°(") time ran-
domized approximation algorithm for CVP, also based on the AKS sieving technique.

For 1 < i < n, the i" successive minima Ai(L) is defined as the smallest r such that a
ball of radius r around origin contains at least i linearly independent lattice vectors. The
successive minimas A;(L£) are important lattice parameters. A classical problem is the suc-
cessive minima problem SMP of finding for a given lattice £, n linearly independent vectors
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V1,02, ...,0y € L such that ||v;| is at most A;(L£). This problem clearly subsumes the short-
est independent vectors problem SIVP where one wants to find linearly independent vectors
v1,02,...,0, € L such that ||v;|| < A,(L). Given a k-dimensional subspace M C R" and a
full rank integer lattice £ C Q", the subspace avoiding problem SAP, is to find a shortest vector
in £\ M. The paper [BN07] gives 2°(") time approximation algorithm for these problems.

No exact 20(") time randomized algorithm is known for CVP or SMP. Recently, Miccian-
cio has shown [Mi08] that CVP is polynomial-time equivalent to several lattice problems,
including SIVP and SMP, under deterministic polynomial time rank-preserving reductions.
This perhaps explains the apparent difficulty of finding a 20(*) time exact algorithm for CVP
or SMP, because SVP reduces to all of these problems but no reduction is known in the other
direction. In particular, the reductions in [Mi08] yield 20(nlogn) time exact algorithms for
SAP, SMP and SIVP, whereas [BN07] gives 20" time randomized approximation algorithm
for these problems.

Our results

In this paper we consider some natural restrictions of these problems that can be exactly
solved in 2°(") time. We obtain these results giving a 20("+k108%) algorithm to solve SAP
where 7 is the rank of the lattice and k is the dimension of the subspace.

As our first result we show that given a full rank lattice £ C Q" there is 2°(") time
randomized algorithm to compute linearly independent vectors vy, vy, ...,v; € L such that

|loi|| = Ai(L) if i is O(lo’;n). Given a full rank lattice £ C Q" and v € Q" we also give

a 291 time algorithm to solve CVP(L, v) if the input (v, £) fulfils the promise d(v, L) <
Bo(a ) (L).

logn

We show that CVP can be solved in 2°(") time if there is a 2°(") time algorithm to com-
pute a closest vector to v in £ where v € Q", £ C Q" is a full rank lattice and vy, vy, ...,v, €
L such that [|;]|, is equal to i successive minima of £ for i = 1 to 1 are given as an ad-
ditional input to the algorithm. As a consequence, we can assume that successive minimas
are given for free as an input to the algorithm for CVP. We believe that using basis reduc-
tion techniques from [Kan87] one might be able to exploit the information about successive
minimas of the lattice to get a better algorithm for CVP.

We give a new 20("+k10g1/€) time randomized algorithm to solve 1 + € approximation
of SAP, where 7 is rank of the lattice and k is the dimension of subspace. We get better
approximation guarantee than the one in [BN07] parametrised on k. We also consider a
generalization of SAP (the convex body avoiding problem) and give a singly exponential ap-
proximation algorithm for the problem.

2 Preliminaries

A lattice £ is a discrete additive subgroup of R", n is called dimension of the lattice. For
algorithmic purposes we can assume that £ C Q", and even in some cases L C Z". A
lattice is usually specified by a basis B = {b,- - -, by}, where b; € Q" and b;’s are linearly
independent. m is called the rank of the lattice. If the rank is n the lattice is said to be a full
rank lattice. Although most results in the paper hold for general lattices, for convenience we
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mainly consider only full-rank lattices. For x € Q" let size(x) denote the number of bits for
the standard binary representation as an n-tuple of rationals. Let size(L£) denote }; size(b;).
Next we recall the definition of gauge functions.

DEFINITION 1.[Si45] A function f : R" — R is called a gauge function if it satisfies follow-
ing properties:

1. f(x) >0forallx € R"\ {0} and f(x) =0ifx = 0.

2. f(Ax) =Af(x) forallx € R" and A € R.

3. f(x+y) < f(x)+ f(y) forall x,y € R".

For v € R" we denote f(v) by ||v|[s and call it norm of v with respect to the gauge
function f. It is easy to see that any I, norm satisfies all the above properties. Thus gauge
functions generalize the usual [, norms. A gauge function f defines a natural metric d
on R" by setting d¢(x,y) = f(x —y) for x,y € R". For x € R" and r > 0, let B(x,7)
denote the f-ball of radius r with center x with respect to the gauge function f, defined
as Bs(x,r) = {y € R"[f(x —y) < r}. We denote the metric balls with respect to usual
I, norm by B,(x,7). Unless specified otherwise we always consider balls in IR”. The next
well-known proposition characterizes the class of all gauge functions.

PROPOSITION 2.[Si45] Let f : R" — R be any gauge function then a unit radius ball around
origin with respect to f is a n dimensional bounded O-symmetric convex body. Conversely,
for any n dimensional bounded O-symmetric convex body C, there is a gauge function
f:R" — R such that Bf(0,1) = C.

Given an f-ball of radius r around origin with respect to a gauge function f, from the
Proposition 2 it follows that B¢ (0, r) is an O-symmetric convex body. It is easy to check that
for any r > 0 and any constant ¢ we have vol(B(0,cr)) = c"vol(B¢(0,r)), where vol(C)
denotes the volume of the corresponding convex body C (see e.g. [Si45]).

We now place a natural restriction on gauge functions. A gauge function f, given by
oracle access, is a nice gauge function if it satisfies the following property: For some poly-
nomial p(1), B2(0,27P(") C Bf(0,1) € By(0, 2¢(1)), i.e. there exists a Euclidean sphere
of radius 277(") inside the convex body B £(0,1), and Bf(0,1) is contained inside a Eu-
clidean sphere of radius 27("). Note that if f is a nice gauge function and v € Q" we have
size(f(v))=poly(n,size(v)). For a nice gauge function f we can sample points from convex
body By (0,7) almost uniformly at random in poly(size(r)n) time using the Dyer-Frieze-
Kannan algorithm [DFK91]. It is easy to check that all [, norms p > 1 define nice gauge
functions. The i successive minima of a lattice £ with respect to ¢, norm is smallest r > 0

such that B,(0,) contains at least i linearly independent lattice vectors. It is denoted by
A(L).
1

Remarks: In this paper we consider lattice problems with respect to nice gauge functions.
Let £ be a lattice with basis {by,by,...,b,} and f be a nice gauge function. Suppose B is a
full rank 7 x n matrix with columns by, by, ..., b,. Note that the linear transformation B!
maps lattice £ isomorphically to the standard lattice Z". Furthermore, it is easy to see that
the set C = B~(B(0,1)) is an O-symmetric convex body. Hence, by Proposition 2 it follows
that C = Bg(0, 1) for some gauge function g. As f is a nice gauge function, it easily follows
that g is also a nice gauge function.
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Thus, our algorithms that work for nice gauge functions can be stated for the the stan-
dard lattice Z" and a nice gauge function g¢. However, some of our results hold only for £,
norms. Thus, to keep uniformity we allow our algorithms to take arbitrary lattices as input
even when the metric is give by a nice gauge function.

3 A Sieving Algorithm for SAP

In this section we present a different analysis of the AKS sieving [AKS01, Re04] applied
to the Subspace Avoiding Problem (SAP). Our analysis is quite different from that due to
Blomer and Naewe [BNO7] and gives us improved running time for computing a 1 + €
approximate solution.

Recall that an input instance of the subspace avoiding problem (SAP) consists of (£, M)
where £ C Q" is a full rank lattice and M C IR”" is a subspace of dimension k. The SAP
problem is to find a vector v € £\ M with least norm with respect to a nice gauge function

f.

We give an intuitive outline of our approximation algorithm: Our analysis of AKS siev-
ing will use the fact that the sublattice £ N M of L is of rank k. We will use the AKS sieving
procedure to argue that we can sample 2°0("+k108(1/€)) points from some coset of £ N M in
20(n+klog(1/€)) time. We can then apply a packing argument in the coset (which is only k-
dimensional) to obtain points in the coset that are close to each other. Then, with a standard
argument following the original AKS result [AKS01] we can conclude that their differences
will contain a good approximation.

Suppose, without loss of generality, that the input lattice £ C R" is n-dimensional
given by a basis {by,---,b,}, so that L = Y ' ; Z - b;. Let us fix a nice gauge function f and
let v € £ denote a shortest vector in £\ M with respect to gauge function f, i.e. f(x) for
x € L\ M attains minimum value at x = v. Let s = size(£, M) denote the input size (which
is the number of bits for representing the vectors b; and the basis for M). As v is a shortest
vectorin £\ M and f is a nice gauge function it is quite easy to see that size( f (v)) is bounded
by a polynomial in s. Thus, we can scale the lattice £ to ensure that 2 < f(v) < 3. More
precisely, we can compute polynomially many scaled lattices from £, so that2 < f(v) <3
holds for at least one scaled lattice. Thus, we can assume that 2 < f(v) < 3 holds for the
lattice L.

We first describe the AKS sieving procedure [AKS01] for any gauge function, analyze
its running time and explain its key properties. The following lemma is crucially used in
the algorithm.

LEMMA 3.[Sieving Procedure] Let f : R" — R be any gauge function. Then there is a
sieving procedure that takes as input a finite set of points {v1,v,v3,...,vN} C Bf(0,7),
and in NO(V) time it outputs a subset of indices S C [N] such that |S| < 5" and for each
i € [N] thereisaj € S with f(v; —v;) <r/2.

Proof. The sieving procedure is exactly as described in Regev’s lecture notes [Re04]. The
sieving procedure is based on a simple greedy strategy. We start with S = @ and run the

following step for all elements v;,1 < i < N. At the ith step we consider v;. If f(v; —v;) >
r/2 for all j € S include i in the set S and increment i. After completion, for all i € [N]
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there is a j € S such that f(v; —v;) < r/2. The bound on |S| follows from a packing
argument combined with the fact that vol(Bf(0,cr)) = c"vol(Bf(0,r)) for any r > 0 and
a constant ¢ > 0. More precisely, for any two points v;,v; € S we have f(v; —v;) > r/2.
Thus, all the convex bodies Bf(v;,7/4) for v; € S are mutually disjoint and are contained
in B¢(0,7 +r/4). Also note that vol(B(0,dr)) = d"vol(Bf(0,r)) for any constant d > 0. It
follows that 5"vol(Bf(v;,7/4)) > vol(B¢(0,r +r/4)). Hence, |S| < 5". The second property
of S is guaranteed by the sieving procedure. |

Next, our algorithm follows the usual AKS random sampling procedure. Let R =
n - max;||b;|| . It is clear that size(R) is polynomial in s since f is a nice gauge function. Let
Bf(0,2) denote the f-ball of radius 2 around the origin. Since we have an oracle for mem-
bership in Bf(0,2) and f is a nice gauge function we can almost uniformly sample from
B i (0,2) using the Dyer-Frieze-Kannan algorithm [DFK91]. Let x1, xp,- - -, x5 denote such
a random sample, for N = 2¢("+klog(1/€)) . 100 R where the constant ¢ > 0 will be suitably
chosen. Now, using the lattice £ we can round off the points x;. More precisely, we express
x; = Xja;;b; for rationals «;;. Then, from each vector x; we compute the vector y; = X;8;b;,
where 0 < B;; < 1, by adding appropriate integral multiples of the b;’s to the expression
for x;. Thus, the points y, - - -, yn are in the interior of the fundamental parallelepiped of L,
and each x; — y; € £. We denote this by y; = x;(mod £). We now have the set of N pairs
P = {(x;,yi) | i € [N]}, where x; — y; are lattice points. Since y; lie inside the fundamental
parallelepiped we have ||y;||; < n - max;||b;||; = R fori =1to N.

Now, we apply the AKS sieving procedure in Lemma 3 to the set {y1,12,- - -, yn}. The
result is a subset S C [N] of at most 5" indices such that for each i € [N] there is some
j € Ssuch that f(y; —y;) < R/2. We remove from P all (xj,y;) for j € S and replace each
remaining (x;,y;) € P by a corresponding (x;,y; — (y; — x;j)), where j € S is the first index
such that f(y; — y;) < R/2. After the sieving round, the set P has the property that for each
(xj,zj) € Pwehave x; —z; € L and f(x; —z;) < 4+ R/2, and P has shrunk in size by at
most 5”. We continue with O(log R) sieving rounds so that we are left with a set P with
N — O(log R)5" pairs (x;,z;) such that x; — z; € £ and f(x; —z;) < 8. We can ensure that
|P| > 2¢/(n+klog(1/€)) for an arbitrary constant ¢’ by appropriately choosing constant c. The
vectors, x; — z; for (x;,z;) € P follows some distribution among lattice points inside B (0, 8).
Next, we need following simple proposition.

PROPOSITION 4. Let L C R”" be a rank n lattice, v € L such that2 < f(v) < 3 for a
nice gauge function f. Consider the convex regions C = Bs(—v,2) N Bf(0,2) and C' =
B#(0,2) N Bf(0,2). Then C' = C +v and vol(C) = vol(C') = Q(%).

Proposition 4 is easy to prove since Bf(—v/2, 1/2) C C, Bf(v/Z, 1/2) C C'. Note that
we have picked x1, ..., xy uniformly at random from Bf(0,2),where N = 2¢(ntklog(1/e)) .
log R. By Proposition 4, the point x; is in C with probability at least 2-°"). Hence by
choosing the constant ¢ large enough we can ensure that with high probability there is a
subset Z C P such that |Z| > 2c1(n+klog(1/€)) for a constant ¢; and for all (xi,z;)) € Z,x; € C.
We now prove the main theorem of this section.
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THEOREM 5. Let £ C Q" be a full rank lattice and letv € £\ M such that2 < f(v) <3 fora
given gauge function f and f(v) < f(x) forallx € L\ M. Lete > 0 be an arbitrary constant.
Then there is a randomized algorithm that in time 200" +K98(1/€)) poly(size(L)) computes a
set P of pairs (x;,z;) such that |P| > 2¢"(+klog(1/€)) for a constant ¢’ and f(x; — z;) < 8 for
all (x;,z;) € P. Moreover, z; — x; € L are such that with probability 1 — 2-0() there is a pair
of points (x;,z;), (x;,zj) € P such thatv +u = (x; — z;) — (xj — zj) for a vectoru € LN M
with f(u) <e.

Proof.

Consider the set P of pairs (x;,z;), obtained after the AKS sieving as described above,
such that |P| > ¢ (ntklog(1/€)) and f(x; —z;) < 8forall (x;,z;)) € P. We know that by
choosing c large enough we can ensure that with high probability there is Z C P such that
|Z| > 2c1(n+klog(1/€)) for any constant ¢; and for all (x;,z;) € Z, x; € C.

Note that £ N M is a rank k sublattice of £. We will now analyze Z using the cosets of
the sublattice £ N M.

Write Z as a partition Z = U}, Z;, where for each Z; there is a distinct coset (LNM)+
vj of LN M in L such that z; — x; € (LN M)+ vj for all (x;,z;) € Z;. Let Z]’- = {z; —x; |
(xi,zi) € Zj}. Suppose u; € Z; C (LN M) +vj for j =1 tom.

CLAIM 6.[Coset sampling] By choosing constant c; large enough we can ensure that there
isanindext,1 <t < m such that |Z;| > 2¢2(n+klog(1/€)) for any constant c;.

Proof of Claim Note that u; and u; for i # j lie in different cosets of LN M. So u; —u; ¢ M.
Since v is a shortest f-vector in £\ M with 2 < f(v) < 3, we have f(u; —u;) > 2. Hence unit
radius f-balls around u;’s are disjoint. Note that Bs(u;, 1) C Bf(0,9) for i = 1 to m. Since
vol(B(0,9))/vol(Bs(0,1)) < 2% for some constant d, we have m < 29", We have |Z| >
p01(n+klog(1/€)) and Z is partitioned as Z = UiL1 Zj. So it is clear that by choosing c; large
enough we can ensure that there is an index t, 1 < t < m such that |Z;| > c2(n+klog(1/€)) for
any constant c;. I

By renumbering the indices assume that Z; = {(x1,21),..., (x4,24)},9 > ¢z (n+klog(1/€))
Let B; = z; — x; for (x;,z;) € Z;. Thus, each such B; lies in the same coset (£ N M) + v,.

CLAIM 7.[Packing argument] By choosing the constant c; large enough we can ensure that
there exists (x;,z;), (xj,z;) € Zt,i # j such that f(B; — B;) < €.

Proof of Claim Suppose for all (x;,z;),(xj,z;)) € Zi,i # j f(Bi — Bj) > €. We also have
f(Bi—Bj) < 16fori,j € [q]. Lety; = Bi—v, € LAM C M fori = 1toq. Itis clear
that f(vy; — ;) = f(Bi — B;) for i,j € [q]. Let {by,...,bx} be an orthonormal basis of M.
Consider the linear transformation T : M — R such that T(b;) = ¢; for i = 1 to k, where
{e1,ea,...,ec} is a standard basis of RF. Let §; = T(7;) fori = 1 to g. By standard linear
algebra it follows that T preserves distances between points with respect to any norm. In
particular, we have f(vy; — ;) = f(d; —9;) fori,j € [g]. So we have /2 < f(6; —¢;) <
16. As é; € RF for i € [g], it follows that k-dimensional balls of radius €/2 around ;s are

(16+€/2)k o klog(1/

e = 2B
for a constant f. This is a contradiction since choosing c; large enough we can ensure that
| Zy| > 262(ntklog(1/€)) 5 of(klog(1/e)),

mutually disjoint. By a packing argument it follows that |Z;| <
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We now complete the proof with a standard argument from [AKS01, Re04] using a
modified distribution.

We have (xi, Zi), (x]-, Z]) € Zy C Z,i 75 j, Xi, Xj € C such that f(‘Bl — :B]) < € and ﬁi —
Bi € LN M. Now, we apply the argument as explained in Regev’s notes [Re04] to reason
with a modified distribution of the x;. Note that in the sieving procedure described before
Theorem 5, each x; is picked independently and uniformly at random from B¢ (0,2). Now,
notice that we can replace the original distribution of x; with a modified distribution in
which we output x; if it lies in Bf(0,2) \ (CUC’) and if x; € C it outputs either x; or x; +
v with probability 1/2 each. Similarly, if x;, € C' = C + v it outputs either x; or x; — v
with probability 1/2 each. By Proposition 4 it follows that this modified distribution is also
uniform on B¢(0,2) (indeed, this distribution is required only for the purpose of analysis).
Furthermore, we can replace each x; by the modified distribution just before it is used in
the algorithm for the first time. The reason we can do this is because the distribution of y;’s
remains same even if we replace x; by the modified distribution because y; = x;(mod[)
and v € L. This is explained further in Regev’s notes [Re04]. Now recall that we have
(xi,zi),(xj,zj) € Z with x;,x; € Cand f(B; — Bj) < €. Putting it together with the above
argument, it follows that with good probability the points (x;,z;) and (x; + v, z;) are in the
set P, where P is the set of pairs left after the sieving. This is easily seen to imply that with
high probability we are likely to see the vector v + (B; — ;) as the difference of z; — x; and
zj — x; for some two pairs (x;, z;), (xj,z;) € P. The theorem now follows since f(B; — ;) < €.

u

By choosing M as the 0-dimensional subspace we get a 2°(") algorithm for SVP with
respect to any nice gauge function. As an immediate consequence of Theorem 5 we geta 1+
€ approximation algorithm for SAP problem that runs in time 20(*+k108 . poly(size(L, M)).

Remarks: The 1+ € approximation algorithm in [BN07] for SAP has running time 2°("1°8 .
poly(size(£, M))). Our algorithm has running time 2°(**%108 &) for computing 1 + € approx-
imate solution. Put another way, for k = o(n) we get a 2°(*) time algorithm for obtaining
1+ 27"/k approximate solutions to SAP.

There is a crucial difference in our analysis of the AKS sieving and that given in [BNO7].
In [BN07] it is shown that with probability 1 — 2~°(") the sieving procedure outputsa 1+ €
approximate solution u € £\ M.

On the other hand, we show in Claim 6 that with probability 1 — 279" the sieving
procedure samples 2°0("+k108(1/€) Jattice points in some coset of the sublattice £ N M in L.
Then we argue that with probability 1 —2-9(") the sample contains a lattice point u in £ N
M + v such that such that d(u,v) is small, for some shortest vector v in £\ M. We argue
this in Claim 7 by a packing argument in the coset of £L N M. As £ N M has rank k, the
packing argument in k dimensions gives the improved running time for our approximation
algorithm for the problem.

The fact that the AKS sampling contains many points from the same coset of £L N M
also plays crucial role in our exact algorithm for SAP shown in Theorem 12.
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COROLLARY 8. Given a rank n lattice £ and a k-dimensional subspace M C ", there
is 1 + € randomized approximation algorithm for SAP (for any nice gauge function) with
running time 20 (" +klog o poly(size(L, M)).

Proof. The algorithm will examine all (z; — x;) — (zj — xj) for (x;,z;), (xj,z;) € P obtained
after sieving and output that element in £ \ M of minimum f-value. The proof of correctness
and running time guarantee follows immediately from Theorem 5. n

4 Convex Body Avoiding Problem

In this section we consider a generalization of SAP: given a lattice £ and a convex body C
the problem is to find a shortest vector (w.r.t. £, norm) in £\ C. We consider convex bodies
C that are bounded and O-symmetric. We refer to this problem as the Convex body Avoiding
Problem (CAP).

A set S C R" is O-symmetric if x € S if and only if —x € S. Notice that a subspace
M C R" is convex and O-symmetric (but not bounded).

The input to CAP is the lattice £ and the convex body C, where C is given by a mem-
bership oracle. An algorithm can query the oracle for any x € IR” to test if x € C.

We give an approximation algorithm to solve CAP.

THEOREM 9. Given an integer lattice L of rank n and an O-symmetric convex body C in R"
given by a membership oracle, there is 1 + € factor approximation algorithm to solve CAP
(w.r.t. any £, norm) with running time 2°0"1081/€) . poly (size(L)).

Proof. It suffices to solve the problem for the case when C is n-dimensional. To see this,
suppose C is contained in some k-dimensional subspace M of R". We can find a basis for
M with high probability by sampling vectors from C using the polynomial-time almost
uniform sampling algorithm described in [DFK91]. Next, we compute the sublattice £ N M
and find a (1 + €) approximate solution u for the k-dimensional convex body avoidance
for the lattice £ N M and C. We also solve the SAP instance (£, M) and find a (1 + ¢€)
approximate solution v € £\ M using Theorem 5. The shorter of vectors u and v is clearly
a (1 + €) approximate solution for the input CAP instance.

Thus, we can assume C is n-dimensional. Let v be a shortest vector in £\ C which, as
before, we can assume satisfies 2 < ||v|[, < 3 by considering polynomially many scalings
of the lattice and the convex body. As in Theorem 5, we pick random points xq,---,xn
from B,(0,2) for N = 2¢"108(1/€) . poly(s). The constant ¢ > 0 will be suitably chosen later.
Let y; = xj(mod L) for i = 1 to N. We apply several rounds of the AKS sieving on the
set {(x1,v1), -, (¥n,yn)} until we are left with a set S of 2¢171°8(1/€) pairs (x;, z;) such that
|xi — zi||, < 8. From proposition 4 it follows easily that with good probability we have
Z C S such that |Z| > 22"108(1/€) and for all (x;,z;) € Z we have x; € D U D’ where
D = B,(0,2) N B,(—v,2) and D" = B,(0,2) N B,(v,2). Note that the the constant c, can be
chosen as large as we like by appropriate choice of c. Let Z' = {z; — x; | (x4,z;) € Z}. Now
consider ¢, ball of radius €/2 centered at each lattice point B € Z’. It is clear that for all § €
Z',B,(B,e/2) C By(0,8+¢€/2).If forall B € Z' £, balls B, (B, €/2) are mutually disjoint, by

(8+€/2)"
(6/2)"

packing argument we get |Z'| < = 2¢'nlog(1/¢€) for a constant ¢’. We choose constant
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c appropriately to ensure that c; > ¢’. This implies that there exists tuples (x;, z;), (xj,zj) € Z
such that [|8; — B;|| < €, where B; = z; — x; and B; = z; — x;. Let B = B; — ;. We claim that
it is not possible that both B + v, B — v lie inside the convex body C. Because this implies
v — B € Csince C is O-symmetric. Therefore v = w € C, which contradicts with
assumption v € C. So without loss of generality assume that § +v & C. Note that without
loss of generality we can also assume that x; € D’ with good probability. Now, we apply the
argument as explained in [Re04] to reason with a modified distribution of the x;. As x; € D’
we can replace x; by x; — v. It is easy to see that after sieving with good probability there
exists tuples (x;,z;), (xj,z;) € Ssuchthatr;; = (z; — x;) — (zj — xj) = v+ B; — B;. Hence,
rij = v+ B & Cand, clearly, ||r;;l|, < (1+¢€)||v|[, since ||B; — Bjll, < €. It is easy to see
that the algorithm runs in time 2°("198(1/€)) poly(size(L)). This completes the proof of the
theorem. |

5 Applications

The results of this section are essentially applications of ideas from Theorem 5 and Section 3.

First we describe an exact algorithm for SAP for £, norms. We prove our result for full
rank lattices, but it is easy to see that the result holds for general lattices as well. Let £ C Q"
be a full rank integer lattice given by a basis {by,---,b,} and let M C R" is a subspace of
dimension k < n. For any £, norm we give a randomized 20(n+klogk) poly(s) time algorithm
to find a shortest vector in £ \ M, where s = size(L, M). Our exact algorithm uses the same
sieving procedure and analysis described in the proof of Theorem 5 in Section 3. As before,
by considering polynomially many scalings of the lattice, we can assume that a shortest
vector v € L\ M satisfies 2 < ||v]|, < 3. We now describe the algorithm.

1. Let N = 2 log(n.max;||b;|| »). Pick x1, x2, - - -, xn uniformly at random from B, (0,2).

2. Lety; = x;(mod L). Apply AKS sieving to the set {(x1,y1), - - -, (xn, yn) } as described
in Section 3 until ||x; — z;||, < 8 for each pair (x;, z;) left after the sieving.

3. Let P = {(x;,z;)|i € T}, T C [N] be the set of tuples left after the sieving procedure.
Foralli,j € T compute lattice points v;; = (z; — x;) — (zj — x;).

4. Let w;; be a closest lattice vector to v;; in the rank k lattice £ N M (found using Kan-
nan’s exact CVP algorithm [Kan87]), and let r;; = v;; — w; ;. Output a vector of least
nonzero £, norm among all the vectors ; ; for i,j € T.

First we prove the correctness of the algorithm.

LEMMA 10. For an appropriate choice of the constant c in the algorithm, it outputs a shortest
nonzero vector in £ \ M with respect to £, norm.

Proof. Let v be a shortest vector in £\ M. Consider the set of pairs P = {(x;,z;)|i € T}, T C
[N], that remains after the sieving procedure in Step 3 of the algorithm. If we choose €
as a constant in Theorem 5, it follows that there is a constant ¢ such that with probability
1 — 279 there exists (x;,z), (xj,z;) € P such thatv+u = B; — B; for some u € LN M
where ; = z; — x; and B; = z; — x;. Hence, in Step 3 of the algorithm we have some
v;j = v + u for some vector u € LN M, i.e. v;j and v lie in same coset of LN M.

Letw;; € LN Mbe a closest vector to v; ;. So we have d(v; ;, w; ;) < d(v;;,u) = ||v|, ie.
|0i; — wijll, < [|v]|p. But since we have v;; ¢ LN M and w;; € LN M clearly v;; — w;; ¢
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LN M and since v is a shortest vector in £\ M, this implies ||v;; — w; ||, = ||v||,. So with
probability 1 —2-9(") the algorithm will output (in Step 4) a vector rij with [|7; ][, = [[o]],.
This proves the correctness of the algorithm. |

Next we argue that the running time of the algorithm is 20" +k198k) . yo1y/(s) where s is
the input size. In Step 1 of the algorithm we are sampling N = 2°(") points from B,(0,2),
a ball of radius 2 with respect to I, norm. Since B,(0,2) is a convex body, the task can be
accomplished using Dyer-Frieze-Kannan algorithm [DFK91] in time 2°(") - poly(s). It easily
follows that the sieving procedure in Step 2 can be performed in 2°(") time. Note that £ N M
is a rank k lattice and a basis for it can be computed efficiently. We need the following easy
lemma from [Mi08].

LEMMA 11.[Mi08, Lemma 1] There is a polynomial-time algorithm that takes as input a
lattice L C Q" and a subspace M C R" of dimension k < n outputs a basis for rank k lattice
LN M.

From the above lemma it is clear that a basis for £ M M can be efficiently computed in
polynomial time. In Step 4 of the algorithm we are solving 2°(") many instances of CVP
for the rank k lattice £ N M. For i,j € S a closest vector to v;; in the rank k lattice £ N
M can be computed in 2001985 time using Kannan’s algorithm for CVP [Kan87]. Hence
the Step 4 takes 20("+k198K) time. Therefore the overall running time of the algorithm is
20(ntklogk) . 1oly(s). Note that by repeating above algorithm 2°(") times we can make the

success probability of the algorithm exponentially close to 1.

THEOREM 12. Given a full rank lattice L C Q" and a subspace M C RR" of dimension
k < n, There is a randomized algorithm to finds v € L\ M with least possible I, norm.
The running time of the algorithm is 2°("+k198k) times a polynomial in the input size and it
succeeds with probability 1 — 2~" for an arbitrary constant c.

Blémer and Naewe [BN07] gave 2°(") time 1 + € factor approximation algorithms to
solve the SMP and SIVP problems. As a simple consequence of Theorem 12 we get a 20(")

time randomized algorithm to “partially” solve SMP: we can compute the first O(; og ) suc-

cessive minima in 2°(") time. More precisely, we can compute a set of i linearly independent
vectors {v1,0y,...,0;} C L such that ||o;||, = A]’.’(ﬁ) forj=1toiifiis O(logn).

Given a lattice £, let M = 0 C IR" be the zero-dimensional subspace in R" and consider
the SAP instance (£, M). Clearly, v; is a shortest vector in £\ M. Hence, by Theorem 12
we can compute v; in 20(") time. Now, inductively assume that we have computed linearly

independent vectors vy, vy,...,0x € L such that [[v;|, = AJF(E). Consider the instance

(L, M) of SAP where M is the space generated by vy, ..., v, and compute v € £\ M using

Theorem 12 in time 200"*¥1o8%) Tt is clear that ||v||, = AL 41(£) and as v ¢ M the vectors

V1,02, ...,V v are linearly independent. If k is O( I 0’; n) it is clear that algorithm takes 20(n)

time. This proves Corollary 13.

COROLLARY 13. Given a full rank lattice L C Q" and a positive integer i < 1cf§n for

a constant c, there is a randomized algorithm with running time 2°0") - poly(size(L)) to
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compute linearly independent vectors vy,vy,...,v; € L such that ||v;[|, = /\]’-J(E) forj=1
to1i.

The CVP problem is polynomial-time reducible to SAP, as noted in [BNO7]. Miccian-
cio [Mi08] has shown that CVP, SAP and SMP are all polynomial-time equivalent. Our
algorithm computes v € £\ M with least norm by solving 2°(") instances of CVP. We have
basically given a randomized 2°(") time Turing reduction from SAP to CVP. An interesting
property of our reduction is that we are solving instance (£, M) of SAP by solving 2°0(")
many CVP instances (£ N M, v) where £ N M is a rank k lattice, where k is dimension of M.
In contrast, for the CVP instance (N, v) produced by the SAP to CVP reduction in [BN07]
the lattice N has rank O(n).

As a consequence of this property of our reduction we obtain Corollary 14 which states
that it suffices to look for a 2°(*) randomized exact algorithm for CVP that can access all
successive minimas of the input lattice.

COROLLARY 14. Suppose for all m there is a 2°0") randomized exact algorithm for CVP
that takes as input a CVP instance (M, v) where M is full rank lattice of rank m and v € R"
(along with the extra input v; € M such that |v;|, = AY (M) fori = 1 to m where A (M) is
it" successive minima in M). Then, in fact, there is a 29(n) randomized exact algorithm for
solving CVP on any rank n lattice.

Proof. By [Mi08], CVP is polynomial-time equivalent to SMP (the successive minima prob-
lem). Consider the full rank lattice £ C Q" as input to SMP. It suffices to compute linearly
independent vectors v1,...,v, € £ with ||v;]|, = AP (L) fori = 1 to n in 2°(") time. We
proceed as in the proof of Corollary 13. Inductively assume that we have computed linearly
independent vectors vy, ..., v, € £ with ||o]|, = AP (L). Let M be the space generated by
v1,. ..,k Asin proof of Theorem 12 we can solve the SAP instance (£, M) by solving 20(")
many instances of CVP (£ N M, v"). Note that £ N M is rank k lattice and it is clear that
|vi]|JAY (£ N M) for i = 1 to k. Hence we can solve these instances in 2°(") time (although
L N M is not full rank lattice, but it is not difficult to convert all these instances of CVP to full
rank by applying a suitable linear transformation). This takes time 2°("*%) which is at most
20(n), Hence, it is clear that we can compute linearly independent vectors vy,...,v, € L
such that ||o;]|, = A/ (L) in time n - 20(7). u

In the next corollary we give a 2°(") time algorithm to solve certain CVP instances
(£,v) for any £, norm. We prove the result only for £, norm and it is easy to generalize it
for general £, norms. Let A;(£) denote i th successive minima of the lattice £ with respect
to > norm.

COROLLARY 15. Let (£,v) be a CVP instance such that L is full rank with the promise

thatd(v, L) < v/3/2M(L), t < logn- Lhen there is a 20(n) . poly(size(L)) time randomized

algorithm that solves such a CVP instance exactly.

Proof. By Corollary 13 we first compute A;(L£). We now use ideas from Kannan’s CVP to
SVP reduction [Kan87]. Let by, by, - - -, b, be a basis for £. We obtain new vectors ¢; € Q"1
for i = 1to n by letting ¢/ = (b!,0). Likewise, define u € Q"™ as u” = (vT,1,/2). Let
M be the lattice generated by the n + 1 vectors u, ¢1, ¢z, - - - ¢4. Compute the vectors v; € M
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such that [|vj]|l» = Aj(M) for j = 1 to t using Corollary 13 in time 2°") - poly(size(L)). Write
vectors v as v; = uj + aju, uj € L(cy, -+, cn) and aj € Z. Clearly, |(x]-| < 1 since u has A;/2
asits (n +1)" entry. Asd(v,£) < v/3/2A+(L) we have d(u, M) < A;(L). Hence, there
is at least one index i, 1 < i < t such that |a;/ = 1. Consider thesetS = {u; |1 < i <

t,Ja;| = 1}and let u; be the shortest vector in S. Writing u; = (ij,O), it is clear that the
vector —w; € L is closest vector to v if aj = 1 and wjisa closest vector to v if aj = —1. m
References

[AKSO1] M. AjTAl, R. KUMAR, D. SIVAKUMAR, A sieve algorithm for the shortest lattice
vector. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
266-275, 2001.

[AKS02] M. AJTAL R. KUMAR, D. SIVAKUMAR, Sampling short lattice vectors and the clos-
est lattice vector problem. In Proceedings of the 17th IEEE Annual Conference on Com-
putational Complexity-CCC, 53-57, 2002.

[BI0OO] J. BLOMER, Closest vectors, successive minima, and dual HKZ-bases of lattices. In
Proceedings of th 17th ICALP, Lecture Notes in Computer Science 1853, 248-259, Springer,
2000.

[BNO7] J. BLOMER, S. NAEWE Sampling Methods for Shortest Vectors, Closest Vectors and
Successive Minima of lattices. In Proceedings of ICALP, 65-77, 2007.

[DFK91] M. DYER, A. FRIEZE, R. KANNAN A random polynomial time algorithm for ap-
proximating the volume of convex bodies. Journal of the ACM , 38(1):1-17, 1991.

[Kan87] R. KANNAN Minkowski’s convex body theorem and integer programing. Mathe-
matics of Operational Rearch ,12(3):415-440, 1987.

[LLL82] A.K.LENSTRA, H. W. LENSTRA, JR. AND L. LOVASZ, Factoring Polynomials with
Rational Coefficients, Mathematische Annalen, 261:515-534, 1982.

[MGO02] D. MICCIANCIO, S. GOLDWASSER, Complexity of Lattice Problems. A Crypto-
graphic Perspective, Kluwer Academic Publishers, 2002.

[Mi08] D. MICCIANCIO, Efficient reductions among lattice problems,SODA,2008,84-93

[Re04] O. REGEYV, Lecture Notes — Lattices in Computer Science, lecture 8. Available at the
website: http://www.cs.tau.ac.il/ odedr/teaching/lattices_fall 2004 /index.html.

[Si45] C. L. SIEGEL Lectures on Geometry of Numbers. Springer-Verlag publishing com-
pany, 1988.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.





