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ABSTRACT. We study the decision theory of a maximally risk-averse investor — one whose objec-
tive, in the face of stochastic uncertainties, is to minimize the probability of ever going broke. With a
view to developing the mathematical basics of such a theory, we start with a very simple model and
obtain the following results: a characterization of best play by investors; an explanation of why poor
and rich players may have different best strategies; an explanation of why expectation-maximization
is not necessarily the best strategy even for rich players. For computation of optimal play, we show
how to apply the Value Iteration method, and prove a bound on its convergence rate.

1 Introduction

A key concern in computer science and operations research is decision-making under uncer-

tainty. We define a very simple game that helps us study the issue of solvency, or indefinite

survival, in the presence of stochastic uncertainties. In Section 1.1 below we provide some

motivating reasons for studying this issue.

We start by defining the model. A state of the game is an integer, which we call the

wealth of the player. An action (representing, say, an investment choice) is a finitely sup-

ported probability distribution on the integers; this distribution specifies the probabilities

with which various payoffs are received, if this action is chosen. Let w be the wealth of the

player at time t. Let A be a set of actions. Suppose that after choosing a particular action

from A, the random variable sampled from that action is a. Then at time t + 1 the wealth

of the player is w + a. The game terminates if the player goes broke (wealth becomes ≤ 0).

A strategy π for the set A of actions is a function π : Z+ → A specifying the action that is

chosen at each possible value of wealth. Corresponding to strategy π, define

pπ(w) = Pr[ever going broke, starting from wealth w],

for each w ∈ Z+. The object of interest is a strategy that minimizes pπ(w) for each value of

w ∈ Z+. In this notation there are two implicit assumptions regarding an optimal strategy:
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that the action depends only on current wealth (not past history), and that the action is

deterministic. Both assumptions can be made without loss of generality.

This model, which is a certain kind of infinite-state Markov Decision Process (MDP), is

a natural and elementary one to consider both from the point of view of probability theory,

and that of mathematical finance. As far as we have been able to determine it has not

previously been studied.

Before going into detail we pause for a simple illustration. Suppose two actions are

available, called A and B; let qAi denote the probability of winning i dollars with action A:

Action A: qA−1 = 0.5, qA15 = 0.5 Action B: qB−10 = 0.5, qB150 = 0.5

Expected profit is ten times greater in action B, but it is easy to see that an investor with, say

$10, has probability of survival less than 1/2 if he plays B, and close to 1 if he chooses and

sticks to A. This illustrates howmaximizing the likelihood of solvency can be quite different

from maximizing expected profit. The problem, of course, is to determine proper strategy

in less obvious situations.

1.1 Motivation

There are a couple of reasons to focus on maximization of the likelihood of indefinite sur-

vival. The first concerns investment strategies of individual, “middle class” investors. Eco-

nomic decision theory concerns itself largely (though not solely) with maximization of util-

ity as expressed by expected profit (or log profit). This framework may be appropriate to

the decision theory of a shareholder-owned firm, whose bankruptcy creates an unpleasant

but bounded effect on a balanced portfolio. But it is ill suited to the decision theory of an

individual investor, whose goal is often not maximization of wealth for its own sake, but

financial stability. For such a typical investor, bankruptcy, and its consequences for self and

family, are dearly to be avoided.

The second reason concerns investment (loan) strategies of banks, which are unlike

other corporations in that they are supposed to provide their depositors with a strong as-

surance of preservation of capital. The incompatibility between doing so and acting com-

petitively in the loan marketplace has led to banking crises which have been addressed in

part through government intervention including, in the USA, both federal deposit insurance

and mandatory holding requirements. These restrict the extent to which banks can pursue

purely profit-maximizing strategies (although we do not suggest that banks conversely act

to maximize probability of indefinite solvency).

We return to the clash between optimizing for profit or survival. Naturally, a good way

to avoid bankruptcy is to make a lot of money! But investment decisions entail a trade-off

between risk and reward. The most secure investments typically provide returns below or

only marginally above the inflation rate. So even a decision-maker whose sole purpose is to

avoid bankruptcy cannot escape risk entirely, andmust weigh the alternatives. The purpose

of this paper is to develop some basic ingredients relevant to these decisions. In defining our

model, simplicity is a key criterion. As a result, the model does not capture complications

that always accompany realistic situations. On the other hand, this simplicity leads to clean

mathematics and a basis from which more elaborate models can be considered.
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1.2 Related work

As noted, the simple model defined above has apparently not been studied before. How-

ever, our motivation is very similar to that of previous authors, especially Ferguson [4],

Truelove [11] and Browne [2]. The models are different enough to make the conclusions

incomparable; some main differences are that in the previous work (a) The player has only

one investment choice at any one time, and is simply deciding howmuch to invest, (b) That

amount is unbounded except by the player’s wealth. In some of the results, even the last

restriction is dropped, and the player is permitted to borrow unlimited funds, sometimes

with and sometimes without interest. Put simply, these authors’ models are more general in

allowing for investment scaling, and more special in not posing choices between dissimilar

types of investments. The latter issue is the grist of our work.

An early book in the area, more relevant to Ferguson, Truelove and Browne’s work than

ours, is Dubins and Savage [3]. Slightly less related, but still relevant in terms of the motiva-

tion, is work in mathematical finance, in which risk (volatility) vs. reward is often measured

with the Sharpe or Sterling ratios: see, e.g., [8]. Optimal investing by these criteria is less

risk-averse than by ours. Shifting attention from the finance aspect to the decision theory,

our work is more closely related to the large literature on the MDP model [10], a broad for-

malization of the study of decision-making under stochastic uncertainty. Specifically, the

“multi-arm bandit” problem concerns maximizing profit from a collection of actions, where

optimal play is characterized by the well-known Gittins index [6, 12]. Our problem does not

seem to fit into this model.

Perhaps closest to our work is an interesting paper that first appeared in June 2007 [5]∗.

In this paper, Foster and Hart consider the question of measuring the riskiness of a gamble

(their “gamble” has the same definition as our “action”). Surprisingly enough, they show

that this can be boiled down to a single number – the critical wealth. If the wealth is strictly

smaller than this number, it is risky to play the action, i.e., it will lead to bankruptcy with

probability 1. Else, playing this action is guaranteed to not lead to bankruptcy, again with

probability 1.

1.3 Results

The specific questions we address include:

1. In a set A of actions, is there a rich man’s strategy — an investment that is always the

best choice once one’s wealth is above some threshold? Put another way, does the optimal

strategy have a “pure tail”?

Besides its obvious role in the decision theory of our model, this question gets at a real

phenomenon which we feel should be reflected in any good model of risk-averse investing:

that the poor do disproportionately worse than the rich because they can not afford to make

certain investments that are by-and-large profitable, yet risky.

2. If there is a “rich man’s strategy,” what characterizes it, and is there a bound on

the threshold where it takes over? If there isn’t one, then what does the tail of the optimal

∗Most of our results date to 2004 and were presented at the 2004 AGATE Workshop on Algorithmic Game
Theory in Bertinoro, Italy, and at a Plenary talk in RANDOM 2004.
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strategy look like?

3. Can the optimal strategy be computed “efficiently”?

In Sections 3 and 4 we provide answers to these questions. We show that under certain

technical conditions there does exist a richman’s strategy, andwe provide a bound onwhere

the pure tail begins. We also show that in general there is no such strategy — an interesting

phenomenon, since it says that optimal play in a small-stakes game can depend, say, on the

low-order bit of your bank balance. The MDP literature suggests three possible algorithms

for computing the optimal strategy in the pure tail case (where this strategy has a finite

description). For one of these algorithms, Value Iteration, we prove “linear convergence”

(i.e., exponentially decreasing relative error) to the failure function of the optimal strategy.

1.4 Notation, terminology and structure of the paper

An action is represented by a probability mass function on a finite set of integers. For an ac-

tion A, let qAj be the probability that the payoff is j. For an action A, define lA := −min{j <

0 : qAj > 0} and rA := max{j > 0 : qAj > 0}. The action is said to have positive drift if

∑
rA
j=−lA

jqAj > 0. The action is said to be irreducible if gcd
(

{j : qAj > 0}
)

= 1. In this paper all

actions will be assumed to be irreducible and positive drift, though some of our statements

hold more generally.

A strategy (sometimes also referred to as policy or decision rule) is a function π : Z+ →
A, where A is a set of actions. For a strategy π, we define the following Markov chain.

Xt+1 = Xt +Yt where Yt is defined as follows: If Xt ≤ 0 then Yt = 0, whereas if Xt > 0 then

Yt is sampled according to π(Xt), but otherwise independently of X0, . . . ,Xt. The failure

probability at a positive integer w (i.e, the probability of ever going broke) corresponding

to π is defined as pπ(w) := Pr[∃m>0 : Xm ≤ 0 | X1 = w]. A strategy is said to be pure

if π(w) = π(1) for all w ≥ 1. It is said to have a pure tail if there is a w′ ≥ 1 such that

π(w) = π(w′) for all w ≥ w′.

In Section 2 we develop the fairly simple theory of the behavior of the game under

a pure strategy. Being basically a random walk, our results are mostly known. However,

those results serve as necessary tools for the study of optimal strategy. In Section 3 we prove

the main results of the paper - namely conditions for the existence of a rich man’s strategy.

In Section 4 we discuss algorithms for determining the optimal strategy. Missing proofs and

the Appendix can be found in the full paper, available online at ECCC [1].

2 Pure strategies

Consider a pure strategy πA consisting only of the action A with l ≡ lA and r ≡ rA. Then,

the failure probability p(w) ≡ pπA
(w) satisfies the linear recurrence

p(w) =
r

∑
j=−l

qAj p(w + j), w ≥ 1, (1)
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where qj ≡ qAj and with p(w) = 1 for all w ≤ 0. The characteristic rational function of A is

defined as

q(z) ≡ qA(z) := −1+
r

∑
j=−l

qjz
j (2)

LEMMA 1. If q′(1) > 0 then q has exactly l roots in the open unit disk. Furthermore q has a
unique positive root in the open unit disk.

Note that the condition is equivalent to positive drift of the action.

PROOF. It suffices to consider instead the roots of the polynomial

A(z) := zlq(z) :=
l+r

∑
j=0
j 6=l

qj−lz
j − [1− q0]z

l .

Note that A′(1) = q′(1) > 0 and A(1) = 0 so that A(1−) < 0. Furthermore A(0) = q−l > 0

so by continuity, A has a root in (0, 1), call it ζ. For ǫ > 0 define Aǫ(z) := fǫ(z) + h(z),
where

fǫ(z) := −(1+ ǫ)(1− q0)z
l , h(z) :=

l+r

∑
j=0
j 6=l

qj−lz
j.

Consider the circle |z| = ζ. There,

| fǫ(z)| = (1+ ǫ)(1− q0)ζ l > (1− q0)ζ l and |h(z)| ≤
l+r

∑
j=0
j 6=l

qj−lζ
j.

Since ζ is a zero of p, we have | fǫ(z)| > |h(z)| for all z with |z| = ζ. Hence by Rouché’s

theorem (see, e.g., [9]), fǫ and Aǫ have the same number of zeros inside |z| = ζ. But fǫ has

exactly l zeros inside |z| = ζ, and hence so does Aǫ. Similarly Aǫ has exactly l zeros |z| = 1,

so that there are no zeros of Aǫ in ζ < |z| < 1. Now letting ǫ ↓ 0 yields that A has exactly

l zeros in the closed disk |z| ≤ ζ and none in the annulus ζ < |z| < 1 so that the first claim

of the lemma follows.

For the second claim note that if ζ1 and ζ2 are distinct positive zeros of p, an argument

similar to the one above yields that there are no zeros of p in the interval (ζ1, ζ2). The claim
then follows by letting ζ1 = ζ and ζ2 = 1.

Remarks: The positive root of q in the open unit disk will be called the Perron root, for

reasons explained in Appendix A in [1]. Since q(1) = 0, if q′(1) < 0 then there exits z > 1

such q(z) < 0. Also q(z) > 0 for large enough z. It follows then that q has a positive zero

outside the closed unit disk and the proof of Lemma 1 reveals that this zero is unique.

Corollary 2 If a pure strategy πA has positive drift then its failure probabilities are

p(w) ≡ pπA
(w) =

d

∑
j=1

λw
j

mj−1

∑
k=0

cj,kw
k, (3)

where λ1, . . . ,λd are the distinct zeros of q in the interior of the unit disk in decreasing order of norm,

with multiplicities m1, . . . ,md such that m1 + · · · + md = l, and (cj,k) are constants.
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PROOF. Let λ be a zero of the characteristic rational function (2) with multiplicity m. Such

a zero contributes a linear combination of (wjλw)m−1
j=0 to p(w). Furthermore since we know

a priori (see Fact 3) that p(w) → 0 as w → ∞, there cannot be any contribution from zeros

with modulus at least 1. Since the pure strategy has positive drift, we have (qA)′(1) > 0, so

by Lemma 1, qA has exactly l zeros in the unit disc and the result follows.

Remarks: Observe that the recurrence (1) defines a linear transformationmapping the initial

conditions p(w)w≤0 monotonically to p(w)w≥1. In particular, if λ is a zero of q, then (λw)w≤0

is mapped to (λw)w≥1.

3 Optimal strategies

LetA = {A1, . . . , Ak} be a finite set of actions with positive drifts. We consider strategies π :

Z+ → A. We start with a simple fact.

Fact 3 For every strategy π, pπ(w) → 0 as w → ∞.

PROOF. For j = 1, . . . , k, let {Y
(j)
n }∞

n=1 be i.i.d. samples of Aj, and assume that for different

values of j, the sequences {Y
(j)
n } are independent. The displacement at any time n is of

the form ∑
k
j=1 ∑

nj

i=1 Y
(j)
i , where the {nj} sum to n and are (arbitrarily dependent) random

variables. Fix ǫ. Due to the positive drifts, for all N large enough,

Pr

[

∀n,j

n

∑
i=1

Y
(j)
i > −N/k

]

> 1− ǫ.

But this shows that for all N large enough, pπ(w) < ǫ.

For w ≥ 1, an action A and a sequence p, we define

EA
w(p) :=

rA

∑
j=−lA

qAj p(w + j). (4)

For this to make sense, we need to have values for p(w) for k ≤ 0. Unless otherwise men-

tioned, we take p(w) to be 1 for all w ≤ 0. Similarly for a strategy π we define

Eπ
w(p) := E

π(w)
w (p) (5)

Clearly if p is the failure probability sequence of π, then

p(w) = Eπ
w(p) (6)

for every w ≥ 1. Equation (6) determines p in the following sense:

LEMMA 4. Fix a strategy π and initial conditions b(w), w ≤ 0. There exists a unique solution
to (6) satisfying p(w) = b(w) for all w ≤ 0 and limw→∞ p(w) = 0.

PROOF. This proof follows a conventional outline. Existence follows from Fact 3, Re-

mark 2 and the fact that the probabilities satisfy (6). To see uniqueness, assume that p and

q both satisfy the conditions. Then, h = p − q also satisfies (6), h(w) = 0 for all w ≤ 0
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and limw→∞h(w) = 0. Assume that there exists w′ such that h(w′) 6= 0. Without loss of

generality, h(w′) > 0. Since h(w) → 0, there exists w0 so that h(w) < h(w′) for all w > w0.

Therefore, maxw h(w) = max{h(w) : w ≤ w0} and the maximum exists since it is taken over

a finite set. Let H be this maximum, and let w̃ = max{w : h(w) = H}. By (6), h(w̃) is the
average of numbers, all of which are no larger than H and some of which are strictly smaller

than H. Therefore h(w̃) < H, in contradiction to its definition. Therefore, h(w) ≡ 0.

Definition 5 We say that p is harmonic with respect to π if (6) holds for every w ≥ 1. We say

that p is subharmonic with respect to π if

p(w) ≤ Eπ
w(p) (7)

for every w ≥ 1, and we say that p is superharmonic with respect to π if

p(w) ≥ Eπ
w(p) for every w ≥ 1. (8)

The usefulness of Definition 5 is expressed in the following lemma:

LEMMA 6. Let π be a strategy and p the unique solution to (6) with given initial condi-
tions b(w), w ≤ 0. Let v be a sequence that satisfies the following conditions:

1. v(w) = b(w) for all w ≤ 0.
2. limw→∞ v(w) = 0.
3. v is subharmonic with respect to π.

Then v(w) ≤ p(w) for every w. If instead v is superharmonic, then v(w) ≥ p(w) for every w.

3.1 Structure of optimal strategies

We can define a natural partial order between strategies: π1 � π2 if for every w, pπ1(w) ≤
pπ2(w). We say that π∗ is optimal if π∗ � π for every strategy π. We say that σ is locally

optimal if σ � π for every π satisfying |{w : σ(w) 6= π(w)}| ≤ 1.

Proposition 7 For every finite collection A of actions, there exists an optimal strategy. Further-

more, σ is optimal if and only if it is locally optimal.

PROOF. We will start with the “furthermore” part: Let σ be locally optimal, and let π

be another strategy. Let s be the failure probability sequence for σ, and let p be the failure

probability sequence for π. By local optimality of σ, for every w, Eπ
w(s) ≥ s(w). Therefore,

s is subharmonic with respect to π, and by Lemma 6, p(w) ≥ s(w) for every w, i.e., σ � π

and σ is optimal.

In order to prove the proposition, all we need is to find a locally optimal strategy. By

compactness of the space of strategies (the product space of actions over all wealths), and

continuity of
∞

∑
w=1

pπ(w). (9)

in this topology (using the positive-drifts assumption), there exits a strategy σ minimizes

expression 9. We claim that σ is locally optimal. Indeed, let π be so that |{w : σ(w) 6=
π(w)}| = 1, and let w be the unique index such that σ(w) 6= π(w). Since σ and π disagree
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at exactly one point, pσ is either subharmonic or superharmonic with respect to π. It has to

be subharmonic since pσ minimizes (9), and therefore σ � π and σ is locally optimal.

For an action A, let λ
(1)
A > 0,λ

(2)
A , . . . ,λ

(lA)
A be the roots of its characteristic rational

function [recall (2)] in the open unit disk arranged in decreasing order of modulus.

We now present a characterization of optimal strategies. The next theorem exhibits the

existence of a “rich man’s strategy,” as indicated in the introductory section.

THEOREM 8. Let A be a finite set of actions and let A ∈ A be an action so that λ
(1)
A < λ

(1)
B

for every B 6= A in A. Let π∗ be optimal for A. Then there exists M such that π∗(w) = A

for every w > M.

The existence of a “rich man’s strategy” may seem natural, and if so, the imposition

of technical hypotheses in Theorem 8 may seem disappointing. But this is not the case:

strikingly, such conditions are necessary, as demonstrated in:

THEOREM 9. Let A = {A,B} with lA = lB = 2, λ
(1)
A = λ

(1)
B , and λ

(2)
A 6= λ

(2)
B . If π∗ is optimal

for A, then for everyW there exist w′,w′′
> W such that π∗(w′) = A and π∗(w′′) = B.

Remarks: Theorem 9 can be generalized to the case where lg or l f is greater than 2 under

the assumption that the characteristic rational function of A has a root in the interior of the

unit disk that is not shared by B and vice versa. The proof is omitted.

Proof of Theorem 8: For convenience of notation, let λ := λ
(1)
A . Let π be a (fixed) strategy

such that for every M there exists w > M with π(w) 6= A. We will show that π is not

optimal. Let πA be the pure-A strategy. Let a(−w) = λ−w and p(−w) = 1 for w ≥ 0. Let aπ

be the unique solution of a(w) = Eπ
w(a) with a(w) → 0, and let aπA

be the unique solution

of a(w) = EπA

w (a) with a(w) → 0. Let pπ and pπA
be the failure probabilities for π and πA.

It is sufficient to show that there exists w so that pπA
(w) < pπ(w). Let l be the absolute

value of the minimal number on the support of any of the actions in A, i.e., l := maxB∈A lB.

Then by monotonicity (recall Remark 2), for every w,

aπ(w) ≥ pπ(w) ≥ λlaπ(w)

aπA
(w) ≥ pπA

(w) ≥ λlaπA

Therefore it will suffice if we prove that there exist w so that

aπA
(w) < λlaπ(w). (10)

In fact, we prove

lim
w→∞

aπ(w)

aπA(w)
= ∞. (11)

To see (11), first note that (see Remark 2)

aπA
(w) = λw. (12)

LEMMA 10. aπA
is subharmonic with respect to π.
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4 Algorithms for determining optimal strategies

We now turn our attention to the problem of determining the optimal strategy. To that end

it will be useful to cast our problem in terms of Markov decision processes (MDPs). For back-

ground on MDPs, we refer the reader to the excellent book by Puterman [10]. Throughout,

A is a finite set of actionswith l := max{lB : B ∈ A} and r := max{rB : B ∈ A}.

4.1 MDP formulations

For our purposes, aMarkov decision process is a collection of objects {S, As, p(· | s, a), r(s, a)}.
Here S is a set of possible states the system can occupy. For each s ∈ S, the set of possible

actions is denoted by As. The function p(· | s, a), called the transition probability function is a

distribution on the set of states S and the reward function r(s, a) is a real-valued function.

Under the assumptions of Theorem 8, we can modify our problem into an equivalent

finite Markov decision problem, which makes determining an optimal strategy tractable.

Let M be such that for some optimal strategy π∗, π∗(w) = A for every w > M. Here A is

the action with the smallest Perron root. In Appendix B [1] we show how to explicitly bound

M, with a method that extends the arguments of Theorem 8. To find an optimal strategy we

need only consider strategies that have a pure-A tail starting at M. Let S = {−l+ 1, . . . ,M+
r,∞}. (The state ∞ represents the possibility of never returning to {−l + 1, . . . ,M+ r}.) The
actions for s ∈ {1, . . . ,M} are the original actions of the system. For s ∈ {M+ 1, . . . ,M+ r},
the only action available is the action A′ with the following transition probability function:

p(j | s, A′) = αA
s−j; j = s− 1, . . . , s− lA; p(∞ | s, A′) = 1−

lA

∑
j=1

αA
j =: αA

∞.

Here the values {αA
j } are the coefficients of the linear functional giving pw as a function of

pw−1, . . . , pw−l in the pure A strategy; see Appendix A [1] for further details. The action set

for the state ∞ as well as for any state in {−l + 1, . . . , 0}, consists only of the trivial action

that leaves the state unchanged. The reward function is given by (13):

r(s, a) := − ∑
j∈S

1{s > 0 and j < 0}p(j | s, a), s ∈ S; a ∈ As. (13)

Clearly the expected total reward is the negative of the failure probability.

Next, we present an algorithm that can be used to determine optimal decision rules.

4.2 Value iteration

An iterative procedure known as value iteration produces a sequence that converges to the

optimal expected total reward for each s ∈ S. The critical thing of course will be the runtime

analysis.

1. Set v0(s) = 0 for each s ∈ S.

2. For each s ∈ S, compute vn+1(s) using

vn+1(s) = max
a∈As

{

r(s, a) + ∑
j∈S

p(j | s, a)vn(j)

}
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and increment n.

The sequences converge monotonically to the optimal expected total reward v∗ [10]. We

show next that the order of convergence is linear.

To that end, let d∗ denote an optimal decision rule and consider the sequence defined

iteratively by u0(s) = 0 for each s ∈ S and

un+1(s) = r(s, d∗(s)) + ∑
j∈S

p(j | s, d∗(s))un(j). (14)

This is just the sequence produced by value iteration when the only action available at a

state is the optimal action. Clearly un(s) → v∗(s) and a simple induction argument yields

vn(s) ≥ un(s) for each s ∈ S and n ≥ 0.

Writing (14) in matrix notation we have un+1 = Pun + α, where un, α ∈ R
M+r and

P ≡ Pij is the M + r× M + r matrix with Pij := p(j | i, d∗(i)).

LEMMA 11. Let P ≡ P(d∗) denote the transition matrix for an optimal decision rule d∗.
Then, ρ(P), the spectral radius of P is strictly less than 1.

PROOF. If |||P|||∞ < 1, then the claim is true. Suppose |||P|||∞ = 1 so that ρ(P) ≤ 1.

Suppose ρ(P) = 1. Since P is nonnegative an eigenvalue of maximum modulus must be 1.

Let Px = x, x = [xi] 6= 0 and suppose p is an index such that |xp| = ‖x‖∞ 6= 0. Now 1 lies

on the boundary of G(P), the Geršgorin region for the rows of P so that [7, Lemma 6.2.3(a)]

1− Ppp = |1− Ppp| =
M+r

∑
j=1
j 6=p

Ppj,

i.e., ∑
M+r
j=1 Ppj = 1 so that p ∈ {1, . . . ,M}. Since P is the transitionmatrix for an optimal strat-

egy theremust be positive probability of reaching a state in {M+ 1, . . . ,M+ r} starting from

the state p. In other words, there exist a sequence of distinct integers k1 = p, k2, . . . , km = q

with q ∈ {M+ 1, . . . ,M+ r} such that all of the matrix entries Pk1k2 , . . . , Pkm−1km are nonzero.

But then [7, Lemma 6.2.3(b)], |xki | = |xp| for each i = 1, . . . ,m. In particular |xq| = |xp|, so
that again [7, Lemma 6.2.3(a)],

1 = |1− Pqq| =
M+r

∑
j=1
j 6=q

Pqj =
l

∑
j=1

αj < 1, which is a contradiction.

Remarks: Using the fact that all actions have positive drift, we can estimate the spectral

radius as follows. LetD be the diagonalmatrix with entries (λ + ǫ, (λ + ǫ)2, . . . , (λ + ǫ)M+r),
where λ is the largest Perron root among all roots of the characteristic rational functions of

the actions and ǫ > 0 is arbitrarily small. We show that |||D−1PD|||∞ ≤ δ < 1. Indeed for

i ∈ {1, . . . ,M}, the ith row sum of D−1PD is given by

M+r

∑
j=1

Pij(λ + ǫ)j−i ≤ qi(λ + ǫ) + 1 := δi, (15)
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where qi(·) is the characteristic function of the action employed at state i. If λi is the unique

positive root of qi inside the unit disk, then qi(λi) = qi(1) = 0 and qi has no zero crossing in

(λi, 1). Since i has positive drift we have (qi)′(1) > 0 so that qi(z) < 0 for z ∈ (λi, 1). Hence

the row-sum in (15) is bounded by δi < 1.

On the other hand for i ∈ {M + 1, . . . ,M + r}, the ith row-sum of D−1PD is given by

∑
l
j=1 αA

j (λ + ǫ)−j := δi < 1, the last strict inequality following from the fact that if λA <

λ + ǫ is the Perron root of the pure-A tail, then

l

∑
j=1

αA
j λ

−j
A = 1

Taking δ := max1≤i≤M+r δi gives us ρ(P) = ρ(D−1PD) ≤ |||D−1PD|||∞ ≤ δ < 1.

The preceding lemma and remark lead directly to the following result.

THEOREM 12. Let v∗ denote the optimal total expected value and vn the nth iterate of value
iteration. Then vn ≥ un, where for some vector norm ‖·‖ and n ≥ 1,

‖v∗ − un‖ ≤ c‖v∗ − un−1‖

and c < 1 satisfies

c ≤ max{1+ max
action B

qB(λ + ǫ),
l

∑
j=1

αj(λ + ǫ)−j},

where λ is the largest of the Perron roots of the actions and ǫ > 0 is arbitrarily small.

5 Discussion

In theMDP formulation, two other algorithms can be applied to computing the failure prob-

abilities of the optimal strategy: policy iteration and linear programming. Their adaptation

to our problem is discussed in Appendix C in [1].

It is clear that our results are at best a sketch of some elements of a larger theory. To

begin with an equally well-motivated (and more general) model is one in which players

are prohibited from taking actions that have nonzero probability of driving them immedi-

ately to a negative balance. (The player loses if no actions are available.) Our basic results

carry over to this model. Another natural variant allows for the payoffs to be arbitrary real

numbers. We have not explored this case.

It is natural to ask what happens if each available action can be scaled, at the player’s

discretion, by a positive constant. Allowing scaling by large constants is an interesting vari-

ant to study. (Allowing scaling by arbitrarily small constants trivializes the model: for any

positive-drift action the probabilities of failure can be made to tend to 0. More importantly,

it fails to match the motivating real-world scenarios. A bank deciding whether to issue a

particular $200, 000 mortgage cannot change the associated risks by renaming it as 200, 000

separate $1 mortgages.) Ideally in this context one would like to address a common exten-

sion of our model and those treated by Ferguson [4], Truelove [11] and Browne [2].
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