
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 73-82

On the Power of Imperfect
Information∗

Dietmar Berwanger1 and Laurent Doyen2

1 RWTH Aachen, Germany

2EPFL Lausanne, Switzerland

ABSTRACT. We present a polynomial-time reduction from parity games with imperfect information
to safety games with imperfect information. Similar reductions for games with perfect information
typically increase the game size exponentially. Our construction avoids such a blow-up by using
imperfect information to realise succinct counters which cover a range exponentially larger than their
size. In particular, the reduction shows that the problem of solving imperfect-information games
with safety conditions is EXPTIME-complete.

1 Introduction

Nondeterminism is a notorious source of complexity in automata. The process of determin-

isation, which consists in monitoring the uncertainty about the flow of control in a nonde-

terministic device, typically involves a power-set construction and an exponential blow-up

of the state space. Reversing the argument, a nondeterministic automaton may be consider-

ably more succinct than any equivalent deterministic automaton.

When we shift from automata to games, a similar jump in complexity arises as an effect

of imperfect information of players about the history of a play. Already in the basic setting

of two-player zero-sum games, the construction of a perfect-information game monitoring

the uncertainty of a player about the flow of information in an imperfect-information game

requires a powerset construction [13, 5].

The shape of winning conditions constitutes a further source of complexity in games. In

particular in parity games, the range of the priority function is perceived as a key factor. For

games with perfect information, the current situation is as follows. While games with two

priorities can be solved in quadratic time, the complexity of the best known deterministic

algorithms is exponential in the number of priorities. Several procedures for reducing the

priorities in a parity game to a fixed small number have been proposed, all leading to an

exponential blow-up in the size of the game [3, 9, 15]. A polynomial-time reduction of this

kind would prove that parity games can be solved in polynomial time, which is a major

open problem.

The question of parity-range reduction has also been investigated in the context of

the modal µ-calculus, an expressive logic that subsumes many important specification for-

malisms. The model-checking problem for this logic corresponds to the problem of solving

a parity game with as many priorities as there are alternations of fixed-point quantifiers in

∗Research supported in part by the ESF programmes AutoMathA andGAMES, by the Swiss National Science
Foundation, and by the European COMBEST project.

c© Dietmar Berwanger and Laurent Doyen; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1742

74 ON THE POWER OF IMPERFECT INFORMATION

the formula [7]. A uniform method for reducing the number of quantifier alternations in

formulae would thus lead to tractable model-checking games. For a particular fragment

of distributive formulae, a reduction to formulae with only one alternation is presented

in [12]. However, the fact that the µ-calculus alternation hierarchy is strict [11, 4, 1], implies

that a uniform reduction, which depends only on the formula, cannot exist for the general

case. In [15], Seidl proposes a reduction that removes fixed-point alternations syntactically

in a non-uniform way, depending on the model, yielding one of the best algorithms for µ-

calculus model checking, or equivalently, for solving parity games with perfect information.

In this paper, we consider parity games with imperfect information. We present a

polynomial-time reduction of parity games into safety games that preserves the existence of

winning strategies. This shows that, in the setting of imperfect information, parity games

with only two priorities are able to simulate parity games with arbitrarily many priorities in

a succinct way. In other words, the complexity arising from imperfect information preempts

the complexity inherent to the winning condition.

The reduction implements a variant of the progress-measure algorithm for solving par-

ity games proposed by Jurdzinski in [8]. We use the power of imperfect information in two

ways: firstly, to design counters that cover a range exponentially larger than their size and,

secondly, to maintain the number of occurrences of all odd priorities simultaneously during

the play. The parity condition is monitored by synchronising the game graph with a small

counter gadget equipped with a safety condition.

Our construction illustrates a basic design pattern for applying imperfect information

as a synchronisation mechanism. Furthermore, the counting gadgets provide examples of

safety games in which winning strategies require memory of exponential size. Finally, our

reduction shows that the problem of solving imperfect-information games with safety con-

ditions is EXPTIME-complete.

2 Parity games with perfect information

We first describe the model of parity games with perfect information and introduce the

key properties needed for our reduction. In view of a uniform treatment of both perfect

and imperfect information models, our terminology sometimes deviates from the standard

literature.

2.1 Games and strategies

Let Σ be a finite alphabet of actions. A game structure with perfect information is a tuple G =
(L, ℓ0,∆) consisting of a finite set L of locations (or positions), a designated initial location ℓ0 ∈
L, and a transition relation ∆ ⊆ L × Σ × L. We assume that the transition relation is total,

i.e., for every location ℓ ∈ L and every action a ∈ Σ, there exists at least one a-successor

ℓ′ such that (ℓ, a, ℓ′) ∈ ∆, and that all locations of L are reachable from ℓ0 via transitions

in ∆. Games on G are played by two players, Player 1 and Player 2, taking turns to move

a token along transitions of G. Initially, the token is located at ℓ0. The game proceeds in

rounds. In every round, Player 1 first chooses an action a ∈ Σ, then Player 2 moves the

token to an a-successor of the current location. Thus, playing the game yields an infinite

DIETMAR BERWANGER AND LAURENT DOYEN FSTTCS 2008 75

sequence of locations π = ℓ1ℓ2 . . . , called a play, such that ℓ1 = ℓ0 and (ℓi, a, ℓi+1) ∈ ∆ for all

i ≥ 1. A history is a finite prefix ℓ1 . . . ℓi of a play. A strategy for Player 1 in G is a function

σ : L+ → Σ that maps histories to actions. A play ℓ1ℓ2 . . . is consistent with σ if, for every

position i ≥ 1, there is a transition (ℓi, a, ℓi+1) ∈ ∆ with a = σ(ℓ1, . . . , ℓi). We denote the set

of plays in G that are consistent with σ by Outcome(G, σ).

A winning condition for a game structure G is a set ϕ ⊆ Lω. A strategy σ for Player 1 is

winning for the condition ϕ, if all plays consistent with σ are winning, i.e., Outcome(G, σ) ⊆
ϕ. A game is a pair (G, ϕ) consisting of a game structure G and a matching winning condi-

tion ϕ. We say that Player 1 wins the game, if he has a winning strategy for the condition ϕ.

We shall consider two kinds of winning conditions. Given a set T ⊆ L of target

locations, the safety condition requires that the play stay within the set T : Safe(T) =
{ℓ1ℓ2 . . . | ℓi ∈ T for all i ≥ 1}. We call the elements of L \ T bad locations. Given

a priority function Ω : L → N that maps each location to a priority, the parity condi-

tion requires that the least priority visited infinitely often in a play be even : Parity(Ω) =
{ℓ1ℓ2 . . . | lim infi→∞ Ω(ℓi) is even}. Parity conditions can be viewed as nested com-

binations of safety and reachability conditions, where reachability is the dual of safety :

Reach(T) = Lω \ Safe(L \ T). They provide a canonical form to express all ω-regular win-

ning conditions [16].

The algorithmic problem of solving a game is to decide, given a game structure G and a

winning condition ϕ, whether Player 1 wins the game (G, ϕ). Safety conditions are specified

by a target set, and parity conditions are specified by a priority function.

A conceptually simple way of solving parity games is to provide a winning strategy

for Player 1. For this purpose, strategies that depend only on the last location of the history

of the play are of particular interest. A strategy σ is memoryless if σ(ρ · ℓ) = σ(ρ′ · ℓ) for all
ρ, ρ′ ∈ L∗. It is easy to see that, if Player 1 wins a game with safety or reachability condition,

then he also has a memoryless strategy to win the game. The following fundamental re-

sult establishes that memoryless strategies are sufficient even for perfect-information games

with parity conditions.

THEOREM 1.[[6]] Player 1wins a parity game with perfect information if and only if he has
a memoryless winning strategy.

A memoryless strategy σ for a game structure G = (L, ℓ0,∆) can be represented as

a substructure Gσ obtained by removing from ∆ all transitions (ℓ, a, ℓ′) with a 6= σ(ℓ). The
plays in Gσ are then precisely the plays inOutcome(G, σ). Accordingly, for a parity condition

ϕ, the strategy σ is winning if and only if all the plays in Gσ are winning, which amounts

to saying that on each cycle in Gσ reachable from ℓ0, the least visited priority is even. This

remark provides the key argument for the transformation of parity games into safety games.

DEFINITION 2.Let n ∈ N. An infinite sequence p1p2 . . . of natural numbers is parity-n-fair

if, for every odd number r, each subsequence pipi+1 . . . pj that contains the number r more

than n times also contains a number strictly smaller than r.

For a fixed game (G,Parity(Ω)), we say that a play π is parity-n-fair if the sequence of

priorities visited by π is parity-n-fair. Notice that every parity-n-fair play satisfies the parity

condition. Conversely, if G has n locations, then all plays consistent with a memoryless

76 ON THE POWER OF IMPERFECT INFORMATION

winning strategy σ of Player 1 in G are parity-n-fair. Indeed, every subsequence of a play

consistent with σ that contains more than n occurrences of an odd priority r must follow

a cycle in Gσ. As the least priority in every cycle of Gσ is even, every such subsequence

also contains a priority smaller than r. According to Theorem 1, we can hence restrict our

attention, without loss of generality, to strategies that enforce parity-n-fair plays.

PROPOSITION 3. Player 1wins a parity game with perfect information of size n if and only
if he has a strategy σ such that every play consistent with σ is parity-n-fair.

Let us now turn to the computational complexity of solving a parity game with perfect

information G. A memoryless strategy σ for Player 1 can be guessed in linear time and we

can verify in polynomial time whether σ is winning, i.e., whether the minimal priorities on

all reachable cycles in Gσ are even. Thus, the problem of solving a game belongs to NP and,

by the Determinacy Theorem of [6], it follows that it is in NP ∩ Co-NP. Hence the problem

is close to polynomial time, in terms of general complexity (see also [8]). The question

whether parity games can be solved in polynomial time is a major open problem. The best

known deterministic algorithms have running times that are polynomial with respect to the

size of the game structure, but exponential with respect to the number of different priorities

(see [10, 14]).

2.2 Priority-range reduction

Due to the apparent impact of the number of priorities on the complexity of solving parity

games, it would be very desirable to find efficient procedures for reducing the range of the

priority function.

An explicit reduction from parity to safety games with perfect information is presented

by Bernet, Janin, and Walukiewicz in [3]; it can be understood as an online-version of Ju-

rdzinski’s progress-measure algorithm for solving parity games [9]. The main ingredient

of the reduction is an internal memory device consisting of a vector of counters, one for

each odd priority which is maintained along the transitions of a play. Basically, the device

works as follows: if the current state has priority r, all counters corresponding to priori-

ties strictly higher than r are reset; additionally, if r is odd, the counter corresponding to r

is incremented. The range of each counter is bounded by the number of locations in the

game. To transform a parity game into a safety game, the memory device is synchronised

with the game structure via a product operation. Finally, the safety condition requires that

no counter overflow occur. Essentially, the internal memory monitors whether the current

play is parity-n-fair and forces the play into a bad location when it detects that this is not the

case. The correctness of this reduction is justified by arguments similar to Proposition 3. No-

tice, however, that to monitor a game with n states and d priorities, a memory device with

O(nd/2) many states is needed. Accordingly, this reduction from parity to safety games

involves an exponential blow-up of the game structure.

3 Games with Imperfect Information

We consider a model of games with imperfect information that was originally introduced

in [13]. The set of locations is partitioned into information sets indexed by observations.

DIETMAR BERWANGER AND LAURENT DOYEN FSTTCS 2008 77

3.1 Observation-based model

In addition to the alphabet Σ of actions, we fix a finite alphabet Γ of observations. A game

structure with imperfect information over Σ and Γ is a tuple G = (L, ℓ0,∆,γ), where L, ℓ0,∆ are

defined as in the perfect-information case, and γ : Γ → 2L \∅ is an observability function that

maps each observation to a nonempty set of locations such that the sets γ(o) for o ∈ Γ form

a partition of L. For each location ℓ ∈ L, we write obs(ℓ) to denote the unique observation o

such that ℓ ∈ γ(o). For an action a ∈ Σ and a set of locations s ⊆ L, we define posta(s) =
{ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, a, ℓ′) ∈ ∆}.

The game on G is played in the same way as in the perfect information case, by moving

a token along the transitions ofG and forming an infinite play. But now, only the observation

of the current location is revealed to Player 1. The effect of the uncertainty about the history

of the play is formally captured by the notion of strategy.

A strategy for Player 1 in G is a function σ : Γ+ → Σ that maps finite sequences of

observations to actions. Given a play π = ℓ1ℓ2 . . . , we set obs(π) = obs(ℓ1)obs(ℓ2) We

say that π is consistent with the strategy σ, if for every position i ≥ 1, there is a transition

(ℓi, a, ℓi+1) ∈ ∆ with a = σ(obs(ℓ1) . . . obs(ℓi)). As before, we denote the set of plays in G

that are consistent with σ by Outcome(G, σ).
Following [5], we express winning conditions in terms of observations. A winning

condition for a game structure G = (L, ℓ0,∆,γ) is a set ϕ ⊆ Γω of infinite sequences of

observations. A strategy σ for Player 1 is winning for the condition ϕ if obs(π) ∈ ϕ for

all π ∈ Outcome(G, σ). The safety condition for a set T ⊆ Γ is Safe(T) = {o1o2 . . . | oi ∈
T for all i ≥ 1}, and the parity condition for a priority function Ω : Γ → N is defined by

Parity(Ω) = {o1o2 . . . | lim infi→∞ p(oi) is even}.
Notice that games of perfect information correspond to the special case where Γ = L

and γ(ℓ) = {ℓ} for all ℓ ∈ L.

3.2 Reduction to perfect-information games

To solve a game with imperfect information (G, ϕ) over a structure G = (L, ℓ0,∆,γ), the
basic algorithm proposed in [13] constructs a game of perfect information (GK, ϕ′) over a

game structure GK = (S, s0,∆′) with the action alphabet Σ of G, such that Player 1 has

a winning strategy for ϕ in G if and only if he has a winning strategy for ϕ′ in GK. The

structure GK is obtained by a subset construction which, intuitively, monitors the knowledge

that Player 1 has about the current location of the play. The set of locations S ⊆ 2L \ {∅}
consists of the subsets of L reachable from the initial location s0 = {ℓ0} via transitions in

∆′ defined by (s1, a, s2) ∈ ∆′ if and only if there exists an observation o ∈ Γ such that s2 =
posta(s1)∩γ(o) 6= ∅. Notice that each location in GK corresponds to a unique observation in

G, in the sense that for all s ∈ S, there is a unique o ∈ Γ such that s ⊆ γ(o). A bijection µ be-

tween strategies σ in G and strategies σK in GK that preserves winning strategies is defined

as follows. For all strategies σ in G, set µ(σ) = σK such that σK(s1 . . . sn) = σ(o1 . . . on) for
all sequences s1 . . . sn of locations in GK, where o1 . . . on is the unique sequence of observa-

tions o1 . . . on corresponding to s1 . . . sn. Conversely, given a strategy σK in GK, the strategy

σ = µ−1(σK) is such that for all o1 . . . on ∈ Γ+, we have σ(o1 . . . on) = σK(s1 . . . sn) where

s1 = s0 and si+1 = postai(si) ∩ γ(oi+1) with ai = σK(s1 . . . si) for all 1 ≤ i < n. Observe that

78 ON THE POWER OF IMPERFECT INFORMATION

the plays consistent with σ in G visit the same sequences of priorities as the plays consistent

with σK = µ(σ) in GK.

The construction transforms games with imperfect information into games of perfect

information with the same type of winning condition [5]. For a parity condition ϕ defined

by the priority function Ω : Γ → N, the parity condition ϕ′ is defined by the priority

function Ω′ : S → N such that Ω′(s) = Ω(o) for all s ∈ S and o ∈ Γ such that s ⊆ o.

PROPOSITION 4.[[5]] Player 1wins a gamewith imperfect information (G,Parity(Ω)) if and
only if he wins the game with perfect information (GK,Parity(Ω′)).

4 Reduction of parity to safety games

To present our reduction from parity to safety games, let us fix a parity game with imperfect

information (G,Parity(Ω)) with n locations and with priorities ranging from 1 to d; we set

[d] = {1, 2, . . . , d}. Without loss of generality, we assume that d is even.

The game structure GK obtained by the subset construction of Section 3.2 has less

than 2n locations. According to Proposition 3, we can require that a winning strategy of

Player 1 in (GK,Parity(Ω)) (and thus also in (G,Parity(Ω))) ensures that no odd priority is

visited more than 2n times between two consecutive occurrences of lower priorities. This is

a safety condition that can be checked by counting the occurrences of each odd priority in

the play. If the count exceeds 2n while no lower priority is visited, a bad location is entered.

The challenge is to design counters with a bound of at least 2n and to maintain simul-

taneously d/2 such counters, one for each odd priority, using only a polynomial number of

locations.

We use a counter gadget to store the number of occurrences of an odd priority r. When-

ever a priority smaller than r is visited, the counter is reset. For each visit to priority r,

Player 1 has to increment the counter via a click action that he can choose from the set

[n] = {1, 2, . . . , n}. The gadgets are constructed in such a way that in each step at least

one click can increment the counter, until the upper bound is reached. When this happens,

all clicks would lead to the bad location.

To each odd priority, we associate a counter gadget. In the first round of the game,

Player 2 can choose a counter associated to one particular odd priority r to be tracked. This

choice is not observable to Player 1. Thus, Player 1 has to ensure that every odd priority

occurs only a bounded number of times before a lower priority is visited. This translates

the parity condition (that the minimal priority seen infinitely often is even) into a safety

condition (that no counter ever overflows).

4.1 Succinct counters

For each odd priority r, the counter gadget Cr is a game structure consisting of n disjoint

components (numbered 1, 2, . . . , n), one for each click. Figure 1 shows a counter gadget

with 3 components. The i-th component has the shape of a loop over qi locations, where qi
is the i-th prime number. The locations of Cr are all indistinguishable to Player 1. Therefore,

we may think of a virtual game played simultaneously on all components, as if there was a

token moving in each component of the gadget. The number of configurations of the tokens

DIETMAR BERWANGER AND LAURENT DOYEN FSTTCS 2008 79

ℓ11

ℓ12

⊤ ¬1

ℓ21

ℓ22 ℓ23

⊤

⊤

¬2

ℓ31

ℓ32

ℓ33 ℓ34

ℓ35

⊤

⊤

⊤

⊤

¬3

Increment (solid edges) on priority p = r, with any click except i on edges ℓiqi
→ ℓi1.

Reset (dashed edges) on all priorities p < r.
Idle (not depicted) on all priorities p > r (self-loops).

Figure 1: Counter gadget for priority r with 3 components that counts modulo 2 · 3 · 5 = 30.

in a counter is given by the primorial qn# = ∏
n
i=1 qi. Clearly, we have qn# > 2n whereas the

number of locations in a counter is ∑
n
i=1 qi = O(n2 log n) and thus polynomially bounded

in n (cf. [2]).

The value of a counter is encoded by the position of the (virtual) tokens in each of its

components. A counter can be incremented by taking, simultaneously in all components, a

transition represented by a solid edge in Figure 1, it can be reset to 0 with the dashed edges,

and it can idle with self-loops on each location (not drawn in the figure). The transitions

of Cr are labeled by all actions (a, p, k) ∈ Σ× [d]× [n] such that p > r on all idle edges, p < r

on all reset edges, and p = r on all increment edges, except the last edge of each component

where the click k must be different from the number of the component (in Figure 1, the

label ⊤ is interpreted as “for all clicks” and ¬k is interpreted as “for all clicks except k”, for

k ∈ N). Finally, we complete the transition relation, by sending all missing transitions to a

sink location. Intuitively, whenever a counter is incremented, the value of the click k should

be chosen (by Player 1) in such a way that every component has an enabled increment

transition labeled with k, i.e., such that qk does not divide the incremented counter value.

This is always possible except when, in all components, the token is in the last location

before completing the cycle. In the example of Figure 1, this happens after 2 · 3 · 5− 1 = 29

steps. From that moment on, Player 1 should avoid visiting priority r unless the counter is

reset by a visit to a lower priority.

LEMMA 5. Let C1,C3, . . . ,Cd−1 be counter gadgets, each with n components. A sequence
p1p2 . . . of priorities pi ∈ [d] is parity-(qn#)-fair if and only if there exist sequences a1a2 . . .

of actions and k1k2 . . . of clicks such that (a1, p1, k1)(a2, p2, k2) . . . is a play in each of the
components of C1, . . . ,Cd−1.

4.2 Reduction

For the parity game with imperfect information (G,Parity(Ω)) over alphabets Σ and Γ, we

construct in polynomial time a safety game with imperfect information (G,Safe(T)) over

80 ON THE POWER OF IMPERFECT INFORMATION

C1 C3

. . .

Cd−1 Ĝ

ℓ11

ℓ12

⊤ ¬1

ℓ21

ℓ22 ℓ23

⊤

⊤

¬2

ℓ31

ℓ32

ℓ33 ℓ34

ℓ35

⊤

⊤

⊤

⊤

¬3 ℓ11

ℓ12

⊤ ¬1

ℓ21

ℓ22 ℓ23

⊤

⊤

¬2

ℓ31

ℓ32

ℓ33 ℓ34

ℓ35

⊤

⊤

⊤

⊤

¬3 ℓ11

ℓ12

⊤ ¬1

ℓ21

ℓ22 ℓ23

⊤

⊤

¬2

ℓ31

ℓ32

ℓ33 ℓ34

ℓ35

⊤

⊤

⊤

⊤

¬3
a

b c

d

σ σ

σ

σ

σ

ℓ′0

. . .

Figure 2: Reduction overview.

extended alphabets Σ′ and Γ′ such that Player 1 wins (G,Parity(Ω)) if and only if he wins

(G′,Safe(T)). The set T contains all locations of G′ except a designated sink location. The

game structure G′ consists of an initial location ℓ′0 fromwhich there is an outgoing transition

to the initial location of each of the n components of each counter gadget C1, . . . ,Cd−1 and

to the initial location of a modified copy Ĝ of G, as in Figure 2.

The game structure Ĝ enriches the set Σ of actions to synchronise with the counter

gadgets. The locations of Ĝ are those of G and a fresh location with odd priority. For each

transition (ℓ, a, ℓ′) in G, there are transitions (ℓ, (a, p, k), ℓ′) for p = Ω(obs(ℓ)) and for all

1 ≤ k ≤ n. Hence, the set of actions of Ĝ is Σ′ = Σ × [d] × [n]. We complete the transition

relation of Ĝ by sending all missing transitions to the fresh location from which Player 1

cannot win. The game Ĝ is equivalent to G, as the strategies of Player 1 in G have access

to the observation of the current location (and therefore also to its priority) and can thus be

translated into equivalent strategies for Ĝ by simply choosing the priority p = Ω(obs(ℓ)) of
the current location ℓ for the second component of the indicated action (the third component

is intended for synchronisation with the clicks and does not matter in Ĝ).

The observations in G′ are the same as in G, that is, Γ′ = Γ. However, the observability

function γ′ of G′ is defined for all o ∈ Γ by γ′(o) = γ(o) ∪ LC where LC is the set of all loca-

tions of the counter gadgets. This defines overlapping observations, but we can construct in

polynomial time an equivalent safety game with partitioning observations (cf. [5, page 7]).

PROPOSITION 6. The problem of solving a parity game with imperfect information can be
reduced in polynomial time to the problem of solving a safety game with imperfect infor-
mation.

Proof. We show that Player 1 wins the game (G,Parity(Ω)) if and only if he wins the game

(G′,Safe(T)).
First, let us assume that Player 1 wins (G′,Safe(T)) and let us fix a winning strategy

σ′ in G′. We construct a strategy σ in G such that for all ρ ∈ Γ+, we have σ(ρ) = a if

σ′(ρ) = (a, p, k) for a priority p and a click k. Now we claim that σ is winning in G. To show

this, we argue that for all odd priorities r, if r occurs infinitely often in a path π of Gσ, then a

smaller priority p < r also occurs infinitely often in π. Towards a contradiction, assume that

an odd priority r occurs infinitely often on a path π of Gσ, whereas all priorities lower than r

DIETMAR BERWANGER AND LAURENT DOYEN FSTTCS 2008 81

occur only finitely often. In particular, this implies that π is not a parity-qn#-fair path. By

Lemma 5 it follows that σ′, which agrees with σ on the first component (on actions a ∈ Σ),

cannot avoid an overflow of the counter Cr leading the play to the sink state. Hence, σ′ is

not a winning strategy in G′.

For the converse, assume that Player 1 wins (G,Parity(Ω)). Then, there exists a winning

strategy σ for Player 1 in G ensuring that every path in Gσ is parity-2n-fair, by Proposition 3

and via the bijection µ between strategies of G and GK defined in Section 3.2. Therefore,

each path of Gσ, can visit at most 2n < qn# times an odd priority r without visiting a smaller

priority. Hence, each counter Cr is reset before reaching the maximal value qn#. The win-

ning strategy σ can therefore be extended to a winning strategy in G′ by prescribing (a, r, k)
whenever σ prescribes a, where r is the priority of the current observation, and k is a click

allowed in the corresponding counter Cr (i.e., such that qi is not a divisor of the number of

visits to priority r since the last visit to a smaller priority). In this way, the sink location of

the counters is never reached in G′ and thus, the strategy σ is winning. �

If we view the counter gadgets as individual games, we obtain a family of examples of

safety games with an exponential lower bound for the memory size of a winning strategy.

COROLLARY 7. There exists a family (Gn,Safe(Tn))n∈N of safety games with imperfect in-
formation where Player 1 wins, such that each game Gn is of size polynomial in n, whereas
every winning strategy in Gn requires memory of size at least exponential in n.

The problem of solving reachability and parity games of imperfect information is

known to be EXPTIME-complete [13, 5]. However, the question about a matching lower

bound for the complexity of safety games remained open. We can now settle this question

as a direct consequence of Proposition 6.

COROLLARY 8. The problem of solving safety games with imperfect information is
EXPTIME-complete.

References

[1] A. ARNOLD, The µ-calculus alternation-depth is strict on binary trees, Inf. Théorique et

Applications, 33 (1999), pp. 329–339.

[2] E. BACH AND J. SHALLIT, Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT

Press, 1996.

[3] J. BERNET, D. JANIN, AND I. WALUKIEWICZ, Permissive strategies: from parity games to

safety games, Inf. Théorique et Applications, 36 (2002), pp. 261–275.

[4] J. BRADFIELD, The modal µ-calculus alternation hierarchy is strict, Theoretical Computer

Science, 195 (1998), pp. 133–153.

[5] K. CHATTERJEE, L. DOYEN, T. A. HENZINGER, AND J.-F. RASKIN, Algorithms for

omega-regular games of incomplete information, Logical Methods in Computer Science,

3 (2007).

[6] E. A. EMERSON AND C. S. JUTLA, Tree automata, mu-calculus and determinacy, in Proc.

of FoCS 1991, IEEE, 1991, pp. 368–377.

82 ON THE POWER OF IMPERFECT INFORMATION

[7] E. GRÄDEL, W. THOMAS, AND T. WILKE, eds., Automata, Logics, and Infinite Games,

LNCS 2500, Springer-Verlag, 2002.

[8] M. JURDZIŃSKI, Deciding the winner in parity games is in UP ∩ co-UP, Information Pro-

cessing Letters, 68 (1998), pp. 119–124.

[9] M. JURDZIŃSKI, Small progress measures for solving parity games, in Proc. of STACS:

Theor. Aspects of Comp. Sc., LNCS 1770, Springer, 2000, pp. 290–301.

[10] M. JURDZIŃSKI, M. PATERSON, AND U. ZWICK, A deterministic subexponential algorithm

for solving parity games, in Proc. of SODA: Symp. on Discrete Algorithms, ACM Press,

2006, pp. 117–123.

[11] G. LENZI, A hierarchy theorem for the mu-calculus, in Proc. of ICALP: Automata, Lan-

guages and Programming, LNCS 1099, Springer, 1996, pp. 87–97.

[12] D. NIWINSKI AND H. SEIDL, On distributive fixed-point expressions, Inf. Théorique et

Applications, 33 (1999), pp. 427–446.

[13] J. REIF, The complexity of two-player games of incomplete information, Journal of Computer

and System Sciences, 29 (1984), pp. 274–301.

[14] S. SCHEWE, Solving parity games in big steps, in Proc. of FSTTCS: Foundations of Soft-

ware Tech. and Theor. Comp. Sc., LNCS 4855, Springer, 2007, pp. 449–460.

[15] H. SEIDL, Fast and simple nested fixpoints, Information Processing Letters, 59 (1996),

pp. 303–308.

[16] W. THOMAS, Languages, automata, and logic, Handbook of Formal Languages, 3 (1997),

pp. 389–455.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

