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ABSTRACT. Simulation and bisimulation metrics for stochastic systems provide a quantitative gen-
eralization of the classical simulation and bisimulation relations. These metrics capture the similarity
of states with respect to quantitative specifications written in the quantitative µ-calculus and related
probabilistic logics.
We present algorithms for computing the metrics on Markov decision processes (MDPs), turn-
based stochastic games, and concurrent games. For turn-based games and MDPs, we provide a
polynomial-time algorithm based on linear programming for the computation of the one-step metric
distance between states. The algorithm improves on the previously known exponential-time algo-
rithm based on a reduction to the theory of reals. We then present PSPACE algorithms for both
the decision problem and the problem of approximating the metric distance between two states,
matching the best known bound for Markov chains. For the bisimulation kernel of the metric, which
corresponds to probabilistic bisimulation, our algorithm works in time O(n4) for both turn-based
games and MDPs; improving the previously best known O(n9 · log(n)) time algorithm for MDPs.
For a concurrent game G, we show that computing the exact distance between states is at least as
hard as computing the value of concurrent reachability games and the square-root-sum problem
in computational geometry. We show that checking whether the metric distance is bounded by
a rational r, can be accomplished via a reduction to the theory of real closed fields, involving a

formula with three quantifier alternations, yielding O(|G|O(|G|5)) time complexity, improving the

previously known reduction with O(|G|O(|G|7)) time complexity. These algorithms can be iterated
to approximate the metrics using binary search.

1 Introduction

System metrics constitute a quantitative generalization of system relations. The bisimula-

tion relation captures state equivalence: two states s and t are bisimilar if and only if they

cannot be distinguished by any formula of the µ-calculus [4]. The bisimulation metric cap-

tures the degree of difference between two states: the bisimulation distance between s and t

is a real number that provides a tight bound for the difference in value of formulas of the

quantitative µ-calculus at s and t [9]. A similar connection holds between the simulation

relation and the simulation metric.

The classical system relations are a basic tool in the study of boolean properties of sys-

tems, that is, the properties that yield a truth value. As an example, if a state s of a transition
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system can reach a set of target states R, written s |= 3R in temporal logic, and t can simu-

late s, then we can conclude t |= 3R. System metrics play a similarly fundamental role in

the study of the quantitative behavior of systems. As an example, if a state s of a Markov

chain can reach a set of target states R with probability 0.8, written s |= P≥0.83R, and if

the metric simulation distance from t to s is 0.3, then we can conclude t |= P≥0.53R. The

simulation relation is at the basis of the notions of system refinement and implementation,

where qualitative properties are concerned. Similarly, simulation metrics provide a notion

of approximate refinement and implementation for quantitative properties.

We consider three classes of systems:

• Markov decision processes. In these systems there is one player. At each state, the player

can choose amove; the current state and themove determine a probability distribution

over the successor states.

• Turn-based games. In these systems there are two players. At each state, only one of the

two players can choose amove; the current state and themove determine a probability

distribution over the successor states.

• Concurrent games. In these systems there are two players. At each state, both players

choose moves simultaneously and independently; the current state and the chosen

moves determine a probability distribution over the successor states.

Systemmetrics were first studied forMarkov chains andMarkov decision processes (MDPs)

[9, 18, 19], and they have recently been extended to two-player turn-based and concurrent

games [8]. The fundamental property of themetrics is that they provide a tight bound for the

difference in value that formulas belonging to quantitative specification languages assume

at the states of a system. Precisely, let qµ indicate the quantitative µ-calculus, a specification

language in which many of the classical specification properties, including reachability and

safety properties, can be written [7]. The metric bisimulation distance between two states s

and t, denoted [s ≃g t], has the property that [s ≃g t] = supϕ∈qµ |ϕ(s) − ϕ(t)|, where ϕ(s)

and ϕ(t) are the values ϕ assumes at s and t. A metric is associated with a kernel: the kernel

of a metric is the relation that relates pairs of states at distance 0; to each metric corresponds

a metric kernel relation. The kernel of the simulation metric is probabilistic simulation; the

kernel of the bisimulation metric is probabilistic bisimulation [15].

We investigate algorithms for the computation of the metrics. The metrics can be com-

puted in iterative fashion, following the inductive way in which they are defined. A metric

d can be computed as the limit of a monotonically increasing sequence of approximations

d0, d1, d2, . . . , where d0(s, t) is the difference in value that variables can have at states s and

t. For k ≥ 0, dk+1 is obtained from dk via dk+1 = H(dk), where the operator H depends on

the metric (bisimulation, or simulation), and on the type of system. Our main results are as

follows:

1. Metrics for turn-based games and MDPs. We show that for turn-based games, and

MDPs, the one-step metric operator H for both bisimulation and simulation can be

computed in polynomial time, via a reduction to linear programming (LP). The only

previously known algorithm, which can be inferred from [8], had EXPTIME complex-

ity and relied on a reduction to the theory of real closed fields; the algorithm thus

had more a complexity-theoretic, than a practical value. The key step in obtaining our

polynomial-time algorithm consists in transforming the original sup-inf non-linear op-
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timization problem (which required the theory of reals) into a quadratic-size inf linear

optimization problem that can be solved via LP. We then present PSPACE algorithms

for both the decision problem of the metric distance between two states and for the

problem of computing the approximate metric distance between two states for turn-

based games and MDPs. Our algorithms match the complexity of the best known

algorithms for the sub-class of Markov chains [17].

2. Metrics for concurrent games. For concurrent games, our algorithms for the H opera-

tor still rely on decision procedures for the theory of real closed fields, leading to an

EXPTIME procedure. However, the algorithms that could be inferred from [8] had

time-complexity O(|G|O(|G|7)), where |G| is the size of a game; we improve this result

by presenting algorithms with O(|G|O(|G|5)) time-complexity.

3. Hardness of metric computation in concurrent games. We show that computing the exact

distance of states of concurrent games is at least as hard as computing the value of

concurrent reachability games [10], which is known to be at least as hard as solving

the square-root-sum problem in computational geometry. These two problems are

known to lie in PSPACE, and have resisted many attempts to show that they are in

NP.

4. Kernel of the metrics. We present polynomial time algorithms to compute the simu-

lation and bisimulation kernel of the metrics for turn-based games and MDPs. Our

algorithm for the bisimulation kernel of the metric runs in time O(n4) (assuming a

constant number of moves) as compared to the previous known O(n9 · log(n)) algo-
rithm of [21] for MDPs, where n is the size of the state space. For concurrent games the

simulation and the bisimulation kernel can be computed in time O(|G|O(|G|3)), where

|G| is the size of a game.

Our formulation of probabilistic simulation and bisimulation differs from the one pre-

viously considered for MDPs in [1]: there, the names of moves (called “labels”) must be

preserved by simulation and bisimulation, so that a move from a state has at most one

candidate simulator move at another state. Our problem for MDPs is closer to the one con-

sidered in [21], where labels must be preserved, but where a label can be associated with

multiple probability distributions (moves).

For turn-based games andMDPs, the algorithms for probabilistic simulation and bisim-

ulation can be obtained from the LP algorithms that yield the metrics. For probabilistic sim-

ulation, the algorithmwe obtain coincideswith the algorithm of [21]. The algorithm requires

the solution of feasibility-LP problems with a number of variables and inequalities that is

quadratic in the size of the system. For probabilistic bisimulation, we are able to improve on

this result by providing an algorithm that requires the solution of feasibility-LP problems

that have linearly many variables and constraints. Precisely, as for ordinary bisimulation,

the kernel is computed via iterative refinement of a partition of the state space [14]. Given

two states that belong to the same partition, to decide whether the states need to be split in

the next partition-refinement step, we present an algorithm that requires the solution of a

feasibility-LP problem with a number of variables equal to the number of moves available

at the states, and number of constraints linear in the number of equivalence classes. The

proofs omitted due to lack of space are available in [6].
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2 Definitions

Valuations and distributions. Let [θ1, θ2] ⊆ IR be a fixed, non-singleton real interval. Given a

set of states S, a valuation over S is a function f : S 7→ [θ1, θ2] associating with every state

s ∈ S a value θ1 ≤ f (s) ≤ θ2; we let F be the set of all valuations. For c ∈ [θ1, θ2], we denote

by c the constant valuation such that c(s) = c at all s ∈ S. We order valuations pointwise:

for f , g ∈ F , we write f ≤ g iff f (s) ≤ g(s) at all s ∈ S; we remark that F , under ≤, forms a

lattice. Given a, b ∈ IR, we write a⊔ b = max{a, b}, and a⊓ b = min{a, b}; we extend ⊓,⊔ to

valuations by interpreting them in pointwise fashion. For a finite set A, let Dist(A) denote
the set of probability distributions over A. We say that p ∈ Dist(A) is deterministic if there is

a ∈ A such that p(a) = 1. We assume a fixed finite set V of observation variables.

Game structures. A (two-player, concurrent) game structure G = 〈S, [·],Moves, Γ1, Γ2, δ〉 con-
sists of the following components: (a) a finite set S of states; (b) a variable interpreta-

tion [·] : V 7→ S 7→ [θ1, θ2], which associates with each variable v ∈ V a valuation

[v]; (c) a finite set Moves of moves; (d) two move assignments Γ1, Γ2: S 7→ 2Moves \ ∅

: for i ∈ {1, 2}, the assignment Γi associates with each state s ∈ S the nonempty set

Γi(s) ⊆ Moves of moves available to player i at state s; and (e) a probabilistic transition

function δ: S×Moves×Moves 7→ Dist(S), that gives the probability δ(s, a1, a2)(t) of a tran-

sition from s to t when player 1 plays move a1 and player 2 plays move a2.

At every state s ∈ S, player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and inde-

pendently player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to a successor state

t ∈ S with probability δ(s, a1, a2)(t). We let Dest(s, a1, a2) = {t ∈ S | δ(s, a1, a2)(t) > 0}. The
propositional distance p(s, t) between two states s, t ∈ S is the maximum difference in valu-

ation over all variables: p(s, t) = maxv∈V |[v](s) − [v](t)|. The kernel of the propositional

distance induces an equivalence on states: for states s, t, we let s ≡ t if p(s, t) = 0. In the

following, unless otherwise noted, the definitions refer to a game structure G with compo-

nents 〈S, [·],Moves, Γ1, Γ2, δ〉. We indicate the opponent of a player i ∈ {1, 2} by ∼i = 3− i.

We consider the following subclasses of games.

Turn-based game structures and MDPs. A game structure G is turn-based if S = S1 ∪ S2 with

S1 ∩ S2 = ∅ where s ∈ S1 implies |Γ2(s)| = 1, and s ∈ S2 implies |Γ1(s)| = 1, and further,

there exists a special variable turn ∈ V , such that [turn]s = θ1 iff s ∈ S1, and [turn]s = θ2 iff

s ∈ S2. For i ∈ {1, 2}, we say that a structure is an i-MDP if ∀s ∈ S, |Γ∼i(s)| = 1. For MDPs,

we omit the (single) move of the player without a choice of moves, and write δ(s, a) for the
transition function.

Moves and strategies. A mixed move is a probability distribution over the moves avail-

able to a player at a state. We denote by Di(s) ⊆ Dist(Moves) the set of mixed moves

available to player i ∈ {1, 2} at s ∈ S, where: Di(s) = {D ∈ Dist(Moves) | D(a) >

0 implies a ∈ Γi(s)}. The moves in Moves are called pure moves. We extend the tran-

sition function to mixed moves by defining, for s ∈ S and x1 ∈ D1(s), x2 ∈ D2(s),
δ(s, x1, x2)(t) = ∑a1∈Γ1(s) ∑a2∈Γ2(s) δ(s, a1, a2)(t) · x1(a1) · x2(a2). A path σ of G is an infi-

nite sequence s0, s1, s2, ... of states in s ∈ S, such that for all k ≥ 0, there are mixed moves

xk1 ∈ D1(sk) and xk2 ∈ D2(sk) with δ(sk, x
k
1, x

k
2)(sk+1) > 0. We write Σ for the set of all paths,

and Σs the set of all paths starting from state s.

A strategy for player i ∈ {1, 2} is a function πi : S
+ 7→ Dist(Moves) that associates with
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every non-empty finite sequence σ ∈ S+ of states, representing the history of the game, a

probability distribution πi(σ), which is used to select the next move of player i; we require

that for all σ ∈ S∗ and states s ∈ S, if πi(σs)(a) > 0, then a ∈ Γi(s). We write Πi for the set

of strategies for player i. Once the starting state s and the strategies π1 and π2 for the two

players have been chosen, the game is reduced to an ordinary stochastic process, denoted

Gπ1,π2
s , which defines a probability distribution on the set Σ of paths. We denote by Prπ1,π2

s (·)
the probability of a measurable event with respect to this process, and denote by E

π1,π2
s (·)

the associated expectation operator. For k ≥ 0, we let Xk : Σ → S be the random variable

denoting the k-th state along a path.

One-step expectations and predecessor operators. Given a valuation f ∈ F , a state s ∈ S, and

two mixed moves x1 ∈ D1(s) and x2 ∈ D2(s), we define the expectation of f from s under

x1, x2 by E
x1,x2
s ( f ) = ∑t∈S δ(s, x1, x2)(t) f (t). For a game structure G, for i ∈ {1, 2} we

define the valuation transformer Prei : F 7→ F : for all f ∈ F and s ∈ S, Prei( f )(s) =
supxi∈Di(s)

infx∼i∈D∼i(s)
E

xi ,x∼i
s ( f ). Intuitively, Prei( f )(s) is the maximal expectation player

i can achieve of f after one step from s: this is the standard “one-day” or “next-stage”

operator of the theory of repeated games [11].

Game bisimulation and simulation metrics. A directed metric is a function d : S2 7→ IR≥0 which

satisfies d(s, s) = 0 and the triangle inequality d(s, t) ≤ d(s, u) + d(u, t) for all s, t, u ∈ S. We

denote by M ⊆ S2 7→ IR the space of all directed metrics; this space, ordered pointwise,

forms a lattice which we indicate with (M,≤). Since d(s, t) may be zero for s 6= t, these

functions are pseudo-metrics as per prevailing terminology [18]. In the following, we omit

“directed” and simply say metric when the context is clear.

For a metric d, we indicate with C(d) the set of valuations k ∈ F where k(s) − k(t) ≤
d(s, t) for every s, t ∈ S. A metric transformer H�1

: M 7→ M is defined as follows, for all

d ∈ M and s, t ∈ S: H�1
(d)(s, t) = p(s, t) ⊔ supk∈C(d)

(

Pre1(k)(s) − Pre1(k)(t)
)

. The player 1

game simulation metric [�1] is the least fixpoint of H�1
; the game bisimulation metric [≃1] is the

least symmetrical fixpoint of H�1
and is defined as follows, for all d ∈ M and s, t ∈ S:

H≃1
(d)(s, t) = H�1

(d)(s, t) ⊔ H�1
(d)(t, s) . (1)

The operator H�1
is monotonic, non-decreasing and continuous in the lattice (M,≤). We

can therefore compute H�1
using Picard iteration; we denote by [�n

1 ] = Hn
�1

(0) the n-iterate
of this. From the determinacy of concurrent games with respect to ω-regular goals [12], we

have that the game bisimulation metric is reciprocal, in that [≃1] = [≃2]; we will thus simply

write [≃g]. Similarly, for all s, t ∈ S we have [s �1 t] = [t �2 s].
The main result in [8] about these metrics is that they are logically characterized by the

quantitative µ-calculus of [7]. We omit the formal definition of the syntax and semantics

of the quantitative µ-calculus (see [7] for details). Given a game structure G, every closed

formula ϕ of the quantitative µ-calculus defines a valuation [[ϕ]] ∈ F . Let qµ (respectively,

qµ+
1 ) consist of all quantitative µ-calculus formulas (respectively, all quantitative µ-calculus

formulas with only the Pre1 operator and all negations before atomic propositions). The

result of [8] shows that for all states s, t ∈ S,

[s �1 t] = sup
ϕ∈qµ+

1

([[ϕ]](s)− [[ϕ]](t)) [s ≃g t] = sup
ϕ∈qµ

|[[ϕ]](s)− [[ϕ]](t)| . (2)
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Metric kernels. The kernel of the metric [≃g] defines an equivalence relation ≃g on the states

of a game structure: s ≃g t iff [s ≃g t] = 0; the relation ≃g is called the game bisimulation

relation [8]. We define the game simulation preorder s �1 t as the kernel of the directed

metric [�1], that is, s �1 t iff [s �1 t] = 0. For notational ease, given a relation R ⊆ S× S,

we denote by 1R : S× S 7→ {0, 1} its characteristic set, defined as 1R(s, t) = 1 iff (s, t) ∈ R.

Given a relation R ⊆ S× S, let B(R) ⊆ F consist of all valuations k ∈ F such that, for all

s, t ∈ S, if sRt then k(s) ≤ k(t).

3 Algorithms for Turn-Based Games and MDPs

In this section, we present algorithms for computing the metric and its kernel for turn-based

games and MDPs. We first present a polynomial time algorithm to compute the operator

H�i
(d) that gives the exact one-step distance between two states, for i ∈ {1, 2}. We then

present a PSPACE algorithm to decide whether the limit distance between two states s and

t (i.e., [s �1 t]) is at most a rational value r. Our algorithm matches the best known bound

for the special class of Markov chains [17]. Finally, we present improved algorithms for the

important case of the kernel of the metrics. For the bisimulation kernel our algorithm is

significantly more efficient compared to previous algorithms.

Algorithms for the metrics. For turn-based games and MDPs, only one player has a choice

of moves at a given state. We consider two player 1 states. A similar analysis applies to

player 2 states. We remark that the distance between states in Si and S∼i is always θ2 − θ1
due to the existence of the variable turn. For a metric d ∈ M, and states s, t ∈ S1, computing

H�1
(d)(s, t), given that p(s, t) is trivially computed by its definition, entails evaluating the

expression, supk∈C(d) supx∈D1(s)
infy∈D1(t)

(E
x
s (k) − E

y
t (k)). By expanding the expectations,

we get the following form,

sup
k∈C(d)

sup
x∈D1(s)

inf
y∈D1(t)

(

∑
u∈S

∑
a∈Γ1(s)

δ(s, a)(u) · x(a) · k(u) − ∑
v∈S

∑
b∈Γ1(t)

δ(t, b)(v) · y(b) · k(v)
)

. (3)

We observe that the one-step distance as defined in (3) is a sup-inf non-linear (quadratic) op-

timization problem. The following lemma transforms (3) to an inf linear optimization prob-

lem, which can be solved by linear programming.

Lemma 1 For all turn-based game structures G, for all player i states s and t, given a metric

d ∈ M, the following equality holds,

sup
k∈C(d)

sup
x∈Di(s)

inf
y∈Di(t)

(E
x
s (k) − E

y
t (k)) = sup

a∈Γi(s)

inf
y∈Di(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) .

Therefore, given d ∈ M, we can write the player 1 one-step distance between states s

and t as follows,

OneStep(s, t, d) = sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) . (4)

Hence we compute the expression OneStep(s, t, d, a) = infy∈D1(t)
supk∈C(d)(E

a
s(k) − E

y
t (k))

for all a ∈ Γ1(s), and then choose the maximum: maxa∈Γ1(s) OneStep(s, t, d, a). We now
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present a lemma that helps to reduce the above inf-sup optimization problem to a linear

program. We first introduce some notation. Let λ denote the set of variables λu,v, for u, v ∈
S. Given d ∈ M, a ∈ Γ1(s), and a distribution y ∈ D1(t), we write λ ∈ Φ(d, a, y) if the

following linear constraints are satisfied:

(1) for all v ∈ S : ∑
u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S : ∑
v∈S

λu,v = ∑
b∈Γ1(t)

y(b) · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0 .

Lemma 2 For all turn-based games and MDPs, for all d ∈ M, and for all s, t ∈ S, we have

sup
a∈Γ1(s)

inf
y∈D1(t)

sup
k∈C(d)

(E
a
s(k) − E

y
t (k)) = sup

a∈Γ1(s)

inf
y∈D1(t)

inf
λ∈Φ(d,a,y)

(

∑
u,v∈S

d(u, v) · λu,v

)

.

Using the above result we obtain the following LP for OneStep(s, t, d, a) over the vari-

ables: (a) {λu,v}u,v∈S, and (b) yb for b ∈ Γ1(t):

Minimize ∑
u,v∈S

d(u, v) · λu,v subject to (5)

(1) for all v ∈ S : ∑
u∈S

λu,v = δ(s, a)(v); (2) for all u ∈ S : ∑
v∈S

λu,v = ∑
b∈Γ1(t)

yb · δ(t, b)(u);

(3) for all u, v ∈ S : λu,v ≥ 0; (4) for all b ∈ Γ1(t) : yb ≥ 0; (5) ∑
b∈Γ1(t)

yb = 1 .

Theorem 1 For all turn-based games and MDPs, given d ∈ M, for all states s, t ∈ S, we can

compute H�1
(d)(s, t) in polynomial time by the LP (5).

Iteration of OneStep(s, t, d) converges to the exact distance. However, in general, there

are no known bounds for the rate of convergence. We now present a decision procedure

to check whether the exact distance between two states is at most a rational value r. We

first show a way to express the predicate d(s, t) = OneStep(s, t, d), for a given d ∈ M. We

observe that since H�1
is non-decreasing, we have OneStep(s, t, d) ≥ d(s, t). It follows that

the equality d(s, t) = OneStep(s, t, d) holds iff all the linear inequalities of LP (5) are satisfied,

and d(s, t) = ∑u,v∈S d(u, v) · λu,v holds. It then follows that d(s, t) = OneStep(s, t, d) can be

written as a predicate in the theory of real closed fields. Given a rational r, two states s and

t, we present an existential theory of reals formula to decide whether [s �1 t] ≤ r. Since

[s �1 t] is the least fixed point of H�1
, we define a formula Φ(r) that is true iff [s �1 t] ≤ r,

as follows: Φ(r) = ∃d ∈ M.[(OneStep(s, t, d) = d(s, t)) ∧ (d(s, t) ≤ r)]. If the formula Φ(r)
is true, then there is a fixpoint that is bounded by r, which means that the least fixpoint is

bounded by r. Conversely, if the least fixpoint is bounded by r, then the least fixpoint is a

witness d for Φ(r) being true. Since the existential theory of reals is decidable in PSPACE [5],

we have the following result.

Theorem 2 (Decision complexity for exact distance). For all turn-based games and MDPs,

given a rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in PSPACE.
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Approximation. For a rational ǫ > 0, using binary search and O(log( θ2−θ1
ǫ )) calls to check

Φ(r), we can obtain an interval [l, u] with u − l ≤ ǫ such that [s �1 t] lies in the interval

[l, u].

Algorithms for the kernel. The kernel of the simulation metric �1 can be computed as

the limit of the series �0
1, �

1
1, �

2
1, . . . , of relations. For all s, t ∈ S, we have (s, t) ∈�0

1 iff

s ≡ t. For all n ≥ 0, we have (s, t) ∈�n+1
1 iff OneStep(s, t, 1�n

1
) = 0. Checking the condition

OneStep(s, t, 1�n
1
) = 0, corresponds to solving an LP feasibility problem for every a ∈ Γ1(s),

as it suffices to replace the minimization goal γ = ∑u,v∈S 1�n
1
(u, v) · λu,v with the constraint

γ = 0 in the LP (5). This is the same LP feasibility problem that was introduced in [21] as

part of an algorithm to decide simulation of probabilistic systems in which each label may

lead to one or more distributions over states.

For the bisimulation kernel, we present a more efficient algorithm, which also improves

on the algorithms presented in [21]. The idea is to proceed by partition refinement, as usual

for bisimulation computations. The refinement step is as follows: given a partition, two

states s and t belong to the same refined partition iff every pure move from s induces a

probability distribution on equivalence classes that can be matched by mixed moves from t,

and vice versa. Precisely, we compute a sequence Q0, Q1, Q2, . . . , of partitions. Two states

s, t belong to the same class of Q0 iff they have the same variable valuation (i.e., iff s ≡ t).

For n ≥ 0, since by the definition of the bisimulation metric given in (1), [s ≃g t] = 0 iff

[s �1 t] = 0 and [t �1 s] = 0, two states s, t in a given class of Qn remain in the same class

in Qn+1 iff both (s, t) and (t, s) satisfy the set of feasibility LP problems OneStepBis(s, t,Qn)
as given below:

OneStepBis(s, t,Q) consists of one feasibility LP problem for each a ∈ Γ(s). The
problem for a ∈ Γ(s) has set of variables {xb | b ∈ Γ(t)}, and set of constraints:

(1) for all b ∈ Γ(t) : xb ≥ 0, (2) ∑
b∈Γ(t)

xb = 1,

(3) for all V ∈ Q : ∑
b∈Γ(t)

∑
u∈V

xb · δ(t, b)(u) ≥ ∑
u∈V

δ(s, a)(u) .

Complexity. The number of partition refinement steps required for the computation of both

the simulation and the bisimulation kernel is bounded byO(|S|2) for turn-based games and

MDPs, where S is the set of states. At every refinement step, at most O(|S|2) state pairs

are considered, and for each state pair (s, t) at most |Γ(s)| LP feasibility problems needs to

be solved. Let us denote by LPF(n,m) the complexity of solving the feasibility of m linear

inequalities over n variables. We obtain the following result.

Theorem 3 For all turn-based games and MDPs G, the following assertions hold: (a) the sim-

ulation kernel can be computed in O
(

n4 · m · LPF(n2 + m, n2 + 2n + m + 2)
)

time; and (b) the

bisimulation kernel can be computed in O
(

n4 ·m · LPF(m, n + m + 1)
)

time; where n = |S| is the
size of the state space, and m = maxs∈S |Γ(s)|.

Remarks: The best known algorithm for LPF(n,m) works in time O(n2.5 · log(n)) [20] (as-
suming each arithmetic operation takes unit time). The previous algorithm for the bisim-

ulation kernel checked two way simulation and hence has the complexity O(n4 · m · (n2 +
m)2.5 · log(n2 +m)), whereas our algorithmworks in timeO(n4 ·m ·m2.5 · log(m)). For most
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practical purposes, the number of moves at a state is constant (i.e., m is constant). For the

case whenm is constant, the previous best algorithmworked inO(n9 · log(n)) time, whereas

our algorithm works in time O(n4).

4 Algorithms for Concurrent Games

In this section we first show that the computation of the metric distance is at least as hard as

the computation of optimal values in concurrent reachability games. The exact complexity

of the latter is open, but it is known to be at least as hard as the square-root sum problem,

which is in PSPACE but whose inclusion in NP is a long-standing open problem [10]. Next,

we present algorithms based on a decision procedure for the theory of real closed fields, for

both checking the bounds of the exact distance and the kernel of the metrics. Our reduction

to the theory of real closed fields removes one quantifier alternation when compared to the

previous known formula (inferred from [8]). This improves the complexity of the algorithm.

Reduction of reachability games to metrics. We will use the following terms in the result.

A proposition is a boolean observation variable, and we say a state is labeled by a proposition

q iff q is true at s. For a proposition q, let 3q denote the set of paths that visit a state labeled

by q at least once. In concurrent reachability games, the objective is 3q, for a proposition q.

Theorem 4 Consider a concurrent game structure G, with a single proposition q. We can con-

struct in linear-time a concurrent game structure G′, with one additional state t′, such that for all

s ∈ S, we have

[s �1 t
′] = sup

π1∈Π1

inf
π2∈Π2

Prπ1,π2
s (3q) .

Algorithms for the metrics. We present a lemma that helps obtain reduced-complexity

algorithms for concurrent games. The lemma states that the distance [s �1 t] is attained by

restricting player 2 to pure moves at state t, for all states s, t ∈ S.

Lemma 3 Given a game structure G and a distance d ∈ M, we have

sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
y2∈D2(t)

inf
x2∈D2(s)

(E
x1,x2
s (k))− E

y1,y2
t (k))

= sup
k∈C(d)

sup
x1∈D1(s)

inf
y1∈D1(t)

sup
b∈Γ2(t)

inf
x2∈D2(s)

(E
x1,x2
s (k) − E

y1,b
t (k)) . (6)

We now present algorithms for metrics in concurrent games. Due to the reduction

from concurrent reachability games, shown in Theorem 4, it is unlikely that we have an

algorithm in NP for the metric distance between states. We therefore construct statements

in the theory of real closed fields, firstly to decide whether [s �1 t] ≤ r, for a rational r, so

that we can approximate the metric distance between states s and t, and secondly to decide

if [s �1 t] = 0 in order to compute the kernel of the game simulation and bisimulation

metrics.

The statements improve on the complexity that can be achieved by a direct translation

of the statements of [8] to the theory of real closed fields. The complexity reduction is based

on the observation that using Lemma 3, we can replace a sup operator with finite conjunc-

tion, and therefore reduce the quantifier complexity of the resulting formula. Fix a game
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structure G and states s and t of G. We proceed to construct a statement in the theory of

reals that can be used to decide if [s �1 t] ≤ r, for a given rational r.

In the following, we use variables x1, y1 and x2 to denote a set of variables {x1(a) | a ∈
Γ1(s)}, {y1(a) | a ∈ Γ1(t)} and {x2(b) | b ∈ Γ2(s)} respectively. We use k to denote the set

of variables {k(u) | u ∈ S}, and d for the set of variables {d(u, v) | u, v ∈ S}. The variables
α, α′, β, β′ range over reals. For convenience, we assume Γ2(t) = {b1, . . . , bl}.

First, notice that we can write formulas that state that a variable x is a mixed move for

a player at state s, and k is a constructible predicate (i.e., k ∈ C(d)):

IsDist(x, Γ1(s)) ≡
∧

a∈Γ1(s)

x(a) ≥ 0∧
∧

a∈Γ1(s)

x(a) ≤ 1∧ ∑
a∈Γ1(s)

x(a) = 1

kBounded(k, d) ≡
∧

u∈S

[

k(u) ≥ θ1 ∧ k(u) ≤ θ2

]

∧
∧

u,v∈S

(k(u) − k(v) ≤ d(u, v)) .

In the following, we write bounded quantifiers of the form “∃x1 ∈ D1(s)” or “∀k ∈ C(d)”
which mean respectively ∃x1.IsDist(x1, Γ1(s)) ∧ · · · and ∀k.kBounded(k, d) → · · · .

Let η(k, x1, x2, y1, b) be the polynomial E
x1,x2
s (k)−E

y1,b
t (k). Notice that η is a polynomial

of degree 3. We construct the formula for game simulation in stages. First, we construct a

formula Φ1(d, k, x, α) with free variables d, k, x, α such that Φ1(d, k, x1, α) holds for a valua-

tion to the variables iff α = infy1∈D1(t) supb∈Γ2(t)
infx2∈D2(s)(E

x1,x2
s (k) − E

y1,b
t (k)). We use the

following observation to move the innermost inf ahead of the sup over the finite set Γ2(t)
(for a function f ):

sup
b∈Γ2(t)

inf
x2∈D2(s)

f (b, x2, x) = inf
x
b1
2 ∈D2(s)

. . . inf
x
bl
2 ∈D2(s)

max( f (b1, x
b1
2 , x), . . . , f (bl , x

bl
2 , x)) .

Using the above observation the formula Φ1(d, k, x1, α) can be written as a ∀∃ formula (i.e.,

with one quantifier alternation) in the theory of reals (see [6] for the formula). Using Φ1,

we construct a formula Φ(d, α) with free variables d and α such that Φ(d, α) is true iff: α =

supk∈C(d) supx1∈D1(s)
infy1∈D1(t)

supb∈Γ2(t)
infx2∈D2(s)

(E
x1,x2
s (k) − E

y1,b
t (k)). The formula Φ is

defined as follows:

∀k ∈ C(d).∀x1 ∈ D1(s).∀β.∀α′.
[

Φ1(d, k, x1, β) → (β ≤ α)∧
(∀k′ ∈ C(d).∀x′1 ∈ D1(s).∀β′.Φ1(d, k

′, x′1, β′) ∧ β′ ≤ α′) → α ≤ α′

]

. (7)

Finally, given a rational r, we can check if [s �1 t] ≤ r by checking if the following sentence

is true: ∃d ∈ M.∃a ∈ M.[Φ(d, a) ∧ (d = a) ∧ (d(s, t) ≤ r)]. The above sentence is true

iff the least fixpoint is bounded by r. Like in the case of turn-based games and MDPs,

given a rational ǫ > 0, using binary search and O(log( θ2−θ1
ǫ )) calls to a decision procedure

to check the above sentence, we can compute an interval [l, u] with u − l ≤ ǫ, such that

[s �1 t] ∈ [l, u].

Complexity. Note that Φ is of the form ∀∃∀, because Φ1 is of the form ∀∃, and appears in

negative position in Φ. The formula Φ has (|S| + |Γ1(s)| + 3) universally quantified vari-

ables, followed by (|S|+ |Γ1(s)|+ 3+ 2(|Γ1(t)|+ |Γ2(s)| · |Γ2(t)|+ |Γ2(t)|+ 2)) existentially
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quantified variables, followed by 2(|Γ1(t)| + |Γ2(s)| · |Γ2(t)| + |Γ2(t)| + 1) universal vari-

ables. The sentence for the least fixpoint introduces |S|2 + |S|2 existentially quantified vari-

ables ahead of Φ. The matrix of the formula is of length at most quadratic in the size of

the game, and the maximum degree of any polynomial in the formula is 3. We define the

size of a game G as: |G| = |S| + |T|, where |T| = ∑s,t∈S ∑a,b∈Moves |δ(s, a, b)(t)|. From the

complexity of deciding a formula in the theory of real closed fields [2] we get the following

result.

Theorem 5 (Decision complexity for exact distance). For all concurrent games G, given a

rational r, and two states s and t, whether [s �1 t] ≤ r can be decided in time O(|G|O(|G|5)).

In contrast, the formula to check whether [s �1 t] ≤ r, for a rational r, as implied by the

definition of H�1
(d)(s, t), that does not use Lemma 3, has five quantifier alternations due

to the inner sup, which when combined with the 2 · |S|2 existentially quantified variables in

the sentence for the least fixpoint, yields a decision complexity of O(|G|O(|G|7)).

Computing the kernels. Similar to the case of turn-based games and MDPs, the kernel of

the simulation metric �1 for concurrent games can be computed as the limit of the series

�0
1, �

1
1, �

2
1, . . . , of relations. For all s, t ∈ S, we have (s, t) ∈�0

1 iff s ≡ t. For all n ≥ 0, we

have (s, t) ∈�n+1
1 iff the following sentence Φs is true: ∀a.Φ(�n, a) → a ≤ 0, where Φ is

defined as in (7). At any step in the iteration, the distance between any pair of states u, v ∈ S

is defined as follows: for all u, v ∈ S we have d(u, v) = 0 if (s, t) ∈�n
1 , else if (s, t) 6∈�n

1 then

d(u, v) = 1. To compute the bisimulation kernel, we again proceed by partition refinement.

For a set of partitions Q0,Q1, . . ., (s, t) ∈≃n+1 iff the following sentence Φb is true for the

state pairs (s, t) and (t, s): ∀a.Φ(Qn, a) → a ≤ 0.

Complexity. In the worst case we needO(|S|2) partition refinement steps for computing both

the simulation and the bisimulation relation. At each partition refinement step the number

of state pairs we consider is bounded byO(|S|2). We can check if Φs and Φb are true using a

decision procedure for the theory of real closed fields. Therefore, we needO(|S|4) decisions
to compute the kernels. The partitioning of states based on the decisions can be done by any

of the partition refinement algorithms.

Theorem 6 For all concurrent games G, states s and t, whether s �1 t can be decided in

O(|G|O(|G|3)) time, and whether s ≃g t can be decided in O(|G|O(|G|3)) time.
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