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ABSTRACT. We show that a randomly chosen 3-CNF formula over n variables with clauses-to-
variables ratio at least 4.4898 is asymptotically almost surely unsatisfiable. The previous best such
bound, due to Dubois in 1999, was 4.506. The first such bound, independently discovered by many
groups of researchers since 1983, was 5.19. Several decreasing values between 5.19 and 4.506 were
published in the years between. The probabilistic techniques we use for the proof are, we believe, of
independent interest.

1 Introduction

Satisfiability of Boolean formulas is a problem universally believed to be hard. Determin-

ing the source of this hardness will lead, as is often stressed, to applications in domains

even outside the realm of mathematics or computer science; moreover, and perhaps more

importantly, it will enhance our understanding of the foundations of computing.

In the beginning of the 90’s several groups of experimentalists chose to examine the

source of this hardness from the following viewpoint: consider a random 3-CNF formula

with a given clauses-to-variables ratio, which is known as the density of the formula. What

is the probability of it being satisfied and how does this probability depend on the density?

Their simulation results led to the conclusion that if the density is fixed and below a number

approximately equal to 4.27, then for large n, a randomly chosen formula is almost always

satisfiable, whereas if the density is fixed and above 4.27, a randomly chosen formula is,

for large n, almost always unsatisfiable. More importantly, around 4.27 the complexity of

several well known complete algorithms for checking satisfiability reaches a steep peak (see

e.g. [10, 15]). So, in a certain sense, 4.27 is the point where from an empirical, statistical

viewpoint the “hard” instances of SAT are to be found. Similar results were obtained for

other combinatorial problems, and also for k-SAT for values of k > 3.
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These experimental results were followed by an intense activity to provide “rigorous

results” (the expression often used in this context to refer to theorems). Perhaps the most

important advance is due to Friedgut: in [7] he proved that there is a sequence of reals (cn)n
such that for any ǫ > 0 the probability of a randomly chosen 3-CNF-formula with density

cn − ǫ being satisfiable approaches 1 (as n → ∞), whereas for density cn + ǫ, it approaches

0. Intuitively, this means that the transition from satisfiability to unsatisfiability is sharp,

however it is still not known if (cn)n converges.

Despite the fact that the convergence of (cn)n is still an open problem, increasingly

improved upper and lower bounds on its terms have been computed in a rigorous way by

many groups of researchers. The currently best lower bound is 3.52 [9, 2].

With respect to upper bounds, which is the subject of this work, the progress was

slower but better, in the sense that the experimentally established threshold is more closely

bounded from above, rather than from below. A naı̈ve application of the first moment

method yields an upper bound of 5.191 (see e.g., [6]). An important advance was made

in [8], where the upper bound was improved to 4.76. In the sequel, the work of several

groups of researchers, based on more refined variants of the first moment method, culmi-

nated in the value of 4.571 [4, 11] (see the nice surveys [12, 3] for a complete sequence of

the events). The core idea in these works was to use the first moment method by comput-

ing the expected number of not all satisfying truth assignments, but only of those among

them that are local maxima in the sense of a lexicographic ordering, within a degree of local-

ity determined by the Hamming distance between truth assignments (considered as binary

sequences). For degree of locality 1, this amounts to computing the expected number of sat-

isfying assignments that become unsatisfying assignments by flipping any of their “false”

values (value 0) to “true” (value 1). Such assignments are sometimes referred to as single-flip

satisfying assignments.

The next big step was taken by Dubois et al. [5], who showed that 4.506 is an upper

bound. Instead of considering further variations of satisfiability, they limited the domain

of computations to formulas that have a typical syntactic characteristic. Namely, they con-

sidered formulas where the cardinality of variables with given numbers of occurrences as

positive and negative literals, respectively, approaches a two dimensional Poisson distri-

bution. Asymptotically almost all formulas have this typical property (we say that such

formulas have a Poisson 2D degree sequence). It turns out that the expectation of the number

of single-flip satisfying assignments is exponentially reduced when computed for such for-

mulas. To get the afore mentioned upper bound, Dubois et al. further limited the domain of

computations to formulas that are positively unbalanced, i.e. formulas where every variable

has at least as many occurrences as a positive literal as it has as a negated one.

A completely different direction was recently taken in [13]. Their work was motivated

by results on the geometry of satisfying assignments, and especially the way they form clus-

ters (components where one can move from one satisfying assignment to another by hops

of small Hamming distance). Most of these results were originally based on analytical, but

non-rigorous, techniques of Statistical Physics; lately however important rigorous advances

were made [1, 14]. The value of the upper bound obtained byManeva and Sinclair (see [13])

was 4.453, far below any other upper bound presently known (including the one in this pa-

per). However it was proved assuming a conjecture on the geometry of the satisfying truth
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assignments which is presently proved only for k-SAT for k ≥ 8 in [1].

In this paper, we show that 4.4898 is an upper bound. Our approach builds upon pre-

vious work. It makes use (i) of single-flip satisfying truth assignments, (ii) of formulas with

a Poisson 2D degree sequence and (iii) of positively unbalanced formulas.

We add to these previously known techniques two novel elements that when combined

further reduce the expectation computed. Our approach is rigorous: although we make use

of computer programs, the outputs we use are formally justified. What is interesting is not

that much the numerical value we get, although it constitutes a further improvement to a

long series of results. The main interest lies, we believe, on one hand in the new techniques

themselves and on the other in the fact that putting together so many disparate techniques

necessitates a delicately balanced proof structure.

First, we start by recursively eliminating one-by-one the occurrences of pure literals

from the random formula, until we get its impure core, i.e. the largest sub-formula with no

pure literals (a pure literal is one that has at least one occurrence in the formula but whose

negation has none). Obviously this elimination has no effect on the satisfiability of the for-

mula. Since we consider random formulas with a given 2D degree sequence, we first have

to determine what is the 2D degree sequence of the impure core. For this, we use the dif-

ferential equation method. The setting of the differential equations is more conveniently

carried out in the so called configuration model, where the random formula is constructed

by starting with as many labelled copies of each literal as its occurrences and then by consid-

ering random 3D matchings of these copies. The matchings define the clauses. The change

of models from the standard one to the configuration model with a Poisson 2D degree se-

quence is formalized in Lemma 2. We also take care of the fact that the configuration model

allows formulas with (i) multiple clauses and (ii) multiple occurrences of the same variable

in a clause, whereas we are interested in simple formulas, i.e. formulas where neither (i) nor

(ii) holds. For our purposes, it is enough to bound from below the probability of getting a

simple formula in the configuration model by e−Θ(n1/3 log n), see Lemma 3. The differential

equations are then analytically solved, and we thus obtain the 2D degree sequence of the

core, see Proposition 4.

Second, we require that not only the 2D degree sequence is Poisson, but also that the

numbers of clauses with none, one, two and three positive literals, respectively, are close to

the expected numbers. Notice that these expected numbers have to reflect the fact that we

consider positively unbalanced formulas. This is formalized in Lemma 5.

The expectation of the number of satisfying assignments, in the framework determined

by all the restrictions above, is computed in Lemma 6. This expectation turns out to be

given by a sum of polynomially many terms of functions that are exponential in n. We

estimate this sum by its maximum term, using a standard technique. However in this case,

finding the maximum term entails maximizing a function of many variables whose number

depends on n. To avoid a maximization that depends on n we prove a truncation result

which allows us to consider formulas that have a Poisson 2D degree sequence only for light

variables, i.e. variables whose number of occurrences, either as positive or negated literals,

is at most a constant independent of n.

Then we carry out the maximization. The technique we use is the standard one by

Lagrange multipliers. We get a complex 3× 3 system which can be solved numerically. We
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formally prove that the system does not maximize on the boundary of the system and we

make a sweep over the domain which confirms the results of the numerical solution.

Due to lack of space, all proofs are omitted or just sketched in this extended abstract. As

usual, asymptotically almost surely (a.a.s.) will mean with probability tending to 1 as n → ∞.

All asymptotic expressions as 1− o(1) are always with respect to n. Our main result in the

paper is the following:

THEOREM 1. Let γ = 4.4898 and m = ⌊γn⌋. A random 3-CNF formula in Fn,m (i.e. with n

variables and m clauses, no repetition of clauses and no repetition of variables in a clause)
is not satisfiable a.a.s.

2 Background and Technical highlights.

Consider a given set of n Boolean variables, and let m = ⌊γn⌋. Let Fn,m be the set of

3-CNF formulas with n variables and m clauses, where repetition of clauses or repetition

of variables in a clause is not allowed. We also denote by Fn,m the probability space of

formulas in Fn,m drawn with uniform probability. Throughout the paper, we fix the value

γ = 4.4898 and prove that for that value a random 3-CNF formula is not satisfiable with

high probability.

Throughout the paper, scaled will always mean divided by n, and a scaled natural will

be a member of 1
nN. Given a formula φ ∈ Fn,m, we define the following parameters which

depend on φ: For any i, j ∈ N, let di,j be the scaled number of variables with i positive

occurrences and j negative occurrences in φ. Then,

∑
i,j∈N

di,j = 1. (1)

The sequence d = (di,j)i,j∈N is called the degree sequence of φ. The scaled number of clauses

of φ is denoted by c, and can be expressed by

c(d) =
1

3 ∑
i,j∈N

(i + j)di,j. (2)

Note that if φ ∈ Fn,m, then c must additionally satisfy c = ⌊γn⌋/n.
Given ǫ1 > 0 and any sequence ξ = (ξi,j)i,j∈N of nonnegative reals with ∑i,j∈N ξi,j = 1,

define

N (n, ξ, ǫ1) =
{
d = (di,j)i,j∈N : ∑

i,j∈N

di,j = 1,
n

3 ∑
i,j∈N

(i + j)di,j ∈ N, ∀i, j ∈ N di,jn ∈ N,

and |di,j − ξi,j| ≤ ǫ1, and if i > n1/6 or j > n1/6 then di,j = 0
}
.

Intuitively N (n, ξ, ǫ1) can be interpreted as the set of degree sequences d which are close

to the ideal sequence ξ, which in general is not a degree sequence since its entries ξi,j need

not be scaled naturals. However, if n is large enough, then N (n, ξ, ǫ1) 6= ∅. Now we con-

sider the 2D Poisson ideal sequence δ defined by δi,j = e−3γ(3γ/2)i+j/(i!j!). The following

lemma reflects the fact that almost all φ ∈ Fn,m have a degree sequence d which is close to

δ. A proof of an analogous result can be found in [5].
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LEMMA 2. Let d be the degree sequence of a random φ ∈ Fn,m. For any ǫ1 > 0, we have
that PrFn,m

(d ∈ N (n, δ, ǫ1)) = 1− o(1).

Given a fixed degree sequence d = (di,j)i,j∈N satisfying (1) and such that c = c(d) de-
fined by (2) is also a scaled natural, we wish to generate 3-CNF formulas with that particular

degree sequence d. A natural approach to this is to use the configuration model. A configu-

ration ϕ with degree sequence d = (di,j)i,j∈N is constructed as follows: consider n variables

and the corresponding 2n literals x1, x̄1 . . . , xn, x̄n; each literal has a certain number of dis-

tinct labelled copies in a way that the scaled number of variables with i positive copies and

j negative copies is di,j; then partition the set of copies into sets of size 3, which we the call

clauses of ϕ. Let Cn,d be the set of all configurations with degree sequence d, and we also

denote by Cn,d the probability space on the set Cn,d with the uniform distribution.

A 3-CNF multi-formula is a formula with possible repetition of variables in one clause

and/or possible repetition of clauses. A simple formula is a formula in Fn,m. Let π be the

projection from Cn,d to 3-CNF multi-formulas obtained by unlabelling the copies of each

literal. A configuration ϕ ∈ Cn,d is satisfiable if φ = π(ϕ) is satisfiable. A configuration

ϕ ∈ Cn,d is simple iff φ = π(ϕ) is a simple formula, i.e. does not have repetition of variables or

clauses. Notice that the number of anti-images of a simple formula φ with degree sequence

d under π does not depend on the particular choice of φ. Hence,

PrFn,m
(φ is SAT | d) = PrCn,d(ϕ is SAT | SIMPLE). (3)

We need a lower bound on the probability that a configuration is simple. The following

result gives a weak bound which is enough for our purposes.

LEMMA 3.

Let ǫ1 > 0 and d ∈ N (n, δ, ǫ1). Then

PrCn,d(SIMPLE) ≥ e−Θ(n1/3 log n),

where the e−Θ(n1/3 log n) bound is uniform for all d ∈ N (n, δ, ǫ1).

Given ϕ ∈ Cn,d, a pure variable of ϕ is a variable which has a non-zero number of

occurrences which are either all syntactically positive or all syntactically negative. The only

literal occurring in ϕ and all its copies are also called pure. If ϕ is satisfiable and x is a

pure variable of ϕ, then there exists some satisfying truth assignment of ϕ which satisfies

all copies of x in ϕ. Hence, in order to study the satisfiability of a ϕ ∈ Cn,d, we can satisfy

each pure variable in ϕ and remove all clauses containing a copy of that variable. For each

ϕ ∈ Cn,d, let ϕ̃ be the configuration obtained by greedily removing all pure variables and

their corresponding clauses from ϕ. This ϕ̃ is independent of the particular elimination

order of pure literals and is called the impure core of ϕ. In fact, in our analysis we will

eliminate only one clause containing one copy of a pure literal at a time (the ϕ̃ obtained still

remains the same). Note that ϕ is satisfiable iff ϕ̃ is satisfiable. Moreover, if ϕ is simple

then ϕ̃ is also simple (but the converse is not necessarily true).

Furthermore, let ϕ̂ be the configuration obtained from ϕ̃ by positively unbalancing all

variables, i.e. switching the syntactic sign of those variables having initially more negative

than positive occurrences in ϕ̃. Let Ĉn,d denote the probability space of configurations ϕ̂,
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where ϕ was chosen from Cn,d with uniform probability. Note that the probability distri-

bution in Ĉn,d is not necessarily uniform. Since the simplicity and the satisfiability of a

configuration are not affected by positively unbalancing the variables, we have

PrCn,d(ϕ is SAT ∧ SIMPLE) ≤ PrĈn,d
(ϕ̂ is SAT ∧ SIMPLE). (4)

Let the random variable d̂ be the degree sequence of a random configuration in Ĉn,d. We

prove in the following result that if the original d is close to the ideal sequence δ, then with

high probability d̂ must be close to the ideal sequence δ̂ = (δ̂i,j)i,j∈N defined by

δ̂i,j =





2e−3γb (3γb/2)i+j

i!j! , if i > j,

e−3γb (3γb/2)i+j

i!j! , if i = j,

0, if i < j,

where b = (1− tD/γ)2/3 and tD is the scaled number of steps in the pure literal elimination

algorithm.

PROPOSITION 4. Given ǫ2 > 0, there exists ǫ1 > 0 and 0 < β < 1 such that for any
d ∈ N (n, δ, ǫ1)

PrĈn,d

(
d̂ ∈ N (n, δ̂, ǫ2)

)
= 1−O(βn1/2).

Moreover, for each d̂ ∈ N (n, δ̂, ǫ2), the probability space Ĉn,d conditional upon having de-
gree sequence d̂ has the uniform distribution (i.e. Ĉn,d conditional upon a fixed d̂ behaves
exactly as Cn,d̂).

Let d̂ ∈ N (n, δ̂, ǫ2). Then, each ϕ ∈ Cn,d̂ has a scaled number of clauses of ĉ = c(d̂)
(see (2)). Moreover, let ℓp and ℓn be the scaled number of copies in ϕ of positive and of

negative literals respectively. Then

ℓp(d̂) = ∑
i,j∈N

id̂i,j, ℓn(d̂) = ∑
i,j∈N

jd̂i,j. (5)

Given any fixed ϕ ∈ Cn,d̂ and for k ∈ {0, . . . , 3}, let ĉk be the scaled number of clauses in ϕ

containing exactly k positive copies (clauses of syntactic type k). We call ĉ = (ĉ0, . . . , ĉ3) the
clause-type sequence of ϕ. By definition

ĉ1 + 2ĉ2 + 3ĉ3 = ℓp, 3ĉ0 + 2ĉ1 + ĉ2 = ℓn, (6)

and by adding the equations in (6), ĉ0 + · · · + ĉ3 = ĉ. The ĉ0, . . . , ĉ3 are random variables in

Cn,d̂, but the next result shows that if d̂ is close enough to δ̂, then ĉ0, · · · , ĉ3 as well as their

sum ĉ0 + · · · + ĉ3 = ĉ are concentrated with high probability. In order to see this, we need

to define γ̂ = c(δ̂), λp = ℓp(δ̂) and λn = ℓn(δ̂) (see (2) and (5)), which can be interpreted as

the limit of ĉ, ℓp and ℓn respectively when d̂ approaches δ̂. In terms of these numbers, we

thus define for all k ∈ {0, . . . , 3}

γ̂k =

(
3

k

)
λp

kλn
3−k

(λp + λn)3
γ̂ (7)
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and also γ̂ = (γ̂0, . . . , γ̂3). Then we have γ̂1 + 2γ̂2 + 3γ̂3 = λp, 3γ̂0 + 2γ̂1 + γ̂2 = λn and

γ̂0 + γ̂1 + γ̂2 + γ̂3 = γ̂.

The next result shows that when d̂ is close enough to δ̂, then each ĉk is close to the

corresponding γ̂k. Indeed, given ǫ > 0 and for any d̂ ∈ N (n, δ̂, ǫ2), let Cǫ
n,d̂

be the set of all

ϕ ∈ Cn,d̂ such that for k ∈ {0, . . . , 3}, |ĉk − γ̂k| ≤ ǫ. We also denote by Cǫ
n,d̂

the corresponding

uniform probability space.

LEMMA 5. Given ǫ > 0, there is ǫ2 > 0 and 0 < β < 1 such that for any d̂ ∈ N (n, δ̂, ǫ2),

PrC
n,d̂

(Cǫ
n,d̂

) = 1−O(βn).

All the previous lemmata establish a connection between the uniform probability spaces

Fn,m and Cǫ
n,d̂

. In order to prove Theorem 1, it remains to bound the probability that a con-

figuration ϕ ∈ Cǫ
n,d̂

is simple and satisfiable, as it is done in the following result.

LEMMA 6. There exists ǫ > 0 and 0 < β < 1 such that for any d̂ ∈ N (n, δ̂, ǫ),

PrCǫ
n,d̂

(SAT ∧ SIMPLE) = O(βn).

The proof of Lemma 6 is sketched in Section 3 below. The proof of Theorem 1 then

follows from all the previous lemmata (see the full version for the proof).

3 Proof of Lemma 6

Let N (n, δ̂, γ̂, ǫ) be the set of tuples (d̂, ĉ) such that d̂ ∈ N (n, δ̂, ǫ) and ĉ = (ĉk)0≤k≤3 is a

tuple of scaled naturals satisfying (6) (recall also from (5) the definition of ℓp and ℓn), and

moreover |ĉk − γ̂k| ≤ ǫ. For each (d̂, ĉ) ∈ N (n, δ̂, γ̂, ǫ), we define Cn,d̂,̂c to be the uniform

probability space of all configurations with degree sequence d̂ and clause-type sequence ĉ.

In order to prove the lemma, it suffices to show that for any (d̂, ĉ) ∈ N (n, δ̂, γ̂, ǫ) we have

PrC
n,d̂,̂c

(SAT ∧ SIMPLE) = O(βn). Hence, we consider d̂, ĉ and the probability space Cn,d̂,̂c to

be fixed throughout this section, and we try to find a suitable bound for Pr(SAT ∧ SIMPLE).
We need some definitions. Let us fix any given configuration ϕ ∈ Cn,d̂,̂c. A light variable

of ϕ is a variable with i ≤ M positive occurrences and j ≤ M negative occurrences in ϕ (we

use in the numerical calculations the value M = 23). The other variables are called heavy. We

consider a weaker notion of satisfiability in which heavy variables are treated as jokers and

are always satisfied regardless of their sign in the formula and their assigned value. Given

a configuration ϕ ∈ Cn,d̂,̂c and a truth assignment A, we say that A |=♭ ϕ iff each clause of

ϕ contains at least one heavy variable or at least one satisfied occurrence of a light variable.

Let SAT
♭ be the set of configurations ϕ ∈ Cn,d̂,̂c for which there exists at least one truth

assignment A such that A |=♭ ϕ. Clearly, if A |= ϕ, then also A |=♭ ϕ, and hence SAT ⊂ SAT
♭.

We still introduce a further restriction to satisfiability in a way similar to [11] and [4], in

order to decrease the number of satisfying truth assignments of each configuration without

altering the set of satisfiable configurations (at least without alterating this set for simple

configurations). Given a configuration ϕ ∈ Cn,d̂,̂c and a truth assignment A, we say that
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A |=♭′ ϕ iff A |=♭ ϕ and moreover each light variable which is assigned the value zero by

A appears at least once as the only satisfied literal of a blocking clause (i.e. a clause with one

satisfied negative literal and two unsatisfied ones). Let SAT
♭′ be the set of configurations

which are satisfiable according to this latter notion. Notice that if ϕ ∈ SIMPLE, then ϕ ∈
SAT

♭′ iff ϕ ∈ SAT
♭ (by an argument analogous to the one in [11] and [4]). Therefore, we have

Pr(SAT ∧ SIMPLE) ≤ Pr(SAT
♭ ∧ SIMPLE) = Pr(SAT

♭′ ∧ SIMPLE) ≤ Pr(SAT
♭′). Let X be the

random variable counting the number of satisfying truth assignments of a randomly chosen

configuration ϕ ∈ Cn,d̂,̂c in the SAT
♭′ sense. We need to bound

Pr(SAT
♭′) = Pr(X > 0) ≤ EX =

|{(ϕ, A) : ϕ ∈ Cn,d̂,̂c, A |=♭′ ϕ}|

|Cn,d̂,̂c|
. (8)

In the following subsection, we obtain an exact but complicated expression for EX by a

counting argument, and then we give a simple asymptotic bound which depends on the

maximization of a particular continuous function over a bounded polytope. The next sub-

section contains the maximization of that function.

3.1 Asymptotic bound on EX

First, we compute the denominator of the rightmost member in (8).

|Cn,d̂,̂c| =

(
n

(d̂i,jn)i,j

)(
ℓpn

ĉ1n, 2ĉ2n, 3ĉ3n

)(
ℓnn

3ĉ0n, 2ĉ1n, ĉ2n

)
(3ĉ0n)!

(ĉ0n)!6ĉ0n
(2ĉ1n)!

2ĉ1n
(2ĉ2n)!

2ĉ2n
(3ĉ3n)!

(ĉ3n)!6ĉ3n

=
n!

∏i,j(d̂i,jn)!

(ℓpn)!(ℓnn)!

2ĉn3(ĉ0+ĉ3)n(ĉ0n)!(ĉ1n)!(ĉ2n)!(ĉ3n)!

In order to deal with the numerator in (8), we need some definitions. Let us consider any

fixed ϕ ∈ Cn,d̂,̂c and any assignment A such that A |=♭′ ϕ. We will classify the variables, the

clauses and the copies of literals in ϕ into several types, and define parameters counting the

scaled number of items of each type. Variables are classified according to their degree. A

variable is said to have degree (i, j) if it appears i times positively and j times negatively in

ϕ. Let L and H, respectively, be the set of possible degrees for light and heavy variables,

i.e. L = {(i, j) ∈ N
2 : 0 ≤ i, j ≤ M}, H = {(i, j) ∈ N

2 : i > M or j > M}. We also

consider an extended notion of degree for light variables which are assigned 0 by A. One

of such variables has extended degree (i, j, k) if it has degree (i, j) and among its j negative

occurrences k appear in a blocking clause (being the only satisfied literal of the clause). Let

L′ = {(i, j, k) ∈ N
3 : 0 ≤ i ≤ M, 1 ≤ k ≤ j ≤ M}, be the set of possible extended degrees

for these light 0-variables. For each (i, j) ∈ L, let ti,j be the scaled number of light variables

assigned 1 by A with degree (i, j) in ϕ. For each (i, j, k) ∈ L′, let fi,j,k be the scaled number

of light variables assigned 0 by A with extended degree (i, j, k) in ϕ. We must have

ti,j +
j

∑
k=1

fi,j,k = d̂i,j, ∀(i, j) ∈ L. (9)

On the other hand, we classify the copies of literals occurring in ϕ into five different types

depending on their sign in ϕ, their assignment by A and whether they belong or not to a
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blocking clause. Each copy receives a label from the set S = {ps, ns1, ns2, pu, nu}, where

the labels ps, pu, ns1, ns2 and nu denote positive-satisfied, positive-unsatisfied, negative-

satisfied in a blocking clause, negative-satisfied in a non-blocking clause and negative-

unsatisfied, respectively. It is useful to consider as well coarser classifications of the copies of

literals in ϕ and thus we define the types p, n and nswhich correspond to positive, negative

and negative-satisfied copies, respectively. Also, let S ′ = {ps, ns, pu, nu} and S ′′ = {p, n}.
For each of the types σ ∈ S ∪ S ′ ∪ S ′′ that we defined, let ℓσ be the scaled number of copies

of type σ. Note that ℓp and ℓn were already defined (see (5) and (6)). Also, let hσ be the scaled

number of copies of type σ which come from heavy variables (recall that these copies are al-

ways satisfied by definition regardless of their sign). In view of hps = ∑H id̂i,j, hns = ∑H jd̂i,j
and of (5) and (6), we observe that ℓp, ℓn, hps and hns are constants which do not depend

on the particular choice of (ϕ, A). The parameters hns1 and hns2 depend on the particular

(ϕ, A) and satisfy

hns1 + hns2 = hns. (10)

The parameters ℓps, ℓpu, ℓns1, ℓns2 and ℓnu also depend on (ϕ, A) and can be expressed as

ℓps = ∑
L

iti,j + hps, ℓpu = ∑
L′

i fi,j,k, ℓns1 = ∑
L′

k fi,j,k + hns1,

ℓns2 = ∑
L′

(j− k) fi,j,k + hns2, ℓnu = ∑
L

jti,j. (11)

Finally, the clauses of ϕ are classified into 16 extended types (not to be mistaken with the

four syntactic types defined immediately before (6)). Each type is represented by a 2× 2 ma-

trix from the set A =

{
α =

(
ps(α) ns(α)
pu(α) nu(α)

)
∈ N

4 : ∑σ∈S ′ σ(α) = 3, ps(α) + ns(α) > 0

}
.

A clause is said to be of extended type α =

(
ps(α) ns(α)
pu(α) nu(α)

)
if for each σ ∈ S ′ the clause

contains σ(α) copies of literals of type σ. Notice that all clauses of extended type α also

contain the same number of copies of type σ for all other σ ∈ S ∪ S ′′ and thus we can define

σ(α) to be this number. For each α ∈ A, let cα be the scaled number of clauses of extended

type α (while ĉk, 0 ≤ k ≤ 3 is the number of clauses of syntactic type k, i.e. with k positive

literals). We have

∑
α∈A

p(α)=k

cα = ĉk. (12)

The parameters ℓps, ℓpu, ℓns1, ℓns2 and ℓnu can also be expressed in terms of the cα by

ℓσ = ∑
α∈A

σ(α)cα, ∀σ ∈ S . (13)

We now consider the following equations:

ℓps + ℓpu = ℓp ℓns1 + ℓns2 + ℓnu = ℓn (14)

ℓps = ∑
L

iti,j + hps ℓns1 = ∑
L′

k fi,j,k + hns1 ℓns2 = ∑
L′

(j− k) fi,j,k + hns2 (15)

ℓps = ∑
α∈A

ps(α)cα ℓns1 = ∑
α∈A

ns1(α)cα ℓns2 = ∑
α∈A

ns2(α)cα (16)
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In view of (5) and (6), the system of equations {(9), (10), (11), (12), (13)} is equivalent to {(9),
(10), (12), (14), (15), (16)}.

So far we verified that the constraints {(9), (10), (12), (14), (15), (16)} express necessary

conditions for the parameters of any particular (ϕ, A), with ϕ ∈ Cn,d̂,̂c and A |=♭′ ϕ. Nowwe

will see that they are also sufficient, in the sense that for each tuple of parameters satisfying

the above-mentioned constraints we will be able to construct pairs (ϕ, A).
Let t̄ = (ti,j)L, f̄ = ( fi,j,k)L′ , h̄ = (hns1, hns2), c̄ = (cα)α∈A, ℓ̄ = (ℓσ)σ∈S and K =

|L| + |L′| + 2 + |A| + |S| = (M + 1)2(1 + M/2) + 23. We define the bounded polytope

P(d̂, ĉ) ⊂ R
K as the set of tuples x̄ = (t̄, f̄ , h̄, c̄, ℓ̄) of non-negative reals satisfying {(9), (10),

(12), (14), (15), (16)}, and consider the following set of lattice points in P(d̂, ĉ): I(n, d̂, ĉ) =

P(d̂, ĉ) ∩
(
1
nN
)K

. For any tuple of parameters x̄ ∈ I(n, d̂, ĉ), we count the number of pairs

(ϕ, A), with ϕ ∈ Cn,d̂,̂c and A |=♭′ ϕ, satisfying these parameters. We denote this number by

T(x̄, n, d̂, ĉ). We obtain (see the full version for details)

T(x̄, n, d̂, ĉ) = 2∑H d̂i,jn

(
n

(ti,jn)L, ( fi,j,kn)L′ , (d̂i,jn)H

)

(

∏
L′

(
j

k

) fi,j,kn
)(

hnsn

hns1n, hns2n

)
∏
σ∈S

(
ℓσn

(σ(α)cαn)α∈A

)
∏
α∈A

W(α),

where W(α) = (w(α)cαn)!(cαn)!2−w(α)

(w(α)!)cαn
, and w(α) is the number of 0’s in the matrix α. Hence

EX = 1
|C

n,d̂,̂c
| ∑x̄∈I(n,d̂,̂c) T(x̄, n, d̂, ĉ).

To characterize the asymptotic behaviour of T(x̄, n, d̂, ĉ)/|Cn,d̂,̂c| with respect to n, we

define

F(x̄) =
∏σ∈S ℓσ

ℓσ

∏L ti,j
ti,j ∏L′

(
fi,j,k/( jk)

) fi,j,k
hns1

hns1hns2
hns2 ∏α∈A

(
(w(α)!/2)cα

)cα

and

B(d̂, ĉ) = 2∑H d̂i,jhns
hns ∏

L

d̂
d̂i,j
i,j

3c0+c3c0
c0c1

c1c2
c2c3

c3

ℓp
ℓpℓn

ℓn
.

By Stirling’s inequality we obtain T(x̄,n,d̂,̂c)
|C

n,d̂,̂c
| ≤ poly1(n)

(
B(d̂, ĉ)F(x̄)

)n
, where poly1(n) is

some fixed polynomial in n which can be chosen to be independent of x̄, d̂ and ĉ (as long

as x̄ ∈ I(n, d̂, ĉ) and (d̂, ĉ) ∈ N (n, δ̂, γ̂, ǫ)). Moreover, since the size of I(n, d̂, ĉ) is also

polynomial in n, we can write

EX ≤ poly2(n)

(
B(d̂, ĉ) max

x̄∈I(n,d̂,̂c)
F(x̄)

)n

≤ poly2(n)

(
B(d̂, ĉ) max

x̄∈P(n,d̂,̂c)
F(x̄)

)n

,

for some other fixed polynomial poly2(n). By continuity, if we choose ǫ to be small enough,

we can guarantee that

EX ≤

(
(1+ 10−7)B max

x̄∈P(n,δ̂,γ̂)
F(x̄)

)n

, (17)
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where (recall the definition in (7))

B = B(δ̂, γ̂) = 2∑H δ̂i,j

(

∑
H

jδ̂i,j

)∑H jδ̂i,j

∏
L

δ̂
δ̂i,j
i,j

3γ̂0+γ̂3 γ̂
γ̂0

0 γ̂
γ̂1

1 γ̂
γ̂2

2 γ̂
γ̂3

3

λp
λpλn

λn

= 2∑H δ̂i,j

(

∑
H

jδ̂i,j

)∑H jδ̂i,j
∏L δ̂

δ̂i,j
i,j

(3γ̂)2γ̂
. (18)

3.2 Maximization of F(x̄)

We wish to maximize F or equivalently log F over the domain P(n, δ̂, γ̂). We need the

following lemma:

LEMMA 7. F(x̄) does not maximize on the boundary of P(n, δ̂, γ̂).

Since log F does not maximize on the boundary of its domain, the maximum must

be attained at a critical point of log F in the interior of P(n, δ̂, γ̂). We use the Lagrange

multipliers technique and characterize each critical point of log F in terms of the solution of

a 3× 3 system. The system is numerically solved with the help of Maple, which finds just

one solution. We express the maximum of F over P(n, δ̂, γ̂) in terms of this solution, and

multiply it by B given in (18), and from (17) we obtain the bound

EX ≤
(
(1+ 10−7)0.9999998965

)n
, (19)

which concludes the proof of Lemma 6, since (1+ 10−7)0.9999998965 < 1.

Note that the validity of our approach relies on the assumption that the solution of the

3 × 3 system found by Maple is unique, which implies that the critical point of log F we

found is indeed the global maximum (if an alternative solution exists it could happen that

at the corresponding critical point the function F attains a value greater than the maximum

obtained).

In order to be more certain about the correctness of (19) we performed the following

alternative experiment: Let Pℓ̄ be the polytope obtained by restricting P(n, δ̂, γ̂) to the co-

ordinates ℓps, ℓpu, ℓns1, ℓns2, ℓnu. Observe that this is a 3-dimensional polytope in R
5, since

its elements are determined by the values of the coordinates ℓps, ℓns1, ℓns2. We performed a

sweep over this polytope by considering a grid of 100 equispaced points in each of the three

dimensions. For each of the 1003 fixed tuples of (ℓps, ℓns1, ℓns2) which correspond to the

points on the grid, we determine the remaining two coordinates of Pℓ̄, and maximize log F

restricted to those fixed values of ℓ̄. Observe that in this case log F is strictly concave and

thus has a unique maximum which can be efficiently found by any iterative Newton-like

algorithm. We checked, again using Maple, that the value obtained for each fixed tuple of ℓ̄

is below the maximum in (19).
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[14] M. Mézard and R. Zecchina. Random k-satisfiability: from an analytic solution to a

new efficient algorithm. Physics Review, E-66, 056126:1357–1361, 2002.

[15] R. Monasson and R. Zecchina. Statistical mechanics of the random k-SAT problem.

Physics Review, E-56:1357–1361, 1997.

[16] N. C. Wormald. The differential equation method for random graph processes and
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