
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 328-339

A Hierarchy of Semantics for
Non-deterministic Term Rewriting

Systems∗

Juan Rodrı́guez-Hortal á
Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Spain

juanrh@fdi.ucm.es

ABSTRACT. Formalisms involving some degree of nondeterminism are frequent in computer sci-
ence. In particular, various programming or specification languages are based on term rewriting
systems where confluence is not required. In this paper we examine three concrete possible seman-
tics for non-determinism that can be assigned to those programs. Two of them –call-time choice and
run-time choice– are quite well-known, while the third one –plural semantics– is investigated for the
first time in the context of term rewriting based programming languages. We investigate some basic
intrinsic properties of the semantics and establish some relationships between them: we show that
the three semantics form a hierarchy in the sense of set inclusion, and we prove that call-time choice
and plural semantics enjoy a remarkable compositionality property that fails for run-time choice;
finally, we show how to express plural semantics within run-time choice by means of a program
transformation, for which we prove its adequacy.

1 Introduction

Term rewriting systems (TRS’s) [4] have a long tradition as a suitable basic formalism to ad-

dress a wide range of tasks in computer science, in particular, many specification languages

[5, 7], theorem provers [21, 6] and programming languages are based on TRS’s. For instance,

the syntax and theory of TRS’s was the basis of the first formulations of functional logic pro-

gramming (FLP) through the idea of narrowing [9]. On the other hand, non-determinism

is an expressive feature that has been used for a long time in system specification (e.g.,

non-deterministic Turing machines or automata) or for programming (the constructions of

McCarthy and Dijkstra are classical examples). One of the appeals of term rewriting is its

elegant way to express non-determinism through the use of a non-confluent TRS, obtaining

a clean and high level representation of complex systems. In the field of FLP, non-confluent

TRS’s are used as programs to support non-strict non-deterministic functions, which are

one of the most distinctive features of the paradigm [8, 3]. Those TRS’s follow the construc-

tor discipline also, corresponding to a value-based semantic view, in which the purpose of

computations is to produce values made of constructors.

Therefore non-confluent constructor-based TRS’s can be used as a common syntactic

framework for FLP and rewriting. The set of rewrite rules constitutes a program and so we

also call them program rules. Nevertheless the behaviour of current implementations of FLP

∗This work has been partially supported by the Spanish projects Merit-Forms-UCM (TIN2005-09207-C03-03),
Promesas-CAM (S-0505/TIC/0407) and FAST-STAMP (TIN2008-06622-C03-01/TIN).

c© Juan Rodrı́guez-Hortalá; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1764

JUAN RODRÍGUEZ-HORTALÁ FSTTCS 2008 329

and rewriting differ substantially, because the introduction of non-determinism in a func-

tional setting gives rise to a variety of semantic decisions, that were explored in [20]. There

the different language variants that result after adding non-determinism to a basic func-

tional language were expounded, structuring the comparison as a choice among different

options over several dimensions: strict/non-strict functions, angelic/demonic/erratic non-

deterministic choices and singular/plural semantics for parameter passing. In the present

paper we assume non-strict angelic non-determinism, and we are concerned about the last

dimension only. The key difference is that under a singular semantics, in the substitutions

used to instantiate the program rules for function application, the variables of the program

rules should range over single objects of the set of values considered; in a plural semantics

those range over sets of objects. This has been traditionally identified with the distinction

between call-time choice and run-time choice [11] parameter passing mechanisms. Under call-

time choice a value for each argument is computed before performing parameter passing,

this corresponds to call-by-value in a strict setting and to call-by-need in a non-strict setting,

in which a partial value instead of a total value is computed. On the other hand, run-time-

choice corresponds to call-by-name, each argument is copied without any evaluation and

so the different copies of any argument may evolve in different ways afterwards. Thus, tra-

ditionally it has been considered that call-time choice parameter passing inducts a singular

semantics while run-time choice inducts a plural semantics.

EXAMPLE 1. Consider the TRS P = { f (c(X)) → d(X,X),X ? Y → X,X ? Y → Y}. With
call-time choice/singular semantics to compute a value for the term f (c(0?1)) we must
first compute a (partial) value for c(0?1), and then we may continue the computation with
f (c(0)) or f (c(1)) which yield d(0, 0) or d(1, 1). Note that d(0, 1) and d(1, 0) are not correct
values for f (c(0?1)) in that setting.
On the other hand with run-time choice/plural semantics to evaluate the term f (c(0?1)):

- Under the run-time choice point of view, the step f (c(0?1)) → d(0?1, 0?1) is sound,
hence not only d(0, 0) and d(1, 1) but also d(0, 1) and d(1, 0) are valid values for
f (c(0?1)).

- Under the plural semantics point of view, we consider the set {c(0), c(1)} which is a
subset of the set of values for c(0?1) in which every element matches the argument
pattern c(X). Therefore the set {0, 1} can be used for parameter passing obtaining a
kind of “set expression” d({0, 1}, {0, 1}), which evaluation yields the values d(0, 0),
d(1, 1), d(0, 1) and d(1, 0).

In general, call-time choice/singular semantics produces less results than run-time choice/
plural semantics.

A standard formulation for call-time choice† in FLP is the CRWL‡ logic [8], which is im-

plemented by current FLP languages like Toy [15] or Curry [10]; traditional term rewriting

may be considered the standard semantics for run-time choice§, and is the basis for the se-

mantics of languages like Maude [5], but has been rarely [1] thought as a valuable global

alternative to call-time choice for the value-based view of FLP. However, there might be

†In fact angelic non-strict call-time choice.
‡Constructor-based ReWriting Logic.
§In fact angelic non-strict run-time choice.

330 A HIERARCHY OF SEMANTICS FOR NON-DETERMINISTIC TERM REWRITING SYSTEMS

parts in a program or individual functions for which run-time choice could be a better op-

tion, and therefore it would be convenient to have both possibilities (run-time/call-time) at

programmer’s disposal [13]. Nevertheless the use of an operational notion like term rewrit-

ing as the semantic basis of a FLP language can lead us to confusing situations, not very

compatible with the value-based semantic view that we wanted for the constructor-based

TRS’s used in FLP.

EXAMPLE 2. Starting with the TRS of Example 1 we want to evaluate the expression f (c(0)
? c(1)) with run-time choice/plural semantics:

- Under the run-time choice point of view, that is, using term rewriting, the evaluation
of the subexpression c(0)?c(1) is needed in order to get an expression that matches
the left hand side f (c(X)). Hence the derivations f (c(0)?c(1)) → f (c(0)) → d(0, 0)
and f (c(0)?c(1)) → f (c(1)) → d(1, 1) are sound and compute the values d(0, 0) and
d(1, 1), but neither d(0, 1) nor d(1, 0) are correct values for f (c(0)?c(1)).

- Under the plural semantics point of view, we consider the set {c(0), c(1)} which is a
subset of the set of values for c(0)?c(1) in which every element matches the argument
pattern c(X). Therefore the set {0, 1} can be used for parameter passing obtaining a
kind of “set expression” d({0, 1}, {0, 1}) that yields the values d(0, 0), d(1, 1), d(0, 1)
and d(1, 0).

Which of these is the more suitable perspective for FLP?

This problem did not appear in [20] because no patternmatching was present, nor in [11] be-

cause only call-time choice was adopted (and this conflict does not appear between the call-

time choice and the singular semantics views). Choosing the run-time choice perspective of

term rewriting has some unpleasant consequences. First of all the expression f (c(0?1)) has
more values than the expression f (c(0)?c(1)), even when the only difference between them

is the subexpressions c(0?1) and c(0)?c(1), which have the same values both in call-time

choice, run-time choice and plural semantics. This is pretty incompatible with the value-

based semantic view we are looking for in FLP. And this has to do with the loss of some

desirable properties, present in CRWL, when switching to run-time choice. We will see how

plural semantics recovers those properties, which are very useful for reasoning about com-

putations. Furthermore it allows natural encodings of some programs that need to do some

collecting work, as we will see later (Example 8). Hence we claim that the plural semantics

perspective is more suitable for a value-based programming language.

The rest of the paper is organized as follows. Section 2 contains some technical prelim-

inaries and notations about CRWL and term rewriting systems. In Section 3 we introduce

πCRWL, a variation of CRWL to express plural semantics, and present some of its proper-

ties. In Section 4 we discuss about the different properties of these semantics and prove the

inclusion chain CRWL ⊆ rewriting ⊆ πCRWL, that constitutes a hierarchy of semantics for

non-determinism. Section 5 recalls that no straight simulation of CRWL in term rewriting

can be done by a program transformation, and vice versa, and shows a novel transformation

to simulate πCRWL using term rewriting. Finally Section 6 summarizes some conclusions

and future work. Fully detailed proofs, including some auxiliary results, can be found in

[19].

JUAN RODRÍGUEZ-HORTALÁ FSTTCS 2008 331

2 Preliminaries

2.1 Constructor based term rewriting systems

We consider a first order signature Σ = CS∪ FS, where CS and FS are two disjoint set of con-

structor and defined function symbols respectively, all them with associated arity. We write

CSn (FSn resp.) for the set of constructor (function) symbols of arity n. We write c, d, . . .

for constructors, f , g, . . . for functions and X,Y, . . . for variables of a numerable set V . The
notation o stands for tuples of any kind of syntactic objects. Given a set A we denote by

A∗ the set of finite sequences of elements of that set. For any sequence a1 . . . an ∈ A∗ and

function f : A → {true, f alse} , by a1 . . . an | f we denote the sequence constructed taking

in order every element from a1 . . . an for which f holds.

The set Exp of expressions is defined as Exp ∋ e ::= X | h(e1, . . . , en), where X ∈ V ,
h ∈ CSn ∪ FSn and e1, . . . , en ∈ Exp. The set CTerm of constructed terms (or c-terms) is defined

like Exp, but with h restricted to CSn (so CTerm ⊆ Exp). The intended meaning is that Exp

stands for evaluable expressions, i.e., expressions that can contain function symbols, while

CTerm stands for data terms representing values. We will write e, e′, . . . for expressions and

t, s, . . . for c-terms. The set of variables occurring in an expression ewill be denoted as var(e).
We will frequently use one-hole contexts, defined as Cntxt ∋ C ::= [] | h(e1, . . . , C, . . . , en),
with h ∈ CSn ∪ FSn. The application of a context C to an expression e, written by C[e], is
defined inductively as [][e] = e and h(e1, . . . , C, . . . , en)[e] = h(e1, . . . , C[e], . . . , en).

Substitutions θ ∈ Subst are finite mappings θ : V −→ Exp, extending naturally to

θ : Exp −→ Exp. We write ǫ for the identity (or empty) substitution. We write eθ for the ap-

plication of θ to e, and θθ′ for the composition, defined by X(θθ′) = (Xθ)θ′. The domain and

range of θ are defined as dom(θ) = {X ∈ V | Xθ 6= X} and vran(θ) =
⋃

X∈dom(θ) var(Xθ).
If dom(θ0) ∩ dom(θ1) = ∅, their disjoint union θ0 ⊎ θ1 is defined by (θ0 ⊎ θ1)(X) = θi(X), if
X ∈ dom(θi) for some θi; (θ0 ⊎ θ1)(X) = X otherwise. Given W ⊆ V we write θ|W for the

restriction of θ to W, and θ|\D is a shortcut for θ|(V\D). We will sometimes write θ = σ[W]
instead of θ|W = σ|W . C-substitutions θ ∈ CSubst verify that Xθ ∈ CTerm for all X ∈ dom(θ).

A constructor-based term rewriting system P (CS) is a set of c-rewrite rules of the form

f (t) → r where f ∈ FSn, e ∈ Exp and t is a linear n-tuple of c-terms, where linearity

means that variables occur only once in t. In the present work we restrict ourselves to CS’s

not containing extra variables, i.e., CS’s for which var(r) ⊆ var(f (t)) holds for any rewrite

rule; the extension of this work to rules with extra variables is a subject of future work. We

assume that every CS P contains the rules {X ? Y → X,X ? Y → Y, i f true then X → X},
defining the behaviour of ? ∈ FS2, i f then ∈ FS2, both used in mixfix mode, and that

those are the only rules for that function symbols. For the sake of conciseness we will often

omit these rules when presenting a CS.

Given a TRS P , its associated rewrite relation →P is defined as: C[lσ] →P C[rσ] for any

context C, rule l → r ∈ P and σ ∈ Subst. We write
∗

→P for the reflexive and transitive

closure of the relation →P . In the following, we will usually omit the reference to P or

denote it by P ⊢ e → e′ and P ⊢ e →∗ e′.

332 A HIERARCHY OF SEMANTICS FOR NON-DETERMINISTIC TERM REWRITING SYSTEMS

(RR)
X _ X

X ∈ V (DC)
e1 _ t1 . . . en _ tn

c(e1, . . . , en) _ c(t1, . . . , tn)
c ∈ CSn

(B)
e _⊥

(OR)
e1 _ p1θ . . . en _ pnθ rθ _ t

f (e1, . . . , en) _ t
f (p1, . . . , pn) → r ∈ P
θ ∈ CSubst⊥

Figure 1: Rules of CRWL

2.2 The CRWL framework

In the CRWL framework [8], programs are CS’s, also called CRWL-programs (or simply ‘pro-

grams’) from now on. To deal with non-strictness at the semantic level, we enlarge Σ with

a new constant constructor symbol ⊥. The sets Exp⊥, CTerm⊥, Subst⊥, CSubst⊥ of partial

expressions, etc., are defined naturally. Notice that ⊥ does not appear in programs. Partial

expressions are ordered by the approximation ordering ⊑ defined as the least partial order-

ing satisfying ⊥⊑ e and e ⊑ e′ ⇒ C[e] ⊑ C[e′] for all e, e′ ∈ Exp⊥, C ∈ Cntxt. This partial

ordering can be extended to substitutions: given θ, σ ∈ Subst⊥ we say θ ⊑ σ if Xθ ⊑ Xσ for

all X ∈ V .

The semantics of a program P is determined in CRWL by means of a proof calculus

able to derive reduction statements of the form e _ t, with e ∈ Exp⊥ and t ∈ CTerm⊥,

meaning informally that t is (or approximates to) a possible value of e, obtained by iterated

reduction of e using P under call-time choice. The CRWL-proof calculus is presented in

Figure 1. Rule B (bottom) allows any expression to be undefined or not evaluated (non-

strict semantics). Rule OR (outer reduction) expresses that to evaluate a function call we

must choose a compatible program rule, perform parameter passing (bymeans of a CSubst⊥
θ) and then reduce the right-hand side. The use of partial c-substitutions in OR is essential

to express call-time choice, as only single partial values are used for parameter passing.

We write P ⊢CRWL e _ t to express that e _ t is derivable in the CRWL-calculus using

the program P . Given a program P , the CRWL-denotation of an expression e ∈ Exp⊥ is

defined as [[e]]
sg
P = {t ∈ CTerm⊥ | P ⊢CRWL e _ t}. In the following, we will usually omit

the reference to P .

3 πCRWL: a plural semantics for FLP

The new calculus πCRWL is defined by modifying the rules of CRWL to consider sets of

partial values for parameter passing instead of single partial values: hence, only the rule

OR should be modified. To avoid the need to extend the syntax with new constructions

to represent those “set expressions” that we talked about in the introduction, we will ex-

ploit the fact that [[e1 ? e2]] = [[e1]] ∪ [[e2]]. Therefore the substitutions used for parameter

passing will map variables to “disjunctions of values”. We define the set CSubst?⊥ = {θ ∈
Subst⊥ | ∀X ∈ dom(θ), θ(X) = t1 ? . . . ? tn such that t1, . . . , tn ∈ CTerm⊥, n > 0}, for which

CSubst⊥ ⊆ CSubst?⊥ ⊆ Subst⊥ obviously holds. The operator ? : CSubst∗⊥ → CSubst?⊥ con-

structs the CSubst?⊥ corresponding to a non empty sequence of CSubst⊥, and is defined as

?(θ1 . . . θn)(X) = X if X 6∈
⋃

i∈{1,...,n} dom(θi); ?(θ1 . . . θn)(X) = ρ1(X) ? . . . ? ρm(X), where

ρ1 . . . ρm = θ1 . . . θn | λθ.(X ∈ dom(θ)), otherwise. Then dom(?(θ1 . . . θn)) =
⋃

i dom(θi). This

JUAN RODRÍGUEZ-HORTALÁ FSTTCS 2008 333

(RR)
X _ X

X ∈ V (DC)
e1 _ t1 . . . en _ tn

c(e1, . . . , en) _ c(t1, . . . , tn)
c ∈ CSn

(B)
e _⊥

(POR)

e1 _ p1θ11
. . .

e1 _ p1θ1m1

. . .
en _ pnθn1

. . .
en _ pnθnmn rθ _ t

f (e1, . . . , en) _ t
(f (p) → r) ∈ P , θ =?{θ11, . . . , θ1m1

} ⊎ . . .⊎ ?{θn1, . . . , θnmn}
∀i, j θij ∈ CSubst⊥ ∧ dom(θij) = var(pi), ∀i mi > 0

Figure 2: Rules of πCRWL

operator is overloaded to handle non empty sets Θ ⊆ CSubst⊥ as ?Θ =?(θ1 . . . θn) where

the sequence θ1 . . . θn corresponds to an arbitrary reordering of the elements of Θ.

The πCRWL-proof calculus is presented in Figure 2. The only difference with the cal-

culus in Figure 1 is that the rule OR has been replaced by POR (plural outer reduction),

in which we may compute more that one partial value for each argument, and then use

a substitution from CSubst?⊥ instead of CSubst⊥ for parameter passing, achieving a plural

semantics¶. This calculus derives reduction statements of the form P ⊢πCRWL e _ t that

express that t is (or approximates to) a possible value for e in this semantics, under the pro-

gram P . The πCRWL-denotation of an expression e ∈ Exp⊥ under a program P in πCRWL

is defined as [[e]]
pl
P = {t ∈ CTerm⊥ | P ⊢πCRWL e _ t}.

EXAMPLE 3. Consider the program of Example 1, that is P = { f (c(X)) → d(X,X), X ? Y →
X, X ? Y → Y}. The following is a πCRWL-proof for the statement f (c(0)?c(1)) _ d(0, 1)
(some steps have been omitted for the sake of conciseness):

0 _ 0
DC

c(0) _ c(0)
DC

c(1) _⊥
B

c(0) _ c(0)

c(0)?c(1) _ c(0)
POR

c(0)?c(1) _ c(1)
0?1 _ 0 0?1 _ 1

d(0?1, 0?1) _ d(0, 1)
DC

f (c(0)?c(1)) _ d(0, 1)
POR

πCRWL enjoys some nice properties, like the following monotonicity property, where for

any proof we define its size as the number of applications of rules of the calculus.

LEMMA 4. For any CRWL-program, e, e′ ∈ Exp⊥, t, t
′ ∈ CTerm⊥ if e ⊑ e′ and t′ ⊑ t then

P ⊢πCRWL e _ t implies P ⊢πCRWL e′ _ t′ with a proof of the same size or smaller.

One of the most important properties is its compositionality, a property very close to the

DET-additivity property for algebraic specifications of [11]:

THEOREM 5. For any CRWL-program, C ∈ Contx and e ∈ Exp⊥, [[C[e]]]pl =
⋃

{t1,...,tn}⊆[[e]]pl

[[C[t1 ? . . . ? tn]]]pl, for any arrangement of the elements of {t1, . . . , tn} in t1 ? . . . ? tn.

The proof for that theorem is based upon the commutativity, associativity of ?, and the idem-

potence of its partial application (see [19]). With Theorem 5 at hand is very easy to prove the

following distributivity property for πCRWL , also known as the bubbling operational rule

[2]:

¶In fact angelic non-strict plural non-determinism.

334 A HIERARCHY OF SEMANTICS FOR NON-DETERMINISTIC TERM REWRITING SYSTEMS

THEOREM 6.[Correctness of bubbling] For any CRWL-program, C ∈ Contx and e1, e2 ∈
Exp⊥, [[C[e1 ? e2]]]

pl = [[C[e1] ? C[e2]]]pl .

πCRWL also has some monotonicity properties related to substitutions. We define the pre-

order ⊑π over CSubst?⊥ by θ ⊑π θ′ iff ∀X ∈ V , given θ(X) = t1 ? . . . ? tn and θ(X) =
t′1 ? . . . ? t′m then ∀t ∈ {t1, . . . , tn}∃t

′ ∈ {t′1, . . . , t
′
m} such that t ⊑ t′; and the preorder E over

Subst⊥ by σ E σ′ iff ∀X ∈ V , [[σ(X)]]pl ⊆ [[σ′(X)]]pl.

LEMMA 7. For any CRWL-program, e ∈ Exp⊥, t ∈ CTerm⊥, σ, σ′ ∈ Subst⊥, θ, θ′ ∈ CSubst?⊥:
1. Strong monotonicity of Subst⊥: If ∀X ∈ V , s ∈ CTerm⊥ given P ⊢πCRWL σ(X) _ s

with size K we also have P ⊢πCRWL σ′(X) _ s with size K′ ≤ K, then ⊢πCRWL eσ _ t

with size L implies ⊢πCRWL eσ′
_ t with size L′ ≤ L.

2. Monotonicity of CSubst⊥: If θ, θ′ ∈ CSubst⊥ and θ ⊑ θ′ then P ⊢πCRWL eθ _ t with
size K implies P ⊢πCRWL eθ′ _ t with size K′ ≤ K.

3. Monotonicity of Subst⊥: If σ E σ′ then [[eσ]]pl ⊆ [[eσ′]]pl .
4. Monotonicity of CSubst?

⊥
: If θ ⊑π θ′ then [[eθ]]pl ⊆ [[eθ′]]pl .

We end this section with an example of the use of πCRWL to model problems in which some

collecting work has to be done.

EXAMPLE 8. Wewant to represent the database of a bank in which we hold some data about
its employees, this bank has several branches and we want to organize the information
according to them. So we define a non-deterministic function branches to represent the set
of branches: a set is identified then with a non-deterministic expression. In this line we
define a non-deterministic function employees which conceptually returns the set of records
containing the information regarding the employees that work in a branch. Now, to search
for the names of two clerks we define the function twoclerks which is based upon f ind,
which forces the desired pattern e(N, S, clerk) over the set defined by employees(branches).

P = {branches → madrid, branches → vigo, employees(madrid) → e(pepe,men, clerk), employees(madrid) →
e(paco,men, boss), employees(vigo) → e(maria,women, clerk), employees(vigo) → e(jaime,women, boss),
twoclerks → f ind(employees(branches)), f ind(e(N, S, clerk)) → (N,N)}

With term rewriting twoclerks → f ind(employees(branches)) 6→∗ (pepe,maria), because in
that expression the evaluation of branches is needed and so one of the branches must be
chosen. On the other hand with πCRWL (some steps have been omitted for the sake of
conciseness): . . .

employees(branches) _ e(pepe,⊥, clerk)
POR

. . .

employees(branches) _ e(maria,⊥, clerk)
POR

. . .

(pepe ? maria, pepe ? maria) _ (pepe,maria)
DC

f ind(employees(branches)) _ (pepe,maria)
POR

twoclerks _ (pepe,maria)
POR

where
branches _ madrid

POR
. . .

e(pepe,men, clerk) _ e(pepe,⊥, clerk)
DC

employees(branches) _ e(pepe,⊥, clerk)
POR

4 Comparison: a hierarchy of semantics

When comparing these semantics is not surprising finding that CRWL and πCRWL have

similar properties. For example the monotonicity Lemma 4 also holds for CRWL; this lemma

JUAN RODRÍGUEZ-HORTALÁ FSTTCS 2008 335

does not even make sense for term rewriting, as it only works with total terms. On the other

hand term rewriting is closed under Subst (e →∗ e′ implies eσ →∗ e′σ, for any σ ∈ Subst);

CRWL is not closed under Subst but under CSubst⊥, as corresponds to call-time choice;

πCRWL is closed under CSubst⊥ too (see [19]), and we conjecture that for θ ∈ CSubst?⊥ if

⊢πCRWL e _ t then [[tθ]]pl ⊆ [[eθ]]pl . For CRWL a compositionality result similar to Theorem

5 also holds, and bubbling is correct too [14]. This is not the case for term rewriting, as we

saw when switching from f (c(0?1)) to f (c(0)?c(1)) in examples 1 and 2.

4.1 The hierarchy

As πCRWL is a modification of CRWL, the relation between them is very direct.

THEOREM 9. For any CRWL-program P , e ∈ Exp⊥, t ∈ CTerm⊥ given a CRWL-proof for
P ⊢ e _ t we can build a πCRWL-proof for P ⊢πCRWL e _ t just replacing every OR step

by the corresponding POR step. As a consequence [[e]]
sg
P ⊆ [[e]]

pl
P .

Concerning the relation of CRWL and πCRWL with term rewriting, we will use the

notion of shell |e| of an expression e that represents the outer constructor (and thus computed)

part of e, defined as | ⊥ | =⊥, |X| = X, c(e1, . . . , en) = c(|e1|, . . . , |en|), | f (e1, . . . , en)| =⊥
(for X ∈ V , c ∈ CS, f ∈ FS). We also define the denotation of e ∈ Exp under term rewriting

as [[e]]rw = {t ∈ CTerm⊥ | ∃e′ ∈ Exp . e →∗ e′ ∧ t ⊑ |e′|}. In a previous joint work the

author explored the relation between CRWL and term rewriting ([12], Theorem 9), recast in

the following theorem:

THEOREM 10. For any CRWL-program P , e ∈ Exp, [[e]]sg ⊆ [[e]]rw. The converse inclusion
does not hold in general.

As we saw in Example 1, in general call-time choice semantics like CRWL produce less

results than run-time choice semantics like the one induced by term rewriting. We will see

that this kind of relation also holds for term rewriting and πCRWL.

THEOREM 11. For any CRWL-program P , e ∈ Exp, [[e]]rw ⊆ [[e]]pl. The converse inclusion
does not hold in general.

The key for proving Theorem 11 is a lemma stating that ∀e, e′ ∈ Exp if e → e′ then

[[e′]]pl ⊆ [[e]]pl, that is, that every rewriting step is sound wrt. πCRWL. The evident corollary

for these theorems is the announced inclusion chain.

COROLLARY 12. For any CRWL-program P , e ∈ Exp, [[e]]sg ⊆ [[e]]rw ⊆ [[e]]pl. Hence ∀t ∈
CTerm, ⊢CRWL e _ t implies e →∗ t which implies ⊢πCRWL e _ t.

5 Simulating plural semantics

In [12, 13] it was shown that neither CRWL can be simulated by term rewriting with a simple

program transformation, nor vice versa. Nevertheless, plural semantics can be simulated by

rewriting using the transformation presented in the current section, which could be used as

the basis for a first implementation of πCRWL that we might use for experimentation. First

we will present a naive version of this transformation, and show its adequacy; later we will

propose some simple optimizations for it.

336 A HIERARCHY OF SEMANTICS FOR NON-DETERMINISTIC TERM REWRITING SYSTEMS

5.1 A simple transformation

DEFINITION 13. Given a CRWL-program P, for every rule (f (p1, . . . , pn) → r) ∈ P such
that f 6∈ { ? , i f then } we define its transformation as:

pST(f (p1, . . . , pn) → r) = f (Y1, . . . ,Yn) → i f match(Y1, . . . ,Yn) then r[Xij/projectij(Yi)]

- ∀i ∈ {1, . . . , n}, {Xi1, . . . ,Xiki} = var(pi) ∩ var(r) and Yi ∈ V is fresh.
- match ∈ FSn fresh is defined by the rule match(p1, . . . , pn) → true.
- Each projectij ∈ FS1 is a fresh symbol defined by the single rule projectij(pi) → Xij.

For f ∈ { ? , i f then } the transformation leaves its rules untouched.

The function match is used to impose a “guard” that enforces the matching of each

argument with its corresponding pattern. If we dropped this condition the translation of, for

example, to rule (null(nil) → true), would be (null(Y) → true), which is clearly unsound

as then null(0 : nil) → true. Besides each pattern pi has been replaced by a fresh variable

Yi, to which any expression can match, hence the arguments may be replicated freely by

the rewriting process without demanding any evaluation and thus keeping its denotation

untouched: this is the key to achieve completeness wrt. πCRWL. Later on, the functions

projectij will just make the projection of each variable when needed.

EXAMPLE 14. Applying this to Example 1 we get { f (Y) → i f match(Y) then d(project(Y),
project(Y)),match(c(X)) → true, project(c(X)) → X} , under which we can do:

f (c(0)?c(1)) → i f match(c(0)?c(1)) then d(project(c(0)?c(1)), project(c(0)?c(1)))

→∗ i f true then d(project(c(0)?c(1)), project(c(0)?c(1)))

→ d(project(c(0)?c(1)), project(c(0)?c(1))) →∗ d(project(c(0)), project(c(1))) →∗ d(0, 1)

Concerning the adequacy of the transformation:

THEOREM 15. For any CRWL-program P , e ∈ Exp⊥ built up on the signature of P ,

[[e]]
pl

pST(P)
⊆ [[e]]

pl
P .

THEOREM 16. For any CRWL-program P , e ∈ Exp, t ∈ CTerm⊥ built up on the signature
of P , if P ⊢πCRWL e _ t then exists some e′ ∈ Exp built using symbols of the signature of
pST(P) such that pST(P) ⊢ e →∗ e′ and t ⊑ |e′|.

COROLLARY 17. For any CRWL-program P , e ∈ Exp built using symbols of the signature

of P , [[e]]
pl
P = [[e]]rw

pST(P). Hence ∀t ∈ CTerm P ⊢πCRWL e _ t iff pST(P) ⊢ e →∗ t.

5.2 An optimized transformation

Concerning the transformation, if a pattern is ground then no parameter passing will be

done for it and so no transformation is needed: for null(nil) → true we get {null(Y) →
i f match(Y) then true, match(nil) → true}, which is equivalent. Besides, if the pattern

is a variable then any expression matches it and the projection functions are trivial, so no

transformation is needed neither, as happens with pair(X) → (X,X) for which {pair(Y) →
i f match(Y) then (project(Y), project(Y)),match(X) → true, project(X) → X} are returned.

JUAN RODRÍGUEZ-HORTALÁ FSTTCS 2008 337

DEFINITION 18.Given a CRWL-program P, for every rule (f (p1, . . . , pn) → r) ∈ P we
define its transformation as:

pST(f (p1, . . . , pn) → r)

=







f (p1, . . . , pn) → r if ρ1 . . . ρm is empty

f (τ(p1), . . . , τ(pn)) →
i f match(Y1, . . . ,Ym)

then r[Xij/projectij(Yi)]
otherwise

where ρ1 . . . ρm = p1 . . . pn | λp.(p 6∈ V ∧ var(p) 6= ∅).
- ∀ρi, {Xi1, . . . ,Xiki} = var(ρi) ∩ var(r) and Yi ∈ V is fresh.
- τ : CTerm → CTerm is defined by τ(p) = p if p ∈ V ∨ var(p) = ∅ and τ(p) = Yi otherwise,
for p ≡ ρi.
- match ∈ FSm fresh is defined by the rule match(ρ1, . . . , ρm) → true.
- Each projectij ∈ FS1 is a fresh symbol defined by the single rule projectij(ρi) → Xij.

Wewill not give a formal proof for the adequacy of the optimization. Nevertheless note

how this transformation leaves untouched the rules for ? and i f then without defining an

special case for them. As the simple transformation worked well for that rules that suggests

that we are doing the right thing. We end this section with an example application of the

optimized transformation, over the program of Example 8:

EXAMPLE 19. The only rule modified is the one for f ind: { f ind(Y) → i f match(Y) then

(project(Y), project(Y)),match(e(N, s, clerk)) → true, project(e(N, s, clerk)) → N} so:

twoclerks → f ind(employees(branches))

→ i f match(employees(branches)) then (project(employees(branches)), project(employees(branches)))

→∗ i f match(e(pepe,men, clerk)) then (project(employees(branches)), project(employees(branches)))

→∗ (project(employees(branches)), project(employees(branches)))

→∗ (project(e(pepe,men, clerk)), project(e(maria,women, clerk)) →∗ (pepe,maria)

6 Conclusions

In this work we have pointed the different interpretations of run-time choice and plural

semantics caused by pattern matching. To the best of our knowledge this distinction is

stablished in the present paper for the first time, because in [20] no pattern matching was

present and in [11] only call-time choice was adopted. We argue that the run-time choice

semantics induced by term rewriting is not the best option for a value-based programming

language like current implementations of FLP. For that context a plural semantics has been

proposed for which the compositionality properties lost when turning from call-time choice

to rewriting are recovered. Nevertheless, for other kind of rewriting based languages like

Maude, which are not limited to constructor-based TRS’s, term rewriting has been proven

to be an effective formalism.

Our concrete contributions can be summarized as follows:

- We have presented the proof calculus πCRWL, a novel formulation of plural semantics

for left-linear constructor-based TRS’s, which are the kind of TRS’s used in FLP. Some basic

properties of the new semantics have been stated and proved, and by some examples we

have shown how it allows natural encodings of some programs that need to do some col-

lecting work (Sect. 3).

338 A HIERARCHY OF SEMANTICS FOR NON-DETERMINISTIC TERM REWRITING SYSTEMS

- We have compared the new calculus with CRWL and term rewriting, which are standard

formulations for call-time choice and run-time choice respectively. The different properties

of these calculi have been discussed and the inclusion chain CRWL ⊆ rewriting ⊆ πCRWL

has been proved (Sect. 4).

- We have recalled some previous results about the impossibility of a straight simulation of

CRWL in term rewriting or viceversa by a simple program transformation. Besides we have

proposed a novel program transformation to simulate plural semantics with term rewriting,

and proved its adequacy (Sect. 5).

From a practical point of view, it might be unrealistic to think that a monolithic seman-

tic view is adequate for addressing all non-determinism present in a large program. In [13]

we have started to investigate the combination of call-time choice and run-time choice in

a unified framework. But as πCRWL seems to be more suitable than run-time choice for a

value-based language, we are planning to extend that work to plural semantics.

We contemplate other relevant subjects of future work:

- Extending the current results to programs with extra variables, that is, with rules l → r in

which var(r) ⊆ var(l) does not hold in general. We should also deal with conditional rules

and equality constraints to cover the basic features of FLP languages.

- Studying the relation between the determinism of programs underCRWL [12] and πCRWL,

which we conjecture is equivalent. We also conjecture that for deterministic programs

∀e ∈ Exp, [[e]]sg = [[e]]rw = [[e]]pl. Getting results about the relation of confluence and de-

terminism of programs could be useful for analyzing the confluence of a TRS through its

determinism. In the same line, the inclusion chain CRWL ⊆ rewriting ⊆ πCRWL could be

used to study the termination of a TRS through its termination in CRWL and πCRWL.

- Developing a more operational rewrite notion for πCRWL in the line of [12], which could

be extended to narrowing like in [14]. A complexity study would be needed to ensure that

the extra nondeterminism does not preclude the design of an efficient implementation. On

the other hand the natural value for πCRWL seems to be P(CTerm⊥) instead of CTerm⊥, a

formulation in the line of [16] could be useful to forget about the tricky use of ? .

- Finally, for the immediate future, it could be interesting implementing the transforma-

tion to simulate πCRWL in some term rewriting based language like Maude [5]. Maybe the

context-sensitive rewriting [18] features of Maude could be used to improve the laziness of

the transformed program like in [17]. Besides, the matching-module capacities of Maude

could be used to enhance the expressivity of plural semantics.

Acknowledgements: The author would like to thank Paco López Fraguas and Jaime

Sánchez Hernández for their support and their useful suggestions. I would also like to

thank the referees for their very valuable comments.

References

[1] S. Antoy. Optimal non-deterministic functional logic computations. In Proc. ALP’97,

pages 16–30. Springer LNCS 1298, 1997.

[2] S. Antoy, D. Brown, and S. Chiang. Lazy context cloning for non-deterministic graph

rewriting. In Proc. Termgraph’06, pages 61–70. ENTCS, 176(1), 2007.

[3] S. Antoy and M. Hanus. Functional logic design patterns. In Proc. FLOPS’02, pages

67–87. Springer LNCS 2441, 2002.

JUAN RODRÍGUEZ-HORTALÁ FSTTCS 2008 339

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

United Kingdom, 1998.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. L. Talcott,

editors. All About Maude - A High-Performance Logical Framework, How to Specify,

Program and Verify Systems in Rewriting Logic. Springer LNCS 4350, 2007

[6] M. Clavel, M. Palomino, and A. Riesco. Introducing the itp tool: a tutorial. J. UCS

12(11), pages 1618–1650, 2006.

[7] R. Diaconescu and K. Futatsugi. An overview of CafeOBJ. ENTCS 15,1998.

[8] J. C. González-Moreno, T. Hortalá-González, F. López-Fraguas, and M. Rodrı́guez-

Artalejo. An approach to declarative programming based on a rewriting logic. J. Log.

Program. 40(1), pages 47–87, 1999.

[9] M. Hanus. The integration of functions into logic programming: From theory to prac-

tice. J. Log. Program. 19/20, pages 583–628, 1994.

[10] M. Hanus (ed.). Curry: An integrated functional logic language (version 0.8.2). Avail-

able at http://www.informatik.uni-kiel.de/˜curry/report.html, March 2006.

[11] H. Hussmann. Non-Determinism in Algebraic Specifications and Algebraic Programs.

Birkhäuser Verlag, 1993.

[12] F. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández. A simple rewrite

notion for call-time choice semantics. In Proc. PPDP’07, pages 197–208. ACM Press,

2007.

[13] F. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández. A flexible frame-

work for programming with non-deterministic functions (Extended version). Tech.

Rep. SIC-9-08, Universidad Complutense de Madrid, 2008. http://gpd.sip.ucm.
es/juanrh/pubs/tchrRTCT08.pdf.

[14] F. López-Fraguas, J. Rodrı́guez-Hortalá, and J. Sánchez-Hernández. Rewriting and

call-time choice: the HO case. In Proc. FLOPS’08, pages 147–162. Springer LNCS 4989,

2008.

[15] F. López-Fraguas and J. Sánchez-Hernández. T OY : A multiparadigm declarative sys-

tem. In Proc. RTA’99, pages 244–247. Springer LNCS 1631, 1999.

[16] F. López-Fraguas and J. Sánchez-Hernández. A proof theoretic approach to failure in

functional logic programming. TPLP, 4(1&2), pages 41–74, 2004.

[17] S. Lucas. Needed reductions with context-sensitive rewriting. In Proc. ALP/HOA’97,

pages 129–143. Springer LNCS 1298, 1997.

[18] S. Lucas. Context-sensitive computations in functional and functional logic programs.

J. Fun. Log. Program 1998(1), 1998.

[19] J. Rodrı́guez-Hortalá. A Hierarchy of Semantics for Non-deterministic Term Rewrit-

ing Systems (Extended version). Tech. Rep. SIC-10-08, Universidad Complutense de

Madrid, 2008. http://gpd.sip.ucm.es/juanrh/pubs/tchrFSTTCS08.pdf.
[20] H. Søndergaard and P. Sestoft. Non-determinism in functional languages. The Com-

puter Journal 35(5), pages 514–523, 1992.

[21] M. Wenzel. The isabelle/isar reference manual. http://isabelle.in.tum.de/
dist/Isabelle99-2/doc/isar-ref.pdf.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

