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ABSTRACT.
In a combinatorial optimization problem, when given an input instance, one seeks a feasible solution
that optimizes the value of the objective function. Many combinatorial optimization problems are
NP-hard. A way of coping with NP-hardness is by considering approximation algorithms. These
algorithms run in polynomial time, and their performance is measured by their approximation ratio:
the worst case ratio between the value of the solution produced and the value of the (unknown)
optimal solution.
In some cases the design of approximation algorithms includes a nonconstructive component. As
a result, the algorithms become estimation algorithms rather than approximation algorithms: they
allow one to estimate the value of the optimal solution, without actually producing a solution whose
value is close to optimal.
We shall present a few such examples, and discuss some open questions.

1 Introduction
In a combinatorial optimization problem, when given an input instance, one seeks a feasible
solution that maximizes (or minimizes) the value of the objective function. For example, in
the Travelling Salesperson (TSP) problem, given an input graph with edge lengths, one is to
find a tour (Hamiltonian cycle) of minimum length. Combinatorial optimization problems
are very common in practice, and are also of great theoretical interest. Many combinatorial
optimization problems are NP-hard (informally meaning that we know of no polynomial
time algorithm that solves every instance optimally). A way of coping with NP-hardness
is by considering approximation algorithms. These algorithms run in polynomial time (or
sometimes, random polynomial time), but are not guaranteed to produce optimal solutions.
Their performance is measured by their approximation ratio. For a maximization problem, an
approximation algorithm is said to have approximation ratio 0 ≤ ρ ≤ 1 if on every instance,
the value of the solution output by the algorithm is at least ρ times the value of the optimal
solution. (For minimization problems, ρ ≥ 1, and the value of the solution output by the
algorithm is at most ρ times the optimal.) It is often the case that the approximation ratio of
an algorithm is not a fixed constant that holds for all input sizes n, but rather it deteriorates
as the input size grows. In this case, rather than just saying that the approximation ratio
is 0 (for maximization problems) or unbounded (for minimization problems), we measure
the rate at which the the approximation ratio deteriorates (as a function of n). For example,
the greedy algorithm for set cover has approximation ratio ln n. The approximation ratio
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of an optimization problem is the best approximation ratio achieved by any approximation
algorithm for the problem. For more details see for example [24, 26, 6, 37].

We say that a combinatorial optimization problem has a threshold at ρ if there is a poly-
nomial time (randomized) algorithm for it with approximation ratio ρ, and it is NP-hard to
approximate it within a ratio better than ρ. (Here we ignore low order terms in the approx-
imation ratio.) Problems that have approximation ratios arbitrarily close to 1 (a so called
Polynomial Time Approximation Scheme, PTAS) have a threshold at 1. Perhaps surpris-
ingly, many other problems (such as k-center, set cover, max coverage, max 3SAT) also have
approximation thresholds, though the locations of the thresholds may differ among prob-
lems.

Needless to say, for many problems (such as metric TSP, max SAT, min bisection and
dense k-subgraph) we do not know if they have a threshold or not. Problems with no known
threshold are the ones relevant to the discussion that follows.

At this point it will be convenient to distinguish between notions that we shall call
here approximation algorithms and estimation algorithms. For the approximation problem,
one is required to find a feasible solution whose value is close to that of the value of the
optimal solution. For estimation algorithms, one is required to estimate the value of the
optimal solution, without necessarily outputting a solution that meets this estimate. This is
potentially an easier task. It turns out that hardness of approximation results are essentially
always also hardness of estimation results, within the same ratio. That is, our techniques
for establishing hardness of approximation do not distinguish between approximation and
estimation. On the algorithmic side, most positive results apply equally well to estimation
and approximation. However, there are some exceptions where at the moment the known
estimation ratios are better than the known approximation ratios.

2 Some research directions

The distinction between estimation algorithms and approximation algorithms offers inter-
esting research directions.

Prove new estimation ratios. For some problems there are large gaps between the
known approximation ratios and the known hardness of approximation results. For such
problems, try to establish estimation ratios that are better than the known approximation
ratios.

Close the gaps between estimation and approximation ratios. For some problems
there are large gaps between the known approximation ratios and the known estimation
ratios. For such problems, try to improve the approximation ratio (hopefully, replacing the
nonconstructive arguments that lead to the estimation ratios by constructive arguments that
lead to the same approximation ratio).

Relating between open questions. Introduce complexity classes that capture current
gaps between estimation and approximation (similar in spirit to the work of [32]). That is,
we would like to be able to show that if this gap is closed for one problem, this automatically
implies that the gap will be closed for other problems.

Relating to external open questions. At the moment we do not have convincing evi-
dence that there should be a gap between approximation ratios and estimation ratios. For
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many optimization problems these ratios provably match (when there is a known approx-
imation threshold, such as for max-3SAT or min set cover), in others they currently match
(such as for min vertex cover or sparsest cut), and in the remaining cases the theory of NP-
completeness does not appear to apply, because it deals with decision problems rather than
search problems. Try to establish connections between previously defined concepts (such
as PPAD-completeness) and gaps between approximation and estimation. (To appreciate
the subtleties involved consider the following example. Finding a locally maximal cut is
PLS-complete, but the known approximation ratios for max-cut [25] are better than those
that local search gives. Hence PLS-completeness by itself is not an obstacle to bridging the
gap between estimation and approximation.)

Development of techniques. There are some proof techniques that originally were
nonconstructive, and algorithmic versions of them (or of special cases) were discovered
only later. See for example [7] for the local lemma and [4] for the regularity lemma. Design
algorithmic versions of nonconstructive arguments, regardless of any immediate applica-
bility to combinatorial optimization.

Random instances. Nonconstructive arguments often show that random instances
(such as random 3CNF formulas) are likely to either have or not have solutions (depend-
ing on the density of the underlying instance). Find algorithmic versions of these results.
These type of questions have indirect connections to approximation algorithms, and may
well require similar sets of techniques (see [15] for example).

3 Examples

Below we list some examples of current gaps between approximation ratios and estimation
ratios (or conjectured estimation ratios).

Max-min allocation.
In max-min allocation problems, there is a threshold t, a set of m items, a set of n players,

and nonnegative valuations vij that for every player i and item j specify the value of item
j to player i. The goal is to allocate items to the players in a way that every player gets
total value (sum of his values for the items allocated to him) at least t. This problem is
NP-hard. A linear program relaxation of this problem provides an upper bound on the
maximum possible value of t. It is known that the gap between this upper bound and true
optimum may be Ω(

√
n). However, in an interesting special case, the restricted assignment

version, there is a nonconstructive proof (in fact, two different nonconstructive proofs by
now, [18] using the local lemma, [5] using local search) that the gap is at most constant.
Hence the value of the linear program provides a constant factor estimation for the restricted
assignment version of the max-min allocation problem. No constant factor approximation
ratio is known for this problem.

Metric TSP.
The Held-Karp conjecture states that the value of a certain linear program provides a

4/3 estimation for metric TSP in undirected graphs. If true, this conjecture provides a 4/3
estimation ratio for metric TSP, which is better than the known approximation ratio of 3/2.

For undirected graphs it is known that the integrality gap of the LP is no better than
4/3 and no worse than 3/2. For directed graphs, the integrality gap is known to be no better
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than 2, and no sublogarithmic approximation ratios are known.
Edge colorings in multigraphs.
There is a famous theorem by Vizing that states (and gives an algorithm) that in every

simple graph there is a legal edge coloring with one more color than the maximum degree
in the graph. This gives an approximation of the edge chromatic number within additive 1.
It was conjectured (e.g., by Seymour) that a similar result can be extended to multigraphs,
using a linear programming relaxation. If true this would provide an estimation algorithm
for the edge chromatic number within an additive error of 1. There are nonconstructive
proofs (using the local lemma) that give a 1 + ε multiplicative estimation when the edge
chromatic number of multigraphs is sufficiently large [29].

Discrepency.
Many discrepancy problems can be viewed as coloring problems on hypergraphs. The

goal is to color the vertices such that every hyperedge remains nearly balanced (has roughly
the same number of vertices of each color). Techniques used in the proofs that low dis-
crepancy colorings exist are sometimes constructive (such as the Beck-Fiala theorem that
iteratively uses basic feasible solutions of linear programs), and sometimes nonconstructive
(such as the first use of the Lovasz local lemma, or Spencer’s proof that ”six standard de-
viations suffice” that uses the pigeon hole principle in a nonconstructive way). The reader
is referred to [9, 31] were references to these and other results can be found. In general, it
is often the case that statements involving discrepancy involve nonconstructive proofs (see
also [2, 16]).

It would be desirable to replace some of the nonconstructive proofs in discrepancy the-
ory by algorithmic proofs (as was done by Beck in the context of the local lemma). Perhaps
more ambitiously, improve some of the known discrepancy bounds. (For example, it is
conjectured that the Beck-Fiala theorem can be improved when the degrees are large.)

Graph bandwidth.
A linear arrangement of a graph is a numbering of its n vertices from 1 to n. The

bandwidth of the linear arrangement is the maximum difference between numberings of
endpoints of an edge. The bandwidth of a graph is the bandwidth of its minimum bandwidth
linear arrangement. The local density of a graph is a natural lower bound on the bandwidth.
It is known that the gap between bandwidth and local density can be Ω(log n), and there
is an algorithm that finds a linear arrangement of bandwidth O(log3.5 n) times the local
density [14]. It is reasonable to conjecture that the maximum ratio between bandwidth and
local density is O(log n). If true, then local density provides an O(log n) estimation ratio
for the bandwidth. The best approximation ratio known for the bandwidth is currently
O(log3 n) [13].

Random 3CNF.
Work on refuting dense random 3CNF formulas offers a lot of interplay between exis-

tential and algorithmic arguments. For example, it is shown in [20] that formulas of density
above n0.4 are likely to have polynomial size witnesses for nonsatisfiability. There is no
known efficient algorithm for finding these witnesses. Or another example, the notion of
even covers, originally studied in coding theory, is used in [20, 17] as part of refutation algo-
rithms and witnesses. Further progress is hampered because we are missing an existential
result – we do not know how to prove that small even covers must exist at densities below
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√
n, and because we are missing an algorithmic result – we do not know how to find small

even covers when they do exist.

4 Conclusions

The list of references is not based on a careful study of all related references. Hence it
may miss some important references, and include some papers whose relevance to this
manuscript is questionable. A short overview of the topics addressed by some of the refer-
ences is provided.

A well known nonconstructive proof technique is the Lovasz local lemma (see for ex-
ample [3]). It had been used in the design of estimation algorithms [30, 22, 19, 18]. In some
cases, algorithmic versions of the local lemma are known [7, 12].

The use of linear programming relaxations is common in approximation algorithms.
Sometimes general principles (such as the existence of basic feasible solutions) can be used
in order to show show the existence of high quality integer solutions (as in [8]). In some
cases the underlying linear programs are of exponential size (as in [2, 16]). These lead nat-
urally to estimation algorithms rather than approximation algorithms. Sometimes, the re-
sult inferred from the exponential LP may be obtained by a more direct efficient algorithm
(see [23] for one such example), leading to approximation algorithms.

In the context of random instances of CNF formulas there are many nonconstructive
arguments that lack a constructive counterpart. See examples of work in this area in [1, 11,
15, 17, 20, 21].

Local search is a common algorithmic tool that does not always lead to polynomial
time algorithms [27, 28, 33, 35]. When used for optimization problems, it might result in
estimation algorithms rather than approximation algorithms [5].

There are certain complexity classes that attempt to capture nonconstructive principles.
See [32, 10] for example.

In the context of counting problems [36] there are many randomized approximation
algorithms (such as [34]). In our terminology, we would view them as estimation algorithms
rather than approximation algorithms, since they are only required to output an estimation
for the number of solutions, rather than to list the solutions (which in typical situations
would require exponential output size).

In conclusion, the distinction between approximation and estimation algorithms has
been an explicit or implicit part of research for many years. The purpose of this manuscript
is to bring this distinction and the research opportunity that it offers to the awareness of
more researchers.
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