
08241 Abstracts Collection

Transactional Memory: From Implementation to

Application

� Dagstuhl Seminar �

Christof Fetzer1, Tim Harris2, Maurice Herlihy3 and Nir Shavit4

1 TU Dresden, DE

christof.fetzer@inf.tu-dresden.de
2 Microsoft Research, Cambridge, GB

tharris@microsoft.com
3 Brown Univ. - Providence, USA

herlihy@cs.brown.edu
4 Tel Aviv University, IL

shanir@cs.tau.ac.il

Abstract. From 08.06. to 13.06.2008, the Dagstuhl Seminar 08241 �Trans-

actional Memory: From Implementation to Application� was held in

Schloss Dagstuhl � Leibniz Center for Informatics. During the seminar,

several participants presented their current research, and ongoing work

and open problems were discussed. Abstracts of the presentations given

during the seminar as well as abstracts of seminar results and ideas are

put together in this paper. The �rst section describes the seminar top-

ics and goals in general. Links to extended abstracts or full papers are

provided, if available.

Keywords. Multiprocessors, Multi-core machines, Concurrent Program-

ming, Parallel Programming, Synchronization, Transactional Memory

08241 Summary � Transactional Memory : From
Implementation to Application

A goal of current multiprocessor software design is to introduce parallelism into
software applications by allowing operations that do not con�ict in accessing
memory to proceed concurrently. The key tool in designing concurrent data
structures has been the use of locks. Unfortunately, course grained locking is
easy to program with, but provides very poor performance because of limited
parallelism. Fine-grained lock-based concurrent data structures perform excep-
tionally well, but designing them has long been recognized as a di�cult task
better left to experts. If concurrent programming is to become ubiquitous, re-
searchers agree that one must develop alternative approaches that simplify code
design and veri�cation.

Dagstuhl Seminar Proceedings 08241
Transactional Memory: From Implementation to Application
http://drops.dagstuhl.de/opus/volltexte/2008/1775



2 Christof Fetzer, Tim Harris, Maurice Herlihy and Nir Shavit

Keywords: Multiprocessors, Multi-core machines, Concurrent Programming,
Parallel Programming, Synchronization, Transactional Memory

Joint work of: Fetzer, Christof; Harris, Tim; Herlihy, Maurice; Shavit, Nir

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1774

C/C++ Language Extensions for Transactions

Ali-Reza Adl-Tabatabai (Intel - Santa Clara, US)

I will talk about the C++ language extensions for transactions in the latest
whatif.intel.com latest release of the Intel TM compiler.

Sequential Analysis For Serializability and Beyond

Hagit Attiya (Technion - Haifa, IL)

A concurrent module provides procedures that may be invoked concurrently by
its clients. We consider concurrent modules that utilize locking protocols, such
as two-phase locking (2PL) or tree locking (TL), to guarantee serializability.
We present analyses for verifying that a given module satis�es TL/2PL. Such
analyses are useful as serializability is a desirable property of interest to the end
user (programmer).

However, there is another compelling factor that motivates us to pursue these
analysis problems: if a concurrent module is veri�ed to be serializable, then we
can exploit this fact to perform other analyses of the module, e.g., verifying the
absence of memory errors in the module, more e�ciently and more precisely, by
considering only serial executions of its procedures.

This approach (to using sequential reasoning for subsequent analyses) be-
comes less attractive if the veri�cation of serializability itself requires reasoning
explicitly about all possible interleaved executions of the module's procedures.

One of our main results is that the veri�cation of the locking protocols
(TL/2PL) can itself be done using a sequential analysis. We, in fact, prove this
result for any locking protocol that satis�es certain reasonable conditions. An-
other contribution of this paper is that we present a couple of approaches to
performing a sequential analysis of a concurrent module, and study the correct-
ness conditions required by these approaches. One interesting outcome of this
study is that one natural approach to sequential analysis actually requires a
termination analysis for correctness.

Keywords: Serializability, 2 phase locking, tree locking, sequential veri�cation

Joint work of: Attiya, Hagit; Ramalingam, Ganesan; Rinetzky, Noam; Sagiv,
Mooly; Yahav, Eran; Bouajjani, Ahmed

http://drops.dagstuhl.de/opus/volltexte/2008/1774


Transactional Memory: From Implementation to Application 3

STM for a Distributed Java VM in Sensor Networks

Annette Bieniusa (Universität Freiburg, DE)

The AmbiComp project develops a distributed Java virtual machine for embed-
ded sensor and control units. In particular, it creates a single system illusion to
simplify software development in settings of many physically distributed inter-
acting controllers.

I would like to discuss how AmbiComp can use STM as a parallel program-
ming paradigm.

Flexible Decoupled Transactional Memory Support

Sandhya Dwarkadas (University of Rochester, US)

A high-concurrency transactional memory (TM) implementation needs to track
concurrent accesses, bu�er speculative updates, and manage con�icts, requiring
support for data isolation and memory monitoring (DIMM).

In this talk, I will present a system we call FlexTM (FLEXible Transactional
Memory), that utilizes four decoupled hardware mechanisms that provide DIMM
support: read and write signatures, which summarize per-thread access sets; per-
thread con�ict summary tables (CSTs), which identify the threads with which
con�icts have occurred; Programmable Data Isolation, which maintains specu-
lative updates in the local cache and employs a thread-private bu�er (in virtual
memory) in the rare event of over�ow; and Alert-On-Update, which selectively
noti�es threads about coherence events.

All mechanisms are software-accessible, to enable virtualization across con-
text switches, over�ow, and page swaps.

FlexTM (1) decouples con�ict detection from con�ict management and allows
software to control management time (i.e., eager or lazy); (2) tracks con�icts on
a thread-by-thread basis rather than a location-by-location basis and enables
software to dictate policy without the overhead of separate metadata; and (3)
permits TM components to be used for non-transactional purposes. To the best
of our knowledge, it is the �rst hardware TM to admit a distributed commit
protocol with no global arbitration.

If time permits, I will present results to demonstrate the e�ciency of the
system, as well as the utility of its �exible policies.

I will also demonstrate how the DIMM mechanisms may be used for other
non-transactional purposes such as program debugging.

Joint work of: Shriraman, Arrvindh; Dwarkadas, Sandhya; Scott, Michael L.



4 Christof Fetzer, Tim Harris, Maurice Herlihy and Nir Shavit

Obstruction-Free Algorithms can be Practically Wait-Free

Faith Ellen (University of Toronto, CA)

We present a transformation that converts any obstruction-free algorithm for
an asynchronous shared memory system into a wait-free algorithm when the
system is semi-synchronous, even if the bound between the relative speed of
processes is unknown. Like pragmatic contention managers, our transformation
has negligible overhead when there is no contention, but, unlike them, it also
guarantees progress.

Joint work of: Ellen, Faith; Luchangco, Victor; Moir, Mark; Shavit, Nir

STM for speculative out-of-order event processing

Pascal Felber (Université de Neuchâtel, CH)

In event stream applications, events �ow through a network of components that
perform various types of operations, e.g., �ltering, aggregation, transformation.
When the operation only depends on the input events, one can trivially paral-
lelize its processing by replicating the associated components. This is not possi-
ble, however, with stateful components or when there exist dependencies between
the events. Parallel versions of a number of simple stream mining operators have
been designed, but, in general, complex and user-de�ned operators are limited by
single thread performance. In this paper, we propose leveraging the processing
capabilities of multi-core processors to improve the e�ciency of stateful compo-
nents using optimistic parallelization techniques (as provided by transactional
memory). We show that, even though some speculative event executions might
need to be disregarded, the overall throughput increases noticeably in the general
case and latency can be reduced by pre-processing out-of-order events. Moreover,
we show how simple con�ict predictors can boost the parallelism even more and
reduce the amount of resources used for a given level of parallelism.

Keywords: Transactional memory, event processing

Joint work of: Felber, Pascal; Brito, Andrey; Fetzer, Christof; Sturzrehm, Heiko

Full Paper:
http://doi.acm.org/10.1145/1385989.1386023

See also: In Proceedings of the International Conference on Distributed Event-
Based Systems (DEBS'08), Rome, Italy, July 2008.

http://doi.acm.org/10.1145/1385989.1386023


Transactional Memory: From Implementation to Application 5

My programming-languages view of TM: Research and
Conjectures

Daniel Grossman (University of Washington, US)

I will give a very brief overview/advertisement of the TM research my group
has been conducting over the last three years. This research approaches TM
from a programming-languages perspective. We have focused on issues of mo-
tivation (why are transactions actually better), semantics (particularly strong
vs. weak isolation), language design (how do transactions interact with other
features), and language implementation (what compiler/runtime optimizations
are helpful).

I will �nish with some conjectures about the promise of TM technology that
may help start informal discussions to help guide the TM community.

Transactional Memory Input Acceptance

Rachid Guerraoui (EPFL - Lausanne, CH)

We present a new metric to characterize Transactional Memories (TMs): the
input acceptance. This metric represents, for a given TM, its ability to commit
transactions depending on the interleaving (i.e., schedule) of their actions. Up
to now, the main evaluation metric was the number of committed transactions
by time unit (a.k.a. throughput), however, throughput does not capture the
likeliness for a TM to commit a transaction.

Unlike throughput, the input acceptance of a TM indicates the quantity
of given schedules for which the TM commits its transactions. The di�culty
in designing a correct TM comes more from ensuring that some serializable
transactions commit than from ensuring that non-serializable transactions abort.

We identify few TM designs shared by several existing TMs and we com-
pare them along with this new metric. Our theoretical results, con�rmed by
experimental results, totally order the input acceptance of these designs.

Keywords: Input acceptance, Transactional memory, Theory, Performance

Joint work of: Gramoli, Vincent; Harmanci, Derin; Felber, Pascal

Pay-to-use strong atomicity

Tim Harris (Microsoft Research UK - Cambridge, GB)

I'll introduce a new way to provide "strong atomicity" in an implementation of
atomic blocks using transactional memory.



6 Christof Fetzer, Tim Harris, Maurice Herlihy and Nir Shavit

Strong atomicity lets us o�er clear semantics to programs, even if they access
the same locations inside and outside atomic blocks.

It also avoids di�erences between hardware-implemented transactions and
software-implemented ones. Our new idea is to use o�-the-shelf page-level mem-
ory protection hardware to detect con�icts between normal memory accesses
and transactional ones. The page-level system ensures correctness but gives poor
performance because of the costs of manipulating memory protection hardware
from user-mode and the costs of synchronizing protection settings between pro-
cessors or cores. However, in practice, we show how a combination of careful
object placement and dynamic code update allow us to eliminate almost all of
the protection changes. Existing implementations of strong atomicity in soft-
ware rely on detecting con�icts by conservatively treating some non-transacted
accesses as short transactions. In contrast, our page-level technique provides a
foundation that lets us be less conservative about how nontransacted accesses
are treated; we avoid changes to non-transacted code until a possible con�ict
is detected dynamically, and we can respond to phase changes where a given
instruction sometimes generates con�icts and sometimes does not. We evaluate
our implementation with C# versions of many of the STAMP benchmarks.

Our implementation requires no changes to the operating system.

CAR-STM: Scheduling-Based Collision Avoidance and
Resolution for Software Transactional Memory

Danny Hendler (Ben Gurion University, IL)

Transactional memory (TM) is a key concurrent programming abstraction.
Several software-based transactional memory (STM) implementations have

been developed in recent years. All STM implementations must guarantee trans-
action atomicity but di�erent STM implementations may provide di�erent progress
guarantees. In order to ensure progress, an STM implementation must resolve
transaction con�icts. This is done either by the implementation itself (if it is
lock-free) or by delegating con�ict resolution to a separate contention manager
module that tries to resolve transaction collisions once they are detected.

In this talk, we describe a novel approach for increasing STM e�ciency:
rather than handle collisions post factum, we propose proactive collision reduc-
tion by pre-assigning transactions that are more likely to collide to the same
core.

We present CAR-STM, a scheduling-based mechanism for STM collision
avoidance and resolution, that can be incorporated into existing STM implemen-
tations. In addition to proactive collision avoidance that is based on application-
speci�c hints, CAR-STM's transaction scheduling supports novel and highly
e�cient contention managers that resolves con�icts by serializing the execution
of colliding transactions.

We have incorporated CAR-STM into the University of Rochester's STM
(RSTM) and compared the performance of the new implementation with that



Transactional Memory: From Implementation to Application 7

of the original RSTM by using STMBench7. Our results show that the new
implementation provides orders-of-magnitude reduction of execution times and
improved throughput for almost all concurrency levels.

Additionally, since CAR-STM greatly reduces the unpredictable in�uence
of operating-system scheduling on STM performance, the new implementation
provides much more stable performance. In contrast, the performance of the orig-
inal RSTM implementation on STMBench7 workloads exhibits extremely high
variance. Though our current work focuses on software transactional memory,
we believe the ideas introduced by CAR-STM may prove useful also for hybrid
implementations of transactional memory.

Joint work of: Dolev, Shlomi; Hendler, Danny; Suissa, Adi

Are transactions concurrent enough?

Maurice Herlihy (Brown Univ. - Providence, US)

Most TM implementations synchronize on the basis of read/write sets. There is
reason to believe that read/write synchronization unnecessarily restricts concur-
rency for data structurs such as hashmaps, queues, etc. I'd like to ask whether
this is really a problem, and if so, what can be done about it.

Keywords: Concurrency

Locality in Concurrent Data Structures

Eshcar Hillel (Technion - Haifa, IL)

To reap the performance bene�ts of multi-core and multiprocessing systems,
algorithms and data structures should accommodate concurrent access, without
e�ectively sequentializing all operations.

We explain the concept of locality and describe a method for multi-word
synchronization that increases concurrency and throughput.

Note on scheduling: I am arriving on Monday afternoon, and leaving on
Friday (very early in the) morning.

Challenges and Directions for TM Research

Christos Kozyrakis (Stanford University, US)

The Transactional Memory (TM) research community has made great progress
within the past �ve years.



8 Christof Fetzer, Tim Harris, Maurice Herlihy and Nir Shavit

We now have a reasonable understanding of how to implement TM with
hardware or software, how to optimize TM code, how to argue about and prove
TM semantics, how to manage contention, and how to reason about issues such
as strong atomicity or composability. More important, the TM community has
created excitement and attracted participation from multiple research domains
including architecture, compilers, programming languages, operating systems,
and distributed algorithms.

There are several low-level implementation issues for TM researchers to de-
bate and investigate. Nevertheless, the goal of this talk is to initiate a discussion
on the urgent high-level challenges for the TM community. The following �ve
issues are often raised by colleagues outside of this community and are particular
important for the long-term success of TM research. Some suggestions on how
to address these issues based on past and current work at the TCC group at
Stanford are also included:

1) How does TM �t with parallel programming environments?

Since TM cannot address on its own all the challenges of concurrency, it is
important to consider how it �ts within complete parallel programming environ-
ments. We have placed signi�cant e�ort on integrating transactions with existing
parallel idioms (C++ threads, Java threads, OpenMP, etc). It is now time to
explore how transactions �t with other innovative ideas for parallel program-
ming. One such idea is domain-speci�c languages that hide the complexities of
concurrency using high-level, domain-speci�c abstractions.

In such an environment, transactions may simply be an implementation tool,
hidden from the end programmer. The advantage of this approach is that we can
limit the type and scope of transactions used in practice, avoiding the di�cult
cases of nesting, inter-transaction communication, etc.

2) How does TM �t in the stack of a modern computer system?

Related to (1), modern computing environments do not consist of just pro-
cessors and memory. They also include I/O, networking, interprocess communi-
cation, distributed environment over cluster substrates, etc.

How does TM technology �t in such a stack? Can we provide atomicity
and isolation as user code interacts with multiple system components? If yes,
what are the semantics and what are the restrictions? So far, we have either
ignored these issues or "stretched" TM to cover parts of the system functionality.
An alternative approach is to consider system-scale transactions, where TM is
just one of the many transactional components in the system. Similar to IBM's
QuickSilver system, a transactional manager would coordinate the execution of
user-level transactions across transactional components such as TM, log-based
�le systems, DBMS, and network queues.

(3) Does TM technology scale?

The only concurrency that matters is concurrency that scales. For TM to
remain relevant, its language abstractions and implementations must scale from
tens to hundred of thousands of threads. Virtually all TM implementations cur-
rently rely on coherent, shared memory, a technology that we are still not certain
how to scale. On the other hand, transactions may be the abstraction that makes



Transactional Memory: From Implementation to Application 9

inter-thread communication su�ciently coarse-grained in space and time so that
coherent shared memory can scale to large numbers of threads.

(4) Can TM help with system challenges beyond concurrency?
Application developers are facing several challenges in addition to exploiting

concurrency. Security, reliability and robustness, debugging and testing are a few
of the many. The basic mechanisms of a TM system (data versioning, con�ict
detection, serializability enforcement) can potentially help simplify or improve
solutions towards these challenges.

The opportunity for the TM community is that such uses may be the points
that convince system vendors to deploy TM and application developers to actu-
ally use it. The challenge is to explore how such uses interact with transactions
for concurrency control.

(5) How much easier does TM make parallel programming after all?
Last but de�nitely not least, for all our work on TM, we still have no quan-

titative data to support the main claim for TM research. Measuring ease of
programming is an extremely di�cult task, but it is also a task that we must
undertake. We need to consider what are the user studies or deployments that
we should put together to quantify some aspects of programmability. Apart from
convincing critics, this will help us understand how programmers will actually
use transactions, what are the common cases, what are the pitfalls, how useful
transactions are beyond concurrency etc. Such work is much more important at
this point than yet another optimization of some implementation aspect.

Hopefully, the Dagstuhl workshop can make some progress towards address-
ing these challenges.

Preparing Debuggers for Transactional Programs

Yossi Lev (Brown Univ. - Providence, US)

With the recent emergence of multiprocessors and multicore computers, Trans-
actional Memory (TM) is becoming the programming API of choice for writing
concurrent programs. The transactional programming model promises to sim-
plify the task of writing concurrent, correct and scalable programs. In order to
support this new model, debuggers will need to change. As far as we know, little
work has been done on this front.

In this talk, we describe the development of libtm_db, the �rst library to
provide debuggers with general debugging support for transactional programs.
libtm_db is an open source, external library, designed to assist debuggers for
transactional programs by isolating them from the internals of the particular
runtime TM in use. The library is not targeted to a speci�c debugger, and can
be extended to support various runtime TM systems. We hope that the library
will assist debugger writers in the required shift to supporting transactional
programs' debugging, and provide developers of new runtime TM systems with
a well-de�ned interface for transactional debugging support.

Keywords: Debugging, Transactional Memory



10 Christof Fetzer, Tim Harris, Maurice Herlihy and Nir Shavit

What do we really want from transactional memory?

Victor Luchangco (Sun Microsystems Laboratories - Burlington, US)

There's been a lot of excellent work in improving transactional memory imple-
mentations, and even some in beginning to precisely de�ne the semantics of
transactional memory.

That's great, and we need to keep plugging at that. But we should also take
a step back and �gure out what we actually hope to achieve with transactional
memory, and what properties transactional memory (and its implementations)
must have to achieve our goals. For example (ignoring for now the lack of precise
de�nitions for the following terms), can we e�ciently implement strongly atomic
linearizable unbounded transactional memory? If not, what are we willing to
give up? E�ciency? Strong atomicity? Linearizability? Unboundedness? Some
combination of these? And how should we decide? I think we should decide
based on our goals for transactional memory, which we must therefore attempt
to ennunciate clearly.

I'd like to begin this attempt and present some preliminary observations and
directions that these suggest to me.

Pro�le of the Elusive TM Killer App

Maged Michael (IBM TJ Watson Research Center, US)

One of the main obstacles to the wide adoption of transactional memory is the
interdependence between the justi�cation for the cost of e�ective architectural
support for TM and the performance impact of TM on important applications.
Without showing clear positive impact of TM on the performance of important
applications, it is di�cult to justify architectural support of TM that goes be-
yond small transactions. On the other hand, software-only TM implementations
have not delivered robust performance that can motivate application developers
to adopt the TM programming model. After years of wide interest in TM, appli-
cations that can be clearly identi�ed as TM killers apps remain elusive. In this
talk, we explore the characteristics that would make an application a candidate
for being a TM killer app, and what pitfalls reduce the value of TM to some
applications. Three main application characteristics are identi�ed as critical to
identi�cation as a TM killer app: (1) importance of performance, (2) inherent
high concurrency, and (3) irregular multi-object transactional span.

A key purpose of TM is enabling concurrency. Therefore, the performance of
a killer app must be important enough to warrant aggressive parallelization. TM
enables concurrency but does not create it. Therefore, a killer app must have in-
herent concurrency�irrespective of concurrency limitations related to the use of
speci�c synchronization such as lock contention. The importance of application
performance combined with the high overheads of TM may justify investment
in low-overhead �ne-grain synchronization by expert programmers. Therefore,



Transactional Memory: From Implementation to Application 11

a TM killer app must be very di�cult to parallelize e�ectively and e�ciently
without TM. Transactions that span multiple data objects with irregular ac-
cess patterns present a nearly impossible challenge to expert programmers to
develop implementations that are both e�cient and maintainable. The impor-
tance of code maintainability o�ered by TM due to its composability trump the
performance advantage of �ne-grain synchronization.

Towards Pragmatic Semantics for Transactional Memory

Mark Moir (Sun Microsystems Laboratories - Burlington, US)

I want to talk about pragmatic approaches to de�ning transactional memory
semantics in the short to medium term, speci�cally for unsafe languages such
as C and C++. Speci�c topics will include how supposedly-simple speci�cations
such as Single Lock Atomicity address semantics of features not already included
in the underlying language (such as explicit abort), progress properties, memory
models, exceptions, etc.

Keywords: Semantics

Provably Correct Abstract Concurrency Control, And
More

J. Eliot B. Moss (Univ. of Massachusetts - Amherst, US)

We o�er a language for specifying the abstraction (model) that a Java class
implements. Given speci�cations of conditions under which operations con�ict,
we can prove those speci�cations correct, and possibly derive them. We can also
prove correctness of inverse (compensating) actions at the abstract level.

All this is possible because the model language is carefully designed to be
powerful enough to specify interesting abstractions yet restricted enough to al-
low automated proofs of correctness. We brie�y describe Set and OrderedSet
abstractions and mention results of automated proofs to date. This technology
overcomes the criticism of open nesting that abstract concurrency control is too
di�cult for programmers to get right.

The Other.pdf document is Trek Palmer's PhD proposal on this work.

Keywords: Open nesting, concurrency control

Joint work of: Moss, J. Eliot B.; Palmer, Trek

Pervasive Parallelism and Real Hardware Prototypes for
TM

Kunle Olukotun (Stanford University, US)

We are now at a point in TM research were to move the �eld forward we must
experiment with challenging applications and full-scale hardware prototypes.



12 Christof Fetzer, Tim Harris, Maurice Herlihy and Nir Shavit

In this talk I will describe the work we are doing in the Pervasive Parallelism
Lab to develop environments for new challenging parallel applications and �ex-
ible hardware prototyping platforms for TM.

Putting the R back in ROI

Ravi Rajwar (Intel Corp. - Hillsboro, US)

Technology success is often based on real-world "Return on Investment".
So far, much TM research has focused on portions of the "I" and have largely

ignored the more critical R question.
I will discuss this topic and present thoughts on how TM researchers can

help.

Concurrency in Enterprise Systems

Asuman Suenbuel (SAP Research Labs - Palo Alto, US)

Concurrency and parallelism is getting more and more important also for busi-
ness applications because most of the future gain in runtime e�ciency will come
from the use of multicore processors. Enterprise systems are usually very complex
systems that have organically grown often over decades, and they are designed
and optimized to run on single-core processors with no concurrency and paral-
lelism involved.

The question that we would like to address is how concurrency theory can
help applications so complex as enterprise systems make use of the full potential
provided by the multicore processors without compromising the factors that are
important to business applications: robustness, backwards-compatibility, scala-
bility, data-safety, transactional integrity to only mention a few. We believe that
enterprise systems due to their complexity in size and structure are a perfect
playing �eld to validate the practicability of novel approaches in concurrency
that have so far only be tested in a smaller scale.

TokenTM: E�cient Execution of Large Transactions with
Hardware Transactional Memory

David A. Wood (Univ. Wisconsin - Madison, US)

I will talk about our recent work in e�cient support for large transactions. I'm
leaving early Friday.

Full Paper:
http://www.cs.wisc.edu/multifacet/papers/isca08_tokentm.pdf

http://www.cs.wisc.edu/multifacet/papers/isca08_tokentm.pdf 


Transactional Memory: From Implementation to Application 13

Using Hardware Memory Protection to Build a
High-Performance, Strongly-Atomic Hybrid TM

Craig Zilles (Univ. of Illinois - Urbana, US)

We demonstrate how hardware �ne-grained memory protection can be used in
support of transactional memory systems: �rst showing how a software transac-
tional memory system (STM) can be made strongly atomic by using memory pro-
tection on transactionally-held state, then showing how such a strongly-atomic
STM can be used with a bounded hardware TM system to build a hybrid TM
system in which zero-overhead hardware transactions may safely run concur-
rently with potentially-con�icting software transactions.

In addition, I quickly survey 5 other topics: 1) that speculative compiler
optimization is a second killer application for TM/SLE hardware, 2) the keys
for good hybrid performance are: good hardware contention management and
hardware feedback on the reason for an abort, 3) how important is concurrency
within a transaction (I don't think hardware can help this case), 4) that single-
thread performance is important for scalability because how fast each thread
commits determines the level of contention where there are con�icts, and 5) a
question for the community as to what the desired performance pro�le (perf. vs.
transaction size); is it more important to have maximal performance for small
and medium transactions, or is it more important to have smooth performance
of transactions (no discontinuities) as memory footprints increase in size?

Keywords: HTM, Memory Protection, Strong Atomicity, Hybrid Transactional
Memory, Primitives, STM

Full Paper:
http://www-faculty.cs.uiuc.edu/∼zilles/papers/ufo_hybridTM.isca2008.pdf

See also: Lee Baugh, Naveen Neelakantam, and Craig Zilles

http://www-faculty.cs.uiuc.edu/~zilles/papers/ufo_hybridTM.isca2008.pdf

	08241 Abstracts Collection  Transactional Memory: From Implementation to Application  --- Dagstuhl Seminar --- 
	 Christof Fetzer, Tim Harris, Maurice Herlihy and Nir Shavit 

