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Abstract. Multiple upsets would be available in SRAM-based FPGAs
which utilizes SRAM in different parts to implement circuit configuration
and to implement circuit data. Moreover, configuration bits of SRAM-
based FPGAs are more sensitive to upsets compared to circuit data due
to significant number of SRAM bits. In this paper, a new protected Con-
figurable Logic Block (CLB) and FPGA architecture are proposed which
utilize multiple error correction (DEC) and multiple error detection. This
is achieved by the incorporation of recently proposed coding technique
Matrix codes [1] inside the FPGA. The power and area analysis of the
proposed techniques show that these methods are more efficient than
the traditional schemes such as duplication with comparison and TMR
circuit design in the FPGAs.
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1 Introduction

SRAM-based field programmable gate arrays are being increasingly used to start
new designs because of their growing density and speed, reconfigurability, shot-
design cycle and cost-effectiveness [2]. While the use of reprogrammable FPGAs
offers a number of important advantages, these SRAM-based FPGAs are very
sensible to heavy ion, proton and neutron induced single event upsets (SEUs)
3], [4], [5].

There are many available resources within an FPGA to perform various logic
functions. The way in which these resources are utilized and interconnected is
specified by the circuit design, also known as a configuration bitstream. The
configuration bitstream determines which resources within the FPGA are used
to implement a specific logic design.The effect of the SEU on the configuration
memory of an FPGA, would lead to a permanent error which remains in the
FPGA until the next reconfiguration of a new design [6]. This permanent error
may result in a logic error or routing error depending on which part of the
configuration memory is affected. A logic error may lead to complement one
of the entries of the Look-Up Tables (LUTs) modifying the functionality of
the mapped logical function [7]. A routing error may lead to a signal getting
misrouted or disconnected [8], [5].
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Error detection and correction code (EDAC) is a well-known technique for
protecting storage devices against transient faults [7]. An example of EDAC is
the Hamming code, which is useful for protecting memories against SEU because
of its efficient ability to correct single upsets per code word with reduced area
and performance overhead.

In order to overcome SEUs affecting the FPGA configuration memory, several
fault-tolerance methods have been proposed in the past years. One of techniques,
called scrubbing, is periodically reloading the whole content of the configuration
memory [2]. By the use of readback and partial reconfiguration capabilities of
FPGAs, a recovery system can be used [9]. Through the readback option, the
content of the FPGA’s configuration memory is read and compared with the
expected one, which is stored in a predefined memory located outside of the
FPGA. If a mismatch is found, the correct information is downloaded in the
FPGA’s configuration memory. During reconfiguration only the faulty portion
of the configuration memory is overwritten. There are several fault-tolerant tech-
niques that do not consider detection and correction occurred SEUs, but just
aim at masking errors not to propagate elsewhere. These methods are proposed
mainly by hardware redundancy.

Triple Modular Redundancy (TMR) is a well-known fault-tolerant technique
for preventing error propagation [3]. The TMR implementation uses three iden-
tical logic blocks performing the same task in parallel regarding to outputs be-
ing compared through majority voter. However, this solution enforces high area
overhead, three times more input and output pins, high performance penalties
[4]. Moreover, it may not be affordable to put redundancy in each and every
module (or component) especially in embedded systems where power and area
are important constraints. Another error mitigation technique which is based on
modular redundancy and time redundancy has been proposed in [10] which uses
Duplication with Comparison (DWC) and Concurrent Error Detection (CED) to
create a fault-tolerant system. However, this method is depended on the logic of
the circuit that is mapped on to the FPGA and suitable encoding and decoding
functions for each such block.

In this paper, we introduce different schemes for detecting and correcting er-
rors in configuration bits of the LUTs. These schemes can be applied at different
level of FPGA structure. The experimental studies show that using the proposed
schemes in FPGAs, all single and double SEUs are detectable and correctable
in just one clock cycle without any FPGA reconfiguration and is independent to
the number of CLBs. Moreover, using the proposed schemes, the area and power
overhead of the new circuit design is more efficient than the previous schemes
such as duplication with comparison (DWC) [10] and TMR [3].

The rest of this paper is organized as follows. Section 2 introduces the protec-
tion codes and the proposed schemes for the FPGAs. The CLB architecture for
fast detection and correction is presented in section 3. Section 4 calculates the
probability of having multiple uncorrectable errors in protected Xilinx Virtex II
FPGA family. Section 5 compares area, power and correction capability of the
proposed technique with related work. Finally section 6 concludes the paper.
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2 LUT Protection Methods

2.1 The Matrix Codes (MC)

The proposed detection/correction scheme is called Matrix codes (MC) [1] since
the protections bits are used in a matrix format. In this case, the n — bits code
word is divided into k; number words of width k. A (ki, k) matrix is formed
where k1 and ks represents numbers of rows and columns. For each of the k;
rows, the check bits are added for single error correction/double error detection.
Another k9 bits are added as vertical Parity bits. We explain the basic technique
by considering a 32 bit word length memory. In this situation, a 16 bit word is
divided into a matrix as shown in Fig. 1, where k1 = 4 and ks = 8. Hamming
codes are applied for each row. For a 8 — bit data, 4 Hamming check bits are
required, so 5 check bits are added at the end of the 8 data bits.

Xo X1 XQ X3 X4 X5 XG X7 CO Cl CZ C3 C14
Xs Xo Xio X11 X12 Xi3 X14 X15|C5 Cs C7r Cs Cy
Xi16 X17 X188 X19 Xoo Xo1 Xo2 X23|C10 C11 Ci2 Ci13 C14
Xoa Xos Xog Xo7 Xog X2g9 X30 X31|C15 C16 Ci17 C1s C19
P P P P P, Ps P P;

Fig. 1. 32 bits Logical Organization of Matrix Codes

The check bits are calculated using the following.

Co=Xo® X1 ® X3 ® X4 ® X (1)
Cir=XoD X2 X530 X5 D X¢ (2)
Co=X1 0 X0 X3 Xy (3)
C3=X10 X5 Xe P X7 (4)

(5)

ot

Cy=Xo® ... X7 (Overall parity)

Accordingly we calculate all check bits for all rows.
For the Parity row we will use the following formulas.

Py=Xo® Xg® Xi6 @ Xog (
P =X ®X9® X170 X5 (7
Py = X5 ® X10® X158 ® Xog (
Py = X33 X1 ® X19® Xo7 (
Py =X4® X2 @ Xog @ Xog

(
Ps = X5 ® X153 ® Xo1 @ Xag (11
Ps = X6 ® X114 ® Xo2 & X0 (12
Pr = X7® X15 ® Xo3 © X1 (13
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In other words, Xy through X3; are the data bits, Cy through Ci9 are the
check bits, P — P; are Parity bits. A Hamming decoder is used to decode each
row. Decoding is done in two steps. First, the syndrome bits are calculated
and the check bits are generated using the data bits and compared with the
syndrome bits saved check bit. This procedure is called syndrome bit generation
and S is called syndrome bit of check bit ’1’. Second, using syndrome bits, the
Single Error Detection (SED)/Double Error Detection (DED)/No Error (NE)
signals are generated for each row. If DED is generated using each bit’s Parity
syndrome bits SPi and the saved value of the bit we can correct any single or
double erroneous bits in each row using Equation 14.

X = (Xi.,, ®0;)® (DED; = SP;) (14)

lcorrect err

Where X, is the erroneous bit, O, the decoder output corresponding to the
data bit 3.

It is important to mention that if we have more than two errors in each code
word, MC can correct them if and only if we have only two errors in each row of
the matrix and one in each column ( 1). If we have only two errors in the entire
code word, then these can be corrected without any restriction.

3 Protection levels

3.1 FPGA-level protection

In this scheme, protection is performed for one row of FPGA’s CLBs. At time of
fault detection and correction, the contents of all LUTSs inside of one CLB in the
row are read and the syndrome and overall parity is generated. The overall parity
and the syndromes are used for the multiple correction and detection if required.
We consider each row (element) of a CLB as a row in Fig. 1, and thus a Hamming
circuitry is required for each of them. In this scheme, some modification can be
applied for decreasing the area overhead of FPGA-level protecting scheme. As
each CLBs are checked by corresponded circuitry, therefore we need M different
SEC-DED (Hamming) circuitry for each CLBs where M is the number of CLBs
in a row. However, we can use just one Matrix circuitry and share it for all rows
of the FPGA. This make the area overhead to be decreased but the testing time
of each CLB will be increased. We considered these two schemes with name of
FPGA-level with and without shared circuitry in the experimental results.

Fig. 2 shows a simple example of the implementation of FPGA-level pro-
tection in which the protection codes are considered for a row of FPGA with
four columns FPGA and the protected FPGA’s columns are increased to seven
columns (Note that for DED we need one more CLB). The gray box show mod-
ifications needed to implement the protection code. In this scheme, protection is
performed for one row of FPGA’s CLBs. At time of fault detection and correc-
tion, the contents of LUTs inside of one CLB row are read and the syndrome and
overall parity are generated. In this scheme, some modification can be applied
for decreasing the area overhead of FPGA-level protecting. As each LUT inside
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of CLBs are checked by corresponded SEC-DED circuitry, therefore we need M
different SEC-DED circuitry for each LUTs where M is the number of LUTs
inside of CLBs. However, we can use just one SEC-DED circuitry and share it
for all rows of LUTSs. This make the area overhead to be decrease but the testing
time of each CLB will be increased. We considered these two schemes with name
of FPGA-level with and without shared circuitry in the experimental results.

It should be noted that in this scheme, the length of information bits which
is used for protecting is based on the number of columns that FPGA has. This
means that the protection capability of this scheme is significantly depended to
FPGA size. For example, if the dimensions of FPGA increase, the protection
capability of this scheme would decrease.

Syndrome and Overall parity

CLB CLB CLB CLB CLB CLB CLB
YiE Y LE WiE ¥YiE YiE ¥ LE YiE
1 1 0 0 1 1 0
0 1 1 0 1 Q 0
1 1 1 0 0 0 1
0 8] 1 1 0 0 1
| | | | | |
v v ¥ v v v v
L 4

Generate SEC-DED and Comparator

Fig. 2. FPGA-Level protection: an FPGA with SEC-DED protection CLBs

3.2 CLB-level protection

Utilizing Matrix codes can be applied for all of LUTSs inside of a CLB, consider
each LUT as a row in Fig. 1. Fig. 3 shows a CLB which is protected by Hamming
codes. By, B1, B3 are LUTSs required for storing the protection codes of By, By,
Bs and Bg LUTs. In this case, all bits in the same significant bit positions in
different LUTs are protected in the same significant bit positions in the protec-
tion blocks. In this architecture, since the information and protection bits are
stored apart and in separated blocks (LUTs), therefore the probability of having
more than double errors in each LUT of information and protection bits will be
decreased significantly. In this case, all of multiple errors occurred in only one
LUT of a CLB can be detected and corrected but if multiple errors occurred in
different LUTs of a CLB in same bit positions, they may be detected providing
that the number of errors is equal or less than two.
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In order to implement this level of protection, a k — bit counter is required to
address different bit position of each LUT. The detection and correction of errors
in LUTSs of a CLB can be achieved by 2* times of detection and correction for
each bit inside of a LUT. The main difference between this level of protection and
FPGA-level one is that the information bits in this scheme are much less than the
previous one. Moreover, all connections between information and protection bits
are router inside of CLB internally and therefore this method is more modular
than the previous one. However, the area overhead of this scheme is more than
FPGA-level. The implementation of CLB-level protection codes can be done in
two different cases with and without sharing the endoding/decoding circuitry.
In the case of sharing the circuitry, area overhead of protection is decreased but
the time of detection and correction of errors will be increased 2* times.
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Fig. 3. CLB-Level protection: a CLB with SEC-DED protection LUTs

In Fig. 3, each 16X1 LUT is replaced by a dual-read LUT shown in Fig. 4.
Therefore, every CLB has 4 additional input lines that consist of the four out-
put lines of testing counter. The testing counter is a 4-bit counter, 0-15 binary
up-counter, provided either on FPGA chip or kept as a stand-lone counter, in-
cremented once every clock cycle. In addition to the LUTs used by the circuit
mapped to the FPGA, a few protection LUTs are also added to every CLB of
FPGA. These protection LUTs store the pre-computed 16-bit SEC-DED check
bits of the other LUTs of CLB. The architecture shown in Fig. 3 performs at-
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A

speed detection and correction of any single or double error of configuration bits
of LUTs without disturbing the normal functioning of the FPGA.

In Fig.5 we show how to employ employing Hamming codes used in a LUT.
The gray shapes in this figure show the modifications needed for implementing
it in a LUT. In this scheme, each LUT (row in Fig 1) in a FPGA has its own
protection code and therefore all single and double errors inside of one LUT can
be detected and corrected. The area overhead of this scheme is more than the
previous two schemes since each LUT has separated protection circuitry.
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Fig.5. LUT-level protection: a LUT with SEC-DED protection bits

Based on these three mentioned protection levels, CLB-level protection is
suggested for employing in FPGAs. Fig. 4 shows the proposed technique applied
on CLB architecture. The main reasons are that CLB-level protection is less
complex than FPGA-level to layout the FPGA by manufacturers since the pro-
tection structure is localized in each CLB architecture and the protection code
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Table 1. Comparison of area and delay overheads and FPGA testing time for
16 x 16 FPGA (CLB size= 8 3-input LUTS)

Level of No. of  [area m?[delay(ns) FPGA
protection information testing
codes + check bits delay

FPGA testing 1638443584 (2030394 12 16732+ AND + EXOR
delay FPGA-level
(with shared HW)

FPGA-level 16384+3584 (2166342 12 T32+ AND + EXOR
(without shared HW)

CLB-level 16384+8192|2030393| 14.6 |256713+ AND + EXOR
(with shared HW)
CLB-level 16384+4-8192 (4341458 14.6 T3+ AND + EXOR

(without shared HW)

routings are inside of each CLB. Typically, manufacturers manually layout a sin-
gle tile consisting of logic block and switch block and replicate them across the
entire chip. Therefore, CLB-level and LUT-level protection schemes are better
ones for implementing compared to FPGA-level. However, CLB-level protection
is more reliable than LUT-level, since the information bits that is protected by
each check bits are distributed through several LUTs.

Without loss of generality, we assume that FPGA design used for the fault
tolerance is composed of 16X16 CLBs arranged in a square matrix and each
CLB consists of 8 3-input LUTs.

Table 1 shows different implementation of the mentioned schemes and com-
pare them in terms of information and check bits, area, delay of detecting and
correcting information bits and delay of testing whole FPGA. In this table, Tg
and T3y are time requited for performing encoding and decoding for 8 and 32
data bits, respectively. For each protection scheme, two cases of implementation
are considered based on sharing or not sharing the hardware implementation for
a group of similar information bits. For example, in the LUT-level with shared
hardware, all LUT's inside one CLB are considered to share the hardware needed
for encoding, decoding logics needed for Matrix Codes. FPGA-level protection
scheme has less area overhead compared to CLB-level and LUT-level. However,
FPGA-level testing time is more than other cases because it protects informa-
tion bits more than others. Moreover, it is more complex to implement compared
to others. CLB-level and LUT-level have same area and delay overhead, since
the size of LUT and number of LUTSs inside one CLB is same in the mentioned
FPGA. However, CLB-level is more powerful in terms of correction multiple
faults in one LUT.

4 Detection and Correction of multiple faults

In order to estimate the error detection and correction coverage of the proposed
technique and previous one, we used fault injection method. Fault injection is
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one of the key methods to estimate the error study of the circuits which utilized
error detection and correction codes. Using fault injection method, the coverage
of proposed method can be estimated.

4.1 Fault Injection Experiments

Without loss of generality, we considered the coverage of the proposed technique
for one CLB of the same FPGA as shown in Table 1 since the protection code
can be applied on each CLB. The size of a CLB is 8 LUTSs of 8 bits each. Both
single and multiple faults were injected. For each number of faults in the case
of multiple fault injection, about one million experiments were conducted. The
obtained values are portrayed in Table 2. For each protection code, there are two
separated column for fault detection and correction coverage. The first column
shows the number of faulty bits in a word. As we can observe from this table,
the fault detection and correction coverage of Matrix are better than Hamming,
DWC and TMR. Additionally, in the case of Matrix method, several numbers
of faults can be detected or corrected. In this case, as the number of faulty bits
increase, the fault detection or correction coverage also decreases.

Table 2. The fault detection and correction coverages for different protection
schemes

# Matrix |Hamming| TMR DWC |No Protection
of | Det. Corr.|Det. Corr.|Det. Corr.|Det. Corr.|Det. Corr.
Faults| (%) (%) [ (%) (%) (%) (%) [(%) (%) |(%) (%)

1 100 100 |100 100 |100 100 [100 O 0 0
2 100 100 100 O 0 0 0 0 0 0
3 196.32 81.25| 0 0 0 0 0 0 0 0
4 |82.69 58.94| 0 0 0 0 0 0 0 0

The reliability of the FPGA is strongly dependent on the reliability of the
CLBs. Hence, it is imperative to analyze the reliability of such an architecture
technique to validate its applicability in real designs. In order to analyze the
reliability of the proposed architecture we make the following assumptions[1]:

1. The probability of a number of faults occurring in a fixed period of time
with a known average rate is independent of the time since the last event.
(Poisson distribution).

2. Bit failures are statistically independent.

3. We dont take the reliability of the switches into consideration while calcu-
lating the reliability of different configurations.

The probability of having exactly ¢ Bit Flips (BF) in a CLB can be given by:

Prob{iF} = (BZF) (11— e—At) e~ MBF—i)t (15)
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where A is the fault rate of a bit flip and ¢ is time parameter.
The reliability, r(t) of a CLB can be expressed as:

re = P{NE} + f P{iF} (16)

where P{NE} denotes the probability that there is no error, and P{iF'}
indicates the probability of having i faults. Based on these schemes, the reliability
of the FPGA is the product of the reliability of all its CLBs and can be given
by:
R(t) = r™(1) (17)
where M is number of CLBs in the FPGA. The integration of the reliability
function give the mean time to failure MTTF i.e.,

MTTF = / T Rt (18)
0

~a = = = Proposed
~s s SEC-DED [{

0.981

0.96
0.94r

0.92¢

0.88f

CLB Reliability
o
©

0.86

0.841

0.82f

0.8

50 100 150 200
Time (day)

Fig. 6. Reliability of 128bits CLB, A = 107°

Formulas 15 to 18 were described and solved using MATLAB for estimat-
ing the reliability and MTTFs of different FPGA architectures with different
protection schemes.

The reliability of each 128bit CLB inside the FPGA as shown in Fig. 6 using
the proposed technique will be more than 4X, the FPGA reliability will be fall
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Fig. 7. Reliability of a 16 x 16 CLBs FPGA, A = 1077

below 0.8 before 50days and the reliability of the FPGA will fall below 0.8 at
about 200days.

Fig. 7 shows that the overall reliability of the FPGA using proposed technique
is almost 3X compared to the reliability of the FPGA using SEC-DED technique
[11].

Table 3 shows the Mean Time to Failure of the FPGAs using different pro-
tecting schemes for different fault rates At the fault rate of A = 107° , The MTTF
of the proposed configuration is almost 4X larger than that of the SEC-DED.
While at A = 1073 and A = 10~ the improvement reduces to 3X.

Table 3. MTTF for a 16 x 16 CLBs FPGA in different fault rates

Fault rate|Proposed| Hamming
A=10"7] 3.5353 1.1196
A=10"*] 35.3534 | 11.1960
X =107°]308.5610| 65.1948

The obtained values are portrayed in Table 2. For each protection type, there
are two separated column for fault detection and correction coverage. The first
column shows the number of faulty bits in a word. As we can observe from this
table, the fault detection and correction coverage of Matrix and is much better
than SEC-DED technique, DWC and TMR. Additionally, in the case of Matrix
method, several numbers of faults can be detected or corrected. In this case, as
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the number of faulty bits increase, the fault detection or correction coverage also
decreases. The reliability of the FPGA is strongly dependent on the reliability of
the CLBs. Hence, it is imperative to analyze the reliability of such an architecture
technique to validate its applicability in real designs.

4.2 Analytical Models

Based on the different levels of protections, the CLB-level is the best level for the
protection using Matrix codes method since it can detect multiple adjacent faults
in the LUTs with good level of modularity and less complexity. We propose the
CLB-level protection method to be used in the FPGA. In this case, any multiple
faults in same significant bit position of LUTs of a CLB are detectable while
double fault at each significant bit position of LUTs of a CLB are correctable.
In this scheme, the probability of un-correcting triple errors inside of a FPGA
will be decreased significantly.

When four upsets occurred, if they happened each 2 of them in same bit
positions of LUTs of a CLB cannot be correctable. Let N be the number of
LUTs in the device and each CLB composed of 8 4-input LUTs and CLB-level
protection is employed in the FPGA. The probability of having four and five
configuration upsets undetectable by this scheme is given by:

(16N) (12) (19)

PB undetectable errors — L T /192NN
(*57)
( 16N (12)
P4 undetectable errors — 1(19 N)4 (20)

(- () -5 (5) (21)

P5 undetectable errors = (192N)
5
() - () - () - (D) + () - (3)
+ (192N)
5

Also, the probability three and four configuration upsets uncorrectable by
this scheme are given by:

(M) () + (5 G(E) (22)

P3 uncorrectaable errors — (192]\[)
3
16N\ (12 + 16N\ (12\ (12
P4 uncorrectable errors — ( L ) ( ! ) (1921\/2) ) ( : ) ( = ) (23)
4

() () () (tgg;%)N) () E)

+
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We computed the probabilities for a series of Xilinx FPGAs which are men-
tioned in Tables 4 and 5. As these table shows, the probability of having 3
uncorrectable errors for the mentioned scheme is very low and this probability
decreases when the size of FPGA increased. However, the probability of hav-
ing four and five errors uncorrectable in FPGA is more than the probability of
having three uncorrectable in FPGA because the employed protection code can
correct double faults. It should be noted that in the real application the proba-
bility of occurring four and five errors is considerably less than the probability
of occurring three errors. Therefore, if the correction of LUT contents happened
in appropriate time slots, the content of LUTs will not be erroneous.

Table 4. The probability of multiple errors not being detectable for protected
Xilinx Virtex II FPGAs

Device No. Prob. of having 3 Prob. of having Prob. of having
of CLBs |undetectable errors|4 undetectable errors|5 undetectable errors
XC2V40 8 x 8 7.28 E-007 5.33E-010 8.79E-009
XC2V80 16 x 8 1.82E007 6.67E-011 1.09E-009
XC2V250 | 24 x 16 2.02E-008 2.47E-012 4.07E011
XC2V500 | 32 x 24 5.06 E-009 3.08E-013 5.08E-012
XC2V1000| 40 x 32 1.82E-009 6.66E-014 1.09E-012
XC2V1500| 48 x 40 8.09E-010 1.97E-014 3.26E-013
XC2V2000| 56 x 48 4.13E-010 7.20E-015 1.19E-013
XC2V3000| 64 x 56 2.32E-010 3.03E015 5.01E-014
XC2V4000| 80 x 72 8.99E-011 7.32E-016 1.21E-014
XC2V8000({112 x 104 2.20E-011 8.86E-017 1.46E-015

Table 5. The probability of multiple errors not being correctable for protected
Xilinx Virtex II FPGAs

Device No. of | Prob. of having 3 | Prob. of having 4
CLBs |uncorrectable errors|uncorrectable errors

XC2V40 8x 8 1.30E-003 1.80E-003
XC2V80 16 x 8 6.71E-004 8.95E-004
XC2V250 | 24 x 16 2.28 E-004 2.98E-004
XC2V500 | 32 x 24 1.12E-004 1.49E-004
XC2V1000| 40 x 32 7.71E-005 8.95E-005
XC2V1500| 48 x 40 4.48E-005 5.97E-005
XC2V2000| 56 x 48 3.20E-005 4.26E-005
XC2V3000| 64 x 56 2.40E-005 3.20E-005
XC2V4000| 80 x 72 1.49E-005 1.98E-005
XC2V8000|112 x 104 7.37TE-006 9.83E-006
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5 Area and Power overhead

The CLB architecture shown in Fig. 2 and Fig. 3, parity-protected, DWC, TMR
and SEC-DED FPGA architectures were synthesized with Synopsys@©CAD tool
and 0.18 micron CMOS technology to compare the area, power and delay require-
ments. The advantage and disadvantage of proposed architecture over standard
DWC technique in terms of area, power, delay and additional configuration mem-
ory requirements are shown in Table 6. The area overhead of parity-protected
CLB architecture is about 48 percent regarding to the area of simple CLB archi-
tecture. The area overhead of DWC and TMR methods is also about 79 and 204
percent compared to the simple CLB architecture. Based on these results the
area overhead of our proposed technique is less than DWC and TMR schemes.
In the case of power consumption, the parity-protected CLB architecture con-
sumes less power among the other protection schemes, but it can be only used for
detecting errors. However, the power consumption of the proposed technique is
less than the DWC and TMR but, ore than SEC-DED schemes. This is expected
since the implementation of the proposed hardware causes several extra check
bits (DWC and TMR) and routes to perform error detection and correction.

Table 6. Comparison of area, power and configuration memory requirement for
a CLB

CLB No. Area Power | No. of |Single|Double|Single|Double
architecture of SRAM| Error | Error | Error| Error
LUTs| m®> % |w % /| bits | Det. | Det. | Cor. | Cor.
Standard FPGA 8 110240 100|230 100| 128 0% 0% 0% 0%

(Virtex II)
Protected FPGA 9 |15258 149|331 144| 144 |100%| 0% 0% 0%
with parity [8]

Duplication 16 16282 179|525 228| 256 |100% | 100% | 0% 0%
with comparison [10]

TMR-based 24 (31130 304|802 348| 348 |100% | 100% | 0% 0%
FPGA [3]

FPGA with 13 |16506 161|532 231 192 |100% | 100% | 0% 0%
SEC [11]

Our proposed 14 16506 161|532 231 160 |100% | 100% |100% | 100%

FPGA

6 Conclusions

In this paper, we have presented two mechanisms to tolerate multiple upsets in
LUTs of SRAM-based FPGAs and compared with a SEC-DED technique. The
MTTF and the reliability analysis have shown that by employing Matrix codes
the MTTF and the Reliability of the FPGA will be improved by at least 3X.
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Matrix codes were employed in the FPGA using two techniques. The first is
employing Matrix codes in each CLB and in the second case, employing Matrix
codes in each row of FPGA to correct double errors in CLBs. On the other
hand the analytical results have also shown that using the proposed CLB ar-
chitecture improves the reliability of CLB so that the probability of having four
uncorrectable errors in a CLB is decreased significantly. The results of imple-
mentation comparison have shown that this method imposes less area and power
overhead compared to the previous fault-tolerant schemes such as duplication
with comparison and triple modular redundancy schemes.
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