Scheduling Aircraft to Reduce Controller
Workload

Joondong Kim!, Alexander Kroller?, Joseph S. B. Mitchell' and
Girishkumar R. Sabhnani?

1 Applied Mathematics and Statistics, Stony Brook University
2 IBR, Algorithms Group, Braunschweig University of Technology
3 Computer Science, Stony Brook University

Abstract. We address a problem in air traffic management: scheduling
flights in order to minimize the maximum number of aircraft that si-
multaneously lie within a single air traffic control sector at any time ¢.
Since the problem is a generalization of the NP-hard no-wait job-shop
scheduling, we resort to heuristics. We report experimental results for
real-world flight data.

Keywords: Air Traffic Management, trajectory scheduling, flight plan scheduling,
no-wait job shop.

1 Introduction

In the air traffic control system, the volume of airspace in the altitude range
that aircraft utilize is partitioned into a set of sectors. We consider the set of all
trajectories flown between city pairs. Any one trajectory is modeled as a polyg-
onal path, with each vertex (way point) being specified by a point, (z,y, z,t), in
space-time. For a given set of sectors and a given set of trajectories, we can com-
pute the occupancy count, n,(t), of a sector o at any time ¢. For purposes of air
traffic control, it is important that n,(t) not be “too large”; often the occupancy
count is compared with the Monitor Alert Parameter (MAP) value of the sector
o, which is related to the “capacity” of the sector. Depending on the timing and
routing of the flights, though, the MAP values of certain congested sectors are
often predicted to be exceeded (if current flights remain on filed flight plans),
resulting in the rerouting of aircraft to avoid those sectors that are anticipated
to be at or near full capacity during some period of time.

We consider the following scheduling problem: For a given set of trajecto-
ries and a given sectorization of airspace, determine alternate departure times
“close” to the originally scheduled times so that the modified trajectories result
in minimizing maxg ¢ ne(t), the maximum occupancy count of a sector over a
time window of interest.

J. Clausen, G. Di Stefano (Eds): ATMOS 2009

9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009 /2144

1

2 Problem Statement

Formally, the Min-Max Sector Workload Problem (MMSWP) is defined as fol-
lows. We are given a set X of sectors and a set © of periodic flight plans. The
common period of all plans is T, e.g., T' = 24 hours. Corresponding to each flight
plan 6 is a sequence Xy = (09,1,09.2, .. .) of the sectors it visits, where og € X,
Vk. Flight plan 6 also has an associated departure time dy € [0,T), and for each
sector oy i, it has an associated dwell time, tg (length of time in sector).

Assuming a flight 6 departs daily with a delay of Ay, it will therefore be in
sector oy during the intervals

Ie(og,lﬁﬂg) = Zte’z,zteﬁz +do+ Ay +T7Z. (1)
i<k <k

Therefore, at time ¢ € [0,T) (and also t + 2T for any z € Z), a total of
ny(t) :=1{6 € © : t € Iy(0o, Ap)}| (2)

flights will be in sector o € X.

Our goal is to find delays (Ap)gco to minimize the overall maximum occu-
pancy count, maxy; ns(t). The delays are constrained to be within the range
[0, D] for parameter D. Note that additionally allowing flights to leave early,
i.e., Ag < 0, does not change the problem due to the periodicity of flight plans:
A delay range [—a,b] is equivalent to [0,a + b], for a,b > 0. Therefore, we just
consider the problem where Ay > 0.

3 Job-Shop Scheduling and Related Work

No-wait job-shop scheduling is defined as follows (see [5]): We are given a set of
m machines and a set of n jobs that have to be processed on these machines. For
each job i, we are given a sequence r;; indicating that job ¢ has to be processed
on the kth machine. Additionally, we are given the matrix p;; (1<i<n 1<
Jj < m), stating the processing time of job ¢ on machine j. Furthermore, the
following constraints hold:

— Sequence: Each job must be processed in order of its operations and no
interruption (preemption) of an operation is allowed.

— Synchronicity: No job can be processed by two machines at the same time
and no machine can process two jobs at the same time.

— No-wait: There must be no waiting time between two consecutive operations
of the same job.

When there is no constraint on the maximum delay, i.e., D > T', our problem
is equivalent to “no-wait job-shop scheduling”. We represent each flight plan as
a job and each sector as a machine. We seek to minimize makespan, i.e., the
smallest time in which all jobs can be processed, where no two jobs can be

on the same machine at the same time. The no-wait constraint ensures that,
once started, a job can neither be delayed between machines nor suspended
while being processed on one. An optimal solution to the job-shop problem with
makespan M can be converted trivially to a flight plan solution with maximum
occupancy [M/T]. Vice versa, an algorithm for flight plan scheduling also solves
job-shop by finding the largest A for which a flight plan with all processing times
scaled by A can be scheduled with maximum occupancy 1. This can be achieved
using binary search.

Lemma 1. Minimizing makespan in the no-wait job-shop scheduling problem is
polynomially equivalent to the Min-Maz Sector Workload Problem (MMSWP).

No-wait job-shop scheduling has been studied in several papers; see, e.g., [8,
10,11,9,7]. Bansal et al. [1] give a PTAS for a special case of the problem and
show hardness of approximation for another case. Karger et al. [6] provide a
survey of scheduling algorithms, defining the various terms and known results
for some of the basic problems. Since the job-shop problem is NP-hard, so is the
MMSWP, by Lemma 1.

Ariano et al. [3] formulate train scheduling as a job shop problem with no-
store constraints. Bertsimas et. al [2] solve an optimal combination of flow man-
agement actions, including ground holding, rerouting, speed control and airborne
holding on a flight-by-flight basis.

4 Simplified Cases

In this section, we examine some special cases of the problem. In all the cases
here, we consider D = T, so that there are no maximum delay constraints.

4.1 Omne-Sector Problem

In the simplest of cases, there is only sector gy and hence all the flight plans just
define the time interval the flight remains in this sector. For all 8 € ©, 0¢,; = 0.

If we remove periodicity of flight plans, i.e. put a constraint dg+Ag+tg1 < T
hours for each flight 8, the optimal re-scheduling problem of minimizing the maz-
workload exactly maps to the bin-packing problem, which is known to be hard
(by a reduction from set partition) and and to have an asymptotic PTAS [4]%.

If we consider periodic flight, then the one-sector problem has a trivial so-
lution given by assigning delay to make flights back to back. This gives a max-
workload of [} .o te1/T].

4 An asymptotic PTAS is an algorithm that, given ¢ > 0, produces a (1 + ¢)- ap-
proximate solution provided OPT > C(e) for some function C, and runs in time
polynomial in n for every fixed e.

4.2 Two-Sector Problem

The extension of the problem to two sectors, with a periodic schedule of flights,
seems like an interesting special case to understand the complications associated
with the no-wait constraint and also the periodicity of the schedules. It is much
easier to understand the two-sector problem by considering its exact equivalent
below.

i o

makespan

W

Fig. 1. Left: 4 kinds of blocks. Right: The tight-fitting in the groove of size 2.

Consider Figure 1. Let A, B be the sectors. The red rectangles indicate the
time interval of flights in A and the blue rectangles indicate intervals in B. Red to
the left of blue indicates that flight starts in A and single red rectangle indicates
the flight is only in A. Thus, the MMSWP corresponds to packing these blocks
of rectangles as tightly as possible in the groove of width 2, constraining that
red rectangles strictly remain in the upper row, blue rectangles strictly remain
in the lower row and none of the rectangles overlap.

It turns out that periodicity does not really help for this case, as this version of
the problem also turns out to be NP-complete by reduction from 3-PARTITION
PROBLEM.

Theorem 1. The MMSWP within 2 sectors is NP-Complete.

Proof. 3m numbers aq, as, ..., as, are given for a 3-PARTITION PROBLEM
instance P. All of these number are between B/4 and B/2, where mB is the
total sum of aq, ..., asm,. We show the optimal solution of minimizing workload
overall sectors gives us the solution of this problem.

Let’s construct the MMSWP problem instance corresponding given input m,
B, and a;’s. There are two sectors o1 and o2. Let time horizon T be (mB + m).

For given numbers a; where i € {1,...,3m}, we generate flights 6; which visits
only o1 with staying time a;, i.e., Xy, = (01) and tg, 1 = a; fori € {1,2,...,3m}.
And we prepare additional m flights 63,41, .., 03m+m Which visit oo for time

(B4 1) and then oy for 1. i.e, Xy, = (02,01) and tg, 1 = (B +1),tp,2 = 1 for
je{3m+1,...,3m+m}.

Then, we claim that if we minimize maximum workload over all sectors for
this problem as 1, then we are able to solve given P.

In order to make workload as 1 for g9, we have to arrange 03,41, .., 03m+3
back-to-back like dark-gray blocks in Figure 2. Then there are m intervals with

length B in o1. Now finding a placement of 64, ...,0s,, (light gray blocks in
Figure 2) to make workload of o1 as 1 is finding a partition of {ay,...,asm}
such that each sum is exactly B.

0, 0 O3m

O 0O Ceeee[]

B

-

S B L,

T

O3m1 O3m+2 O3mtm
e o 0o o

B+1 1
mB+m

Fig. 2. 2 sectors workload problem construction for given 3-Partition problem instance

5 Algorithms

In this section, we present heuristics to solve the MMSWP.

5.1 Shifting

Starting with the original flight schedule, we pick the sector with worst max-
workload (in case of tie check each one of them), and look at the time interval
where the max-workload is worse. All the flights present in the sector in that
time interval are considered for re-scheduling (shifting) and the one which gives
the “best” improvement is selected greedily. The goodness of a shift is judged
by its effect on the workload vector which stores the workloads of all sectors in
the sorted order. The flight whose re-scheduling gives the best improvement in
lexicographic ordering of the workload vector is selected (in case of ties, we pick
the flight which has the least difference in the re-schedule time and the original
schedule). The process is repeated till all shifts at a given iteration worsen the
workload vector. (Note that shifts keep taking place even when the workload
vector remains same).

We constrain the greedy shifting to be of the following three kinds:

— Right Shift - The flights are only allowed to be postponed.

— Left Shift - The flight are only allowed to be preponed.

— Short Shift - The decision of postpone/prepone is decided by the amount of
shift, and the shorter one is picked.

It is possible to get into loop if we allow shifts in both directions. In our
experiments, we only use right shifts to finish algorithm certainly. Since we al-
low shifts without strict workload vector improvement, all shifts after the last
workload vector change are restored when the algorithm is finished.

We also devise an incremental heuristic, in which flights are added one by one
(in a random order). With each new flight addition, we run complete experiment
of a shift heuristic considering all the flights previously added along with this
one.

5.2 Randomized Rounding

The randomized rounding algorithm solves a linear problem formulation whose
variables describe a probability distribution for each flight plan. Then, a solution
is generated by drawing delays from these distributions.
We evenly divide the interval [0, D] into a discrete set of delays {0 = do, dy, .. .,
dm = D}. Also we slice the 24h-period T into n pieces {0 = tg,t1,...,t, = T}.
For each flight 6, the linear formulation has a variable x¢(d;) for each d;,0 <
i < m. The interpretation (in terms of the finally assigned delay Ay) is

Qja(di) = PI‘[A@ > dz] .

So the zg(-) define a probability function on [0, D] for every flight (the density is
constant within each interval [d;, d;11), that is, the distribution is uniform within
each interval). To make sure the x¢(d;) define a proper probability distribution,
we use the constraints

1 =x4(do) > xg(d1) > -+ > 29(dy,) = 0.

This means the probability that a flight delay is in the range [d;, d;] is zg(d;) —
zg(d;), so the probabilities are nicely encoded in the formulation. Note that

Pr[flight 6 is in sector o at time ¢]

is a linear term in the x4(-) variables. To see this, translate ¢ into a range [A,, Ag]
of delays where a flight would start to be in o at ¢t. The probabilities are then:

— Some of the first interval with d; < Ay < d;y1, that is,
dit1 — Ay

Prlfisin o at t, Ag € [d;,dir1)] = d d
i+l — Q4

(zo(di) — wo(div1)) -
— All of the intervals Ay < d; <...diy1 < Ay, in a similar fashion.
— Some interval part around Ay, again analogous to the first case.

By adding the cases, one can see how Pr[f is in ¢ at t] is a linear term with up to
four coefficients. Obviously there are a number of special cases when [4,, Ag] €
[0, D]; these are easy to resolve and left out in this presentation. So we can now
describe the expected load of sector o at time ¢ by the linear term

E[number of flights in o at time ¢] = Z Pr[f is in o at t].
fcO

Hence, we solve the following LP:

min C
s.t. E[number of flights in o at time t] < C Vo € Xt € {T,,..., Ty}
1:x9(d0)2x9(d1) 2--~2x9(dm):0 Vo e O,

which gives us a probability distribution for each Ay, so we now generate actual
Ay values following these distributions.

An interesting variant arises when we add integrality constraints to the LP,
as this forbids smearing flights over many delay intervals. As the resulting IPs
are typically impossible to solve within reasonable time, we employ a different
strategy: First, the LP-based heuristic is run. We identify the most crowded
sectors, and add integrality constraints for tracks passing these sectors. At the
same time, we vary n and m for different sectors and tracks, such that the
crowded sectors get a more detailed formulation than the others.

6 Lower Bounds

6.1 A Simple Bound

The optimal one sector solution for a sector o (refer to Section 4.1), for D =
T, independent of any other sector, is a naive lower bound to its max-workload
attained by any scheduling, for any D. Thus, we can optimize each sector indi-
vidually, and pick the maximum value over all sectors, to obtain a lower bound
on the workload attained by an optimal scheduling.

6.2 Linear Programming

The second lower bound algorithm is based on the randomized rounding al-
gorithm. Assume that all the z4(-) are binary, i.e., 0 or 1 (see Section 5.2 for
details). If now x¢(d;) — z¢(d;) = 1, then flight 6 will have a delay Ay € [d;, d;].

For a track 6 € O, a sector 0 € X' and a time ¢, we again compute the interval
[4,, Ay] of delays for § under which § will be in o at t. Then we determine the
smallest d; > A, and the largest d; < Ay. Then, when z¢(d;) — z¢(d;) = 1, the
flight will be in o at t. So define go(o,t) := xg(d;) — zg(d;).

The following IP charges 1 towards the maximum capacity C' when a track
is guaranteed to be in o at t:

min C

st. Y golot) <C Vo e Xt e{T,,...,Tn}
oco
1= .%‘g(d()) > .”L'g(dl) > >xp(dy,) =0 VO €O
xg(d;) € {0,1} V0 e€O,i=0,....,m

The optimal solution to this IP is a lower bound to the original problem. For
efficiency reasons, we do not solve this IP directly, but rather its LP relaxation,
which is obtained by dropping the integrality constraint.

7 Results

We use real-world flight track data and sector data from the National Airspace
System (NAS). The data, as shown in Table 1, is divided into 5 sets depending
on the number of sectors. The alt-range defines the range of altitude for the air-
traffic in the sectors. The high-altitude sectors typically have alt-range 24,000
feet and above. Setl, Set2 and Set3 consider flight tracks for the entire 24
hour time period while Set4 considers only the flights that overlap a 4 hour
time window. Note that the flight times may start or end outside the 4 hour
time window. Also, Set4 includes all the sectors spanned by these flights, thus
having high-altitude sectors, low-altitude sectors and some sectors from Canada
as well.

No. of Sectors|Alt-Range|Flights| Time Window
Setl 5 > 24k feet| 1904 0 — 24 hrs
Set2 18 > 24k feet| 3063 0 — 24 hrs
Set3 57 >0 feet | 12123 | 0 — 24 hrs
Set4 1281 Different | 11986 | 14 — 18 hrs
Setd 16 > 24k feet| 4994 0 — 24 hrs

Table 1. Summary of data sets used for experimentation.

Set5 (random data) consists of a 300 x 300 nautical miles square region
divided into 16 sectors in the form of a square grid. Then, 64 (uniform) random
cities were generated such that 10% of cities had weight 10, 15% had weight 5,
and the remaining had weight 1. In total, 4994 random flights were generated
between (weighted uniform) randomly chosen city pairs, with each city having
probability of selection proportional to its weight. The departure-time of a flight
was (uniform) randomly generated between 0 — 24 hours. The (constant) speed
of an aircraft was modeled as a (uniform) random variable between 200 and
600 nautical miles per hour. The arrival-time of a flight was calculated from the
departure time, the speed of the aircraft, and the distance between the cities in
the pair. An additional constraint was added that no two aircraft depart from
(or arrive) at a city within 1 minute of each other. A visualization of data sets
Set1, Set2 and Set5 can be seen in Figure 3.

We implemented our algorithms and ran them on the five data sets. For
the LP-based algorithms, we used CPLEX 10.0 on a 3.0 GHz Linux machine.
We solved each instance using a few parameter sets, varying the number of
discretizations in delay (i.e., m) and daytime slices (i.e., n). The most often used
values of m = 30 and n = 720 correspond to having one variable per two minutes
of delay and one constraint for every other minute of the day. We imposed a
runtime limit of 60 minutes on the algorithm. Table 2 describes these runs and
lists the according algorithm runtimes. Runtimes for the other heuristics are not
listed, as they always finish within a few seconds.

.3 20 21 12
7 23 k) L3
L3 13 0 5.

Fig. 3. Left: Setl sectors and the underlying square grid (and shifted square grid)
cover (grid resolution: 0.1x0.1); Center: Set2 sectors and grid cover (1x1). Right: Set5
(randomly generated) flight tracks with the underlying sectors. The numbers in the
sectors indicate the max-workload counts for the used flight schedules.

Setl Set2 Set3 Set4 Setb
m| n|Time||m| n|Time||m| n|Time||m n|Time||m| n|Time
LP Lower 30(720| 1:20{{30|720| 1:50([30|720| 9:10{|60{1440(17:19(|30{720{10:26
MIP Lower 30|720| 3:04| —| - —[112]|288(10:18(|12| 288|14:44|| —| - -

Rand. Rounding|[30|720(22:24|{12|288| 1:05||12|288|30:07{|30| 720(57:11{/12|288|10:18
MIP Rounding |[|12]288| 0:28]|12|288| 0:33|/12|288(56:17||12| 288|17:30(|12|288| 5:13
Table 2. Details for LP-based heuristics, showing the discretization granularity and
total algorithm runtimes in minutes.

Setl Set2 Set3 Setd Set5
Max [Mean| Var|| Max [Mean| Var || Max [Mean| Var || Max |Mean| Var || Max |[Mean| Var
Original plan 22 |18.00(6.80| 18 |12.83|12.25|| 38 |21.56|36.70|| 58 | 7.67 [37.88| 24 |13.00{46.13
Right Shift 18 [16.40|1.04| 14 |11.11}3.99 31 120.77|26.27|| 47 | 7.61(36.35|| 19 [11.75|29.01

Incr. Right Shift|| 15 |13.80/0.96| 12 |10.17|2.25| 26 |18.75|16.40|| 39 | 7.51 |34.50|| 17 |10.81|20.66
Rand. Rounding|| 14 |13.40|0.24| 14 |11.67|4.00 || 28 |22.94|19.50|| 42 | 8.04 [40.50|| 19 |12.50|25.00

MIP 15 |14.40{0.24| 14 [11.22|4.73 || 28 [23.47|16.18|| 43 | 8.22 [44.90|| 19 [12.50{30.13
‘ HNaive‘ LP ‘TP HNaive‘ LP ‘ 1P HNaive‘ LP ‘ 1P HNaive‘ LP ‘ 1P HNaive‘ LP ‘ 1P ‘
[Lower Bound || 6 | 9 |9 5 [8 | — [[16 [20 | 14 || 12 | 31 | 22 [[13 | 11 | — |

Table 3. Workload statistics of algorithms. Max: Maximum Workload, Mean: Mean
of workload, Var: Variance of workload

Setl (1004 fit) || Set2 (3063 fit) || Set3 (12123 fit) || Setd (11986 fit) || Set5 (4994 fit)
Max| Total [Avg|[|[Max| Total [Avg|[Max| Total [Avg|[Max| Total |Avg||Max| Total [Avg
Right Shift 6 46 1 9 5:25 1 17 5:18 1 53 | 12:53 4 7 3:8 1
Incr. Right Shift|| 49 |2:00:46 | 4 52 |3:16:21 | 6 60 | 18:21:7| 6 60 [14:22:54| 17 || 54 | 4:18:5 | 4
Rand. Rounding|| 60 |13:22:24]| 10 || 60 |13:06:48| 6 || 60 |35:18:15| 4 | 58 |50:10:59| 6 || 55 [59:16:33| 17
MIP 60 |14:21:48| 12 || 60 |15:21:42| 7 60 [37:10:59| 4 55 190:00:38| 11 || 55 [60:05:50| 17
Table 4. Time shift statistics of various methods. Max: Max shift, Total: Sum of
absolute value of shift, Avg: Average of absolute value of non-zero shifts. (format

14:21:48 means 14 days 21 hours 48 minutes)

Table 3 shows the comparison of max-workload statistics of the given flight
plans, the heuristic solutions and the LP based methods. The maximum allow-
able shift to any flight schedule was constrained to be 1 hour in all methods.
The discretization of time for LP/IP methods is 1 minute. The results show a
considerable improvement over the workloads of each sector arising due to the
original flight schedules. Even the variance values have gone down significantly,
indicating more balance of workload across sectors. In particular, the incremen-
tal shift heuristic seems to out-perform all the other methods. Note that the
shifting heuristics do not discretize the time like LP/MIP methods. The ‘-’ val-
ues in Table 3 refer to experiments for which no solution was found during more
than a week of running time.

Table 3 also shows the lower bound calculations for the 5 sets. The best
solutions are still not close to the computed lower bounds, but we believe they
are very close to optimal solutions. Future work will specifically aim to improve
the lower bounds.

Table 4 shows the statistics of the amount of time shifts from the original
schedule. Maz indicates the maximum shift in any flight schedule, Total indicates
the sum of absolute values of shifts, and the Avg gives the average time shift of
all flights with non-zero shifts. The value of Total in the case of the right shift
heuristic is noticeably small compared to other methods, possibly because of
early termination due to reaching a local minimum. Also, the average time shift
is seen to be low for all the methods, suggesting that we can get considerable
improvements in workloads with reasonable modification to the schedules.

8 Other Workload Considerations

Apart from the maz-workload of a sector, there are other workload issues which
are significant from the controller perspective. One of them, usually referred to
as coordination workload, deals with the hand-offs between controllers when an
aircraft moves from one sector to the other. Another critical issue is the conflict
resolution workload, which is related to monitoring the aircraft when they are
expected to be simultaneously present at (or near) the same geographic point (a
“conflict point”). Note that even if two aircraft are flying at different altitudes,
at the conflict point, they demand special attention of the controller.

While re-scheduling flights has no effect on the coordination workload, it
can favorably affect the conflict resolution workload, by reducing the number
of conflict points. It is easy to incorporate conflict resolution workload in the
model, as we now discuss.

We sub-divide the region (spanned by the sectors) into (reasonably) small
size cells and compute the max-workload in each cell separately. If the size of
the cell is small, a high max-workload cell corresponds to a conflict point, where
multiple aircraft are in close proximity simultaneously. We add these cells as
new (artificial) sectors to the data set and try to minimize their workload vector
separately, thereby (possibly) decreasing the number of conflict points.

10

The shifting heuristic is now modified to be a two-step procedure. The first
step considers the overall maximum value of the max-workload across all cells to
be a constraint: The aircraft are re-scheduled to improve the workload vector of
the sectors, as before, while keeping the workloads in all cells below a specified
W.. In the second step, the roles of sectors and cells are reversed: The optimized
maximum value of the workload of the sectors is treated as a constraint, and the
aircraft are re-scheduled with the objective of improving the workload vector of
the cells.

For experimentation, these cells come from a uniform (square) grid and a
shifted uniform grid as shown in Figure 3 covering the region spanned by the
sectors. Two different side lengths of square grid cells are used, 0.1 x 0.1 and
0.2 x 0.2 (unit latitude/longitude degrees). In Setl, Set2 and Set5, 1 degree
corresponds to somewhere in the range of 35—60 nautical miles. Table 5 shows the
results of the workload improvements with the cell constraints. We observe that
the max-workloads of the sectors still improve, compared with the original (18
v/s 22 for Setl), while the number of conflict points are considerably decreased
(see Figure 4). For Setl, after scheduling there are no grid cells with workload
4, while the number of cells with workload 3 has also decreased by more than
90%.

Setl (Given SMax: 22) Set2 (Given SMax: 18) Set5 (Given SMax: 24)

Grid Size Given Shifted Given Shifted Given Shifted
GMax|GMean|SMax|GMax|GMean||GMax|GMean|SMax|GMax|GMean||GMax|GMean|SMax|GMax|GMean
0.1x0.1 4 1.670 18 3 1.604 4 1.467 14 4 1.478 11 1.609 19 8 1.598
0.2x0.2 5 2.446 18 4 2.356 5 2.105 14 4 2.083 14 2.271 19 10 2.243

Table 5. Results of Right-Shift heuristic with additional grid constraints. SMax: Sector
Max, SMean: Sector Mean, GMax: Grid Max, GMean: Grid Mean.

10000 10000
g g I
3 1000 2 g
g g
= =
§ 100 § 100
g before g before
5 = after & m after
¥ W 5 10
g . g
= =

1 1

4 3 2 1 4 3 2 1
Grid Call Workload Grid Cell Workload

Fig. 4. Left: Setl grid cell max-workloads; Right: Set2 grid cell max-workloads (before
and after scheduling, for grid size 0.1 x 0.1)

11

9 Conclusion

We presented a periodic flight plan scheduling problem, proved it to be NP-hard,
and proposed heuristics for which we reported experimental results on real-world
data. The results show a considerable workload improvement over the originally
scheduled flight times and come at low computational cost. The reduction in the
number of conflict points was also impressive. Future work will specifically aim to
improve the lower bound, as we believe that the heuristically produced solutions
are already almost optimal. Also, we are interested in combining re-routing with
re-scheduling to improve further the workloads.

Acknowledgements. The data used for the experiments was provided by Metron
Aviation. We thank Michael Bender and Bob Hoffman for helpful discussions.
This work was partially supported by NSF (CCF-0528209, CCF-0729019), NASA
Ames, and Metron Aviation.

References

1. N. Bansal, M. Mahdian, and M. Sviridenko. Minimizing makespan in no-wait job
shops. Math. Oper. Res., 30(4):817-831, 2005.

2. D. Bertsimas, G. Lulli, and A. Odoni. The air traffic flow management problem: An
integer optimization approach. In 13th International Conference on Integer Pro-
gramming and Combinatorial Optimization, IPCO 2008 Bertinoro, volume 5035,
pages 34-46, May 2008.

3. A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for
scheduling trains in a railway network. Furopean Journal of Operational Research,
183(2):643-657, December 2007.

4. W. F. de la Vega and G. Lueker. Bin packing can be solved within 1 + ¢ in linear
time. Combinatorica, 1(4):349-355, 1981.

5. J. M. Framinan and C. Schuster. An enhanced timetabling procedure for the no-
wait job shop problem: a complete local search approach. Comput. Oper. Res.,
33(5):1200-1213, 2006.

6. D. Karger, C. Stein, and J. Wein. Scheduling algorithms. CRC Handbook of
Computer Science, 1997.

7. P. M. Lennartz. No-Wait Job Shop Scheduling, a Constraint Propagation Approach.
PhD thesis, UU Universiteit Utrecht, Netherlands, 2006.

8. A. Mascis and D. Pacciarelli. Job shop scheduling with blocking and no-wait
constraints. Fur J. Oper. Res., 142:498-517, 2002.

9. C. J. Schuster. No-wait job shop scheduling: Tabu search and complexity of sub-
problems. Mathematical Methods of Operations Research, 63(3):473-491, July 2006.

10. C. J. Schuster and J. Framinan. Approximative procedures for no-wait job shop
scheduling. Oper Res Lett, 31:308-318, 2003.

11. G. J. Woeginger. Inapproximability results for no-wait job shop scheduling. Oper.
Res. Lett., 32:320-325, 2004.

12

