
On Assessing Robustness

in Transportation Planning ?

Apostolos Bessas and Christos Zaroliagis

1 R.A. Computer Technology Institute, N. Kazantzaki Str., Patras University
Campus, 26504 Patras, Greece

2 Department of Computer Engineering and Informatics, University of Patras,
26500 Patras, Greece

Email: {mpessas,zaro}@ceid.upatras.gr

Abstract. We consider a fundamental problem, called QoS-aware Mul-

ticommodity Flow, for assessing robustness in transportation planning.
It constitutes a natural generalization of the weighted multicommodity
�ow problem, where the demands and commodity values are elastic to
the Quality-of-Service (QoS) characteristics of the underlying network.
The problem is also fundamental in other domains beyond transportation
planning. In this work, we provide an extensive experimental study of
two FPTAS for the QoS-aware Multicommodity Flow Problem enhanced
with several heuristics, and show the superiority of a new heuristic we
introduce here.

Keywords: QoS-ware Multicommodity Flow, Robust Planning, Demand Elas-
ticity, Packing LP.

1 Introduction

One of the key issues that planners of transport operators in public transporta-
tion networks have to deal with concerns the routing of various commodities
(customers with common origin-destination pairs) to meet certain demands [13].
A customer, when provided with a non-optimal path (route) due to unavailable
capacity, s/he will most likely switch to another operator or even other means
of transport and the probability in doing so increases as the QoS (quality of
service) drops � actually, as a result of statistical measurements over several
years, major European railway companies know quite accurately the percentage
of customers they lose in such cases as a function of the path's QoS [8, 13]. To
minimize the loss of customers, the value charged for the requested service is
usually reduced to make the alternative (worse in QoS) path, o�ered for that
service, attractive. Alternatively, improvements in QoS may increase customer
demand and also incur an analogous increase in the pricing policy. Consequently,

? This work was partially supported by the Future and Emerging Technologies Unit of
EC, under contracts no. FP6-021235-2 (FP6 IST/FET Open/Project ARRIVAL),
and no. ICT-215270 (FP7 ICT/FET Proactive/Project FRONTS).

J. Clausen, G. Di Stefano (Eds): ATMOS 2009
9th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2009/2146

2 A. Bessas and C. Zaroliagis

transportation planners would like to determine the robustness of their planning
models towards such �uctuation of customer demands.

In an earlier work [11, 12] we introduced and studied a combinatorial opti-
mization problem, called QoS-aware Multicommodity Flow (MCF), that is fun-
damental to address robustness issues in transportation planning, as those men-
tioned above. In the QoS-aware MFC problem, a capacitated directed network
G = (V,E) is given, in which we wish to route k commodities to meet certain ini-
tial demands. Each commodity i is associated with a speci�c origin-destination
pair (si, ti), a demand di and a value vi representing the pro�t of routing one unit
of �ow from that commodity. Also, for each commodity i, a weight wti : E → R+

0

is de�ned that quanti�es the provided quality of service (QoS), when this com-
modity is routed along an edge e or a path p, where wti(p) =

∑
e∈p wti(e).

Smaller weight means better QoS. When a commodity is not routed along its
shortest w.r.t. wti (optimal w.r.t. QoS) path due to capacity restrictions, then
(i) a portion of the demand di drops (the worse the QoS of the path, the larger
the portion di that is lost), and (ii) its value vi is reduced (the worse the QoS,
the larger the reduction). In other words, demands and values are elastic to the
provided QoS. The objective is to compute the maximum weighted multicom-
modity �ow (sum over all commodities and over all paths of the �ow routed from
every commodity on each path multiplied by the commodity's value) subject to
the QoS-elastic demands and values.

To determine the robustness of their models against �uctuations of customer
demands, transportation planners are typically confronted with the following
robustness issues in network and line planning:

(i) Which is the maximum pro�t obtained with the current capacity policy that
incurs certain QoS-elastic demands and values?

(ii) How much will this pro�t improve if the capacity is increased?
(iii) Which is the necessary capacity to achieve a pro�t above a certain threshold?

A fast algorithm for the QoS-aware MCF problem would allow transportation
planners to assess e�ectively the aforementioned robustness issues by identifying
capacity bottlenecks and proceed accordingly.

It is worth mentioning that the QoS-aware MCF problem is also fundamental
in applications beyond the transportation domain. For instance, in networking
(e.g., multimedia) applications over the internet, or in information dissemination
over various communication networks [3]. In such a setting, a �server� (owned
by some service provider) sends information to �clients�, which retrieve answers
to queries they have posed regarding various types of information. Common
queries are typically grouped together. Answering a query incurs a cost and
a data acquisition time that depends on the communication capacity. When a
�client� is provided with a non-optimal service (e.g., long data acquisition time
due to capacity constraints), s/he will most likely switch to another provider.
On the other hand, the provider may reduce the cost of such a service in order
to minimize the loss.

In [11, 12] it was shown that the QoS-aware MCF problem can be formulated
as a fractional packing linear program (LP) and a FPTAS for its approximate

On Assessing Robustness in Transportation Planning 3

solution was provided. The algorithm builds upon the Garg & Könemann (GK)
Langrangian relaxation method for fractional packing LPs [5], combined with the
phases technique introduced by Fleischer [4], and a new approximation algorithm
for the non-additive shortest path (NASP) problem developed in [11, 12], which
constitutes the required oracle that identi�es the most violated constraint of the
dual LP.

In this paper, we present a comparative experimental study for the QoS-
aware MCF problem. In particular, we have implemented and compared the
following algorithms:

� The FPTAS described in [11, 12] for solving the QoS-MCF problem, using
as oracle the FPTAS for NASP developed in the same work.

� The GK approach [4, 5] enhanced with the heuristic methods presented in
[2], using as oracles the exact (pseudopolynomial) NASP algorithm in [10]
and the approximate NASP in [11, 12].

� The FPTAS in [11, 12] incorporating some of the heuristics in [2], as well as
the GK approach, and enhanced both with a new heuristic that we develop.

Our comparative experimental study on synthetic and real-world data shows
that the new heuristic method leads to a dramatic improvement in the running
time over the original algorithms in [4, 5, 11, 12]. Moreover, the use of the exact
NASP routine in the GK approach is considerably faster than the version of the
approximate NASP.

The rest of the paper is organized as follows. In Section 2, we de�ne the QoS-
aware MCF problem formally and formulate it as a packing linear program. In
addition, we present the method proposed by Garg & Könemann [5], its modi�-
cation by Fleischer [4], as well as an exact and an approximate algorithm for the
Non-Additive Shortest Path (NASP) problem that constitutes a fundamental
subroutine for solving the QoS-aware MCF problem. In Section 3, we present
the algorithms implemented for the QoS-aware MCF problem, and in Section 4
we present the experimental results obtained. We conclude in Section 5.

2 Preliminaries

2.1 The QoS-aware MCF Problem

To formally de�ne the QoS-aware Multicommodity Flow Problem, we have
adopted the exposition in [11, 12]. In particular, we are given an n-vertex, m-
edge digraph G = (V,E) along with a capacity function u : E → R+

0 on its
edges. We are also given a set of k commodities. A commodity i, 1 ≤ i ≤ k, is a
tuple (si, ti, di, wti(·), fi(·), vi(·)), where si and ti are the source and sink nodes
for the commodity i respectively, di ∈ R+

0 is the demand of the commodity and
wti : E → R+

0 is the weight function for commodity i. The weight function
quanti�es the Quality of Service for commodity i (smaller weight means better
QoS). For any si-ti path p, wti(p) =

∑
e∈p wti(e). Let δi(si, ti) be the length of

the shortest path for commodity i with respect to the weight function wti(·).

4 A. Bessas and C. Zaroliagis

The non-decreasing function fi : [1,+∞) → [0, 1] is the elasticity function that
determines the portion fi(x) of the commodity's demand di that is lost, if a
path that is x times worse than the shortest path with respect to the weight
function wti(·) is used; that is, if a units of di were supposed to be sent in case
the provided path was shortest (optimal), then only (1 − fi(x))a units will be
shipped through the actually provided (non-optimal) path, while fi(x)a units
will be lost. Commodity i is also associated with a non-increasing pro�t function
vi : [1,+∞)→ R+

0 , which gives the pro�t vi(x) from shipping one unit of �ow of
commodity i through a path that is x times worse than the shortest path with
respect to the weight function wti(·). The objective is to maximize the total
pro�t, i.e., the sum over all commodities and over all paths of the �ow routed
for every commodity on each path multiplied by the commodity's pro�t subject
to the capacity and demand constraints and with respect to the QoS-elasticity of
demands and pro�ts. The above is called the QoS-aware Multicommodity Flow
problem.

Let Pi = {p : p is a si-ti path} be the set of candidate paths along which �ow
of commodity i can be sent and let Xi(p) ∈ R+

0 denote the �ow of commodity i
sent along path p. The de�nition of the elasticity function implies that for each
unit of �ow of commodity i routed along p, there are 1

1−fi(x)
units consumed

from the demand of the commodity. Thus, we de�ne a consumption function
hi : [1,+∞)→ [1,+∞) with hi(x) = 1

1−fi(x)
. Since fi is non-decreasing, hi is also

non-decreasing. Accordingly, the consumption hi(p) ≥ 1 of a path p is de�ned
as the amount of demand consumed for each unit of �ow routed along p, i.e.,

hi(p) = hi

(
wti(p)
δi(si,ti)

)
. Similarly, the value vi(p) of a path p is de�ned as the pro�t

from routing one unit of �ow of commodity i through p, i.e., vi(p) = vi
(
wti(p)
δi(si,ti)

)
.

Consequently, the QoS-aware MCF problem can be described by the following
LP:

max
k∑
i=1

∑
p∈Pi

vi(p)Xi(p)

s.t.
k∑
i=1

∑
e∈p,p∈Pi

Xi(p) ≤ u(e), ∀e ∈ E

∑
p∈Pi

Xi(p)hi(p) ≤ di, ∀i = 1, . . . , k

Xi(p) ≥ 0, ∀i = 1, . . . , k,∀p ∈ Pi

On Assessing Robustness in Transportation Planning 5

The dual LP is as follows:

min D =
∑
e∈E

l(e)u(e) +
k∑
i=1

φidi (1)

s.t. l(p) + φihi(p) ≥ vi(p), ∀i = 1, . . . , k,∀p ∈ Pi (2)

l(p) ≥ 0, ∀p ∈ Pi,∀i = 1, . . . , k,
φi ≥ 0, ∀i = 1, . . . , k

The above primal problem is a packing linear program; that is, an LP of the
form max{cTx|Ax ≤ b, x ≥ 0}, where A, b and c are (M × N), (M × 1) and
(N × 1) matrices, respectively, the entries of which are all positive.

2.2 The Garg-Könemann Method and its Modi�cation by Fleischer

Garg and Könemann in [5] present an e�cient algorithm for approximately solv-
ing packing linear programs, based on the assumption that A(i, j) ≤ b(i), ∀i, j
� which can be achieved by appropriate scaling. They use the dual problem
min{bTy|ATy ≥ c, y ≥ 0} to identify the most violated constraint. Then, they
increase the corresponding primal variable so as to decrease this violation. The
most violated constraint is identi�ed by using an exact oracle.

The algorithm works as follows. Let the length of a column j with respect to
the dual variables y be lengthy(j) =

∑
iA(i, j)y(i)/c(j) and let α(y) denote the

length of the column with the minimum length; i.e., α(y) = minj lengthy(j).
Additionally, let D(y) = bTy. Then, the dual problem is equivalent to �nding a
variable assignment y such thatD(y)/α(y) is minimized. Let β = minyD(y)/α(y)
as well.

The algorithm proceeds in iterations. Let yk−1 be the dual variables and
fk−1 be the primal solution at the beginning of the k-th iteration. Let q denote
the minimum length column of A (i.e., α(yk−1) = lengthyk−1

(q)) and p be the

�minimum capacity� row (i.e., p = arg mini
b(i)
A(i,q)). Then, we increase the primal

variable x(q) by an amount b(p)
A(p,q) so that fk = fk−1 + c(q) b(p)

A(p,q) . The dual

variables are updated as

yk(i) = yk−1(i)
(

1 + ε
b(p)/A(p, q)
b(i)/A(i, q)

)
where ε > 0 is a constant, the value of which depends on the desired approxi-
mation ratio. The initial values of the dual variables are y0(i) = δ/b(i), where

δ = (1 + ε)
(

(1− ε)M
)−1/ε

. For brevity, we denote α(yk) and D(yk) by α(k) and
D(k) respectively. Thus, D(0) = Mδ. The algorithm stops at the �rst iteration
t such that D(t) ≥ 1.

In [4], Fleischer introduced the concept of phases (for the special case of the
Maximum Multicommodity Flow problem, but this technique can be extended
to all packing linear programs), where the commodities are considered in a round

6 A. Bessas and C. Zaroliagis

robin manner and �ow is routed for commodity j, until the length of the shortest
sj-tj path exceeds α(1 + ε). Then, the running time is reduced by a factor of k,
since it avoids the k shortest path computations required by [5] for every routing
of �ow.

2.3 NASP routines

The approximation algorithms for solving the QoS-aware MCF problem that
we study in this work identify the most violated constraint of the dual LP by
repeatedly calling a subroutine that solves the so-called Non-Additive Shortest
Path (NASP) problem. NASP is a generalization of the classical shortest path
problem, in which the additivity assumption of the edge costs along paths does
not hold. More formally, in NASP, we are given a digraph G = (V,E) and a
d-dimensional cost vector c : E → [IR+]d associating each edge e with a vector
of attributes c(e) and a path p with a vector of attributes c(p) =

∑
e∈p c(e).

We are also given a d-attribute non-decreasing and non-linear utility func-
tion U : [IR+]d → IR. The objective is to �nd a path p∗, from a speci�c
source node s to a destination t, that minimizes the objective function, i.e.,
p∗ = argminp∈P (s,t)U(c(p)), where P (s, t) denotes the set of all s-t paths. It is
easy to see that in the case where U is linear, NASP reduces to the classical
single-objective shortest path problem. For the general case of non-linear U , it is
not di�cult to see that NASP is NP-hard. For the case of the QoS-aware MCF
problem, it turns out that we need a biobjective (d = 2) version of NASP, for
which both exact and approximate algorithms are known.

Exact NASP. In [10], a pseudopolynomial algorithm for solving exactly the
biobjective version of NASP is presented. This algorithm handles the case where
every edge (and hence every path) is associated with two attributes (e.g., cost
and resource) and the objective function is of the form U([x1, x2]T) = U1(x1) +
U2(x2), where U1, U2 are any two non-linear, convex and non-decreasing func-
tions.

The algorithm consists of three phases:

1. It computes upper and lower bounds of the optimal solution using the Ex-
tended Hull Algorithm [10]. The running time of the Extended Hull Algo-
rithm is O(log(nRC)(m + n log n)), where n is the number of nodes of the
graph, m the number of edges and R and C the maximum values of the
resource and cost respectively.

2. It prunes the graph by eliminating those nodes and edges that do not lie on
the optimal path.

3. It closes the gap between the upper and lower bounds and �nds the optimal
solution by enumeration.

Although this is a pseudopolynomial algorithm (due to the 3rd phase), the
experimental study in [10] revealed that, in the vast majority of instances (98%),
Phases 2 and 3 are seldomly executed and the optimal solution is found after

On Assessing Robustness in Transportation Planning 7

the �rst phase. Hence, for the vast majority of input instances, the running time
of the exact algorithm is bounded by the running time of the Extended Hull
algorithm.

Approximate NASP. In [12] an algorithm for �nding an approximate solution
to the d-objective version of the NASP problem was given, for any d ≥ 2 and for
a very broad class of utility functions. For the biobjective case of NASP we are
interested in this work, the algorithm in [12] boils down to the following result,
which is an immediate consequence of [12, Theorem 4].

Theorem 1. [12] Let the utility function of NASP be of the form U([x1, x2]T) =
x1U1(x2) +U2(x2), where U1, U2 are any non-negative and non-decreasing func-
tions. Then, for any ε > 0, there is an algorithm that computes an (1 + ε)-
approximation to the optimum of NASP in time O(n2m log(nC1)

ε), where C1 =
maxe∈E c1(e)
mine∈E c1(e)

.

3 Implemented Algorithms

We have implemented a host of algorithms for the QoS-aware MCF problem.
In particular: (1) The FPTAS in [11, 12], using as oracle the FPTAS for NASP
developed in [11, 12]. (2) The original GK approach [5] and its modi�cation with
phases as suggested by Fleischer [4], using as oracles both the exact algorithm for
NASP in [10] and the FPTAS for NASP in [11, 12], enhanced with the heuristics
in [2] that were proposed for the classical MCF problem. (3) The FPTAS in
[11, 12] incorporating some of the heuristics in [2], as well as the GK approach
enhanced with the heuristics in [2], and enhanced both with a new heuristic
that we develop. In the rest of this section, we provide a description of these
algorithms.

3.1 The FPTAS

The FPTAS in [11, 12] requests that u(e) ≥ 1,∀e ∈ E and di ≥ hi(p), i =
1, . . . , k, p ∈ Pi. This is enforced by scaling the capacities of the edges and

the demands for the commodities by min
{

mine∈E u(e),min1≤i≤k
di

hmaxi

}
, where

hmaxi = hi

(
(n−1) maxe∈E wti(e)

δi(si,ti)

)
is an upper bound for the maximum value of the

function hi(·).
Given an assignment (l, φ) for the dual variables, we de�ne the length of

a dual constraint as length(l,φ)(i, p) = l(p)+φihi(p)
vi(p)

. Then, the most violated

constraint of the dual problem is the path of the shortest length. We de�ne
the length of this path as α(l, φ) = min1≤i≤k minp∈Pi length(l,φ)(i, p). Initially,

l(e) = δ
u(e) ,∀e ∈ E and φi = δ

di
, i = 1, . . . , k, where δ = (1+ε)

(
(1+ε)(m+k)

)− 1
ε

.

The algorithm is iterative. Initially, all �ows are equal to zero. In each iter-
ation the algorithm makes a call to an oracle that returns a commodity i′ and

8 A. Bessas and C. Zaroliagis

a path p ∈ Pi′ that approximately minimizes the function length(l,φ)(i, q) over
all 1 ≤ i ≤ k and q ∈ Pi; that is, length(l,φ)(i

′, p) ≤ (1 + ε)α(l, φ). Then, the

algorithm augments ∆ = min
{

di′
hi′ (p)

,mine∈p u(e)
}

units of �ow for the com-

modity i′ along path p and updates the corresponding dual variables l and φ by

setting l(e) = l(e)(1 + ε ∆
u(e)),∀e ∈ p and φi′ = φi′(1 + ε∆hi′ (p)di′

). D is updated

accordingly.
The algorithm terminates at the �rst iteration in which D =

∑
e∈E l(e)u(e)+∑k

i=1 φidi > 1. During the course of algorithm it can happen that more �ow is
sent along an edge than its capacity. It can be proved [4, 5, 11, 12] that the �nal
�ow has to be scaled by a factor of log1+ε

1+ε
δ in order to be feasible. The ratio of

the �ow sent along an edge and its capacity, during the course of the algorithm,
is called the congestion of the edge.

The (approximate) oracle that has to be called by the algorithm, in order to
�nd the most violated constraint of the dual, has to (approximately) minimize
the function

l(q) + φihi(q)
vi(q)

=
l(q) + φihi

(
wti(q)
δi(si,ti)

)
vi
(
wti(q)
δi(si,ti)

) .

For a �xed i this requires the solution of a NASP instance with objective function

U([x1, x2]T) =
x1 + φih

(
x2

δi(si,ti)

)
vi
(

x2
δi(si,ti)

)
and cost vector c = [l, wti]T. Clearly, the utility function is of the form required
by Theorem 1 and hence the approximate algorithm for solving NASP instances
can be used.

The calls to this oracle proceed in phases, following the technique introduced
in [4]. A lower bound estimation on the current length of the shortest path ᾱ

is maintained. Initially, ᾱ = 1
1+ε min1≤i≤k

{
l(pi)+φihi(pi)

vi(pi)

}
, where pi is the path

returned from the NASP routine for the speci�c commodity i. In each phase,
the oracle examines the commodities one by one and for each commodity i it

returns a path p such that l(p)+φihi(p)vi(p)
< ᾱ(1+ε)2. As long as there is such a path

for commodity i, the oracle sticks to this commodity. When no such path can
be found, the algorithm proceeds to the next commodity. After all commodities
have been considered in the current phase, it holds that α(l, φ) ≥ (1 + ε)ᾱ and
the algorithm proceeds to the next phase by setting ᾱ = ᾱ(1 + ε).

We call the above algorithm TZ-aNASP. Its complexity is given by the
following theorem.

Theorem 2. [11, 12] There is an algorithm that computes a (1+ε)2

(1−ε)2 -approximation

to the QoS-aware Multicommodity Flow problem in time O((1
ε)3(m+ k) log(m+

k)mn2(1
ε log(m+k)+log(nU))), where n is the number of nodes, m is the number

of edges, k is the number of commodities and U = maxe∈E u(e)
mine∈E u(e)

On Assessing Robustness in Transportation Planning 9

3.2 Approximate Algorithms using Heuristic Methods

The second algorithm follows the GK approach for approximately solving pack-
ing LPs [5] improved with a few other techniques and heuristic methods. Its main
di�erence with Algorithm TZ-aNASP is that now we can use an exact (and not
only an approximate) oracle by employing the exact NASP algorithm described
in Section 2.3. Moreover, the algorithm terminates as soon as the ratio of the
dual solution to the primal is smaller than 1+ω, ω < 1 (it can be proved that this
is a valid termination criterion). In addition, we adapt and use a few heuristic
methods that were originally proposed in [2] for the classical MCF problem. In

the following, let vmax = maxi
{

vi

(
(n−1) maxe∈E wti(e)

δi(si,ti)

)}
be the upper bound of

the maximum value of the functions vi, over all commodities 1 ≤ i ≤ k. We have
implemented three methods of updating the best so far dual solution β (recall
its de�nition from Section 2.2).

� We use the best D/α ratio obtained so far.
� We consider the union of all si-ti cuts to obtain an upper bound on the
capacity of the multicut (the cut separating all si from all ti), which, when
multiplied with vmax is in turn an upper bound on β.

� We keep track of the capacity and the si-ti pairs separated by all cuts en-
countered in the course of shortest path computations, and run the greedy
algorithm for the set cover problem on the collection of cuts. In this re-
duction, the sets are the cuts, their cost is the capacity of the cut and the
elements they cover are the si-ti pairs separated by the cut. The value re-
turned multiplied with vmax is a tighter upper bound for β.

At each time, the smallest value obtained by these three methods is used to
update β, if necessary. Furthermore, the amount of �ow augmented along a
path is equal to max{f1,min{f2, f3}}, where f1, f2, f3 are the amounts of �ow
which, when routed along this path, would cause the length of the path to exceed
α(1 + ε), the congestion to exceed the maximum congestion, and the length of
the path to exceed D/β, respectively. We call this algorithm GK-H.

Apart from the above heuristic methods, we can take advantage of the struc-
ture of the QoS-aware MCF problem to obtain another upper bound on the dual
solution β. In the QoS-aware MCF problem, we are interested in augmenting di
units of �ow for commodity i, i = 1, . . . , k. That is, we want to augment

∑k
i=1 di

units of �ow in total at most (in case every commodity can use its shortest path
w.r.t. wti(·), i = 1, . . . , k). Hence, we can use the sum of demands of each com-
modity multiplied by vmax as an upper bound of the best dual solution (because
this is the maximum �ow we are interested in sending). We extend the previous
algorithm with this method and call the resulted algorithm GK-HD.

Additionally, we added the heuristic methods of algorithm GK-HD (except
for the methods involving cut computations, due to the fact that these compu-
tations cannot be added to the approximate NASP routine without incurring
extra overhead) to algorithm TZ-aNASP, and call the resulting algorithm TZ-
aNASP-HD.

10 A. Bessas and C. Zaroliagis

All the aforementioned algorithms work for the case that the pro�t function
is constant (e.g., vi(x) = 1, i = 1, 2, . . . , k). In the general case, in which the
pro�t function is non-increasing, only algorithms TZ-aNASP and TZ-aNASP-
HD are applicable. This is due to the fact that the other algorithms use the
exact NASP routine, which works, only if the utility function is of the particular
form described in Section 2.3.

4 Experimental Results

All algorithms were implemented in C++ using g++ (version 3.4.6). Additionally,
the LEDA library (version 5.2) was used. The experiments were performed on
a computer with two hyper-threaded Intel Xeon processors clocked at 2.8GHz.
The total RAM was 4GB.

Two sets of experiments were conducted. In the �rst set, the pro�t function
was vi(x) = 1. All algorithms are compared for this �rst set of data and we want
to see, the way that using an approximate NASP routine a�ects the execution
of the algorithms. In the second set the pro�t function was vi(x) = 1

x and, so,
only algorithms TZ-aNASP and TZ-aNASP-HD are considered. With this set
of experiments, we evaluate the performance of the original algorithms as well as
those obtained by incorporating the heuristic methods already described. For all
experiments the elasticity function was fi(x) = 1− 1

x2 , and so the consumption
function was hi(x) = x2. The total approximation ratio was set to 10%.

4.1 Synthetic Data Sets and Constant Pro�t

In the �rst set of experiments, three types of graphs were used to test the above
algorithms:

GRID(n, k) These are n × n (i.e., n2 nodes) grid graphs with k commodi-
ties. These were generated by the corresponding grid generator provided by
LEDA. Results were taken for graphs of sizes from 10 × 10 to 20 × 20. For
the 10× 10 to 14× 14 graphs the number of commodities was 5. For the rest
of the graphs the number of commodities was 10. The capacities of the edges
were randomly selected in [20, 30] and the weights of the edges in [1, 10]. The
demand for each commodity was randomly selected from the range [1, 10].
The source nodes were randomly selected from the nodes in the top row and
leftmost column of the grid, while the target nodes were selected from the
nodes in the bottom row and rightmost column of the grid in such a way
that a path connecting the source with the corresponding target node always
existed.

GENRMF(α, β) These are graphs consisted of β grid graphs of size α × α.
The nodes of each grid graph are connected with nodes of another grid in a
random way. Experiments were performed for (5, 5) up to (15, 10) graphs and
for 10 commodities. The capacities of the edges were randomly selected in
the range [6, 16] and the weights in [1, 10]. The demand for each commodity
was in [1, 10]. Details for the particular graph generator can be found in [6].

On Assessing Robustness in Transportation Planning 11

NETGEN(n, m, k) These are graphs produced by the netgen generator, which
is described in [7]. The generated graphs had n nodes and m edges. In ad-
dition, k commodities were used for the graph. The capacities of the edges,
the weights of the edges and the demand for each commodity were randomly
selected in [5, 14], [1, 10] and [1, 10], respectively.

An initial set of experiments revealed two interesting outcomes: (i) The dom-
inating factor with respect to the running time was the calls to the NASP rou-
tines. (ii) There is a huge di�erence in performance between the exact NASP
(Section 2.3) and the approximate NASP routine (Section 2.3), especially for
large sizes of graphs, in favor of the former. This di�erence is justi�ed by the
theoretical running times of the two algorithms in combination with the chosen
numerical values and the form of the utility function. Moreover, the implementa-
tion of the exact NASP algorithm uses a few heuristics methods that considerably
speed up its execution. However, the approximate algorithm handles a broader
selection of instances w.r.t. numerical values and utility functions.

In view of the above, we will report our experimental results with respect to
the number of NASP calls (exact or approximate) performed by the algorithms.

To investigate the in�uence of the phases technique in [4], we start by com-
paring the original algorithm of Garg and Könemann (using the exact NASP
routine), referred to as GK-orig, and the same algorithm enhanced with the
phases technique, referred to as GK-F. The results for the case of grid graphs
are shown in Table 1. Similar results were obtained with the other graph families
(GENRMF and NETGEN).

Graph(n, k) Algorithm GK-orig Algorithm GK-F

GRID(10, 5) 60450 78880
GRID(11, 5) 61770 82200
GRID(12, 5) 64380 85030
GRID(13, 5) 66170 85953
GRID(14, 5) 68110 89352
GRID(15, 10) 277690 181874
GRID(16, 10) 283920 185770
GRID(17, 10) 289950 190001
GRID(18, 10) 296340 192066
GRID(19, 10) 300360 195570
GRID(20, 10) 305730 200118

Table 1. Comparison of algorithms GK-orig and GK-F in GRID graphs with all pro�t
functions set to 1. The number of NASP calls is presented.

We observe that for small graphs GK-orig is faster than GK-F. This happens,
because, in order to achieve the same total approximation error, a smaller value of
ε is used for the second algorithm, since the use of the phases introduces another
factor of error. That is, the approximation ratio of the �rst algorithm is 1

(1−ε)2 ,

12 A. Bessas and C. Zaroliagis

while the approximation ratio of the second algorithm is 1+ε
(1−ε)2 . However, when

the size of the graph and the number of commodities increase, we can see that
the second algorithm is quite faster than the �rst one, because the improvement
gained from the technique of phases is more signi�cant than using a smaller
value for ε for the total running time, resulting in a decrease in the required
NASP calls. This is expected, as the number of NASP calls in the original GK
approach is O(1

ε2 km log n) [5] and the use of the phases technique reduces the
number of NASP calls to O(1

ε2m log n) [4].
In Table 2 the number of NASP calls is presented for algorithms GK-F, TZ-

aNASP, GK-H, GK-HD and TZ-aNASP-HD for graphs of type GRID for sizes
up to 14 × 14 and 5 commodities. Experiments were also performed for larger
grid graphs (up to 20×20) with 10 commodities and for graphs of type NETGEN
and GENRMF and we obtained similar results.

Graph(n, k) GK-F TZ-aNASP GK-H GK-HD TZ-aNASP-HD

GRID(10, 5) 78880 90023 3426 1036 1105
GRID(11, 5) 82200 93389 4018 1909 2130
GRID(12, 5) 85030 97000 3781 856 877
GRID(13, 5) 85953 99036 2813 360 489
GRID(14, 5) 89352 102090 3084 337 340

Table 2. Comparison of algorithms in GRID graphs with all pro�t functions set ot 1.
The number of NASP calls is presented.

One can see that TZ-aNASP is inferior to GK-F. This is due to the smaller
value of the constant ε that has to be selected for the �rst algorithm, in order for
the total error to be the same in the two algorithms (the approximation ratios

are (1+ε)2

(1−ε)2 and 1+ε
(1−ε)2 respectively). On the other hand, TZ-aNASP can handle

a broader range of problem instances.

A second crucial observation from Table 2 is that the algorithms GK-H, GK-
HD and TZ-aNASP-HD that use the heuristic methods described in Section 3.2
outperform dramatically algorithms GK-F and TZ-aNASP. Applying the heuris-
tic methods has a bene�cial e�ect on the number of NASP calls required to �nd
an approximate solution, since a path is used to send �ow for as long as possible,
approaching faster the optimal solution.

A third important observation concerns the impact of the new heuristic in-
troduced in Section 3.2 and is based on the demands. We do not only observe
a dramatic improvement in the performance of TZ-aNASP, but also in that of
GK-H. This is due to the fact that by taking advantage of the extra knowledge of
demands in the problem a better upper bound can be computed faster, resulting
in more �ow being sent along a path per NASP computation.

To further elaborate on the e�ect of using the heuristic based on the demands,
we report, in Tables 3, 4 and 5, the experimental results of algorithms GK-H and
GK-HD on all synthetic data used, when vi(x) = 1, i = 1, 2, . . . , k. We can see

On Assessing Robustness in Transportation Planning 13

that in all cases, the heuristic based on the demands results in an improvement in
the number of NASP calls required. The improvement depends on the structure
of the graph (e.g., for grid graphs the improvement is greater than for graphs of
type netgen) as well as the numerical data used.

Graph(n, k) GK-H GK-HD

GRID(10, 5) 3426 1036
GRID(11, 5) 4018 1909
GRID(12, 5) 3781 856
GRID(13, 5) 2813 360
GRID(14, 5) 3084 337
GRID(15, 10) 7252 1549
GRID(16, 10) 6383 1388
GRID(17, 10) 6746 1345
GRID(18, 10) 6874 955
GRID(19, 10) 6850 1644
GRID(20, 10) 5880 1391

Table 3. Comparison of algorithms GK-H and GK-HD in GRID graphs with all pro�t
functions set to 1. The number of NASP calls is presented.

Graph(α, β) GK-H GK-HD

GENRMF(5, 5) 5937 1572
GENRMF(6, 5) 6445 4817
GENRMF(7, 5) 6367 2203
GENRMF(8, 5) 7057 5718
GENRMF(9, 5) 7963 4611
GENRMF(10, 10) 6403 1894
GENRMF(11, 10) 6841 3102
GENRMF(12, 10) 7183 2513
GENRMF(13, 10) 8095 4751
GENRMF(14, 10) 6998 3073
GENRMF(15, 10) 7878 3249

Table 4. Comparison of algorithms GK-H and GK-HD in GENRMF graphs with
k = 10 commodities and all pro�t functions set to 1. The number of NASP calls is
presented.

4.2 Synthetic and Real-world Data Sets with Non-increasing Pro�t

The second set of experiments was conducted on grid graphs of sizes 10× 10 to
14× 14 with 5 commodities, and on real-world data from the German railways
comparing algorithms TZ-aNASP and TZ-aNASP-HD, which are the only ones

14 A. Bessas and C. Zaroliagis

Graph(n, m, k) GK-H GK-HD

NETGEN(100, 1000, 10) 14272 13561
NETGEN(200, 1300, 15) 21892 21709
NETGEN(200, 1500, 15) 19621 18985
NETGEN(200, 2000, 20) 32024 30766
NETGEN(300, 4000, 15) 23246 21330
NETGEN(500, 3000, 30) 43104 41260
NETGEN(700, 30000, 50) 76092 70018

Table 5. Comparison of algorithms GK-H and GK-HD in NETGEN graphs with all
pro�t functions set to 1. The number of NASP calls is presented.

that apply to this case of pro�t functions. The underlying network in the �rst
set of real-world data (R1) has 280 nodes and 354 edges, in the second set (R2)
296 nodes and 393 edges and in the third set (R3) 319 nodes and 452 edges. The
data are taken from the software platform LinTim [9]. For all sets of real-world
data, demands were in [4000, 10000], the wt functions corresponded to the length
of the edges of the train network ranging from a few hundred meters to more
than 100 Km and the capacity of an edge was in [800, 1600] . All pro�t functions
were set to 1

x . The results are presented in Tables 6 and 7.

Again one notes the signi�cant drop in the number of NASP calls required,
when the heuristic methods are used. We observe that TZ-aNASP-HD is from
14 up to 54 times faster than TZ-aNASP. This is, because the heuristic methods
allow for a path to be used multiple consecutive times in order to send �ow,
resulting in considerably fewer NASP calls by the algorithm, and hence achieving
a huge speedup.

5 Conclusions

In this paper an experimental study for the QoS-aware MCF problem was pre-
sented. Algorithms for this problem that follow the Garg & Könemann method
have to rely on solving an instance of a NASP problem. Using the exact NASP
routine results in fewer NASP calls than by using an approximate one (in or-
der to obtain the same approximation ratio for the algorithms). However, the
algorithms that use the approximate NASP routine are more general and en-
force less restrictions on the form of the problem. The results show clearly that
incorporating the described heuristic methods, and especially the new heuristic
based on the demands, yields signi�cant improvements in the running time of
the algorithms. The di�erence in NASP calls of algorithms TZ-aNASP and TZ-
aNASP-HD, or GK-orig and GK-HD is dramatic and, since the bottleneck in the
running time is the computation of the non-additive shortest path, there was an
accordingly great decrease in the running time of the corresponding algorithms.

On Assessing Robustness in Transportation Planning 15

Graph(n, k) TZ-aNASP TZ-aNASP-HD

GRID(10, 5) 90538 1630
GRID(11, 5) 93389 2128
GRID(12, 5) 97000 930
GRID(13, 5) 99036 624
GRID(14, 5) 101801 605
GRID(15, 10) 208412 2356
GRID(20, 10) 228131 9291

Table 6. Comparison of algorithms TZ-aNASP and TZ-aNASP-HD in GRID graphs
with all pro�t functions set to 1

x
. The number of NASP calls is presented.

Data Set Commodities TZ-aNASP TZ-aNASP-HD Speedup

R1

5 68336 2022 33
10 120500 3229 37
15 185171 6984 26
20 216902 12615 17

R2

5 61241 1598 38
10 119855 4059 29
15 162239 5354 30
20 235181 16832 14

R3

5 74563 1357 54
10 165782 3894 42
15 247540 6548 37
20 247540 5911 41

Table 7. Comparison of algorithms TA-aNASP and TZ-aNASP-HD on the available
sets of real-world data with all pro�t functions set to 1

x
. The number of NASP calls

and the speedup is presented.

16 A. Bessas and C. Zaroliagis

References

1. Ravindra K. Ahuja, Thomas L. Magnati, and James B. Orlin. Network Flows:

Theory, Algorithms and Applications. Prentice Hall, 1993.
2. Garima Batra, Naveen Garg, and Garima Gupta. Heuristic improvement for com-

puting maximum multicommodity �ow and minimum multicut. In Algorithms

� ESA 2005, volume 3669 of Lecture Notes in Computer Science, pages 35�46.
Springer Berlin / Heidelberg, 2005.

3. A. Datta, D. Vandermeer, A. Celik, and V. Kumar. Broadcast Protocols to Sup-
port E�cient Retrieval from Databases by Mobile Users. ACM Transactions on

Database Systems, 24(1):1�79, 1999.
4. Lisa K. Fleischer. Approximating fractional multicommodity �ow independent of

the number of commodities. volume 14, pages 505�520. Society for Industrial and
Applied Mathematics, 2000.

5. Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicom-
modity �ow and other fractional packing problems. In FOCS '98: Proceedings of

the 39th Annual Symposium on Foundations of Computer Science, pages 300�309.
IEEE Computer Society, 1998.

6. Donald Goldfarb and Michael D. Grigoriadis. A computational comparison of
the dinic and network simplex methods for maximum �ow. Annals of Operations
Research, 13(1):81�123, December 1988.

7. D. Klingman, A. Napier, and J. Stutz. NETGEN � A program for generating
large scale capacitated assignment, transportation, and minimum cost �ow network
problems. Management Science, 20:814�821, 1974.

8. PIN project (Projekt Integrierte Netzoptimierung). Deutsche Bahn AG, 2000.
9. Michael Schachtebeck and Anita Schöbel. Lintim � a toolbox for the experimental

evaluation of the interaction of di�erent planning stages in public transportation.
Technical Report ARRIVAL-TR-0206, ARRIVAL Project, February 2009.

10. George Tsaggouris and Christos Zaroliagis. Non-additive shortest path. In Algo-

rithms � ESA 2004, volume 3221 of Lecture Notes in Computer Science, pages
822�234. Springer Berlin, 2004.

11. George Tsaggouris and Christos Zaroliagis. QoS-aware Multicommodity Flows
and Transportation Planning. In Proc. 6th Workshop on Algorithmic Methods and

Models for Optimization of Railway � ATMOS 2006, 2006.
12. George Tsaggouris and Christos Zaroliagis. Multiobjective optimization: Improved

FPTAS for shortest paths and non-linear objectives with applications. Theory of

Computing, 45(1):162�186, 2009.
13. F. Wagner. Challenging Optimization Problems at Deutsche Bahn. AMORE

Workshop (invited talk), 1999.

