
07491 Abstracts Collection

Mining Programs and Processes

� Dagstuhl Seminar �

A. Bernstein1, H.Gall2 and A. Zeller3

1 Univ. of Zürich, CH

bernstein@ifi.unizh.ch

2 Univ. of Zürich,
3 Univ. of Saarbrücken, DE

zeller@cs.uni-sb.de

Abstract. From 02.12. to 17.12.2007, the Dagstuhl Seminar 07491 �Min-

ing Programs and Processes� was held in Schloss Dagstuhl � Leibniz Cen-

ter for Informatics. During the seminar, several participants presented

their current research, and ongoing work and open problems were dis-

cussed. Abstracts of the presentations given during the seminar as well

as abstracts of seminar results and ideas are put together in this paper.

The �rst section describes the seminar topics and goals in general. Links

to extended abstracts or full papers are provided, if available.

Keywords. Mining software archives, data mining, machine learning,

empirical software engineering

07491 Executive Summary � Mining Programs and
Processes

The main goal of the seminar "Mining Programs and Processes" was to create
a synergy between researchers of three communities, namely mining software
repositories, data mining and machine learning, and empirical software engi-
neering.

Keywords: Mining software archives, data mining, machine learning, empirical
software engineering

Joint work of: Bernstein, Abraham; Gall, Harald; Zeller, Andreas

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2009/2246

Dagstuhl Seminar Proceedings 07491
Mining Programs and Processes
http://drops.dagstuhl.de/opus/volltexte/2009/2247

http://drops.dagstuhl.de/opus/volltexte/2009/2246

2 A. Bernstein, H.Gall and A. Zeller

Mining Application Code for Domain-Speci�c Languages

Krzysztof Czarnecki (University of Waterloo, CA)

Domain-speci�c languages (DSLs) have recently gained widespread attention of
the software engineering community as promising approach to boost productiv-
ity and quality in specialized application areas. Unfortunately, designing DSLs
is a challenging task and not much engineering science exists to support it. In
well-de�ned, mature domains DSLs may be extracted form the established prac-
tices of domain experts or created based on an existing mathematical theory
that underlies the domain. However, perhaps the majority of domains have an
emerging nature: they emerge from the practice of a particular organization or
community and are a moving target because of market evolution.

In this talk I will report on research that I recently embarked on. The goal
of the research is to demonstrate the feasibility of mining application code for
framework-speci�c modeling languages (FSMLs). FSMLs are is a special kind of
DSLs that were designed to represent a set of concepts provided by an object-
oriented framework. The long-term goal of this research is to achieve the in-
cremental grow and evolution of higher-level DSL from the usage of lower-level
abstractions, which could be an e�ective approach to develop DSLs for emerging
domains.

Interest in Mining

Serge Demeyer (University of Antwerpen, B)

In the Lab on Reengineering (LORE) we have been using mining techniques
for two purposes. On the one hand, we mined version repositories for �nding
traces of refactorings (duplicated code that has been removed, ...). On the other
hand, we mined execution traces of running systems to calculate coupling and
cohesion and derive key classes in the system design. One area of future research
is performing joint case-studies to derive common benchmarks.

Keywords: Mining refactorings, mining execution traces, benchmarks

Is this Anytheeeeeeng? (with apologies to David
Letterman)

Premkumar T. Devanbu (Univ. of California - Davis, USA)

We all want to do something, something important. But �rst, we have to know
what <nothing> is. We also have to know that what we have found is not <noth-
ing>. Once we know it's something, we have to make sure it's not something
we found by looking too hard; after that, we have to make sure we didn't �nd
something just an artifact of the tools we were using to �nd something.

Mining Programs and Processes 3

Finally we have to make sure that what we found is something useful.

Keywords: Humor, null hypothesis

Abstract

Thomas Fritz (University of British Columbia - Vancouver, CA)

When building a software system, software developers each contribute a �ow of
information that together forms the system. As they work, programmers con-
tinuously consult various facts (knowledge) about this information to answer
their questions about the system. The knowledge most easily accessed today in
a programming environment involves facts about the structure of the program.
However, the knowledge required by a programmer is broader than just struc-
ture; it also includes knowledge about design, requirements, and the development
process, to name just a few other sources. To enable developers to access this
knowledge more e�ciently, our goal is to develop a model for programming en-
vironments that allows various fragments of di�erent kinds of knowledge to be
con�gured �exibly.

This model would enable new presentations to show these knowledge frag-
ments in ways that more directly answer programmers' questions.

Evolizer: A framework for software evolution analysis

Harald Gall (Universität Zürich, CH)

Our research in software engineering is focused on technologies that enable the
development of large, complex, and long-living software systems. For that, soft-
ware development methodologies and paradigms are needed to provide evolvabil-
ity and maintainability characteristics of software. We mine all kinds of software
repositories to explore ways of learning from the past.

We have built an analysis framework called Evolizer that povides a framework
for change type analysis, architectural analysis, metrics, social networks, and
release history based visualizations.

Keywords: Software evolution, software visualization

Fast, Cheap, and Under Control: Evaluating Revision
Data Reliably

Michael W. Godfrey (University of Waterloo, CA)

Measuring characteristics of software systems can be as deep or as shallow as
time and budget allow.

4 A. Bernstein, H.Gall and A. Zeller

However, industrial users have a strong preference for techniques that are
lightweight and fast. In this talk, we will present our approach to measuring
some characteristics of software revisions, and also show how our background
work has established the reliability of these techniques using a deep, heavyweight
evaluation.

Keywords: Understanding software revisions

Joint work of: Hindle, Abram; Godfrey, Michael W.; Holt, Richard C.

Using Text Mining and Link Analysis for Software Mining

Miha Grcar (Jozef Stefan Institute - Ljubljana, SLO)

Many data mining techniques are these days in use for ontology learning � text
mining, Web mining, graph mining, link analysis, relational data mining, and so
on. In the current state-of-the-art bundle there is a lack of �software mining�
techniques. This term denotes the process of extracting knowledge out of source
code. In this paper we approach the software mining task with a combination
of text mining and link analysis techniques. We discuss how each instance (i.e.
a programming construct such as a class or a method) can be converted into
a feature vector that combines the information about how the instance is in-
terlinked with other instances, and the information about its (textual) content.
The so-obtained feature vectors serve as the basis for the construction of the do-
main ontology with OntoGen, an existing system for semi-automatic data-driven
ontology construction.

Keywords: Software mining, text mining, link analysis, graph and network
theory, feature vectors, ontologies, OntoGen, machine learning

Joint work of: Grcar, Miha; Grobelnik, Marko; Mladenic, Dunja

See also: Workshop on Mining Complex Data, ECML/PKDD 2007

Using Term-matching Algorithms for the Annotation of
Geo-services

Miha Grcar (Jozef Stefan Institute - Ljubljana, SLO)

This paper presents an approach for automating semantic annotation within
service-oriented architectures that provide interfaces to databases of spatial-
information objects. The automation of the annotation process facilitates the
transition from the current state-of-the-art architectures towards semantically-
enabled architectures. We see the annotation process as the task of matching
an arbitrary word or term with the most appropriate concept in the domain
ontology. The term matching techniques that we present are based on text min-
ing. To determine the similarity between two terms, we �rst associate a set of

Mining Programs and Processes 5

documents [that we obtain from a Web search engine] with each term. We then
transform the documents into feature vectors and thus transition the similar-
ity assessment into the feature space. After that, we compute the similarity by
training a classi�er to distinguish between ontology concepts. Apart from text
mining approaches, we also present two alternative techniques, namely hypothe-
sis checking (i.e. using linguistic patterns such as "term1 is a term2" as a query
to a search engine) and Google Distance.

Keywords: Geo-services, semantic annotation, text mining, search engine query-
ing, machine learning, term matching

Joint work of: Grcar, Miha; Klien, Eva

See also: Workshop on Web Mining 2.0, ECML/PKDD 2007

Automatic Veri�cation of Load Tests

Zhen Ming Jiang (University of Victoria, CA)

Load testing mimics multiple users performing tasks at the same time, and usu-
ally lasts for many hours or a few days. In practice, a load test run is considered
successful if the system did not crash or did not su�er signi�cant delays. How-
ever, these success criteria are not su�cient to verify whether the system has
behaved properly throughout the course of the load test run. In this talk, we
propose mining the large number execution logs produced during a load test
to identify execution anomalies. We propose several log mining techniques and
evaluate their success in identifying errors during load testing of large industrial
projects.

Keywords: Load Test, Log Analysis, Log Mining, Anomaly Detection

Joint work of: Jiang, Zhen Ming; Ahmed E. Hassan

Discovering and Representing Logical Structure in Code
Changes

Miryung Kim (University of Washington, USA)

There is a signi�cant gap between how programmers think about code change
and how change is represented in most software engineering tools. Program-
mers often think about code change in terms of structure: which code elements
changed and how their structural dependencies are a�ected by the change. By
reasoning about structural information within and around changed code, they
recognize high-level systematic changes such as refactorings and crosscutting
changes. Yet, most software engineering tools are based on a textual representa-
tion of code change.

6 A. Bernstein, H.Gall and A. Zeller

To bridge this gap, we propose a novel rule-based delta representation that
explicitly and concisely captures systematic changes to a program's structure,
along with an engine that automatically infers such rules.

Our logical structural delta (LSD) can complement existing uses of tex-
tual deltas: e.g., understanding another programmer's modi�cation, reviewing
a patch before submission, and writing change documentation. We believe that
LSD may serve as a basis for many software engineering tools that can bene�t
from explicit logical structure in code change: a bug �nding tool, a refactoring
reconstruction tool, a dependency removal checker, etc.

Keywords: Code change, delta, systematic changes, software evolution

Learn to refactor business processes

Volker Klingspor (FH Bochum, D)

The last years have shown that programming business applications from scratch
is a very risky task. Most of the projects didn't succeed. They did not �nished
in time, in budget or did not �nished at all. Thus, there has been a drift in the
overall architecture of software towards service oriented architectures (SOA),
and to the integration of as much existing (legacy) functionality as possible. If
software is seen as a collection of services, the next step is to model the �ow
of activities in a business process graphically, instead of programming it using
a classical programming language. From this idea, business modeling notations
like EPK and BPMN and model execution languages (like BPML and BPEL)
come into being.

Even if programming can be replaced by graphical modeling, the need for �ex-
ible and extensible software demands for modeling tools allowing a high agility.
Especially, it should be easy to restructure previously modeled processes to be
able to react to the changes in the business market.

The idea of restructuring software isn't new. In the 90th the concept of
refactoring aroused in "classical" programming. What is necessary to transfer
the results of refactoring of object oriented programs to refactoring of business
process models? Firstly, we have to gather a set of situations, where the struc-
ture of a business process model has room for improvement. Secondly, we must
describe for each of these situations, how it can be described, in which way the
process could be restructured, and what the bene�ts of the restructuring are.
And thirdly, to support the business modeler, the modeling environment should
autonomously analyze business models and suggest refactoring candidates. That
means, the modeling system itself should propose restructuring steps. There-
fore, we need a set of formal features describing exactly the characteristics of
business processes and parts of the processes with respect to the applicability
of refactoring. And we need heuristics to decide, for which part of a process a
dedicated refactoring step seems sensible. Maybe, we can learn these heuristics
automatically from previous refactoring steps.

Mining Programs and Processes 7

An example for a business model refactoring pattern could be the pattern
of sub processes. If a process is large (i.e., it consists of more elements than
some threshold), and it contains a part, that is relatively autonomous (i.e. for
example, this part needs relatively few data from the remaining process and it
doesn't branch out without being merged), then this part of the process should
be sourced out to a new sub process. Furthermore, a new interface for this sub
process must be speci�ed, and the sub process must be called from original
process.

Having such restructuring capabilities embedded in the business process mod-
eling software, the development of processes could be much more incremental and
more agile.

Sourcerer and CodeGenie: Collecting, Slicing and Dicing
Open Source code

Cristina Lopes (Univ. California - Irvine, USA)

Sourcerer is an infrastructure for collecting and indexing open source code avail-
able on the internet. I will describe the studies and tools we are developing with
this infrastructure.

Machine Learning Supports Processes

Katharina Morik (Universität Dortmund, D)

The old dream of learning programs from input-output examples has changed
over the years. On one hand, XML has become the way to express input as well
as output of programs and is the key to web application programs. On the other
hand, descriptions of programs allow standard learning algorithms to support
developers.

The talk gives some examples of applying machine learning to software en-
gineering.

Can Developer Social Networks Predict Failures?

Martin Pinzger (Universität Zürich, CH)

Software teams should follow a well de�ned goal and keep their work focused.
Work fragmentation is bad for e�ciency and quality. In this paper we empir-
ically investigate the relationship between the fragmentation of developer con-
tributions and the number of post-release failures. Our approach is to represent
the structure of developer contributions with a contribution network.

8 A. Bernstein, H.Gall and A. Zeller

We use social network centrality measures to measure the degree of fragmen-
tation of developer contributions. Fragmentation is determined by the central-
ity of software modules in the contribution network. Our claim is that central
software modules are more likely to be failure-prone than modules located in
surrounding areas of the contribution network. We analyze this hypothesis by
exploring the network centrality of Microsoft Windows Vista modules using sev-
eral social network centrality measures as well as linear and logistic regression
analysis. In particular, we investigate which centrality measures are signi�cant
to predict the probability and number of post-release failures.

Results of our experiments show that central modules are more failure-prone
than modules located in surrounding areas of the network. The basic centrality
measures, number of authors and number of commits, are signi�cant predictors
for the probability of failures. For predicting the number of post-release failures
the closeness centrality measures are most signi�cant.

Keywords: Failure Prediction, Social Network Analysis, Developer Contribution
Network, Network Centrality Measures

Joint work of: Pinzger, Martin; Nagappan, Nachiappan; Murphy, Brendan

Backstory: A Search Tool for Software Developers
Supporting Scalable Sensemaking

Gina Venolia (Microsoft Corp. - Redmond, USA)

Software developers have many information needs that that could be answered
using written text in the various repositories at their disposal, but they under-
utilize these knowledge resources for a variety of good reasons. Backstory is a
search tool for software developers aimed at addressing those reasons, and so to
improve knowledge �ow among teammates. The results of a survey of developers
current search habits and desires for a new tool are presented as background.
A case study of root-cause analysis is also presented, which informs the design
of Backstory. Additionally the case study adds detail to an accepted model of
sensemaking. Finally, the Backstory UI design suggests that a tool can support
sensemaking in such a way that it's not intimidating or distracting for simple
investigations, but has mechanisms that the user may employ incrementally as
the complexity of an investigation increases - a characteristic referred to here as
scalable sensemaking.

Collaborative Software Evolution Analysis

Marco d'Ambros (University of Lugano, CH)

We present Churrasco, a framework to support collaborative software evolution
analysis and visualization. The main features of the framework are:

Mining Programs and Processes 9

- Flexible and extensible meta-model support. The meta-model used to de-
scribe the evolution of a software system can be dynamically changed and/or
extended.

- Accessibility. The framework is fully web-based, i.e., the entire analysis of
a software system, from the initial model creation to the �nal study, can be
performed from a web browser, without having to install or con�gure any tool.

- Collaboration. Churrasco relies on a centralized database and supports an-
notations. Thus, the knowledge of a system, gained during the analysis, can be
incrementally stored into the model of the system itself. We show, through a sim-
ple example scenario, how Churrasco supports collaborative software evolution
analysis and visualization.

Keywords: Software Evolution, Software Visualization, Collaborative Analysis,
Metamodeling

	07491 Abstracts Collection Mining Programs and Processes — Dagstuhl Seminar —
	 A. Bernstein, H.Gall and A. Zeller

