
Σ0
α-Admissible Representations

(Extended Abstract)

Matthew de Brecht and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University
Yoshida Honmachi, Sakyo-ku, Kyoto, Japan 606-8501

matthew@iip.ist.i.kyoto-u.ac.jp

akihiro@i.kyoto-u.ac.jp

Abstract. We investigate a hierarchy of representations of topologi-
cal spaces by measurable functions that extends the traditional notion
of admissible representations common to computable analysis. Specific
instances of these representations already occur in the literature (for ex-
ample, the naive Cauchy representation of the reals and the “jump” of a
representation), and have been used in investigating the computational
properties of discontinuous functions. Our main contribution is the inte-
gration of a recently developing descriptive set theory for non-metrizable
spaces that allows many previous results to generalize to arbitrary count-
ably based T0 topological spaces. In addition, for a class of topological
spaces that include the reals (with the Euclidean topology) and the power
set of ω (with the Scott-topology), we give a complete characterization
of the functions that are (topologically) realizable with respect to the
level of the representations of the domain and codomain spaces.

1 Introduction

In this paper, we introduce and investigate the topological properties of a hi-
erarchy of representations of topological spaces, which we call Σ0

α-admissible
representations. A partial function ρ:⊆ ωω → X is called a Σ0

α-admissible
representation (1 ≤ α < ω1) of the topological space X if and only if ρ is
Σ0
α-measurable and every Σ0

α-measurable partial function to X is continuously
reducible to ρ (see Definition 4). As Σ0

1-measurable functions are exactly the
continuous functions, a Σ0

1-admissible representation is the same as the tradi-
tional notion of an “admissible” representation common to computable analysis
(see [12] and [9]). A well known example of a Σ0

2-admissible representation is the
naive Cauchy representation of the reals [4], and examples of representations in
the finite levels of the hierarchy can be obtained iteratively by taking the “jump”
of a representation [14]. These representations have been used in investigating
the computational properties of discontinuous functions (see [3], [14], and [5]).

Whereas previous results have focused on metrizable spaces and finite lev-
els of the hierarchy, in this paper we will investigate these representations for
arbitrary countably based T0 spaces and all countable levels of the hierarchy. Per-
haps one reason that previous research has been restricted to metrizable spaces
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is that the classical definition of the Borel hierarchy behaves rather poorly on
non-metrizable spaces. Since the domain of a Σ0

α-admissible representation is a
metrizable space, we can use the classical definition of the Borel hierarchy in
defining these representations, even for arbitrary topological spaces. However,
to better understand their properties, a slight modification of the definition of
the Borel hierarchy is needed for non-metrizable spaces. It turns out that the
correct definition is the one that has only recently been used by Tang [11] in
studying P(ω) and more extensively studied by Selivanov (see [10] for a survey).
Using this modification, it can be shown that the Borel complexity of a subset
of a countably based T0 space is exactly determined by the complexity of the
preimage of the set under a Σ0

1-admissible representation (see Corollary 3 be-
low). Similar properties hold for higher levels of the hierarchy, and this regularity
allows us to easily characterize the types of functions that are topologically re-
alizable with respect to these representations. In particular, we give a complete
characterization for a class of topological spaces that include the reals and P(ω)
(see Theorem 9), and have also extended some important realizability results by
Brattka [3] and Ziegler [14] to all countably based T0-spaces (see Theorem 8).

A final result worth mentioning is that, given a representation ρ:⊆ ωω → X
of a set X, if there is a sequential topology τ on X that makes ρ a Σ0

α-admissible
representation, then both τ and α are uniquely determined (see Corollary 4).
Thus, Σ0

α-admissible representations provide a useful means of characterizing
representations that cannot be interpretted as being admissible in the usual
(continuous) sense.

We will define the Borel hierarchy for arbitrary topological spaces and review
its basic properties in the next section. In Section 3 we will investigate some basic
properties of Σ0

α-measurable functions between topological spaces. We prove that
Σ0
α-admissible representations exist for all countable ordinals α and all countably

based T0 spaces in Section 4, and further investigate their properties in Section 5.
Section 6 investigates which functions between topological spaces are realizable
with respect to Σ0

α-admissible representations, and we conclude in Section 7.
Several proofs have been omitted due to a lack of space. They can be obtained
by contacting the first author.

2 The Borel Hierarchy

In this section we define the Borel hierarchy on arbitrary topological spaces
and introduce some basic properties. We will use a definition of the Borel hi-
erarchy that differs from the classical definition (e.g., the definition in [7]) on
non-metrizable spaces, but is more suitable for general topological spaces.

We let ω1 denote the least uncountable ordinal, ω the set of natural numbers
(or the first infinite ordinal), and for sets A and B we let A\B denote the subset
of A of elements not in B.

Definition 1. Let X be a topological space. For each ordinal α (1 ≤ α < ω1)
we define Σ0

α(X) inductively as follows.
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1. Σ0
1(X) is the set of all open subsets of X.

2. For α > 1, Σ0
α(X) is the set of all subsets A of X which can be expressed in

the form

A =
⋃
i∈ω

Bi \B′i,

where for each i, Bi and B′i are in Σ0
βi

(X) for some βi < α.

We define Π0
α(X) = {X \ A |A ∈ Σ0

α(X)}, ∆0
α(X) = Σ0

α(X) ∩ Π0
α(X), and

B(X) =
⋃

1≤α<ω1
Σ0
α(X). ut

The above definition of the Borel hierarchy is equivalent to the definition that
was used by Tang [11] in studying descriptive set theory on P(ω) (the power
set of the natural numbers with the Scott-topology), and more systematically
investigated by Selivanov (see [10] for a survey of results and an extensive list of
references).

The classical definition of the Borel hierarchy (which requires Bi = X for all
i in the second clause of Definition 1) is not suitable for non-metrizable spaces.
For example, consider the Sierpinski space S = {⊥,>} (where {>} is open, but
{⊥} is not). If we used the classical definition then Σ0

2n+1(S) is the set of open
subsets of S and Σ0

2n+2(S) is the closed subsets, so Σ0
2n+1(S) 6⊆ Σ0

2n+2(S) (for
0 ≤ n < ω). The Borel hierarchy defined in Definition 1 is equivalent to the
classical definition for all metrizable spaces, and behaves as we expect it should
even for non-metrizable spaces.

In the following, X and Y will denote arbitrary topological spaces, unless
stated otherwise. The following results are easily proven, and can also be found
in [10].

Proposition 1. For each α (1 ≤ α < ω1),

1. Σ0
α(X) is closed under countable unions and finite intersections,

2. Π0
α(X) is closed under countable intersections and finite unions,

3. ∆0
α(X) is closed under finite unions, finite intersections, and complementa-

tion.
ut

Proposition 2. If β < α then Σ0
β(X) ∪Π0

β(X) ⊆∆0
α(X). ut

Proposition 3. For α > 2, each A ∈ Σ0
α(X) can be expressed in the form

A =
⋃
i∈ω Bi, where for each i, Bi is in Π0

βi
(X) for some βi < α. ut

Proposition 4. If X is a metrizable space, then every A ∈ Σ0
2(X) is equal to

a countable union of closed sets. ut

Proposition 5. If X is a subspace of Y , then Σ0
α(X) = {A ∩X |A ∈ Σ0

α(Y )}
and Π0

α(X) = {A ∩X |A ∈ Π0
α(Y )}. ut

A topological space X is called a TD-space if every singleton set {x} ⊆ X is
locally closed, i.e. {x} is equal to the intersection of an open set and a closed
set. TD is a separation axiom proposed by Aull and Thron [2] that is strictly
between the T0 and T1 axioms.
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Proposition 6. For any first-countable topological space X,

1. Every singleton set {x} ⊆ X is in Π0
2(X) ⇐⇒ X is a T0-space,

2. Every singleton set {x} ⊆ X is in ∆0
2(X) ⇐⇒ X is a TD-space,

3. Every singleton set {x} ⊆ X is in Π0
1(X) ⇐⇒ X is a T1-space,

4. Every singleton set {x} ⊆ X is in ∆0
1(X) ⇐⇒ X is a discrete space.

ut

3 Σ0
α-measurable functions

In this section we will investigate some basic properties of Σ0
α-measurable func-

tions. Below, we will write f :⊆ X → Y to indicate that f is a partial function
from X to Y . The domain of definition of f will be denoted dom(f). We say
that f :⊆ X → Y is continuous if and only if for every open U ⊆ Y , there is
open V ⊆ X such that f−1(U) = V ∩ dom(f). In other words, f :⊆ X → Y is
continuous if and only if the total function f : dom(f) → Y is continuous with
respect to the subspace topology on dom(f).

Definition 2. A function f :X → Y is Σ0
α-measurable if and only if for every

open U ⊆ Y , f−1(U) ∈ Σ0
α(X). A partial function f :⊆ X → Y is said to be

Σ0
α-measurable if and only if for every open U ⊆ Y , there is A ∈ Σ0

α(X) such
that f−1(U) = A ∩ dom(f). ut

Equivalently, a partial function f :⊆ X → Y is Σ0
α-measurable if and only

if for every open U ⊆ Y , f−1(U) ∈ Σ0
α(dom(f)), where dom(f) is given the

relative topology.
For any fixed α > 1, the Σ0

α-measurable functions are not closed under
composition. To characterize how composition behaves, we will need ordinal
addition. Addition on ordinals is defined recursively as follows:

1. α+ 0 = α
2. α+ (β + 1) = (α+ β) + 1 = the successor of α+ β.
3. α+ λ = limβ<λ(α+ β) for limit ordinal λ.

Note that ordinal addition is non-commutative. For example, 1+ω = ω 6= ω+1.
Also note that if α < β, then there is a unique ordinal γ such that α+ γ = β.

Composing with continuous functions does not change the level of a function.
For that reason it would have been more convenient for our purposes to define
the Borel Hierarchy so that open sets and continuous functions were of level 0
(the additive identity for ordinals). To simplify the statement of some of the
following theorems and proofs, we will often make use of the following “hat”
notation, so that we can treat the Borel Hierarchy as if we defined the open sets
to be at level 0.

Definition 3. For 0 ≤ α < ω1, define α̂ = α+ 1 if α < ω and α̂ = α if α ≥ ω.
ut
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Note that α < β ⇐⇒ α̂ < β̂ and α̂+ β = α̂ + β hold for any countable
ordinals α and β.

Lemma 1. Let X and Y be countably based T0 spaces. If f :⊆ X → Y is Σ0
α̂-

measurable (0 ≤ α < ω1) and A ∈ Σ0
β̂
(Y ) (0 ≤ β < ω1), then f−1(A) ∈

Σ0

α̂+β
(dom(f)). ut

Theorem 1. Let X, Y , and Z be countably based T0 spaces, f :⊆ X → Y a Σ0
α̂-

measurable function (0 ≤ α < ω1), and g:⊆ Y → Z a Σ0
β̂

-measurable function

(0 ≤ β < ω1). Then g ◦ f :⊆ X → Z is Σ0

α̂+β
-measurable. ut

In particular, if f is Σ0
2-measurable and g is Σ0

ω-measurable, then due to
the non-commutativity of ordinal addition, g ◦ f is Σ0

ω-measurable but f ◦ g is
Σ0
ω+1-measurable (assuming the compositions make sense).

The following is due to Wadge (this is Theorem 22.10 in [7]). We let ωω

denote the Baire space.

Proposition 7 (Wadge). If B ⊆ ωω is in B(ωω)\Π0
α̂(ωω) (0 ≤ α < ω1), then

for any A ∈ Σ0
α̂(ωω) there is continuous total f :ωω → ωω such that A = f−1(B).

ut

We will need the following generalization of Wadge’s results that characterize
reductions using measurable functions.

Theorem 2. For 0 ≤ α < ω1 and 0 ≤ β < ω1, if B ∈ B(ωω) \Π0
β̂
(ωω), then

for any A ∈ Σ0

α̂+β
(ωω) there exists a Σ0

α̂-measurable total function f :ωω → ωω

such that A = f−1(B). ut

4 Existence of Σ0
α-admissible representations

The goal of this section is to show that every countably based T0 space has a Σ0
α-

admissible representation for 1 ≤ α < ω1 (Theorem 3 below). We also show the
complexity of converting between representations of different levels (Theorem 4),
and consider representations of representations of a space (Corollary 2), which
is a generalization of Ziegler’s “jump” of a representation [14].

Definition 4. A Σ0
α-admissible representation of a topological space X is a

Σ0
α-measurable partial function ρ:⊆ ωω → X such that for every Σ0

α-measurable
partial function f :⊆ ωω → X, there exists continuous g:⊆ ωω → ωω such that
f = ρ ◦ g. ut

Note that the above definition implies that Σ0
α-admissible representations

are always surjective. Clearly, a Σ0
1-admissible representation is equivalent to

what is usually called an “admissible representation” in the computable analy-
sis literature (see, e.g., [12] and [9]). The above definition applies to arbitrary
topological spaces, but most of our results will focus on countably based spaces.

We let S denote the Sierpinski space, which has only two points > and ⊥,
and where {>} is open but {⊥} is not open.



124 Matthew de Brecht and Akihiro Yamamoto

Proposition 8. Let A ∈ Σ0
α(ωω)\Π0

α(ωω) and define ρ:ωω → S so that ρ(y) =
> if y ∈ A and ρ(y) = ⊥ if y 6∈ A. Then ρ is a Σ0

α-admissible representation for
S.

Proof. It is clear that ρ is Σ0
α-measurable. Let f :⊆ ωω → S be a Σ0

α-measurable
partial function. Then f−1({>}) ∈ Σ0

α(dom(f)), so there is B ∈ Σ0
α(ωω) such

that f−1({>}) = B∩dom(f). From Proposition 7 there is continuous g:ωω → ωω

such that g−1(A) = B. Then for all y ∈ dom(f), f(y) = > ⇐⇒ g(y) ∈ A ⇐⇒
ρ(g(y)) = >. Hence, by restricting the domain of g if necessary, f = ρ ◦ g. ut

Corollary 1. For 0 ≤ α < ω1 and 0 ≤ β < ω1, if ρα+β :⊆ ωω → S is a
Σ0

α̂+β
-admissible representation of S and ρβ :⊆ ωω → S is a Σ0

β̂
-admissible

representation of S, then there exists a Σ0
α̂-measurable function f :⊆ ωω → ωω

such that ρα+β = ρβ ◦ f .

Proof. Immediate from Theorem 2 and Proposition 8. ut

Proposition 9. If X is a subspace of Y and ρ:⊆ ωω → Y is a Σ0
α-admissible

representation of Y , then ρX :⊆ ωω → X defined as the restriction of ρ to
dom(ρX) = ρ−1(X), is a Σ0

α-admissible representation of X. ut

Proposition 10. If {Xi}i∈ω and {Yi}i∈ω are all countably based T0-spaces, and
for each i fi:⊆ Xi → Yi is Σ0

α-measurable (1 ≤ α < ω1), then fω:⊆
∏
Xi →∏

Yi is Σ0
α-measurable, where

∏
Xi and

∏
Yi are given the product topologies

and fω is defined so that fω(ξ)(i) = fi(ξ(i)). ut

For the following proposition, let φ:ωω → (ωω)ω be a homeomorphism.

Proposition 11. Let Xi be a countably based T0 space and ρi:⊆ ωω → Xi a
Σ0
α-admissible representation for Xi (i ∈ ω). Then ρω ◦ φ is a Σ0

α-admissible
representation for

∏
Xi.

Proof. The proof that ρω ◦ φ is Σ0
α-measurable follows from Proposition 10.

Let f :⊆ ωω →
∏
Xi be a Σ0

α-measurable partial function. By the Σ0
α-

admissibility of ρi:⊆ ωω → Xi, for i ∈ ω there is continuous gi:⊆ ωω → ωω such
that πi ◦ f = ρi ◦ gi, where πi:

∏
Xi → X is the i-th projection. Since πi is a

total function, we must have that dom(f) = dom(πi ◦f) ⊆ dom(gi) for all i ∈ ω.
Define g:⊆ ωω → (ωω)ω so that g(ξ)(i) = gi(ξ). Then dom(f) ⊆ dom(g) and

ρω(g(ξ))(i) = ρi(g(ξ)(i)) = ρi(gi(ξ)) = πi(f(ξ)) = f(ξ)(i),

so f = ρω ◦ g. Define h:⊆ ωω → ωω as h = φ−1 ◦ g. Clearly, h is continuous and
f = ρω ◦ g = ρω ◦ φ ◦ h. ut

Since every countably based T0 space is homeomorphic to a subspace of Sω,
we obtain the following.

Theorem 3. For every countably based T0 space X and every α (1 ≤ α < ω1),
there exists a Σ0

α-admissible representation of X. ut
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The following can be proved for X = Sω by using representations obtained
from Proposition 11 and applying Corollary 1 in parallel. Subspaces of Sω are
handled by restricting the functions as necessary.

Theorem 4 (Reductions between representations). Let X be a countably
based T0-space. For 0 ≤ α < ω1 and 0 ≤ β < ω1, if ρα+β :⊆ ωω → X is a
Σ0

α̂+β
-admissible representation of X and ρβ :⊆ ωω → X is a Σ0

β̂
-admissible

representation of X, then there exists a Σ0
α̂-measurable function f :⊆ ωω → ωω

such that ρα+β = ρβ ◦ f . ut

Corollary 2 (Representations of representations). Let X be a countably
based T0 space, ρβ :⊆ ωω → X a Σ0

β̂
-admissible representation of X, and ρα:⊆

ωω → dom(ρβ) a Σ0
α̂-admissible representation of dom(ρβ), (0 ≤ α < ω1, 0 ≤

β < ω1). Then ρβ ◦ ρα:⊆ ωω → X is a Σ0

α̂+β
-admissible representation of X.

Proof. First note that ρβ ◦ρα is Σ0

α̂+β
-measurable by Theorem 1. Let ρ:⊆ ωω →

X be a Σ0

α̂+β
-admissible representation of X. By Theorem 4, there is a Σ0

α̂-

measurable f :⊆ ωω → ωω such that ρ = ρβ ◦ f . We can assume without loss
of generality that range(f) ⊆ dom(ρβ), and so by the Σ0

α̂-admissibility of ρα
there is a continuous g:⊆ ωω → ωω such that f = ρα ◦ g. It follows that g is a
continuous reduction of ρ to ρβ ◦ ρα, thus ρβ ◦ ρα is Σ0

α̂+β
-admissible. ut

Let ι′:⊆ ωω → ωω be a Σ0
2-admissible representation of ωω. By the above

theorem, if ρ:⊆ ωω → X is a Σ0
β-admissible representation (1 ≤ β < ω) of a

countably based T0 space X, then ρ◦ι′ is a Σ0
β+1-admissible representation of X.

This corresponds to Ziegler’s “jump” of a representation [14]. However, it should
be noted that if ρ is Σ0

β-admissible for β ≥ ω, then ρ ◦ ι′ is still Σ0
β-measurable

and thus not Σ0
β+1-admissible.

5 Properties of Σ0
α-admissible representations

The main purpose of this section is to relate the Borel complexity of a subset of a
space with the complexity of the preimage of the subset under a Σ0

α-admissible
representation. These results will be useful in the following section where we
characterize the functions that are realizable with respect to these representa-
tions.

Many of the following results are heavily dependent on the following propo-
sition by J. Saint Raymond (Lemma 17 in [8]). Although the original statement
of the result was in terms of metrizable spaces, it is easy to verify that the ar-
guments in the proof hold for more general spaces when we define the Borel
hierarchy according to Definition 1.

Proposition 12 (Saint-Raymond [8]). Let φ:X → Y be an open continuous
surjective total function with Polish fibers (i.e. φ−1(y) is Polish for each y ∈ Y ),
where X is a separable metric space and Y is a countably based T0 topological
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space. Then for every A ⊆ Y and 1 ≤ α < ω1, A ∈ Σ0
α(Y ) if and only if

φ−1(A) ∈ Σ0
α(X). ut

Since every countably based T0 space has a Σ0
1-admissible representation that

is open and has Polish fibers (see Corollary 15 and Proposition 16 in [4]), we
find that the Borel hierarchy is preserved under Σ0

1-admissible representations
of countably based T0 spaces.

Corollary 3. Let X be a countably based T0 space and ρ:⊆ ωω → X a Σ0
1-

admissible representation of X. Then for 1 ≤ α < ω1, A ∈ Σ0
α(X) if and only if

ρ−1(A) ∈ Σ0
α(dom(ρ)). ut

Our next goal is to generalize Corollary 3 to some Σ0
α-admissible represen-

tations. Let ω∗ have as a base set ω∪{∞} and the topology so that U is open if
and only if either∞ 6∈ U or else U is cofinite (i.e., for some m < ω, n ∈ U for all
n ≥ m). Note that ω∗ is the one-point compactification of ω with the discrete
topology, hence the notation (which should not be confused with the set of finite
strings of natural numbers).

Lemma 2. Let ρ:⊆ ωω → ω∗ be Σ0
α-admissible (1 ≤ α < ω1). Then S ⊆ ω∗ is

open if and only if ρ−1(S) ∈ Σ0
α(dom(ρ)). ut

Definition 5. Let X be an arbitrary topological space. A subset A ⊆ X is se-
quentially open if and only if for every sequence {xi}i∈ω that converges to x ∈ A,
there is some m such that xn ∈ A for all n ≥ m. X is a sequential space if and
only if all sequentially open subsets of X are open. ut

Note that all countably based spaces are sequential spaces (see Theorem
1.6.14 in [6]).

Theorem 5. Let X be a sequential T0 space and ρ:⊆ ωω → X be Σ0
α-admissible

(1 ≤ α < ω1). Then U ⊆ X is open if and only if ρ−1(U) ∈ Σ0
α(dom(ρ)).

Proof. If U is open then ρ−1(U) ∈ Σ0
α(dom(ρ)) holds because ρ is Σ0

α-measurable.
Assume that ρ−1(U) ∈ Σ0

α(dom(ρ)) and let {xi}i∈ω be a sequence converging
to x ∈ U . Define f :ω∗ → X so that f(n) = xn and f(∞) = x. Then f is
clearly continuous. If δ is a Σ0

α-admissible representation of ω∗, then f ◦δ is Σ0
α-

measurable, so by the Σ0
α-admissibility of ρ there is continuous g:⊆ ωω → ωω

such that f ◦ δ = ρ ◦ g. Since g is continuous, δ−1(f−1(U)) = g−1(ρ−1(U)) ∈
Σ0
α(dom(δ)). It follows that f−1(U) is open by Lemma 2. Since ∞ ∈ f−1(U),

there is m < ω such that n ∈ f−1(U) for all n ≥ m. Therefore, xn ∈ U for all
n ≥ m. Since {xi}i∈ω and its limit x ∈ U were arbitrary, U is sequentially open,
hence open because X is a sequential space. ut

The rest of this section extends Theorem 5 to the entire hierarchy for a special
class of topological spaces.

Lemma 3. Let ρ:⊆ ωω → ωω be a Σ0
α̂-admissible representation of ωω (0 ≤

α < ω1). For 0 ≤ β < ω1 and A ⊆ ωω, A ∈ Σ0
β̂
(ωω) if and only if ρ−1(A) ∈

Σ0

α̂+β
(dom(ρ)). ut
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Lemma 4. Let X be a zero-dimensional Polish space and ρ:⊆ ωω → X a Σ0
α̂-

admissible representation of X (0 ≤ α < ω1). For 0 ≤ β < ω1, A ∈ Σ0
β̂
(X) if

and only if ρ−1(A) ∈ Σ0

α̂+β
(dom(ρ)).

Proof. For the non-trivial part of the lemma, we can assume that X is a closed
subset of ωω (see Theorem 7.8 in [7]) and ρ:⊆ ωω → X is the restriction of
a Σ0

α̂-admissible representation ρ′:⊆ ωω → ωω of ωω as in Proposition 9 (i.e.,
dom(ρ) = (ρ′)−1(X), and ρ = ρ′|dom(ρ)). It follows from these assumptions that
dom(ρ) ∈ Π0

α̂(ωω) because X is a closed subset of ωω and ρ′ is Σ0
α̂-measurable.

The case β = 0 is the statement of Theorem 5, so assume β ≥ 1 and A ⊆ X
is such that ρ−1(A) ∈ Σ0

α̂+β
(dom(ρ)). By Proposition 5 there is B ∈ Σ0

α̂+β
(ωω)

such that ρ−1(A) = B ∩ dom(ρ). Since α < α + β and dom(ρ) ∈ Π0
α̂(ωω),

ρ−1(A) ∈ Σ0

α̂+β
(ωω). Since (ρ′)−1(A) = ρ−1(A), it follows from Lemma 3 that

A ∈ Σ0
β̂
(ωω) and hence A ∈ Σ0

β̂
(X). ut

Definition 6. We will say that a space X has a Polish representation if and
only if there is a Σ0

1-admissible representation ρ:⊆ ωω → X of X such that
dom(ρ) with the subspace topology is a (zero-dimensional) Polish space.

In particular, the real numbers with the Euclidean topology and P(ω) with
the Scott-topology have Polish representations (an admissible representation of
the reals with closed domain of definition is given in [13], and the representation
δ:ωω → P(ω) defined as δ(ξ) = {n − 1 | ∃j(ξ(j) = n 6= 0)} is total and can be
shown to be admissible).

Theorem 6. Let X be a countably based T0 space with a Polish representation
and ρ:⊆ ωω → X a Σ0

α̂-admissible representation of X (0 ≤ α < ω1). For
0 ≤ β < ω1, A ∈ Σ0

β̂
(X) if and only if ρ−1(A) ∈ Σ0

α̂+β
(dom(ρ)).

Proof. For the non-trivial part of the proof, let δ:⊆ ωω → X be Σ0
1-admissible

such that dom(δ) is Polish. Let δ′:⊆ ωω → dom(δ) be a Σ0
α̂-admissible represen-

tation of dom(δ). Since δ◦δ′ is Σ0
α̂-measurable, there is continuous f :⊆ ωω → ωω

such that δ ◦ δ′ = ρ ◦ f .
AssumeA ⊆ X is such that ρ−1(A) ∈ Σ0

α̂+β
(dom(ρ)). Then (δ′)−1(δ−1(A)) =

f−1(ρ−1(A)) ∈ Σ0

α̂+β
(dom(δ′)) because f is continuous (here we are using

the fact that dom(δ′) ⊆ dom(f)). It follows from Lemma 4 that δ−1(A) ∈
Σ0
β̂
(dom(δ)), hence A ∈ Σ0

β̂
(X) from Corollary 3. ut

6 Realizability Theorems

In this section we will investigate which functions are realizable with respect to
Σ0
α-admissible representations. We only consider topological realizability, and

do not consider computational issues.
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Definition 7. Let X and Y be arbitrary topological spaces, and f :X → Y a
function. We say that f is 〈Σ0

α,Σ
0
β〉-realizable by a Σ0

γ-measurable function if

there is a Σ0
α-admissible representation ρX of X and a Σ0

β-admissible represen-

tation ρY of Y and a Σ0
γ-measurable partial function g:⊆ ωω → ωω such that

f ◦ ρX = ρY ◦ g. If a continuous such g exists, then we say that f is 〈Σ0
α,Σ

0
β〉-

continuously realizable. ut

Lemma 5. Let X be an arbitrary topological space, and ρ:⊆ ωω → X be a
Σ0
α-admissible representation of X (1 ≤ α < ω1). Then X is a T0-space.

Proof. Exactly like Schröder’s proof for Σ0
1-admissible representations (Theorem

13 in [9]). ut

Lemma 6. For 1 ≤ β < α < ω1, a function from the discrete two point space 2
to the Sierpinski space S is 〈Σ0

α,Σ
0
β〉-continuously realizable if and only if it is

a constant function. ut

Note that the following theorem does not assume that X and Y are countably
based.

Theorem 7. Let X and Y be any topological spaces such that X has a Σ0
α-

admissible representation and Y has a Σ0
β-admissible representation, where 1 ≤

β < α < ω1. Then a function from X to Y is 〈Σ0
α,Σ

0
β〉-continuously realizable

if and only if it is a constant function. ut

Statement (3) in the following is a topological generalization of Brattka’s
extention [3] of the Kreitz-Weihrauch Representation Theorem [12] to all count-
ably based T0-spaces and all countable ordinals. Statements (1) and (2) are
generalizations of some results by Ziegler [14].

Theorem 8. Let X and Y be countably based T0 spaces, f :X → Y a total
function, and 1 ≤ α < ω1.

1. f is 〈Σ0
1,Σ

0
α〉-continuously realizable if and only if f is Σ0

α-measurable,
2. f is 〈Σ0

α,Σ
0
α〉-continuously realizable if and only if f is continuous,

3. f is 〈Σ0
1,Σ

0
1〉-realizable by a Σ0

α-measurable function if and only if f is Σ0
α-

measurable.

Proof. The “if” part of (1) and (2) immediately follow from the definition of
admissibility. For (3), assume f is Σ0

α-measurable. From statement (1) it fol-
lows that f is 〈Σ0

1,Σ
0
α〉-continuously realizable, and by Theorem 4 there is a

Σ0
α-measurable reduction of any Σ0

α representation of Y to a Σ0
1-admissible rep-

resentation of Y . Composing the two produces a Σ0
α-measurable function that

〈Σ0
1,Σ

0
1〉-realizes f .

The proof of the “only if” parts are similar for all three statements, so we only
prove (1). Let ρX be a Σ0

1-admissible representation of X, ρY a Σ0
α-admissible

representation of Y , and assume g:⊆ ωω → ωω is continuous such that f ◦ ρX =
ρY ◦ g. Let U ⊆ Y be open. Then ρ−1X (f−1(U)) = g−1(ρ−1Y (U)) ∈ Σ0

α(dom(ρX))
because ρY is Σ0

α-measurable, g is continuous, and dom(ρX) ⊆ dom(g). By
Corollary 3, it follows that f−1(U) ∈ Σ0

α(X), hence f is Σ0
α-measurable (for

statement (2), use Theorem 5 instead of Corollary 3). ut
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The following shows that, assuming that a representation of a set is admissible
at some level with respect to some topology on the set, then the level of the
representation and any corresponding sequential topology on the set is uniquely
determined. Note, however, that it is easy to construct representations of a set
that are not admissible at any level with respect to any topology on the set.

Corollary 4. Let X be a set with at least two elements, and let ρ:⊆ ωω → X
be an arbitrary function. If τ and τ ′ are two topologies on X such that ρ is Σ0

α-
admissible (1 ≤ α < ω1) with respect to τ , and ρ is Σ0

β-admissible (1 ≤ β < ω1)
with respect to τ ′, then α = β. If in addition τ and τ ′ are sequential topologies
then τ = τ ′. ut

Finally, we give a complete characterization for the case that X has a Polish
representation (recall that ordinal addition is non-commutative). Note that a
generalization of Theorem 6 to all countably based T0-spaces would allow us to
drop the “Polish representation” restriction on X.

Theorem 9. Let X and Y be countably based T0 spaces, and further assume X
has a Polish representation. For any total function f :X → Y and any countable
ordinals α, β and γ, there exists a Σ0

γ̂-measurable g:⊆ ωω → ωω that 〈Σ0
α̂,Σ

0
β̂
〉-

realizes f if and only if:

1. α > γ + β and f is a constant function, or
2. α ≤ γ+β and f is a Σ0

η̂-measurable function, where η is (the unique ordinal)
such that α+ η = γ + β.

ut

7 Conclusion

We have introduced and investigated the basic properties of a hierarchy of rep-
resentations of topological spaces. Σ0

α-admissible representations provide a well-
behaved topological interpretation of representations that can not be interpret-
ted as admissible in the traditional (continuous) sense (see Corollary 4). These
representations are also significant for better understanding the computational
properties of discontinuous functions, which has been investigated for metric
spaces in [3], [14], and [5].

The first open problem is to generalize Theorem 6 to all countably based T0-
spaces. One difficulty in generalizing Saint-Raymond’s result (Proposition 12) is
that the fibers of Σ0

α-admissible representations are not Polish in general.
A second open problem is to classify precisely which topological spaces have

Σ0
α-admissible representations. An attractive conjecture is that they are exactly

the spaces with Σ0
1-admissible representations, which were completely classified

by Schröder [9].
Finally, a further refinement of the hierarchy would be useful, particularly be-

tween the continuous and Σ0
2 representations. One interesting class of functions

are the ∆0
2-functions (i.e., preimages of open sets are ∆0

2, or, equivalently, preim-
ages of Σ0

2 sets are Σ0
2), which are closed under composition. Wadge reducibility
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and game semantics for these functions have been investigated by Andretta [1].
Note that a Σ0

2-admissible representation of a discrete space can be interpretted
as a “∆0

2-admissible” representation, and, because they are closed under compo-
sition, a ∆0

2-admissible representation can at best only determine the topology
of the represented set up to ∆0

2-isomorphism (i.e., a bijection that along with
its inverse is a ∆0

2-function).
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