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Abstract. We define the computability of probability distributions on
the real line as well as that of distribution functions. Mutual relation-
ships between the computability notion of a probability distribution and
that of the corresponding distribution function are discussed. It is car-
ried out through attempts to effectivize some classical fundamental the-
orems concerning probability distributions. We then define the effective
convergence of probability distributions as an effectivization of the clas-
sical vague convergence. For distribution functions, computability and
effective convergence are naturally defined as real functions. A weaker
effective convergence is also defined as an effectivization of pointwise
convergence.

1 Introduction

In this article, we investigate computability aspects of probability distributions
on the real line R in relation to their distribution functions. We will proceed as
follows.

In Section 2, we briefly review some elementary notions of computability
on the real line and some fundamentals of the classical theory of probability
distributions on the real line.

In Section 3, we define the computability of probability distributions as well
as that of distribution functions. Our central interest is the relation between
those two computabilities. Meanwhile, we prove that the “vague sequential com-
putability” is equivalent to the “weak sequential computability” for probability
distributions.

In Section 4, we consider mutual relationships between effective convergence
of probability distributions and that of distribution functions. If we restrict our-
selves to the case where a probability distribution has a bounded density func-
tion, then the corresponding distribution function becomes effectively uniformly
continuous, and we can prove the equivalence of the two effective convergences.

* Faculty of Science, Kyoto Sangyo University: morita@cc.kyoto-su.ac.jp. This work
has been supported in part by Research Grant from KSU(2008, 339).
** Faculty of Science, Kyoto Sangyo University: tsujiiy@cc.kyoto-su.ac.jp. This work
has been supported in part by Research Grant from KSU (2008, 282).
*** Kyoto Sangyo University: yasugi@cc.kyoto-su.ac.jp. This work has been supported
in part by JSPS Grant-in-Aid No. 20540143.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.)
6th Int’l Conf. on Computability and Complexity in Analysis, 2009, pp. 185-196
http://drops.dagstuhl.de/opus/volltexte/2009/2270



186 Takakazu Mori, Yoshiki Tsujii, and Mariko Yasugi

In the general case, we need to define notions of computability and effective
convergence for bounded monotonically increasing right continuous functions.
Such a function may be discontinuous at most countably many points.

Computability of the probability distribution has been treated by many
authors. For example, Weihrauch ([10]) and Schréder and Simpson ([9]) have
treated computability of probability distributions on the unit interval from the
stand point of the representation theory. We develop a theory along the Pour-El
and Richards line.

2 Preliminaries

Here, we briefly review the introductory part of the computability theory on
the real line developed by Pour-El and Richards [6] as well as some basics of
probability distributions on the real line. A sequence of rational numbers {r,} is
said to be recursive if there exist recursive functions o, 8 and  such that r,, =
(71)7(")%. A sequence of real numbers {z,, ,} is said to converge effectively
to {x,, } if there exists a recursive function a(m, k) such that n > a(m.k) implies
[T — Tm| < 27F. A sequence of real numbers {z,,} is said to be computable
if there exists a recursive double sequence of rational numbers, which converges
effectively to {x,}.

We adopt the definition of computability of continuous real functions by
Pour-El and Richards in Chapter 0 of [6].

A sequence of (real) functions { f,,, } is said to be computable, if it is (i) sequen-
tially computable, that is, {fn(2,)} is computable for all computable sequences
of reals {z,}, and (ii) effectively continuous, that is, there exists a recursive
function a(m,n, k) such that z,y € [-n,n] and |z —y| < 27¢("™F) imply
|[fm(z) = fin(y)] < 27%. a(m,n, k) is called an effective modulus of continuity of
{fm}-

A sequence of (real) functions { f,,} is said to be uniformly computable, if it
is (i) sequentially computable and (ii) effectively uniformly continuous, that is,
there exists a recursive function a(m, k) such that |z — y| < 27(™F) implies

|fm(x) - fm(y)\ < 2k,

For a probability distribution p on the real line R, its distribution function
F is defined by F(z) = p((—o0,z]). Such a distribution function is characterized
by the following three properties: (i) monotonically increasing; (ii) right con-
tinuous; (iii) F(00) = limy_yo0 Fi(z) = 1 and F(—o0) = lim,,_o F(z) = 0. A
distribution function may be discontinuous, but the set of discontinuous points
is at most countable.

It is well known that the above correspondence between probability distri-
butions and distribution functions is one to one and onto.

In the following we denote the integral with respect to a probability distri-

bution g, [, f(x)p(dz), with p(f).

Let {un} be a sequence of probability distributions on R and let p be a
probability distribution on R with corresponding distribution functions {F,}
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and F respectively. Convergence of {u,} to p is defined to be the convergence
of {un(f)} to u(f) for all continuous functions with compact support. This
convergence is called vague convergence and is equivalent to each of the following
convergences.

Weak convergence: {pn(f)} converges to p(f) for all bounded continuous
functions f on R.

Convergence of distribution functions: {F,(x)} converges to F(x) at every
continuous point x of F(x).

We refer the reader to [1], [3], [4] and [7] for details of fundamentals of
probability theory.

Since we adopt the notion of computability of functions by Pour-El and
Richards, we will plan to confine ourselves to continuous distribution functions.
A sufficient condition for continuity of a distribution function is the following.

Definition 1. (Absolute continuity of probability distributions) A probability
distribution p is said to be absolutely continuous if there exists a nonnegative
integrable function &(x) which satisfies that u(A) = [, &(x)dx for all measurable
set A C R.

The function £ is called a density (function) of p. We also say that the
corresponding distribution function F has a density &.

Remark 1. If p is absolutely continuous, then the corresponding distribution
function F is continuous, and equalities u([a, b]) = u((a,b]) = u([a, b)) = u((a, b))
= F(b) — F(a) hold.

3 Computability of probability distributions

In this section, we define the computability of probability distributions on R and
discuss its relation to the computability of distribution function.

Let {f.} be a sequence of continuous functions with compact support. We
say that {f,} is a computable sequence of functions with compact support if
it is a computable sequence of functions in the sense of Pour-El and Richards
and furthermore there exists a recursive function K (n) such that f,(z) = 0 if
|z| > K(n).

We obtain the following lemma.

Lemma 1. A computable sequence of functions with compact support is uni-
formly computable.

Proof Let {fn} be a computable sequence of functions with compact support
with respect to recursive functions a(m,n, k) and K(m).

Define B(m, k) = a(m, K(m),k + 1) and assume that |z — y| < 278(m:k).,

If both z and y are in [—K (m), K(m)], then it holds that |f.,(z) — fi(v)] <
2~ (k+1); otherwise, one of them, say, x is in [~ K (m), K(m)] and the other, say,
y is not in [—K(m),K(m)]. Then y < —K(m) < x or y > K(m) > z and
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|z + K(m)| < 27P0mF) or |2 — K(m)| < 278k accordingly. So, |fm(z) —

fn@| = fm(@) = fn(£K(m))] < 27%, since frn(y) = fn(£K(m)) = 0. This
proves that { f,,} is effectively uniformly continuous with respect to 8(m, k). O

Definition 2. (Computability of probability distributions) We say that a se-
quence of probability distributions {um} is computable if it satisfies the following
vague sequential computability: {p,(fn)} is computable for all computable se-
quence of functions with compact support {fn}.

Remark 2. If we regard the integral u(f) as a function on the set of all bounded
continuous functions Cp(R) with sup-norm || ||, Definition 2 only asserts sequen-
tial computability. For a probability distribution u, it holds that |u(f) — u(g)| <
w(lf —gl) < ||If — g]|- This makes p(f) effectively uniformly continuous as a
function on Cp(R).

Let a and b with a < b be computable numbers. For a computable function

f on the interval [a,b], its definite integral f; f(z)dz is a computable number
(cf. [6]). We can generalize this fact as follows.

Proposition 1. Let {a;} and {by,} be computable sequences of reals with a,, <
b, for each m, and let {f,} be a computable sequence of functions on R. Then,

{f::: fn(x)dz} is a computable (double) sequence of real numbers.

This proposition yields that, if a sequence of distributions has a computable
sequence of density functions, then it is computable and the corresponding se-
quence of distribution functions is also computable.

We frequently use the following Lemma.

Lemma 2. (Monotone convergence [6]) Let {xy 1} be a computable sequence
of reals which converges monotonically to {x,} as k tends to infinity for each n.
Then {xzn} is computable if and only if the convergence is effective.

We say that a sequence of functions {f,} is effectively bounded if there
exists a recursive function B(n) such that |f,(z)] < 2B for each n,z € R.
We give some examples of probability distributions which have bounded density
(Example 1).

Proposition 2. If {u,,} is vaguely sequentially computable, then it is weakly
sequentially computable, that is, {pm(fn)} is a computable sequence for all ef-
fectively bounded computable sequence of functions {f,}.

Proof. Let {f,} be an effectively bounded computable sequence of functions
with an effective bound B(n), and define g,(z) by:
if < —0—-1
x+0)+1 —4-1<z< 4
if —f<x</t
—(x—0)+1if L<x<l+1
0 if x>0+1.

_— o

ge(x) =
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ge

0
—4—-1 -/ £ +1

It is obvious that {g,} is a computable sequences of functions with compact
support.

Since g; T 1 pointwise, p,,(g¢) T 1 as £ tends to infinity by the bounded
convergence theorem for each m, where T means monotonically increasing con-
vergence. Moreover, {um,(g¢)} is a computable sequence of reals by vague se-
quential computability of {,,} and the limit 1 is a computable number. So,
the convergence of pi,,(ge) to 1 is effective by Monotone Convergence Lemma 2.
Therefore, we obtain a recursive function N (m, k) such that pi,,, ([—¢—1, £+1]¢) <
1 — ptm(ge) <27 if £ = N(m, k), where A® denotes the complement of the set
A.

On the other hand, {um(fnge)} is a computable triple sequence of reals and
|Mm(fn) - /Jm(fngf+1)| = |j}_5_175+1]c(1 - gZ+1) fn /Jm(dx”
<280 ([0 —1,0+1])9) < 27F

if £ > N(m,B(n)+ k). This means that {p,(fnge)} converges effectively to
{ttm (frn)}. Hence {pm(frn)} is a computable sequence of reals. O

Proposition 3. For a sequentially computable sequence of distribution func-
tions {F,,}, effective continuity implies effective uniform continuity.

Proof. By sequential computability of {F,,}, {F.(n)} and {F,,(—n)} are
computable sequences of reals. Since, F,,,’s are distribution functions, F,,(n) 11
and F,,(—n) | 0 as n tends to infinity for each m. By Lemma 2, there exists a
recursive function N(m, k) such that 1 — F,,,(z) < 1 — F,,(N(m,k)) < 27% for
x> N(m,k) and F,(z) < F(—N(m, k)) < 27% for x < —N(m, k).

On the other hand, effective continuity of {F,,} implies that there exists a
recursive function a(m,n, k) such that x,y € [-n,n] and |z — y| < 27 a(mnk)
imply | Fon () — Fn(y)] < 2°*.

If we put B(m,k) = a(m,N(m,k + 2),k + 2) and assume that |z — y| <
2-B8(m:k) “then the following four cases are possible.

The first case: Both = and y are in [-N(m, k4 2), N(m, k+2)]. In this case,
[Fon(2) — F(y)] < 2~ 42,

The second case: Both x and y are in (N (m, k+2), 00). In this case, |Fp,(z) —
Fn)] < 1 = Fun(@)| + 1 = Fu(y)] < 2 51,

The third case: Both z and y are in (—oo, —N (m, k+2)). In this case, |Fp, (z)—
Fun(y)] < [Fn(@)] + [Frn(y)] < 2~ 4D,

The last case: One is in [-N(k + 2), N(k + 2)] and the other is not. Suppose
x < —N(k+2) <y, then

Fun(®) = P ()] < |Fon(@)] + [Fon (=N (k + 2))| + [Fon (=N (k +2)) = P (1)
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<327 <97k,
Therefore, we have shown that {F,,} is effectively uniformly continuous with
respect to B(m, k). O

Theorem 1. If a sequence of distribution functions {F},} is sequentially com-
putable, then the corresponding sequence of distributions {f,,} is computable.

Proof. We prove that u(f) is computable if f is a computable function with
compact support. For such a function f, there exists an integer m such that
f(z) =0if |z| = m.

Put
gp(x) = f(_m + 2_p)X[—m,—m+2*P] (-T) ’

1 F(E+1)27P) X (ga-v (04 1)) ()
Then, ,U(gp) = f[,m,m] gp,u(dcc)

=30 fem 4 (C 4 1)27P) (F(—m 4 (0 +1)27P) — F(—m + £277))
form a computable sequence of reals by sequential computability of F'.

By Lemma 1, f is uniformly computable. So, there exists a recursive function
a(k) such that | f(z)— f(y)| < 27% if jz—y| < 27**). We note that {g,} converges
effectively uniformly to f. More precisely, if p > a(k), then ||f — g,|| < 27*.

Therefore, for the above a, p > a(k + 1) implies

u(f) = 1(gp)l <IIf = gpll <27,

This proves the effective convergence of {u(g,)} to p(f), and hence, u(f) is

computable. The proof goes through for a sequence {F,,}. a

If a probability distribution has a bounded density £ with a bound M, then
the corresponding distribution function F satisfies |F'(b)— F(a)| = | fj &(x)dx| <
M]|b — al. So, we obtain the following lemma.

Lemma 3. If a sequence of densities of probability distributions is effectively
bounded, then the corresponding sequence of distribution functions is effectively
uniformly continuous.

From the lemma above follows that, if a sequence of probability distributions
has an effectively bounded sequence of densities, then uniform computability of
the corresponding sequence of distribution functions is equivalent to sequential
computability.

In the rest of this section, we assume the existence of bounded densities.

Proposition 4. Let {y,} be a computable sequence of probability distributions
which has effectively bounded densities. Then the corresponding sequence of dis-
tribution functions {F,,} is sequentially computable.

Proof. We prove that a single distribution function F' is uniformly com-
putable if the corresponding probability distribution u is computable and there
exists an integer M such that |(z)] < M for all z, where & is a density of p.

By Lemma 3, F is effectively uniformly continuous.
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We prove that F(c) is computable if ¢ is computable. First, we define the
functions {g,} by

1
1 if z<e¢ g
n
gn(@) =% —n(z—c)+1if c<z<c+1
: 1
0 if rTZc+ o 0 %
c c—l—%

Then, {g,} is a computable sequence and the following classical properties hold:

{gn} is monotonically decreasing, that is m < n implies g, (z) > gn(x) for
all .

F(e) < pulgn) < Fle+ 1),

F(c) = limy,_, 0 pt(gn) holds by the bounded convergence theorem.

On the other hand, {u(g,)} is a computable sequence of reals by the assump-
tion and Proposition 2.

We obtain 0 < u(g,) — F(c) = fCCJr% gn(2)€(x)dr < M.

Therefore, the convergence of u(gy,) to F(c) is effective, and hence F(c) is
computable.

This proof is also valid for a sequence {c,}. The entire argument can be
extended to a sequence {jm, }. O

We obtain the following theorem by Theorem 1, Lemma 3 and Proposition
4.

Theorem 2. If a sequence of distributions {u,} has effectively bounded den-
sities, then the computability of {u,} is equivalent to the uniform computability
of the corresponding sequence of distribution functions.

Ezample 1. In this example, pu denotes a probability distribution on R, F' de-
notes the corresponding distribution function and £ denotes the corresponding
density.

(1) Uniform distribution on [0, 1]:

0if <0
£(r) = xpoy(z); Fle)=qzif 0<z<1.
1if z>1
&(x) is bounded, but not continuous. On the other hand, F'(x) is continuous

and indeed uniformly computable. ) ,
(2) Gaussian distribution: £(z) = ——e~2% | F(z) = \/% I e Y dy.

Va2r
(3) Exponential distribution: {(x) = e %, F(z) =1—e 7.
In (2) and (3), both £ and F' are computable. O

Ezample 2. (Translated Unit Distribution) The translated unit distribution o,
is defined by

su(4) = {

The corresponding distribution function is

1if ce A
0 otherwise *
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F(x) = Xje,00) () = {(1) Ez ; 3 '

The translated unit distribution is computable if ¢ is a computable number.
Its distribution function is not continuous. O

4 Convergence of probability distributions and
distribution functions

We define effective convergence of probability distributions as an effectivization
of classical vague convergence of probability distributions.

Definition 3. (Effective convergence of a sequence of probability distribu-
tions)

A sequence of probability distributions {um,} is said to effectively converge to a
probability distribution p if {pm(fn)} converges effectively to {u(fn)} for any
computable sequence of functions with compact support {f,}.

It is well known that the set of all uniformly computable functions on a closed
interval [a, b] is dense in the set of all continuous functions on [a, b] for any pair of
computable numbers a and b with a < b. So, effective convergence of a sequence
of probability distributions implies classical vague convergence.

The following proposition follows immediately.

Proposition 5. If a computable sequence of probability distributions {u,} ef-
fectively converges to a probability distribution w, then u is computable.

Proposition 6. Let {u,} be a computable sequence of probability distributions
and let p be a computable probability distribution. If {u,} converges effectively
to w, then {um} effectively weakly converges to p, that is, {pm(fn)} converges
effectively to {u(fn)} for all effectively bounded computable sequence of functions

{fn}-

Proof. We prove that {u,(f)} converges effectively to {u(f)} for a bounded
computable function f. For such f, there exists an integer M which satisfies that
|f(x)| < 2M for all x.

Let us take a computable sequence of functions {g,} with compact support
which is defined in the proof of Proposition 2. Then, we obtain a recursive
function N (k) which satisfies that u([—¢,¢]°) < 1 — u(ge—1) < 27F for £ >
N (k). Moreover, by effective convergence of {pm(g¢)} to {1(ge)}, there exists a
recursive function a(¢, k) such that m > a(¢, k) implies | (g¢) — p(ge)| < 27F.

Therefore, we obtain 1 — pu(gn)) < 27" and m > (N (k), k) implies |1 —
tm (N ()] < N (9n (k) — 1(gn )|+ 11— mlgn )| < 2-27F.

On the other hand, since {fgs} is a computable sequence of functions with
compact support, {um(fge)} converges effectively to {u(fge)}. So, there exists
a recursive function 3(¢, k) such that |, (fge) — u(f ge)| < 27F for m > B(¢, k).

Therefore, m > B(N(k), k) implies i (fgn) — n(fanw))| < 275
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If we take j = k+ M +2 and assume m > max{a(N(j),J), B(N(j), )}, then

|l () = p(f)]
< Npm (f) = pm(Fan)) + lm (Fang)) — m(fane))]
+Hu(f) = ulfang)l
<2M(1 = pm(gn ) + lm (Fane)) — 1(fang)] + 2M (1 = ulan()))
< 9.9 (k+2) + 9—(k+2) + o—(k+2) _ 2’*“.

This proves the effective convergence of {p,(f)} to u(f). O

Definition 4. (Effective pointwise convergence of functions)

A sequence of functions {F,,} is said to converge effectively pointwise to
a function F if {F,,(x,)} converges effectively to {F(x,)} for all computable
sequence {x,}.

By definition, the following proposition holds.

Proposition 7. For a computable sequence of functions {Fy,}, if it converge
effectively pointwise to a function F, then F is sequentially computable.

By Lemma 3, the existence of density of F' implies the effective uniform
continuity of F. So, we obtain the following proposition.

Proposition 8. Let us consider a sequentially computable sequence of distribu-
tion functions {F,,} and a distribution function F. If {F,,} converges effectively
pointwise to F, then the sequence of corresponding probability distributions { iy, }
converges effectively to p.

Proof. We follow the classical proof and prove that p,,(f) converges effec-
tively to u(f) for a computable function with compact support f. By Lemma
1, f is uniformly computable. So, there exists a recursive function «(k), which
is an effective modulus of uniform continuity of f. We also obtain an integer N
such that f(z) = 0 if |z| > 2V and an integer B such that |f(z)| < 28 for all z.

Define f,(z) = Z?Ziwul FE27")X((-1)2-n 2 ().
Then, Mm(fn) = 23:32N27L+1 f(j2_”)(Fm(j2_") - Fm((] - 1)2_n))

Non

and () = 2 n g FG27)(F(j27) = F((j = 1)27) hold,

We note that each of the right-hand sides of the last two equations forms a
computable sequence of reals.

By the definitions of f,, and «, |f(z) — far)(z)| = |f(z) — f(j27®)| < 27k
if € ((j —1)27k) j2-a)],
Hence7 we obtain ‘.um(foc(k)) - ,um(f)‘ < 27k and |M(foc(k)) - :u(f)| < 27k,

By effective pointwise convergence of {F,,} to F, there exists a recursive
function B(k,n,j) such that m > B(k,n,j) implies

|Fn(5277") = F(j27™) < 27",

Define k = N +1+ B+ a(k+3) + k+ 3 and

v(k) = max{B(k, a(k + 3),0),..., Bk, a(k + 3),2N+12a(k+3))1
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Assume m > (k). Then,

L (f) — n(f)]
< pm (fare3)) — p(fa@r)| + [0(fass) — p(f)]
Hpm (fakrs)) — #m (f)]

Noa(k+3) ) . '
< T2 s o (G20 | By (j2- 003 - F(jamol))

H G2 F((G - 1)2700) — P((G - 1272 H)|}
+2.27(+3)
g 2(2N+12(1(k+3))232—]; +9. 2—(k,+3) < 2_k.

This proves the effective convergence of {1, (f)} to u(f). O

Proposition 9. Let us consider a computable sequence of probability distribu-
tions {m} and a computable probability distribution p with a bounded density.
If {um} converges effectively to p, then the sequence of the corresponding dis-
tribution functions {F,,} converges effectively pointwise to F, the distribution
function corresponding to u.

Proof. We prove that {F),,(c)} converges effectively to F'(c) if ¢ is computable.
Let us define h,,(x) by

1 if:céc—%
ho(z) ={ —n(z—c)if c—L<z<e
0 if x>c¢
1 1
hoy gn Gn — hn
0 } 0
c—% c c—|—% c—% c c—i—%

It holds that hy,(2) < X(—oo,q(®) < gn(x), where g, is the function defined
in the proof of Proposition 4. Hence, we obtain u(h,) < F(c¢) < u(g,) and
,Um(hn) < Fm(c) < ,Um(gn)-

Meanwhile, {g,} and {h,} are effectively bounded computable sequences
of functions if ¢ is a computable real. Hence, by Proposition 6, {um,(h,)} and
{tm(gn)} converge effectively to p(h,) and u(g,) respectively as m tends to
infinity. So, there exists a recursive function «(n,k) such that m > a(n,k)
implies |1 (hy) — p(hn)| < 277 and | (g,) — p(gn)| < 275
Hence, m > a(n,k) implies pu(h,) — 27% < pim(hn) < Fu(c) < pim(gn) <
1(gn) + 27k,

On the other hand,
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0 ifxéc—%

_Jn@—-c+1 if c—%gxgc

gn(@) = hn(2) = —n(x —c)+1if céxéc—i—%'
0 ifx}c—i—%

If we take an integer M such that 2 is a bound of a density of g, then
w(gn — hpn) < % If we put N = 28M+2 ‘then yu(gn — hy) < 27 %D, Hence,
we obtain p(hy) > F(c) — 2=% D and u(gy) < F(c) + 2= *+D . Therefore,
m > a(N,k + 1) implies |F,,(c) — F(c)| < 27*.

This proves the effective convergence of {F,,(c)} to F(c).

The argument above can be modified to a computable sequence of real num-
bers {c, }. O

In the case where p has a bounded density and {u,,} has effectively bounded
densities, we obtain the following theorem from Propositions 4, 8 and 9.

Theorem 3. Let us consider a computable sequence of probability distributions
{pm} with effectively bounded densities and a computable distribution p with
a bounded density. We denote their distribution functions with {F,,} and F
respectively. Then, {pm} converges effectively to p if and only if {F,,,} converges
effectively pointwise to F.

In the following examples, ., and u denote probability distributions, &,, and
¢ denote the corresponding densities (if they exist) and F),, and F denote the
corresponding distribution functions.

Ezample 3. Let p,, be the Gaussian distribution with mean % and variance

ﬁ and p be the Gaussian distribution with mean 0 and variance 1, that is,

VmFT  _mEl (132 1,2
gm(x) = WJ’;}L@ S (=) and g(x) = \/%e 3 .

{&mn} is computable and converges effectively to €. It also holds that |&,,(x)|,
|€(x)] < 1. So, the assumption of Theorem 3 holds. By virtue of the properties of
the densities, the effective convergence of {u,} to u and that of {F,,} to F are
the consequences of Effective Dominated Convergence Theorem (see [5]). O

Example 4. Let &, be defined as follows.

0 if 2< -1
1 . 1 1
Trt; if —L<a<lt
Em(z) = {1 if L<orgl—1L
R )R B 130 P g R
0 if 2>1+2L

{&mn} is a computable sequence with compact support, and {u,,} converges
effectively to the uniform distribution on [0, 1] (cf. Example 1(1)). Although the
density of the uniform distribution is not continuous, it is still bounded. So, the
assumption of Theorem 3 holds.

By the inequality | fR f(@)&m(x)dx — f]R f(x)f[o,l] (z)dz| < || f[|, we can prove
the effective convergence of {u,}, and hence of {F,,}. O
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Ezample 5. Let &, be defined as follows.

mé—%
n2x+n if —1<x<0
—n?z+nif 0<z< ’

0 ifx}%

3=

gn(x) =

1
n

{pn} converges effectively to the unit distribution dy, which does not have a
density. This is a case to which Theorem 3 cannot be applied. Indeed, F,(0) = %
but F(0) = 1. So, {F,,(0)} does not converge to F(0) = 1. O
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