
LIPIcs Leibniz International Proceedings in Informatics

Deterministic Automata and Extensions
of Weak MSO

Mikołaj Bojańczyk, Szymon Toruńczyk∗
University of Warsaw

{bojan,szymtor}@mimuw.edu.pl

ABSTRACT. We introduce a new class of automata on infinite words, called min-automata. We
prove that min-automata have the same expressive power as weak monadic second-order logic
(weak MSO) extended with a new quantifier, the recurrence quantifier. These results are dual to
a framework presented in [2], where max-automata were proved equivalent to weak MSO extended
with an unbounding quantifier. We also present a general framework, which tries to explain which
types of automata on infinite words correspond to extensions of weak MSO. As another example for
the usefulness framework, apart from min- and max-automata, we define an extension of weak MSO
with a quantifier that talks about ultimately periodic sets.

Introduction
In [2], a new class of languages of infinite words was defined. This class had two equivalent
descriptions: in terms of a deterministic counter automaton (called a max-automaton), and
in terms of an extension of weak monadic second-order logic (weak MSO). The argument
raised in [2] was that there are robust extensions of ω-regular languages, extensions that
have descriptions in terms of both automata and logic. This paper further investigates that
argument. These are the contributions:

1. We define a type of automaton dual to max-automata, called a min-automaton, and
prove that it is equivalent to a certain extension of weak MSO.

2. We show that min- and max-automata fit in a general picture, where deterministic
automata with prefix-closed acceptance conditions define extensions of weak MSO.

3. As another example of the general picture, we present an extension of weak MSO,
together with a corresponding automaton, that talks about ultimately periodic sets.

Below we describe these contributions in more detail.

Min-automata. A max-automaton, as defined in [2], works as follows. It is a deterministic
automaton, but it also has a finite set C of counters, which store natural numbers. Each
transition is decorated by a sequence of counter operations, which are from the set

Op = {c := c + 1 , c := max(d, e) : c, d, e ∈ C}.

(The toolkit of operations in [2] was slightly different, but the simpler one above is equiv-
alent.) There are two key properties of the model. First, the automaton is deterministic,
which is important for the connection with weak MSO. Second, the choice of the next state
is not influenced by the counter values, but only the current state and input letter; one can

∗Work partially funded by the Polish government grant no. N206 008 32/0810

c© Bojańczyk,Toruńczyk; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 73–84
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany. 
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2308



74 DETERMINISTIC AUTOMATA AND EXTENSIONS OF WEAK MSO

somehow think of the counter operations being applied after the run is chosen. The only
place where the counters are read is the acceptance condition, which is a boolean combina-
tion of conditions

lim sup
i→∞

val(c, a1a2 . . . ai) = ∞,

where val(c, u) is the value of counter c after reading a finite prefix u of the input word.
The main contribution of [2] is that max-automata are equivalent to weak MSO ex-

tended with a quantifier, called the unbounding quantifier. The unbounding quantifier
binds a set variable X in a formula ϕ(X) and is true if there are sets X of arbitrarily large
finite size that satisfy ϕ(X).

If an automaton with the max operation has a matching logic, then what about min?
What if we use lim inf instead of lim sup in the acceptance condition? In this paper we ana-
lyze such an automaton model, called a min-automaton, where min is used instead of max,
and the acceptance condition uses lim inf instead of lim sup. We show that min-automata
also have a corresponding logic. Note that there are other combinations, which we do not
study here, such as automata that use max and lim inf.

What is the logic that corresponds to min-automata? As was the case for max-automata,
this is an extension of weak MSO, where a new quantifier is added. The quantifier for min-
automata, which we introduce in this paper and call the recurrence quantifier, says: “there is
some n ∈ N such that infinitely many sets of size n satisfy ϕ(X)”. One of our main results,
Theorem 8, is that min-automata have the same expressive power as weak MSO extended
with the recurrence quantifier.

General Framework. Although we think that min-automata are interesting in their own
right, we also think that they are part of a bigger picture for deterministic automata on
infinite words. The bigger picture is that any “reasonable” acceptance condition seems to
give a robust class of languages extending weak MSO. We present some preliminary results
that attempt to formalise these ideas.

One consequence of our results is a normal form theorem: any formula of weak MSO
extended with both the unbounding quantifier (the quantifier related to max-automata) and
the recurrence quantifier (the quantifier related to min-automata) is effectively equivalent
to a boolean combination of formulas, each of which has at most one occurrence of the new
quantifiers (bounding or recurrence). In other words, mutual nesting of the new quantifiers
does not contribute to the expressive power. This normal form can be used to decide satisfi-
ability for weak MSO extended with both quantifiers, since the algorithm only needs to test
emptiness for boolean combinations of (actually, conjunctions of) max- and min-automata.

Ultimately Periodic Quantifier. As an example of the bigger picture, we consider an ex-
tension of weak MSO with the ultimately periodic quantifier. This quantifier binds a first-
order variable in a formula ϕ(x) and says that the set of word positions that satisfy ϕ(x) is
ultimately periodic. We present an equivalent automaton model, where the acceptance con-
dition says that certain states appear in an ultimately periodic way, and certain other states



BOJAŃCZYK,TORUŃCZYK FSTTCS 2009 75

do not. Using this model, and some combinatorics, we prove that satisfiability is decidable
for weak MSO with the ultimately periodic quantifier.

Background and related work. The idea of considering extensions of ω-regular languages
is not new, dating back to the sixties. One line of work has been to add new predicates, such
as a predicate square(x), which holds for positions that are square numbers. This line was
started by [7], and continued in [5, 11, 10].

More closely related to this paper is the work on the unbounding quantifier. This quan-
tifier was introduced in [3]. The satisfiability problem for full MSO (as opposed to weak
MSO, the subject of this paper) extended with the unbounding quantifier was tackled [4].
By introducing an automaton model, called a BS-automaton, [4] provided some fragments
of full MSO with the unbounding quantifier that have decidable satisfiability over infinite
words. A BS-automaton is a counter automaton with acceptance conditions as in max- and
min-automata, but, crucially, it is nondeterministic. Nondeterminism is important for full
MSO, where existential quantification over infinite sets is allowed. Nondeterminism also
increases the flexibility of the model (for instance, the max and min operations become re-
dundant). There is no free lunch, however: nondeterministic BS-automata are not closed
under complement, and it is not clear what is the correct automaton model for full MSO
with the unbounding quantifier. It is still an open problem if full MSO extended with the
unbounding quantifier has decidable satisfiability over infinite words.

BS-automata have also been considered in [1], under the name of R-automata. BS-
automata are also closely related to distance desert automata, which were used by Kirsten
to decide the star height problem [8]. A tree variant of distance desert automata was intro-
duced in [6], to decide star height for tree languages.

Acknowledgments. We would like to thank Eryk Kopczyński, Sławomir Lasota, Aymeric
Vincent and Thomas Wilke for many stimulating discussions.

1 Min-automata

In this section we introduce min-automata. The idea is that a min-automaton has a finite set
of counters that store natural numbers, and each transition is labeled by a finite sequence of
counter operations, taken from the set

OpC = {c := c + 1 , c := min(d, e) : c, d, e ∈ C}.



76 DETERMINISTIC AUTOMATA AND EXTENSIONS OF WEAK MSO

Formally, a deterministic min-automaton consists of:

A The alphabet of the automaton
Q A finite set of states of the automaton
C A finite set of counters of the automaton
δ The state transition function, δ : Q× A→ Q
γ The counter update function, γ : Q× A→ (OpC)∗

q0 The initial state, q0 ∈ Q
v0 The vector of initial counter values, v0 ∈NC

F The acceptance condition, described below.

Given a finite word w ∈ A∗, the automaton produces a unique run ρ ∈ Q∗. By applying
the counter update function γ to this run, we get a sequence π ∈ (OpC)∗ of counter opera-
tions. By applying this sequence of operations to the initial counter valuation v0, we get a
counter valuation written val(c, w).

The acceptance condition F is the only place where the counters are read. It talks about
the asymptotic† values of the counters when reading an input word a1a2 · · · ∈ Aω. It is a
boolean combination of conditions

lim inf
i→∞

val(c, a1 · · · ai) = ∞. (1)

In the automaton, the above condition is represented in the formula F by an atom c for short.
In particular, the class of languages accepted by min-automata is closed under com-

plementation, since replacing the acceptance condition F by ¬F gives an automaton recog-
nizing the complement language, thanks to determinism. Closure under alternative and
conjunction follows from the usual cartesian product construction.

If the counters would influence the states, such as by having a zero-test counter op-
eration, we would lose all the robust decidability of the model. It is crucial that as far as
choosing the states is concerned, a min-automaton behaves just like a finite deterministic
automaton.

EXAMPLE 1. With each infinite sequence of natural numbers n1, n2, n3 . . ., we may associate
an infinite word

an1 b an2 b an3 b . . .

Let L be the set of words associated with sequences where lim inf ni < ∞. Then L is recog-
nized by a deterministic min-automaton with one state, three counters c, d, z and the follow-
ing instructions.

- when reading a, do c := c + 1,
- when reading b, do d := min(c, c); c := z.

The initial valuation is (0, 0, 0). Counter c stores the size of the current a block, while counter
d stores the size of the last complete a block. Counter z always stores 0, and is used to reset

†Since the acceptance condition is insensitive to finite perturbations, the initial counter valuation does not
influence the accepted language. The initial counter valuation will play a role for automata in matrix form.



BOJAŃCZYK,TORUŃCZYK FSTTCS 2009 77

counter c when a block of a’s is finished. The acceptance condition is F = ¬c ∧ ¬d: both
counters c and d should have lim inf < ∞ (counter z is not mentioned in the acceptance
condition).

The above example shows how counter operations c := 0 and d := c can be imple-
mented in the model.

The following lower bound on the complexity of emptiness is via a reduction from
the universality problem for nondeterministic automata. This is also a partial answer to a
question posed in [2], which asked about the complexity of emptiness for max-automata
(the same proof works for max-automata).

THEOREM 2. Emptiness is PSPACE-hard for min-automata.

Determinism. Does determinism restrict the expressive power of min-automata? It does
for max-automata: in [2], it was shown that nondeterministic max-automata can, while
deterministic max-automata cannot, recognize the language

L = {an1 b an2 b an3 b . . . : lim inf ni < ∞}.

The reason why a nondeterministic max-automaton can recognize L is that a sequence has
lim inf < ∞ if and only if it has a subsequence of lim sup < ∞, and the subsequence can
be nondeterministically guessed. The reason why deterministic max-automata cannot rec-
ognize this language is that L is on level Σ3 of the Borel hierarchy, while deterministic max-
automata can only recognize languages that are boolean combinations of Σ2 languages.

For min-automata, one can prove that nondeterministic min-automata can, while de-
terministic min-automata cannot, recognize the language

K = {an1 b an2 b an3 b . . . : lim sup ni = ∞}.

The reason why a nondeterministic min-automaton can recognize K is the same as in the
counterexample for max-automata. However, how does one prove that a deterministic min-
automaton cannot recognize K? The topological argument no longer works, since K is on
level Π2 of the Borel hierarchy, while deterministic min-automata can recognize even Σ3

languages, such as the language L. One idea would be to change the topology, to one where
min-automata would be simpler than max-automata, but we could not find such a topology.
Our solution uses pumping arguments.

Relationship with BS-automata. In this section we talk about translating min- and max-
automata into BS-automata, as defined in [4]. BS-automata are like min- or max-automata,
with three differences: (i) they are nondeterministic; (ii) they do not have the min and max
counter operations, only increment and reset; and (iii) the acceptance condition can speak
of both lim inf and lim sup. In [2] it was shown how to convert a max-automaton to a
nondeterministic BS-automaton. The same technique works for min-automata, so we get:

THEOREM 3. Every max-automaton is effectively equivalent to a nondeterministic BS-
automaton. The same holds for min-automata.



78 DETERMINISTIC AUTOMATA AND EXTENSIONS OF WEAK MSO

COROLLARY 4. Emptiness is decidable for boolean combinations of min- and max-automata.

PROOF. Since max- and min-automata are closed under boolean operations, the problem
is equivalent to testing emptiness for positive boolean combinations. Since BS-automata
are closed under positive boolean combinations, every boolean combination of max- and
min-automata is effectively equivalent to a BS-automaton. Emptiness of BS-automata is
decidable by [4].

The complexity of the above procedure is quite high, especially due to the high cost of
translating a max-automaton into a BS-automaton (the current algorithm is nonelementary).
It would be nice to get an upper bound that is closer to the PSPACE lower bound from
Theorem 2.

BS-automata do not have the min operation, and yet they are still able to capture min-
automata. The translation from min-automata to BS-automata introduces nondeterminism.
One might ask: is the min counter operation necessary in a deterministic min-automaton?
(After removing the min-operation, we add a substitution operation c := d and a reset oper-
ation c := 0, and we still keep the acceptance condition that talks about lim inf.) Notice how
the automaton in Example 1 does not really use the min operation, only the substitution. In
preliminary work, we have proved that min-automata without min are less expressive.

Below we describe the separating example. The alphabet is a, b, c, d. Let

w = an1 ban2 b · · · ank b

be a word in (a∗b)+. For σ ∈ {c, d} we define wσ to be min(n1, . . . , nk) if σ = c and ∞
otherwise. The separating language is

{w1σ1w2σ2 . . . ∈ ((a∗b)+(c + d))ω : lim inf wiσi = ∞}

It is easy to define a min-automaton that recognizes the above language. The proof that an
automaton without min cannot recognize this language requires a pumping argument, and
will be given in a full version of this paper.

A matrix representation. In this section we represent the automata by matrices.
We extend slightly the definition of min-automata and allow an additional value >,

called the undefined value. As far as the min operation is concerned, the values are ordered
0 < 1 < . . . < >. We extend addition to the new counter values by setting:

>+ x = x +> = > for all x.

We write T for the extended set {0, 1, 2, . . . ,>} of counter values. Together with the two
operations above T forms a semiring, where the addition operation is min and the multipli-
cation operation is +. This semiring is called the tropical semiring, or (min, +) semiring, see
e.g. [9].

The new counter values can be eliminated, by storing in the states the information
about which counters are >. The undefined counter value > will become important in the
matrix representation, where it will be used to eliminate states from the automaton.



BOJAŃCZYK,TORUŃCZYK FSTTCS 2009 79

Let MCT denote the semiring of C × C matrices with entries from T . Suppose that
M ∈ MCT . We can treat M as a counter operation, which changes a counter valuation,
treated as a vector v ∈ T C, to v ·M ∈ T C. This type of operation can be implemented by a
min-automaton, possibly after introducing auxiliary counters.

EXAMPLE 5. Let us return to the automaton from Example 1. When reading a letter a, the
automaton would perform the operations c := c + 1. In matrix form, this is written as

(
c d z

)
:=

(
c d z

)
·

 1 > >
> 0 >
> > 0

 .

When reading b, the automaton would do d := min(c, c); c := z. In matrix form, this is

(
c d z

)
:=

(
c d z

)
·

 > 0 >
> > >
0 > 0

 .

Every sequence of counter operations can be represented in a matrix form as in the
above example. In a min-automaton in matrix form, the counter operations are implemented
by matrices, and the choice of the matrix only depends on the last letter seen (so there is no
state). Such an automaton is given by an initial vector and a matrix for each letter of the
input alphabet, so it is a tuple

〈A, C, γ : A→MCT , v0 ∈ T C, F〉.

After reading a word a1 · · · an, the counter valuation is

v0 · γ(a1) · γ(a2) · · · γ(an).

PROPOSITION 6. For every min-automaton one can construct an equivalent min-automaton
in matrix form. If the input automaton has n states and m counters, the output automaton
has (m + 1)× n counters.

PROOF. [sketch] By storing the state information in the counters which use the value >.
Each counter has one copy corresponding to each of the automaton states, and all but one
of the copies are undefined at any moment.

What is the point of the matrix representation? One advantage is that it underlies the
close connection with existing work on distance automata and formal power series, where
matrices over the tropical semiring play an important role. We would like to further inves-
tigate this connection, especially how the PSPACE upper bound on the limitedness problem
for distance automata can be used for testing emptiness of min automata.

Another advantage is that we can eliminate states from the automaton. This is more
an advantage of the > counter value. Having a stateless automaton enormously simplifies
combinatorics, for instance in the proof that deterministic min-automata cannot recognize
the language K defined earlier, and hence nondeterministic min-automata cannot be deter-
minized.



80 DETERMINISTIC AUTOMATA AND EXTENSIONS OF WEAK MSO

2 Weak MSO with the recurrence quantifier
In [2], max-automata were proved to have the same expressive power as weak MSO ex-
tended with a new quantifier, called the unbounding quantifier (denoted U). For min-
automata, the situation is the same, only a different quantifier is needed. Before introducing
the new quantifier, we recall the definition of weak MSO. In weak MSO over infinite words
we may:

- quantify over finite sets of positions (the ∃finX quantifier) and single positions (the ∃x
quantifier),

- verify that a position belongs to a set of positions (x ∈ X),
- verify that one position comes before another (x ≤ y),
- check the label standing on a position (a(x) for each label a ∈ A),
- use boolean operations (∧,∨,¬).

Weak MSO corresponds to deterministic Muller automata over infinite words, which, thanks
to the theorem of McNaughton, define all ω-regular languages. The goal of this section is to
show this correspondence for min-automata, by adding a new quantifier, called the recur-
rence quantifier.

The recurrence quantifier The recurrence quantifier, written R, binds a set variable X in a
formula ϕ(X) and is true if there are infinitely many sets X of equal size that satisfy ϕ(X).
More precisely, RX.ϕ(X) is satisfied in a word w if there exists a number N ∈ N and in-
finitely many sets X of size N such that ϕ(X) is satisfied in w.

EXAMPLE 7. Let ϕ be a formula with a free set-variable X which says that X is connected
and has at least two b’s. Formally,

ϕ(X) = ∧
{
∀x∀y∀z x ∈ X ∧ z ∈ X ∧ x ≤ y ≤ z ⇒ y ∈ X
∃x∃y x < y ∧ b(x) ∧ b(y) ∧ x ∈ X ∧ y ∈ X

A word an1 b an2 b . . . satisfies RX.ϕ(X) if and only if lim inf ni < ∞. Therefore, the set of
words with infinitely many b’s that satisfy RX.ϕ(X) is the language L from Example 1.

THEOREM 8. Weak MSO logic with the recurrence quantifier recognizes the same class of
languages as min-automata.

This theorem is a special case of Theorem 11, stated in the next section.

3 General framework
In the previous section, we defined min-automata and stated that they are equivalent to
weak MSO with the recurrence quantifier. This is analogous to the situation for max-
automata, where the appropriate quantifier is the unbounding quantifier. Converting an
automaton into a formula is straightforward, while converting a formula into an automa-
ton can be done thanks to some general properties shared by min- and max-automata. We
would like to bring out these similarities, by introducing a more abstract framework.



BOJAŃCZYK,TORUŃCZYK FSTTCS 2009 81

The automaton side The control structure of deterministic min-automata, max-automata,
Büchi automata, etc. is always the same, it is only the mode of acceptance that changes. We
give an abstract definition below, by modeling an acceptance condition as a language F ⊆
Bω. The definition uses the notion of a letter to letter transducer, by which we understand
a finite deterministic automaton with input alphabet A, whose transitions are labelled by
letters of an output alphabet B. This transducer maps every word in A∗ to a word in B∗

of same length. We will use a transducer on infinite words, where it will give a function
Aω → Bω. Note that the transducers have no acceptance condition.

DEFINITION 9. An automaton with acceptance condition F ⊆ Bω (or simply F-automaton)
A is a deterministic letter-to-letter transducer with input alphabet A and output alphabet B.
We say that A accepts an input word w ∈ Aω if the output word belongs to F. Languages
accepted by F-automata are called F-regular.

One example of this definition is a Büchi automaton. In this case, the acceptance condi-
tion is any language of the form (B∗C)ω ⊆ Bω, for C ⊆ B. In a similar way we can encode
Muller or parity automata.

For min- or max-automata, the same can be done. In this case, the alphabet of the ac-
ceptance condition consists of words over the set of counter operations, and the acceptance
condition contains those infinite sequences of counter operations where the appropriate
limits are ∞.

We are mainly interested in prefix-independent acceptance conditions, namely languages
F ⊆ Bω that satisfy F = B∗F. All the examples mentioned above are prefix-independent. (In
the case of min- or max-automata, to get prefix-independence we should not use the matrix
form of automata, but the original definition, where the counters have values in N.)

The logic side Let us call a locus any family X of finite sets of positions. Let a given input
word be fixed. A formula ϕ(X) with a free set-type variable X defines its locus Xϕ as the
family of finite sets of positions X which satisfy ϕ. A locus property Q is any set of loci. If Q

is a locus property, then we write QX.ϕ(X) if Xϕ ∈ Q. The quantifiers ∃fin, U, R, P (defined
in the next section) all arise in this fashion. For instance, for a locus X , X ∈ ∃fin if it is
nonempty, while X ∈ U if it contains arbitrarily large sets.

For two loci X and Y , we write X ' Y if X and Y differ by a finite number of sets.
We call Q finitely invariant if Q is invariant under ', i.e. if X ∈ Q and X ' Y , then Y ∈ Q.
Examples of finitely invariant locus properties are U, R, P. On the other hand, ∃fin is not
finitely invariant.

A Q-formula is a formula QX.ϕ(X) where ϕ(X) is a formula of WMSO with only one
free variable, namely X. An open Q-formula is a Q-formula where ϕ is open in the following
sense: if a word w together with a set X satisfies ϕ(X), then there is some finite prefix of
w such that changing the word w on positions outside the prefix does not affect the truth
value of ϕ(X).

Quantifier elimination Here we present our main result, which shows how quantifiers
can be denested in the scope of a formula of WMSO. Since the theorem talks about automata
and languages, a quantifier is viewed as an operation on languages, which takes a language



82 DETERMINISTIC AUTOMATA AND EXTENSIONS OF WEAK MSO

over an alphabet A× {0, 1} and returns a language over an alphabet A. In the following,
for a word w over alphabet A and a set of positions X, we write w⊗ X for the word over
alphabet A × {0, 1} that has the labels of w on the first coordinate and the characteristic
function of X on the second coordinate.

THEOREM 10. Let F be a prefix-independent acceptance condition and let Q be a locus
property. If L is an F-regular language over the alphabet A× {0, 1}, then the language

QL = {w ∈ Aω : QX.[w⊗ X ∈ L]}

is a boolean combination of F-regular languages, ω-regular languages, and Q-formulas.
Moreover, if Q is finitely invariant, then the Q-formulas are open.

Here is an important corollary of the above result.

THEOREM 11. Weak MSO extended by both the recurrence quantifier R and the unbound-
ing quantifier U defines the same languages as boolean combinations of max-automata and
min-automata. If the formula does not use R, then min-automata are not used in the combi-
nation, likewise for U and max-automata.

The above theorem also gives a normal form for weak MSO with the quantifiers R and
U. Take a formula ϕ of the logic, compile it into a boolean combination of automata as in
the above corollary, and then compile each of those automata back into a formula. What we
end up with is a boolean combination of formulas of the form RX.ϕ(X) or UX.ϕ(X), where
ϕ(X) is a formula of weak MSO without R or U. In other words, nesting the quantifiers R

and U does not contribute anything to the expressive power of weak MSO.

4 Ultimately Periodic Quantifier
In this section we present another extension of weak MSO, and use the general framework
to show that its emptiness problem is decidable.

The ultimately periodic quantifier, written P, is used to say that a set of positions is ulti-
mately periodic. Specifically, if ϕ is a formula, and x is a first-order variable free in ϕ, then
Px.ϕ(x) is true in a word if the set of positions x that satisfy ϕ is ultimately periodic (the
variable x gets bound by the quantifier).

We now use the framework from the previous section to present an automaton model
that captures weak MSO extended with the ultimately periodic quantifier. For L ⊆ Aω and
a word a1a2 . . . ∈ Aω, we write

suffixL(a1a2 . . .) = {i ∈N : aiai+1 . . . ∈ L}

We define PSL to be the set of words w ∈ Aω where suffixL(w) is ultimately periodic. Any
language of the form PSL is called an ultimately periodic acceptance condition.

COROLLARY 12. Weak MSO extended with the ultimately periodic quantifier has the same
expressive power as boolean combinations of deterministic automata with Büchi and ulti-
mately periodic acceptance conditions.

PROOF. The nontrivial translation, from logic to automata, follows from Theorem 10.



BOJAŃCZYK,TORUŃCZYK FSTTCS 2009 83

THEOREM 13. Satisfiability is decidable for weak MSO extended with the ultimately peri-
odic quantifier.

PROOF. By Corollary 12, it suffices to decide emptiness for a boolean combination of de-
terministic automata with Büchi and ultimately periodic acceptance conditions. (The trans-
lations between formulas and automata are effective.) Since the acceptance conditions con-
cerned are closed under homomorphic images, we may assume that the same transducer
f : Aω → Bω is used by all automata. We may also assume that the boolean combination
is in DNF form, and as far as emptiness is concerned, has only one disjunct (which is a
conjunction of, possibly negated, acceptance conditions). Finally, by collapsing the Büchi
languages into a single ω-regular language, we may assume one conjunct is ω-regular, and
all others involve ultimately periodic acceptance conditions.

Summing up: we want to decide if the transducer f can output a word in an inter-
section K ∩ K1 ∩ · · · ∩ Kn, where K is ω-regular and each Ki is either a language PSLi or its
complement, for some ω-regular language Li. It is not difficult to see that the following
language over alphabet {0, 1}n is ω-regular:

M = {X1 ⊗ · · · ⊗ Xn : exists w ∈ f (Aω) ∩ K such that Xi = suffixLi(w) for all i = 1, . . . , n}

(here ⊗ combines characteristic functions of sets into a word over the product alphabet).
The emptiness problem boils down to testing if the set M above contains a word, whose

projection onto coordinates i corresponding to languages PSLi is an ultimately periodic
word, and whose projection onto coordinates i corresponding to complements of languages
PSLi is not ultimately periodic. This way we have reduced our satisfiability problem to the
following combinatorial result, which can be solved using standard automata techniques.

THEOREM 14. The following problem is decidable
• Input: An ω-regular language L ⊆ Bω, letter-to-letter homomorphisms πi : Bω → Bω

i
for i = 1, . . . , n, and a set F ⊆ {1, . . . , n}.
• Question: Is there some w ∈ L such that F = {i : πi(w) is ultimately periodic}.

We could go even further, and consider an extension of weak MSO where all the new
quantifiers mentioned in this work are allowed: the bounding quantifier, the recurrence
quantifier, and the ultimately periodic quantifier. As previously, the automaton model
would simply be boolean combinations of the three automata models: min-automata, max-
automata, and automata with ultimately periodic acceptance condition. The emptiness
problem would require solving a variant of Theorem 14 where the language L is not ω-
regular, but recognized by a nondeterministic BS-automaton (since these are strong enough
to capture both max- and min-automata).

5 Conclusions
In this paper we presented several new classes of languages of infinite words. These classes
are robust: they have good closure properties, they admit logical and automaton charac-
terizations, they have decidable emptiness. We hope that the examples from this paper,



84 DETERMINISTIC AUTOMATA AND EXTENSIONS OF WEAK MSO

together with the max-automata from [2], offer convincing proof that there are interesting
generalizations of the concept of ω-regular language. The general theme is to look at de-
terministic automata with conditions that talk about asymptotic behavior, conditions more
subtle than the usual “state q appears infinitely often”.

One direction of future research is investigating the exact relationship between min-
automata and the existing theory of distance automata and formal power series. Prelimi-
nary results show that such connections result in a PSPACE-upper bound for deciding empti-
ness of boolean combinations of min- and max-automata.

Finally, we intend to investigate a similar theory for tree languages.

References
[1] P. A. Abdulla, P. Krcál, and W. Yi. R-automata. In CONCUR, pages 67–81, 2008.
[2] M. Bojańczyk. Weak MSO with the unbounding quantifier. submitted.
[3] M. Bojańczyk. A bounding quantifier. In Computer Science Logic, volume 3210 of Lecture

Notes in Computer Science, pages 41–55, 2004.
[4] M. Bojańczyk and T. Colcombet. Omega-regular expressions with bounds. In Logic in

Computer Science, pages 285–296, 2006.
[5] O. Carton and W. Thomas. The monadic theory of morphic infinite words and general-

izations. In Mathematical Foundations of Computer Science, volume 1893 of Lecture Notes
in Computer Science, pages 275–284, 2000.

[6] T. Colcombet and C. Löding. The nesting-depth of disjunctive mu-calculus for tree
languages and the limitedness problem. In Computer Science Logic, volume 5213 of
Lecture Notes in Computer Science, 2008.

[7] C. C. Elgot and M. O. Rabin. Decidability and undecidability of extensions of second
(first) order theory of (generalized) successor. Journal of Symbolic Logic, 31:169–181,
1966.

[8] D. Kirsten. Distance desert automata and the star height problem. Theoretical Informatics
and Applications, 39(3):455–511, 2005.

[9] J.-É. Pin. Tropical semirings. In Idempotency, pages 50–69. Cambridge University Press,
1998.

[10] A. Rabinovich. On decidability of monadic logic of order over the naturals extended
by monadic predicates. Inf. Comput., 205(6):870–889, 2007.

[11] A. Rabinovich and W. Thomas. Decidable theories of the ordering of natural numbers
with unary predicates. In CSL, pages 562–574, 2006.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.




