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ABSTRACT. A non-local box is an abstract device into which Alice and Bob input bits x and y respec-
tively and receive outputs a and b respectively, where a, b are uniformly distributed and a⊕ b = x∧ y.
Such boxes have been central to the study of quantum or generalized non-locality as well as the sim-
ulation of non-signaling distributions. In this paper, we start by studying how many non-local boxes
Alice and Bob need in order to compute a Boolean function f . We provide tight upper and lower
bounds in terms of the communication complexity of the function both in the deterministic and
randomized case. We show that non-local box complexity has interesting applications to classical
cryptography, in particular to secure function evaluation, and study the question posed by Beimel
and Malkin [4] of how many Oblivious Transfer calls Alice and Bob need in order to securely com-
pute a function f . We show that this question is related to the non-local box complexity of the
function and conclude by greatly improving their bounds. Finally, another consequence of our re-
sults is that traceless two-outcome measurements on maximally entangled states can be simulated
with 3 non-local boxes, while no finite bound was previously known.

1 Introduction
Communication complexity. Communication complexity is a central model of computa-
tion, which was first defined by Yao in 1979 [35] and has since found numerous applications.
In this model Alice and Bob receive inputs x and y respectively and are allowed to commu-
nicate in order to compute a function f (x, y). The goal is to find the minimum amount of
communication needed for this task. In different variants of the model, we allow Alice and
Bob to err with some probability, and to share common resources in an attempt to enable
them to solve their task more efficiently.

One such resource is shared randomness. When Alice and Bob are not allowed any
errors, shared randomness does not reduce the communication complexity. On the other
hand, when they are allowed to err, a common random string can reduce the amount of
communication needed. However, Newman’s result tells us that shared randomness can be
replaced by private randomness at an additional cost logarithmic in the input size.

Another very powerful shared resource is entanglement. Using teleportation, Alice and
Bob can transmit quantum messages by using their entanglement and only classical com-
munication. This model has been proven to be very powerful, in some cases exponentially
more efficient than the classical one. Another way to understand the power of entanglement
is by looking at the CHSH game [13], where Alice and Bob receive uniformly random bits x
and y respectively and their goal is to output bits a and b resp. such that a⊕ b = x ∧ y with-
out communicating. It is not hard to conclude that even if Alice and Bob share randomness,
their optimal strategy will be successful with probability 0.75 over the inputs. However, if
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they share entanglement, then there is a strategy that succeeds with probability 0.85. This
game proves that quantum entanglement can enable two parties to create correlations that
are impossible to create with classical means.

Non-local boxes. As we said, entanglement enables Alice and Bob to succeed in the CHSH
game with probability 0.85. But what if they shared some resource that would enable
them to win the game with probability 1? Starting from such considerations, Popescu and
Rohrlich [30] defined the notion of a non-local box. A non-local box is an abstract device
shared by Alice and Bob. By one use of a non-local box, we mean that Alice inputs x, Bob
inputs y, Alice gets as output a and Bob gets b where a, b are uniformly distributed and more
importantly a⊕ b = x ∧ y. The name non-local box is due to the property that one use of a
non-local box creates correlations between two bits that are maximally non-local (allowing
to win the CHSH game with probability one), but still does not allow to communicate, since
taken separately, each bit is just an unbiased random coin. As such, a non-local box may be
considered as a unit of non-locality. We note here an important property of a non-local box,
namely that, similar to entanglement, one player can enter an input and receive an output
even before the second player has entered an input.

The importance of the notion of a non-local box has become increasingly evident in
the last years. Non-local boxes were first introduced to study (quantum or generalized)
non-locality. In particular, it was shown than one of the most studied versions of the EPR
experiment, where Alice and Bob perform projective measurements on a maximally entan-
gled qubit pair, may be simulated using only one use of a non-local box [10]. More generally,
it was shown that any non-signaling distribution over Boolean outputs may be exactly sim-
ulated with some finite number of non-local boxes (for finite input size) [1, 19]. This was
later generalized to any non-signaling distribution, except that the simulation may not al-
ways be performed exactly for non-Boolean outputs [16]. These results rely on the fact that
the set of non-signaling distributions is a polytope, so it suffices to simulate the extremal
vertices to be able simulate the whole set. In the context of non-locality, another application
of non-local boxes is the study of pseudo-telepathy games [7].

It is easy to see that one use of a non-local box can be simulated with one bit of com-
munication and shared randomness: Alice outputs a uniform bit r and sends x to Bob, who
outputs r⊕ x · y. However, the converse cannot possibly hold, since a non-local box cannot
be used for communication.

The first question is what happens if we use non-local boxes as shared resource in
the communication complexity model. Van Dam showed that for any Boolean function
f : {0, 1}n × {0, 1}n → {0, 1}, Alice and Bob can use 2n non-local boxes and no communica-
tion at all and at the end output bits a and b such that a⊕ b = f (x, y) [33]. In other words, if
non-local boxes were physically implementable, then all functions would have trivial com-
munication complexity. His results were strengthened by Brassard et al. who showed that
even if a non-ideal non-local box existed, one that solves the CHSH game with probability
0.91, then still all functions would have trivial communication complexity [6]. Note that in
these results, the number of non-local boxes needed may be exponential in the input size
and do not take into account any properties of the function and more precisely its commu-
nication complexity without non-local boxes. It also follows from the work of [1, 6] that for
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any Boolean function f , if f has a circuit with fan-in 2 of size s, then there is a deterministic
non-local box protocol of complexity O(s), where the bits of the input of f are split arbi-
trarily among the players. This implies that exhibiting an explicit function for which the
deterministic non-local box complexity is superlinear would be a real breakthrough, since it
would translate into a superlinear circuit lower bound for this function.

Secure function evaluation. Non-local boxes have also been studied in relation to crypto-
graphic primitives such as Oblivious Transfer or Bit Commitment. Wolf and Wullschleger
[34] showed that Oblivious Transfer is equivalent to a timed version of a non-local box (up
to a factor of 2). To maintain the non-signaling property of the non-local box, one can define
timed non-local box as having a predefined time limit, and if any of the players have not
entered an input by this time, then some fixed input, say 0, is used instead. Subsequently,
Buhrman et al. [8] showed how to construct Bit Commitment and Oblivious Transfer by
using non-local boxes that do not need to be timed but have to be trusted.

In this paper, we are interested in secure function evaluation, which is one of the most
fundamental cryptographic tasks. In this model, Alice and Bob want to evaluate some func-
tion of their inputs in a way that does not leak any more information than what follows from
the output of the function. It is known that even though not all functions can be evaluated
securely in the information-theoretic setting ([5, 11, 12, 26]), all functions can be computed
securely in the information theoretic setting, if we have access to a black box that performs
Oblivious Transfer or some other complete function, e.g. the AND function ([17, 20]).

There has been a lot of work trying to identify, in various settings, which functions
can be easily evaluated in a secure way, i.e., without any invocation of the black box, and
which are hard to evaluate securely, i.e., require at least one invocation of the black box ([12,
26, 3, 21, 23, 3, 22]). Moreover, Beaver [2] showed that there exists a hierarchy of different
degrees of hardness for the information-theoretic reduction setting, in other words that for
all k, there are functions that can be securely evaluated with k invocations of the AND box
but cannot be computed with k− 1 uses of the black box.

Beimel and Malkin [4] proposed a quantitative approach to secure function evalua-
tion by studying how many calls to an Oblivious Transfer or other complete black box one
needs in order to securely compute a given function f in the honest-but-curious model. For
a Boolean function f : X ×Y → {0, 1} and deterministic protocols, they provide a combina-
torial characterization of the minimal number of AND calls required, which however does
not lead to an efficient algorithm to determine how many ANDs are actually required. They
also show that at most 2|X | ANDs are needed for any function. In the randomized case, they
provide lower bounds depending on the truth-table of the function which can be at most of
the order of n. They also state that “it would be very interesting to try and explore tighter
connections with the communication complexity of the functions”.

Finally, Naor and Nissim [29] have given some connections between the communica-
tion complexity of a function f and the communication complexity for securely computing
f . These results, translated into the Beimel-Malkin and our model, only show that the num-
ber of ANDs is at most exponential in the communication complexity.
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Our results. In this paper, we provide more evidence on the importance of non-local boxes
by showing how they relate to different models of communication complexity as well as
how they can be used as a tool to quantitatively study secure function evaluation. Our
results show that non-local boxes, introduced for the study of quantum or more general
non-locality, can provide a novel way of looking at questions about classical communication
complexity, secure function evaluation and complexity theory.

2 Preliminaries
2.1 Communication Complexity

Let f : X × Y → {0, 1} be a bipartite Boolean function. Alice gets an input x ∈ X and Bob
gets an input y ∈ Y . We say that Alice and Bob compute f (x, y) in parity if after executing
a protocol, Alice outputs a bit a and Bob outputs a bit b such that a ⊕ b = f (x, y), where
we use ⊕ to denote both the logical XOR and addition mod 2. This model differs from the
standard model, where one of the players outputs the value of the function, by at most 1 bit.

We use the following notions of communication complexity. In probabilistic models,
we assume that the players have a common source of randomness. D( f ) and Rε( f ) denote
deterministic and ε-bounded error communication complexity of f (x, y) in parity. D→( f )
and R→ε ( f ) are the one-way deterministic and bounded-error communication complexity
of f (x, y) in parity. Finally, D‖( f ) and R‖ε ( f ) are the deterministic and bounded-error com-
munication complexities in the model of simultaneous messages, where Alice and Bob each
send a message to the referee and the referee outputs the value of the function f (x, y).

For the model of simultaneous messages, we also consider some natural restrictions
on how the referee computes the output from the messages he receives from the players.
We assume the messages sent are of the same length. Suppose the referee receives bits
a = (a1, . . . , at) from Alice, and b = (b1, . . . , bt) from Bob. If the referee always computes a
predefined function g(a, b), then we write D‖,g( f ) or R‖,gε ( f ) to be the length of the message
sent by the players (not the sum of these lengths, as is done in the standard model). In this
paper, we will consider two functions, the inner product modulo 2, IP2(a, b) =

⊕
i(ai · bi)

(where · denotes the multiplication over GF2, which corresponds to the logical AND) and
the majority function, MAJ(a, b) = MAJ(a1 ⊕ b1, . . . , at ⊕ bt).

2.2 Non-local box Complexity

Definition 1 (Non-local box) A non-local box is a device shared by two parties, which on one
side takes Boolean input x and immediately produces Boolean output a, and on the other side takes
Boolean input y and immediately produces Boolean output b, according to the following distribution:

pNL(a, b|x, y) =
{ 1

2 if a⊕ b = x · y
0 otherwise.

We study a model akin to communication complexity, where Alice and Bob use non-
local boxes instead of communication. In a non-local box protocol, Alice and Bob wish to
compute some function f : X ×Y → {0, 1} in the following way. Alice gets an input x ∈ X ,
Bob gets an input y ∈ Y , and at the end of the protocol, Alice outputs a ∈ {0, 1}, Bob
outputs b ∈ {0, 1}, such that a⊕ b = f (x, y). For a protocol P, we will write P(x, y) = (a, b).



KAPLAN, KERENIDIS, LAPLANTE, ROLAND FSTTCS 2009 243

In the course of the protocol, Alice and Bob are allowed shared randomness and may use
non-local boxes, but they may not communicate. Bob is not allowed to see Alice’s inputs to
the non-local boxes, nor does he see the outcome on Alice’s side, and likewise for Alice.
Definition 2 For any function f : X × Y → {0, 1}, NL( f ) is the smallest t such that there is a
protocol that computes f exactly, using t non-local boxes.

We will label the non-local boxes with labels from 1 to t. (Recall that in general, Alice
and Bob are not required to use the t non-local boxes in the same order.) We relax the exact-
ness condition and allow the protocol’s outcome to be incorrect with constant probability ε.
Definition 3 For any function f : X × Y → {0, 1}, NLε( f ) is the smallest t such that there is a
protocol P using t non-local boxes, with Pr[P(x, y) = (a, b) with a⊕ b = f (x, y)] ≥ 1− ε.

We will also study two variants of the general model, where the non-local boxes are
used in a restricted manner. First, we assume that the non-local boxes are used in parallel,
that is, the input to any non-local box does not depend on the outcome of any other. The
complexity in this model is denoted NL|| in the exact case, and NL||ε in the ε error case.

Second, we define the model where both players use the non-local boxes in the same or-
der, that is, the non-local boxes are labeled from 1 to t and Alice’s input to the non-local box
with label i does not depend on the outputs from the non-local boxes labeled from i + 1
to t (similarly for Bob). The complexity in this model is denoted NLord in the exact case,
and NLord

ε in the ε error case. It is clear that this model is more powerful than the parallel
model but less powerful than the general non-local box complexity. In fact, we will only use
this last variant when we talk about secure function evaluation. Note also that in all these
models, the non-local boxes are still non-signaling and Alice and Bob receive the outputs of
the non-local boxes immediately after they enter their inputs.

Finally, we consider a restriction where the players always output the same predefined
function g of the outputs of the non-local boxes. Let (a1, b1), . . . , (at, bt) be the outcomes of
the t non-local boxes in some particular run of a protocol. Of particular interest are protocols
where Alice outputs a = a1 ⊕ · · · ⊕ at and Bob outputs b = b1 ⊕ · · · ⊕ bt. The function g
is used in a superscript to denote the complexity of a function f in this model, NLg in the
determinstic case, and NLg

ε in the ε error case, and in particular, NL||,⊕ and NL||,⊕ε when the
non-local boxes are in parallel and g = ⊕.

2.3 Secure Function Evaluation

We will consider the following cryptographic primitives.
Definition 4 (Oblivious transfer) A 2-1 Oblivious Transfer (OT) is a device which on input bits
p0, p1 for Alice and q for Bob, outputs bit b to Bob, such that b = pq.
Definition 5 (Secure AND) A secure AND is a device which on input bits p for Alice and q for
Bob, outputs bit a to Alice, such that a = p · q.
While at first view, these definitions seem similar to the definition of the non-local box, note
that the timing properties are different: for the cryptographic primitives, the outputs are
produced only after all the inputs have been entered into the device. It is precisely this
subtlety that has led to confusion when trying to use non-local boxes to implement crypto-
graphic primitives, in particular for bit commitment, when timing is particularly important,
since a cheating Alice could wait until the reveal phase before committing her bit into the
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non-local box, without Bob ever realizing it [8]. However, we will see that this is not an
issue for our results on secure computation.

Let f : X × Y → {0, 1} be a bipartite Boolean function. We study the number of
cryptographic primitives necessary to compute f . In all the models we consider, we require
perfect privacy. In the honest-but-curious model, perfect privacy means that when a player
follows the protocol, he should not learn more than required about the other player’s input.
In the malicious model, this condition must still hold even if the player does not follow the
protocol. Not more than required means, for models where the function must be computed
in parity, that the players should learn nothing about the other’s input, while for models
where one of the player should output the function, it means that this player should learn
nothing more than what he can infer from his input and the value of the function, while the
other player should learn nothing.

Let us note that AND may not be used as a primitive in the malicious model, so we will
consider the OT primitive instead. Moreover, in this model, it is known that randomness
is necessary to achieve perfect privacy [15], so in this setting we do not consider the deter-
ministic model. Our bounds in the randomized malicious model also hold for the weaker
honest-but-curious model. We define AND( f ) to be the number of secure AND gates re-
quired to securely compute f (x, y) (not in parity) in the deterministic, honest-but-curious
model. We note that we can allow free two-way communication without in fact changing
the complexity [4]. Similarly, OTε( f ) is the number of 2-1 Oblivious Transfer calls required
to compute f (x, y) in parity with perfect privacy and ε error over the players’ private coins,
assisted with (free) two-way communication, in the malicious model.

2.4 Complexity Measures

We will compare non-local box complexity to traditional models of communication com-
plexity and prove upper and lower bounds for this new model. Some of these bounds are
in terms of the factorization norms of the communication matrix [28] and related measures.

DEFINITION 1. Let M be a real matrix. The γ2 norm of M is γ2(M) = minXTY=M col(X)col(Y),
where col(N) is the largest Euclidian norm of a column of N.

It is known that 2 log(γ2(M)) gives a lower bound on deterministic communication
complexity of M, where M is a sign matrix of the Boolean function to be computed [28]. In
order to lower bound the randomized and quantum communication complexity, we have
to consider a “smoothed” version of this measure.

DEFINITION 2. Let M be a sign matrix and α ≥ 1. γα
2(M) = min{γ2(N) : ∀i, j 1≤Mi,jNi,j≤α}.

In particular, γ∞
2 (M) is the minimum γ2 norm over all matrices N such that 1 ≤ Mi,jNi,j.

The measures γα
2 and γ∞

2 give upper and lower bounds for bounded-error communi-
cation complexity [28]: 2 log(γα

2( f )/α) ≤ Rε( f ) and R||,MAJ
ε ( f ) ≤ O((γ∞

2 ( f ))2) (implicit in
[28]), where α = 1

1−2ε . The discrepancy of a sign matrix M over inputs X × Y with re-
spect to distribution µ over the inputs is Discµ(M) = maxR ∑(x,y)∈R µ(x, y)M(x, y), where
R is taken from all possible rectangles. It is known that γ∞

2 ( f ) = Θ( 1
Disc( f ) ), and for any

α, γ∞
2 ( f ) ≤ γα

2( f ) [28]. Finally, for a Boolean function, the L1 norm is defined as the sum
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of the absolute values of its Fourier coefficients. We can think of the 2n bits of input of the
function as equally split between Alice and Bob. Grolmusz uses this notion to upper bound
the randomized communication complexity by proving that Rε( f ) ≤ O(L2

1( f )) [18].

3 Deterministic non-local box complexity
We start by studying a restricted model of non-local box complexity, where the non-local boxes
are used in parallel and at the end of the protocol, Alice and Bob output the parity of the
outputs of their non-local boxes respectively. We will show that the complexity of f in this
model is equal to the rank of the communication matrix of f over GF2. Note that this rank is
equal to the minimum m, such that f (x, y) can be written as f (x, y) =

⊕m
i=1 ai(x) · bi(y) (see

also [9]). This restricted variant of non-local box complexity is exactly the one that appears
in van Dam’s work [33], where he shows that any Boolean function f can be computed by
such a protocol of complexity 2n. Moreover, we prove that the restriction that the players
output the XOR of the outcomes of the non-local boxes is without loss of generality.

THEOREM 3. NL||,⊕( f ) = rankGF2(M f ) = D‖,IP2( f ).

PROOF. We start by showing that NL||,⊕( f ) ≤ rankGF2(M f ). Let rankGF2(M f ) = t,
i.e., f (x, y) =

⊕
i∈[t] pi(x) · qi(y). Then we construct a protocol that uses t non-local boxes in

parallel, where Alice and Bob output the parity of the outcomes of the non-local boxes and
for every input (x, y) the output of the protocol is equal to f (x, y). The inputs of Alice and
Bob to the i-th non-local box are the bits pi(x) and qi(y), i ∈ [t] respectively and let ai, bi the
outputs of the non-local box such that ai ⊕ bi = pi(x) · qi(y). Alice and Bob output at the
end of the protocol the value (

⊕
i∈[t] ai)⊕ (

⊕
i∈[t] bi) =

⊕
i∈[t] pi(x) · qi(y) = f (x, y).

Conversely, if there exists a protocol where Alice and Bob use t non-local boxes in paral-
lel with inputs pi(x), qi(y) and outputs ai, bi, their final output is (

⊕
i∈[t] ai)⊕ (

⊕
i∈[t] bi) and

it always equals f (x, y), then we have f (x, y) = (
⊕

i∈[t] ai)⊕ (
⊕

i∈[t] bi) =
⊕

i∈[t] pi(x) · qi(y)
and hence rankGF2(M f ) ≤ t. From this last argument, we get D‖,IP2( f ) ≤ NL||,⊕( f ) since
the players can send pi and qi to the referee who computes the inner product. For the con-
verse, if the referee receives mA, mB from each player and computes their inner product mod
2, the players can instead input each bit of the message into a non-local box and output the
parity of the outputs to obtain the same result.

For the next corollary, we use the fact that log(2rankF(M f ) − 1) ≤ D( f ) + 1 for any
field F (see [27]).

COROLLARY 4. NL||,⊕( f ) ≤ 2D( f ).

On the other hand, it is easy to see that the one-way communication complexity is a
lower bound on the non-local box complexity. Alice can send all her inputs to Bob, and
since the non-local box protocol is always correct, they can simulate it, assuming that Alice
received only zeros from all non-local boxes.

LEMMA 5. D→( f ) ≤ NL( f ).

Moreover, we show that both in the general and in the parallel model of deterministic
non-local box complexity, we can assume without loss of generality that the players output
the XOR of the outcomes of the non-local boxes. Unlike the general case, showing that
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in the parallel case we can assume that the players output the XOR of the outputs of the
non-local boxes is not a trivial statement.

THEOREM 6. NL( f ) ≤ NL⊕( f ) ≤ NL( f ) + 2, and NL||( f ) ≤ NL||,⊕( f ) ≤ NL||( f ) + 2.

Last, our bounds for deterministic non-local box complexity are tight as can be shown
by looking at the Inner Product and Disjointness functions. Indeed, for Inner Product we
have D(IP) = NL||(IP) = n, while for Disjointness, NL||,⊕(DISJ) = 2D(DISJ) = 2n. For
Disjointness, the circuit size upper bound also implies that NL(DISJ) = O(n), so there is
an exponential separation between NL and NL||,⊕.

4 Randomized non-local box complexity
In this section, we consider protocols that use shared randomness and have success proba-
bility at least 2/3. We start by comparing the parallel non-local box complexity to commu-
nication complexity. In the full paper, we also exactly characterize NL||,⊕ε in terms of the
approximate rank (over GF2) of the communication matrix.

THEOREM 7. R→ε ( f ) ≤ NL||ε ( f ) ≤ NL||,⊕ε ( f ) ≤ 2Rε( f ).

Next, we relate the general non-local box complexity to the following model of com-
munication: Alice and Bob send to a referee one message each and the referee outputs 1 if
for the majority of indices, the two messages are equal. We denote the communication com-
plexity in this model by R||,MAJ

ε ( f ). This is a natural model of communication complexity
that has appeared repeatedly in the simulation of quantum protocols by classical ones, as
well as various upper bounds on simultaneous messages [25, 18, 32, 28].

THEOREM 8. R→ε ( f ) ≤ NLε( f ) ≤ O(R||,MAJ
ε ( f )).

PROOF. The lower bound proof follows directly from the deterministic case. For the upper
bound, fix a t-bit simultaneous protocol for f , where the referee receives two messages a and
b of size t from Alice and Bob and outputs MAJ(a1 ⊕ b1, . . . , at ⊕ bt). It is well-known, by
using an addition circuit, that the majority of t bits can be computed by a circuit of size O(t)
with AND, NOT gates. Moreover, the distributed AND of two bits can be computed using
two non-local boxes [6]. We conclude that the non-local box complexity of the distributed
Majority is O(t) and hence the theorem follows.

COROLLARY 9. 2 log(γα
2( f )/α) ≤ NLε( f ) ≤ O((γ∞

2 ( f ))2), where α = 1
1−2ε .

It is known that γ∞
2 ( f ) = Θ( 1

Disc( f ) ), and also that for any α, γ∞
2 ( f ) ≤ γα

2( f ) [28].
Hence, since discrepancy gives a lower bound on the quantum communication complexity
with entanglement Q∗ε ( f ) [24], we get the following corollary.

COROLLARY 10. NLε( f ) ≤ O(22Q∗ε ( f )).

Finally, we can relate the non-local box complexity of a function f , to the L1 norm of
the Fourier coefficients of f by using a result by Grolmusz. Grolmusz showed that for
any Boolean function f , there exists a randomized public coin protocol that solves f with
complexity O(L2

1( f )). This protocol can be easily transformed into a simultaneous messages
protocol where the referee outputs the distributed majority of the message bits. Hence,
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COROLLARY 11. NLε( f ) ≤ O(L2
1( f )).

Let us make here a last remark about the proof of Theorem 8. We started from a Simulta-
neous Messages protocol where the referee outputs a Majority function and we constructed
a non-local box protocol with complexity equal to the communication complexity. If we look
at this protocol, we can see that Alice and Bob can use their non-local boxes in the same or-
der. This will be useful when we relate non-local boxes to secure function evaluation.

COROLLARY 12. R→ε ( f ) ≤ NLε( f ) ≤ NLord
ε ( f ) ≤ O(R||,MAJ

ε ( f )).

Our bounds are almost tight for the general case, but the case of parallel non-local box
complexity is more interesting. We can give a simple O(n) parallel protocol for Disjointness,
showing that the exponential separation does not hold anymore. It is open whether parallel
and general randomized non-local box complexity are polynomially related.

5 Non-local boxes and measurement simulation
In this section we present another application of our results on non-local boxes. Using the
recent breakthrough of Regev and Toner [31], who give a two-bit one-way protocol for sim-
ulating two-outcome measurements on entangled states for arbitrary dimensions, we show
that this can be done with 3 non-local boxes. Previously, no finite upper bound was known
for this problem. In the full paper, we prove the following, more general, theorem.

THEOREM 13. For any non-signaling distribution over binary outputs with uniform marginals,
any t-bit communication protocol can be simulated with 2t − 1 non-local boxes in parallel.

The proof builds on an idea presented in [14] to replace communication by non-local
boxes, which is here used recursively, and is given in the full paper.

6 Secure Function Evaluation
6.1 Honest-but-curious model

As a starting point, we consider the most basic model, namely deterministic secure compu-
tation with ANDs in the honest-but-curious model. Beimel and Malkin [4] have shown that
AND( f ) ≤ 2|X |. We show that it is characterized by the one-way communication complex-
ity of f . (The proof is given in the full paper.)

THEOREM 14. AND( f ) = 2D→( f ).

One can say that this shows that for most functions, randomization is necessary in order
to construct efficient protocols even in the honest-but-curious model.

6.2 Malicious model

Due to their non-signaling property, protocols using non-local boxes only and no commu-
nication, such as those presented in the previous sections, are trivially secure even against
malicious players. Indeed, the non-signaling property implies that the view of the protocol
by a possibly dishonest player is always independent from the actions of the other player.
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We show that certain such protocols may be transformed into protocols using OTs,
namely the protocols where Alice and Bob use their non-local boxes in the same order.
At this point, we don’t know if this type of protocols are strictly weaker than general
non-local box protocols. Nevertheless, our upper bounds in terms of communication com-
plexity hold for such protocols as well (Corollary 12) and hence they translate into upper
bounds on OTε( f ).

THEOREM 15. For any ε ≥ 0, OTε( f ) ≤ NLord
ε ( f ).

The proof, which will be given in the full version of the paper, consists in first showing
how to simulate the non-local box protocol using OTs, following a construction due to Wolf
and Wullschleger [34]. The security of the OT protocol then follows from the non-signaling
property of the non-local boxes. From the above theorem we can conclude that all the
upper bounds that we had for the NLord

ε complexity (see Corollaries 9-12) translate into
upper bounds for OTε( f ).

We now turn our attention to lower bounds. For this we need to restrict ourselves
to what we call ‘optimal’ secure protocols. An ‘optimal’ secure protocol is one where the
function is computed securely in the usual sense, but we also require that for all the OT calls,
there is always an input that remains perfectly secure throughout the protocol. Intuitively,
since we try to minimize the number of OTs that we use, it should be the case that these
OT calls are really necessary, in the sense that one of the two inputs should always remain
secure. If for example both inputs are revealed at some point during the protocol, then one
may not use this OT at all, resulting into a more efficient protocol. Even though intuitively
our definition seems natural, at this point, we do not know whether this assumption can be
done without loss of generality. We denote by ÔTε( f ) the minimum number of OT calls of
an ‘optimal’ secure protocol. In the full paper we provide the formal definition and prove
the following

THEOREM 16. ÔTε( f ) = Ω(Rε( f )).

7 Conclusion and open questions

We have shown various upper and lower bounds on non-local box complexity, and shown
how the upper bounds could be translated into bounds for secure function evaluation. We
have also shown how to simulate quantum correlations arising from binary measurements
on bipartite entangled states using 3 non-local boxes.

During our investigations, we have come across a series of interesting open questions.
1) While the disjointness function provides an example of exponential gap between parallel
and general deterministic non-local box complexity, the gap disappears in the randomized
model. Are parallel and general randomized non-local box complexities polynomially re-
lated? 2) Are there functions for which NLord

ε ( f ) > NLε( f )? 3) We proved that the com-
munication complexity is a lower bound on OT complexity only under some optimality
assumption. Can this assumption be made without loss of generality? 4) Can we prove
an analogue of Theorem 16 for non-local boxes? Ideally, we would like to prove that for
secure computation with non-local boxes, communication does not help. Indeed, due to the
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reduction from non-local boxes to OT boxes and vice versa, this would imply that NLord
ε ( f )

is exactly OTε( f ), and not just an upper bound.

Acknowledgements

We would like to thank Troy Lee and Falk Unger for pointing out the deterministic proto-
col for Disjointness. We thank Ronald de Wolf for suggesting a randomized protocol for
disjointness with bias 1/ log(n), using Valiant-Vazirani.

References

[1] Jonathan Barrett and Stefano Pironio. Popescu-Rohrlich correlations as a unit of non-
locality. Phys. Rev. Lett., 95:140401, 2005.

[2] D. Beaver. Correlated pseudorandomness and the complexity of private computations.
In Proc. 28th STOC, pages 479–488, 1996.

[3] A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure
computation. In Proc. CRYPTO ’99, pages 80–97, 1999.

[4] Amos Beimel and Tal Malkin. A quantitative approach to reductions in secure compu-
tation. In Proc. TCC’04, volume 2951, pages 238–257, 2004.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In Proc. 20th STOC, pages 1–10, 1988.

[6] Gilles Brassard, Harry Buhrman, Noah Linden, Andre Allan Méthot, Alain Tapp, and
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