&4 ||Plcs Leibniz International Proceedings in Informatics

Bounded Size Graph Clustering with
Applications to Stream Processing

Rohit Khandekar!, Kirsten Hildrum!, Sujay Parekh’,
Deepak Rajan!, Jay Sethuraman?, and Joel Wolf!

1IBM T.J.Watson Research Center

{rohitk, hildrum, sujay,drajan, jlwolf}@us.ibm.com

2Columbia University
js1353@columbia.edu

ABSTRACT. We introduce a graph clustering problem motivated by a stream processing application.
Input to our problem is an undirected graph with vertex and edge weights. A cluster is a subset of
the vertices. The size of a cluster is defined as the total vertex weight in the subset plus the total
edge weight at the boundary of the cluster. The bounded size graph clustering problem (BSGC) is to
partition the vertices into clusters of size at most a given budget and minimize the total edge-weight
across the clusters. In the multiway cut version of the problem, we are also given a subset of vertices
called terminals. No cluster is allowed to contain more than one terminal. Our problem differs from
most of the previously studied clustering problems in that the number of clusters is not specified.
We first show that the feasibility version of the multiway cut BSGC problem, i.e., determining if there
exists a clustering with bounded-size clusters satisfying the multiway cut constraint, can be solved
in polynomial time. Our algorithm is based on the min-cut subroutine and an uncrossing argument.
This result is in contrast with the NP-hardness of the min-max multiway cut problem, considered by
Svitkina and Tardos (2004), in which the number of clusters must equal the number of terminals. Our
results for the feasibility version also generalize to any symmetric submodular function. We next
show that the optimization version of BSGC is NP-hard by showing an approximation-preserving
reduction from the %-balanced cut problem. Our main result is an O(log2 n)-approximation to the
optimization version of the multiway cut BSGC problem violating the budget by an O(logn) factor,
where 1 denotes the number of vertices. Our algorithm is based on a set-cover-like greedy approach
which iteratively computes bounded-size clusters to maximize the number of new vertices covered.

1 Introduction

Graph partitioning and clustering are fundamental optimization problems with applica-
tions to a variety of areas like VLSI design, divide-and-conquer algorithms, computer vi-
sion, data analysis, discovering communities in social networks, and learning. In this pa-
per we introduce a graph clustering problem motivated by System S, a stream computing
system [1] being developed at IBM research. Consider a system that takes, as input, a high-
throughput data stream such as live option trading or stock feeds in financial services, phys-
ical link statistics in networking and telecommunications, sensor readings in environmental
monitoring and emergency response, or live experimental data in scientific applications.
This system is required to generate responses derived from on-line processing of the data
© Khandekar et al.; licensed under Creative Commons License-NC-ND.

Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.

Editors: Ravi Kannan and K. Narayan Kumar; pp 275-286

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, Germany.
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2325

276 BOUNDED SIZE GRAPH CLUSTERING WITH APPLICATIONS TO STREAM PROCESSING

in real-time. An application in this system can be modeled as a graph in which the ver-
tices represent domain-specific operators consuming and producing streams of data, and the
edges represent the streams themselves.

It is very convenient to compose these applications out of type-generic, built-in stream
processing operators [7]. But these operators are usually small: they typically spend more
effort sending and receiving data than they do in actual processing. Taken individually, such
operators can therefore become performance bottlenecks in the system. The good news is
that it is actually possible to “fuse” operators at compile time. If two adjacent operators are
fused, the downstream operator is invoked by means of a function call from the upstream
operator. As a result, there is effectively no cost to sending data between fused pairs of
adjacent operators.

Thus, to efficiently deploy such a CPU-intensive application in a distributed comput-
ing environment, one has to decide how to partition the operators into clusters, for example
one for each computing host. The total CPU requirement for a cluster of operators comes
from two sources. The first is the computational needs of the operators in the cluster. This
can be modeled by associating a non-negative weight with each operator u. The total com-
putational needs of a cluster is then the sum of its operators weights. The second is the
communication overhead, incurred at the boundary of the cluster, for receiving and sending
streams to operators outside the cluster. This can be modeled by associating a non-negative
weight with each edge e = (u,v). The total communication needs of a cluster is then the
cut-weight with respect to these edge-weights. As noted, an edge contained within a cluster
is converted into a function-call, incurring negligible overhead and as such not accounted
for in the computational needs of the cluster. The consideration of the CPU requirement
imposes a natural constraint on the clustering: the total CPU requirement of each cluster
must be at most the capacity of a host.

We frequently encounter additional resource constraints that cannot be captured as
CPU requirements. For example, some operators make extensive use of specific hardware
(such as a network card). Clustering two such operators together would cause poor perfor-
mance. To handle such situations, we include in the problem a set of terminals T and insist
that each cluster contain at most one terminal from T.

A high-throughput application, if not carefully deployed, may overload the network
capacity. Therefore, a natural goal when computing a bounded-size clustering is to mini-
mize the total edge-weights across the clusters.

Formal problem definition. With the above motivation, we introduce the Bounded-Size
Graph Clustering (BSGC) problem, defined formally as follows. Consider an undirected
graph G = (V,E) on n vertices with vertex-weights w, € Q. and edge-weights w, €
Q.. Here Q4 denotes the set of non-negative rational numbers. For a subset S C V, let
5(S) denote the set of edges with exactly one end-point in S, w(S) = Y ,c5 Wy, w(6(S)) =
Yecs(s) We, and size(S) = w(S) +w(4(S)). We are also given a set of terminals T C V and
a budget B € Q. The BSGC problem is to find a partitioning of the vertex set into clusters
S1,..., Sk such that

e the size of each cluster is bounded: size(S;) < B forall j;

e cach cluster contains at most one terminal, i.e., |S; N T| < 1 for all i; and

KHANDEKAR ET AL. FSTTCS 2009

o the total edge-weight across the clusters, 3 Y5_; w(d(S;)), is minimized.
We call a clustering that satisfies the first two properties feasible. From the second condition,
it is clear that the number of clusters k is at least the number of terminals |T|. However, k is
not given as input, and it may be larger than the number of terminals.

Our results. Our main results are summarized below:

1. First, in Section 2, we consider the feasibility version of BSGC, i.e., to compute a feasible
clustering without considering the total cut-weight. We show that we can compute a
feasible clustering, if it exists, in polynomial time. Our algorithm uses a minimum cut
subroutine and an uncrossing argument to make the clusters disjoint. This result gen-
eralizes to any symmetric submodular function [6]. See Section 2.1 for more details.

2. In Section 3.1 we show that the BSGC problem is NP-hard by an approximation pre-
serving reduction from the %-balanced cut problem. Recall that the best-known ap-
proximation for the %-balanced cut problem that does not violate* the balance con-
straint is O(log n) [10].

3. Finally, in Section 3.2, we present a pseudo-approximation for the optimization ver-
sion of the problem. More precisely, we present a deterministic polynomial-time algo-
rithm that computes a clustering {Sy, ..., Si} such that |S;NT| < 1 and w(6(S;)) <
O(logn) - (B —w(S;)) for all i, and the total cut-weight is O(log? 1) times the optimum
cut-weight. Note that the above condition implies that (clogn) - w(S;) + w(4(S;)) <
(clogn) - B for some absolute constant ¢ > 0, i.e., the budget is violated by an O(log 1)
factor.

Related work. A problem that is closely related to the feasibility version of BSGC was
studied by Svitkina and Tardos [11]. In that problem, called min-max multiway cut, an edge-
weighted undirected graph with terminals T C V is given. The goal is to partition vertices
into |T| clusters such that each cluster contains exactly one terminal and the maximum cut
value of a cluster is minimized. A crucial difference is that BSGC does not require the num-
ber of clusters to be exactly |T|. Svitkina and Tardos show that the min-max multiway cut
problem is NP-hard and present an O(log? n)-approximation® for it. They do so using, as
a subroutine, the maximum-size bounded capacity cut problem (MaxSBCC), defined as fol-
lows: Given an undirected graph G = (V, E) with vertex and edge weights, two vertices
s,t € V, and a budget B > 0, find an s-t cut (S,V \ S) such that w(6(S)) < B and w(S)
is maximized. Svitkina and Tardos iteratively solve MaxSBCC with varying vertex weights
and combine those cuts to compute their final clustering.

Several cut problems with budget constraints were also considered by Engelberg et
al. [5]. In particular, they consider budgeted multiway cut problems in which there is a
budget on the total cut-value and the objective is either to maximize the number of terminal-
pairs separated, to maximize the number of terminals that are completely separated from

*We can obtain an O(/log 1) approximation if we violate the budget by a constant factor [2].

*In fact, they present an O(log® 1)-approximation using a subroutine for finding minimum cuts with the
specified number of vertices. Using an improved O(logn)-approximation for the subroutine [10], their algo-
rithm can be shown to yield an O(log? 1)-approximation.

277

278

BOUNDED SiZE GRAPH CLUSTERING WITH APPLICATIONS TO STREAM PROCESSING

other terminals, or simply to maximize the number of connected components. They use
Récke’s tree decomposition [10] and Gomory-Hu trees [8] to design their approximation
algorithms.

Most graph clustering problems in the literature specify the number of clusters required
as part of the input. One important exception is correlation clustering, introduced by Bansal et
al. [3]. In this problem, the edges of an undirected graph are labelled with either "+” or " —".
Given a clustering of the vertices, let the number of “agreements” be the number of + edges
inside the clusters plus the number of — edges across the clusters. Similarly the number
of “disagreements” is the total number of edges minus the number of agreements. Bansal
et al. and several subsequent papers design approximation algorithms for maximizing the
number of agreements or minimizing the number of disagreements.

Finally, Khandekar et al. [9] consider a variant of our graph clustering problem (with
significantly more elaborate practical constraints). Their (partially heuristic) solution is, in
fact, implemented as a key component in System S [1].

Our techniques. In contrast to min-max multiway cut, relaxing the constraint on the num-
ber of clusters makes it possible to find a polynomial-time algorithm for the feasibility ver-
sion of BSGC. For each vertex v, our algorithm computes a cluster, of size at most B, contain-
ing v and at most one terminal. To this end, we first augment the graph by adding a new
vertex with edges to all the old vertices and “translate” the vertex weights into weights on
the new edges. Later we show that the problem of computing a desired cluster can be re-
duced to minimum cut computations in the augmented graph. The clusters thus computed
may not be disjoint, however. The algorithm then systematically uncrosses the clusters to
make them disjoint, using an argument similar to [11], while satisfying the budget and the
multiway cut constraints. This result applies more generally: if the size of a cluster S is de-
fined as }_,c5 wy, + f(S), where f is a symmetric submodular set function, we can determine
in polynomial time if there exists a clustering such that each cluster contains at most one
terminal and has size at most B.

The optimization version of BSGC is different from the traditional graph partitioning
into clusters of bounded-size, because the size of a cluster includes its cut-cost. Therefore
the hierarchical partitioning approach — iteratively splitting clusters into two until the size
constraints are satisfied — does not work for the BSGC problem. For example, after splitting
the given graph into two, there may not exist a feasible clustering respecting this split, even
if the original graph has a feasible clustering.

Our approach for the optimization problem resembles that of Svitkina and Tardos [11].
We think of our problem as an instance of the set-cover problem where the sets are the
subsets S C V such that [SNT| < 1and size(S) < B. Let the cost of such a set be w(J(S)).
The problem is then to find a minimum-cost collection of sets that covers all the vertices.
Now in order to use the greedy algorithm, we need the following oracle: given a subset of
vertices not yet covered, find a set S that minimizes the ratio of w(4(S)) and the number of
vertices in S that are not yet covered. Unfortunately the oracle itself is NP-hard. We then
use a hierarchical tree-decomposition of graphs by Récke [10] to get a O(log n)-approximation

KHANDEKAR ET AL. FSTTCS 2009

to the oracle. More precisely, we find S C V such that
(clogn)-w(S)+w(6(S)) < (clogn)-B

for an absolute constant ¢ > 0 that also minimizes the desired ratio to within an O(logn)
factor. This, combined with a standard set-cover analysis, yields our final result. Once again
we use an uncrossing argument to make the clusters disjoint.

2 The feasibility version

Since the definition of the size of a cluster involves both the vertex and edge weights, it is not
clear a-priori if the feasibility version, i.e., to determine if there exists a feasible clustering, is
tractable. For example, the clustering obtained by putting each vertex into a separate cluster
may not be feasible. Assuming that the problem is feasible, we now present a polynomial-
time algorithm for finding a clustering {Sy, ..., S¢} such that size(S;) < Band |S;NT| <1
for all i.

Our idea is to construct a new graph in which the vertex weights are converted into
edge weights on artificial edges. This means our algorithm can work just with cuts. We
construct this graph G’ = (V/,E’) as follows. (See Figure 1.) Let V' = V U {s} for a new
vertex s and E' = EU{(s,v) | v € V}. Each edge e € E’ UE inherits its weight w,, and
e = (s,v) € E' gets a weight of w, = w, for all v € V. Note that for a cluster S C V, we have
that size(S) equals the capacity of the cut (S, V' \ S) in G'.

In a problem instance without terminals, we note that Gomory-Hu trees [8] allow us
to determine feasibility. Consider the Gomory-Hu tree 7 of G’. In a feasible instance, the
minimum cut in G’ between s and any other vertex u is at most B, and the edges in 7
that are incident to s have weight at most B each. The removal these edges from T gives
a partitioning of vertices into clusters, say Sy,...,Sk. It is easy to see that this is a feasible
clustering for our problem. If there are edges in 7 that are incident to s and have weight
greater than B, the problem instance is not feasible.

To approach the problem with terminals, we start by stating a useful lemma that will
simplify the presentation of our algorithm. The following lemma states that it is enough to
compute possibly overlapping clusters that satisfy the given constraints. The basic technique
used in this lemma is systematic uncrossing.

LEMMA 1. Given clusters {Sy,...,S¢} such that U;S; = V and |S;NT| < 1 for all i, we
can compute in polynomial time clusters {Uy, ..., U} such that U;U; = V, [U;NT| < 1,
w(U;) < w(S;), w(d(U;)) <w(6(S;)) for alli, and moreover U; NU; = @ fori # j

PROOF. For two disjoint subsets A,B C V, letw(A,B) = {w, | e = (u,v),u € A,v € B}
be the total edge-weight between A and B. We define an uncrossing operation for two
intersecting sets A and B as follows. If w(ANB, A\ B) < w(ANB,B\ A),welet A’ — A\ B
and B’ «— B, elsewelet A’ < Aand B’ — B\ A. Note that we have: w(A’) < w(A),w(B’) <
w(B),w(6(A") <w(5(A)),w(6(B")) <w(d(B)),and A’NB' = Q.

We apply the above uncrossing operation to Sy, .. ., Sk systematically, obtaining Uj, .. .,
Uy as follows. We first let U; = S; and make it disjoint from S, ..., Sk in that order. Then
we let Up = Sy and repeat. In the end, we have sets U; with the desired properties. |

279

280 BOUNDED SIZE GRAPH CLUSTERING WITH APPLICATIONS TO STREAM PROCESSING

Figure 1: Construction of graph G’. The capacity of the cut (C,(V \ C)U {s}) in G’ is
size(C).

LEMMA 2. For any v € V, in polynomial-time, we can find a cluster S, C V such that
v €S, |SyNT| <1,andsize(S,) < B.

PROOF. Since BSGC is feasible, for any v € V, the cluster S} in a feasible clustering satisfies
the above conditions.

If v is a terminal, we find a minimum cut in G’ that separates v from (T \ {v}) U {s}
by doing a single min-cut computation.} Let S, denote the vertices on the v-side of this cut.
From the minimality of the cut, we have size(S,) < size(S}) < B.

If v is not a terminal, we try all possible values of S; N T. It can either be empty or a
singleton set containing a terminal. If S; N T = @, we can find a minimum cut in G’ that
separates v from T U {s}. On the other hand, if S; N T = {t}, we can find a minimum cut
in G’ that separates {v, ¢} from (T \ {t}) U {s}. In either case, we can find S, satisfying the
desired properties. n

We can now find a feasible clustering in polynomial-time as follows.

1. Compute clusters S, for all v satisfying the conditions in Lemma 2.
2. Systematically uncross clusters S, to make them disjoint using Lemma 1.

2.1 Generalizations to symmetric submodular functions

A function f : 2V — R is called submodular if f(A) + f(B) > f(ANB) + f(A U B) holds
for all A,B C V, and it is called symmetric if f(A) = f(V \ A) holds for all A C V. For
an undirected graph G = (V,E) with edges weights w,, the function f(S) = w(d(S)) for
S C V is symmetric and submodular. We can extend the results for the feasibility version
of the problem to general symmetric submodular functions. The feasibility version of the
bounded size clustering problem for symmetric submodular function is defined as follows.
Given a symmetric submodular function f : 2V — R, a weight functionw : V — R, a set
of terminals T C V, and a budget B, find a partitioning of V into clusters such that for each
cluster S C Vwehave [SNT| <1and size(S) =Y cswy + f(S) < B.

We now briefly outline how Lemmas 1 and 2, and hence our algorithm for the feasibility
version, can be generalized to symmetric submodular functions. The generalization of the

¥This can be done by shrinking (T \ {v}) U {s} into a super-vertex s’ (or alternately adding very high weight
edges between vertices in (T \ {v}) U {s}) and finding a min-cut separating v and s’.

KHANDEKAR ET AL. FSTTCS 2009

proof of Lemma 1 follows frorrL the observition that for - any two sets A,B CV, weihave
f(A\B)+ f(B\ A) = f(ANB) + f(BNA) = f(ANB) + f(BUA) < f(A) + f(B) =
f(A)+ f(B). Thus either f(A\ B) < f(A)or f(B\ A) < f(B) holds.

To generalize the proof of Lemma 2, we introduce a new element s to the ground set V
and define a symmetric submodular function ¢ : VU {s} — R, as

_ ZZ}GA Wy, if s Q Ar
§(A) = { Yoga Wy, ifs € A.

The function g corresponds to adding edges of weight w, between s and v € V. We also
lift f from V to V U {s} by defining f(A) = f(VNA) for A C VU {s}. Itis easy to see
that for any A C V, we have size(A) = f(A) + g(A). Now note that a set separating two
subsets A1, A C V of elements that minimizes the symmetric submodular function f + g
can be computed by “merging” the elements A; (respectively, A;) into a super-element a;
(respectively, a5) and using standard algorithms for symmetric submodular function mini-
mization [6] to separate elements 21 and a,. The proof of Lemma 2 thus holds for symmetric
submodular functions as well.

3 The optimization version
3.1 NP-hardness

We present an approximation preserving reduction from the %—balanced cut problem, which
is NP-hard, to the BSGC problem with T = @. The 3-balanced cut problem is defined as
follows: given undirected graph G = (V,E) on n vertices with vertex weights w, > 0
and edge weights w, > 0, partition the vertices into two non-empty clusters S C V and
V' \ S such that min{w(S),w(V \ S)} > 1w(V) and w(5(S)) is minimized. This problem is
NP-hard [4] and the best-known approximation for this problem that does not violate* the
balance constraint is O(logn) [10].

LEMMA 3. If there is a p-approximation for the BSGC problem with T = &, there is a p-
approximation to the %—ba]anced cut problem.

PROOF. Given an instance (G, w) of the %-balanced cut problem, we create an instance of

the BSGC problem as follows. We scale the vertex and edge weights so that 1 = min,cy w, >
2Y crwe and let B = 3w(V)+ 3 and T = @. We then compute a p-approximation for
the BSGC problem. We can assume, without loss of generality, that the output consists of
exactly two clusters, as follows. As long as we have at least three clusters, say S1, Sz, S3 with
w(S1) < w(S2) < w(S3), we can merge S; and S, into a single cluster without violating the
budget constraint. This merge does not increase the total edge-weight across the clusters.
Since min, w, = 1, it is now easy to see that the resulting two clusters, say Siand §, =
V' \ Sy, satisfy the balance condition and form a p-approximation for the %-balanced cut
problem. |

3.2 The algorithm

In this section, we show how to find {S;,...,S;} such that |S;NT| < 1 and w(4(S;)) <
O(logn) - (B — w(S;)) for all i such that the total cut-weight is O(log?® 1) times the optimum

281

282 BOUNDED SIZE GRAPH CLUSTERING WITH APPLICATIONS TO STREAM PROCESSING

1. Initialize U « V be to the set of not-yet-covered vertices.
2. Initialize the set of clusters S « @.
3. While U # @ do:

(a) Find an approximately valid set S C V such that

w(6(S)) 20PT
Sl < (clogn) - T

(b) AddSto S.
(c) LetU «— U\ S.
4. Uncross the clusters in S.

Figure 2: Algorithm for BSGC

cut-weight. We think of BSGC as a set-cover problem. The elements to be covered are the
vertices and the sets are “valid” subsets of V.

DEFINITION 4. A subset S C V is called valid if |SNT| < 1 and w(S) + w(é(S)) < B. A
subset S C V is called approximately valid if |SN T| < 1 and

(clogn)-w(S) +w(4(S)) < (clogn)-B

holds, where ¢ > 0 is an absolute constant, the value of which will be fixed later.

Let the cost of S be w(4(S)). Clearly the optimum covers all the elements using only
valid subsets. Let OPT denote the cost of this optimum set cover. Note that the number
of sets is exponential in general. However the greedy set cover algorithm only needs the
following oracle: given a subset U C V of “yet to be covered” vertices, find a valid set S that
ufé‘;(a) . Unfortunately, even this oracle is NP-hard, and hence we use an
approximation for the oracle. Our algorithm, given in Figure 2, picks approximately valid
subsets one by one to cover all the vertices. Then, using Lemma 1, it uncrosses the clusters

to make them disjoint.

minimizes the ratio

Finding a minimum ratio approximately valid set

LEMMA 5. Given a non-empty subset U C V, we can find in polynomial time an approxi-
mately valid subset S C V such that

w(6(S)) 20PT
Sl < (clogn) - -

It is easy to see that this lemma combined with the analysis of the greedy set-cover
algorithm yields our result.

KHANDEKAR ET AL. FSTTCS 2009

Proof of Lemma 5. We argue that there exists a valid subset S* C V such that LT;{%S;)‘) <
2‘0%. Consider the optimum clustering {S} }. Note that

min 2005 _ Twl0(57) _ 2001
i |synul X |s;nul uj

w(4(57))
[S:nU]

We next use the following tree decomposition result of Riacke [10]. Given an edge-
weighted undirected graph G = (V, E), a tree decomposition 7 is an edge-weighted rooted
tree which has a one-to-one correspondence between the vertices V and the leaves of 7.

Thus the cluster S7 that minimizes the ratio is a candidate set.

THEOREM 6. [Rédcke [10]] There exists a probability distribution on polynomially many tree
decompositions T such that for all sets S C V and all T, we have w(4(S)) < w((S)) and

E7[wg(5(5))] < (clogn) - w(5(S))

for an absolute constant ¢ > 0. Here w(6(S)) denotes the minimum cut in T that separates
leaves in S from the other leaves. Moreover such a distribution and tree decompositions can
be found in polynomial time.

Let the constant ¢ > 0 be as given in Theorem 6. Our algorithm first computes the tree
decompositions given in Theorem 6 and assigns a weight of w, to each leaf corresponding to
vertex v in each of these tree decompositions. From Theorem 6 and an averaging argument,
there exists a tree decomposition, say 7, in this collection such that

wr+(6(S%))

4 V< el Rl
S < (clogn)

TZ‘T and w+(8(S7)) < (clogn) - (B —w(S")).

Of course, we do not know which of the polynomially many tree decompositions 7" corre-
sponds to a-priori. Therefore our algorithm tries each of these tree decompositions 7 and
computes the set S, if it exists, such that

SNT| <1 and wg(6(S)) < (clogn)- (B —w(S)) (1)
holds and such that
wr(5(5)) ®
|SNUj

is minimized. Finally, it outputs the set computed in this manner with the minimum ra-
tio (2).

Now fix a tree decomposition 7. In order to compute a set S satisfying (1) with the
minimum ratio (2), the algorithm runs the following dynamic program. For each value of
ke {1,...,|U|} and each possible weight w < B, it computes S, if it exists, such that w(S) =
w, |SNT| <1,[SNU| =k, and w7 (4(S)) is minimized. If w7 (6(S)) < (clogn) - (B —w)
holds, it stores the set S as a candidate set. In the end, it outputs the candidate set with
minimum ratio (2).

283

284 BOUNDED SIZE GRAPH CLUSTERING WITH APPLICATIONS TO STREAM PROCESSING

The dynamic program. To this end, using standard scaling techniques we assume that
the vertex and edge weights in 7 are polynomially bounded in n. More precisely, we can
assume without loss of generality that w, < B for all v € V; otherwise no feasible clustering
exists. Next we shrink all the edges e € E with w, > B, since such edges cannot cross
clusters in a feasible clustering. Furthermore, for all v such that w, < B/n, we set w, = 0,
and for all e such that w, < B/n?, we set w, = 0. In doing so, we can only violate the
budget by an extra constant factor. By scaling if necessary, we assume that the vertex and
edge weights and the budget B are non-negative integers. We also assume for simplicity
that clog 7 is an integer.

We can assume, without loss of generality, that 7 is a binary tree. If some internal node
v has [> 2 children, we can replace v by a binary tree with / leaves and attach the I children
to the I leaves one-to-one. We also give a cost of 1 + (clogn) - B to the edges of this new
binary tree. Since w7 (6(5*)) < (clogn) - B, no edge of such a high cost will be present in
the cut w7 (4(S)) output by the dynamic program. Thus, computing the desired set S in the
original tree is equivalent to computing S in the transformed binary tree.

For anode v € 7, let 7, denote the subtree hanging from node v (including node v).
Now for each node v € 7, our dynamic program builds the following table. For each I C T
with |I| < 1, integer weights w < B and wy, w, < (clogn) - B, and an integer k < |U|, we
store a subset S[v, I, w, w1, wy, k] of the leaves in 7, if it exists, such that

1. SNT =1,

2. w(S)=w,

3. the minimum cut in 7, separating S from the remaining leaves in 7, has weight w,

4. the minimum cut in 7, separating S from the remaining leaves in 7, as well as v has

weight w,, and

5 |1SNU| =k.
Observe that a cut separating S from the remaining leaves in 7, may contain node v on
either side of the cut. Therefore, w; < wy. It is easy to see that this table is of polynomial
size. The final output of the dynamic program is computed as follows: among all possible
sets S[r, I, w, w1, wy, k|, where r is the root of 7, output a set satisfying (1) that minimizes the
ratio (2).

We next show how to compute this table in bottom-up fashion in polynomial time. If
v is a leaf node, the table has no entries. For internal nodes v that have leaf nodes as its
children, it is easy to compute such a table. For all other internal nodes v, let p and g be its
children and assume that such tables are already computed for nodes p and g. Let wy, (resp.
Wyy) denote the weight of edge (v, p) (resp. (v,9))in 7.

Given values of (I, w, w1, wy, k), we find disjoint sets

SP = S[p, IY, wf, wl, wh, kP]

and
S1=S]g, Iq,wq,w'{, wg, k7]

if they exist, for all possible decompositions I = I U 19, w = w? 4+ w9, and k = kP + k7, and

all possible choices of wf , wi’, wg , wg, such that the following conditions hold:

wy = min{w! + w] + min{wo,, wo, }, wh + wi, w! +wl}, 3)

KHANDEKAR ET AL. FSTTCS 2009

and
wy = min{w), W} + woy } +min{w], w + wy,}. (4)

Note that the expression (3) considers all possible ways of realizing a cut with weight w; that
separates S from the remaining leaves in 7 ,. In fact, the three terms correspond to whether
nodes p and g are on the same side of the cut as sets S and S7, respectively. Similarly, the
expression (4) considers all possible ways of realizing a cut with weight w, that separates S
from the remaining leaves in 7, as well as v.

If there exist such sets S” and S for any such decomposition, ties broken arbitrarily, we
store S = SP U S7 as the entry S[v, I, w, w1, wy, k]. Otherwise we leave the entry empty. The
correctness and the polynomial size of the dynamic program follows easily.

4 Conclusions

A consequence of our work is that the min-max multiway cut problem becomes polynomial-
time solvable if there are allowed to be clusters without terminals. This raises a question of
whether other graph problems become similarly easier if the number of clusters is not spec-
ified as part of the input. Our work also introduces many interesting open questions. Since
the feasibility version of BSGC is solvable in polynomial time, can one approximate BSGC, say
within a poly-logarithmic factor, without violating the budget constraint? In stream process-
ing applications, it is often important to find a clustering to minimize the maximum latency
of a path taken by a data stream, where an edge on a path contributes to the latency only if
it goes between two clusters. Studying the approximability of this problem is an important
research direction.

Acknowledgments

We would like to thank Nikhil Bansal for useful discussions.

References

[1] System S stream computing system. http://www-01.ibm.com/software/data/infos-
phere/streams.

[2] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embed-
dings and graph partitioning. In Proceedings, Symposium on Theory of Computing (STOC),
pages 222-231, 2004.

[3] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learn-
ing, 56:89-113, 2004.

[4] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is NP-
hard. Inform. Process. Lett., 42:153-159, 1992.

[5] Roee Engelberg, Jochen Kénemann, Stefano Leonardi, and Joseph Naor. Cut problems
in graphs with a budget constraint. J. Discrete Algorithms, 5(2):262-279, 2007.

[6] S. Fujishige. Submodular Functions and Optimization. North-Holland, 1991.

[7] B.Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADE: The System S declarative
stream processing engine. In Proceedings, ACM SIGMOD Conference, 2008.

285

286 BOUNDED SIZE GRAPH CLUSTERING WITH APPLICATIONS TO STREAM PROCESSING

[8] R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. Soc. Indust. Appl. Math.,
9(4):551-570, 1961.

[9] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K.-L. Wu, H. Andrade, and
B. Gedik. COLA: Optimizing stream processing applications via graph partitioning. In
Proceedings, Middleware Conference, 2009.

[10] Harald Récke. Optimal hierarchical decompositions for congestion minimization in
networks. In Proceedings, Symposium on Theory of Computing (STOC), pages 255-264,
2008.

[11] Zoya Svitkina and Eva Tardos. Min-max multiway cut. In Proceedings, Approx-Random,
pages 207-218, 2004.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

