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1 Introduction

Computational complexity is often described as the study of what makes certain compu-
tational problems inherently difficult to solve. Of course, it has proved to be extremely
difficult to establish unconditional lower bounds, but the theory has provided us with im-
portant tools for identifying intractable problems. If one were to pick out the most impor-
tant contribution that complexity theory has made to the theory and practice of comput-
ing, it is arguably in introducing the notion of NP-completeness. The ability to identify
NP-complete problems and to construct reductions are skills that are taught to virtually all
students of computer science. However, while thousands of problems have been identified
as NP-complete, and we have a strong, if informal, understanding of what makes a problem
hard, this does not amount to a theory of complexity. We understand that an exponential,
unstructured search space leads to difficulty, but we do not have an account of what kind of
structure in the search space allows for tractable solutions. This is a distinct problem from
our inability to prove lower bounds, i.e. to explain why NP-complete problems are truly
intractable. It is the problem of explaining what makes certain problems NP-complete in
the first place. It may even be argued that, at this point, we do not know what such a theory
of difficulty might look like.

In this talk, I review results from descriptive complexity that relate to this issue. The
best known results of descriptive complexity are about the characterisations of complexity
classes in terms of logical definability. I would argue that one important contribution of
these results is the separation they provide between the specification of a decision problem
and the structure against which this specification is checked. The first is usually formalised
as a sentence in some suitable formal logic, while the latter is usually a relational struc-
ture of some kind. This separation allows some insight into sources of complexity. One
can measure the richness of the language in which specifications are written and one can
measure the density of the structures considered. These are two aspects of work in descrip-
tive complexity that I will consider. In these notes to accompany the talk, I briefly present
some definitions and the main results. Many of these are historical, but I take them up to
recent work and provide pointers to the literature. After presenting some background and
definitions I briefly consider the complexity of specification languages in Section 2 and of
structures at some length in Section 3. The former leads to some recent work on the question
of characterisations of P, while the latter leads to connections with paramterized complexity.
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2 Complexity of Specification

The general situation we consider is of a problem where an instance is a structure (such as a
graph) and the problem to be decided is given by a formula in some logic (typically an exten-
sion of first-order logic). Indeed, in the examples I consider in this paper, I confine myself to
decision problems on graphs. Consider, for example, some classical NP-complete problems
on graphs: INDEPENDENT SET, DOMINATING SET, 3-COLOURABILITY and HAMILTONIC-
ITY. In the first two cases, the input is a graph together with an integer parameter, while in
the second case it consists of a graph alone. As we shall see, it matters whether we consider
the integer parameter to be part of the specification of the problem, or the instance.

Suppose then that we are given a graph G and a formula ¢ of first-order logic in the
language with one binary relation. How hard is it to decide whether G |= ¢? There are
essentially two versions of this question that interest us here (called the data complexity and
the combined complexity of first-order logic, respectively by Vardi in [34]).

In the first, we ask how complex can be the set of graphs that satisfy a fixed first-order
sentence. The answer is that it is always decidable in logarithmic space by a straightforward
algorithm (and, indeed the set is in fact in ACP [1]). Moreover, there are problems in L which
one can easily show are not definable by any first-order sentence. In particular, there is no
sentence that defines the graphs with an even number of vertices or the connected graphs
(see [15, 26] for proofs). It is also not difficult to show that the Hamiltonian graphs, or the 3-
colourable graphs are provably not first-order definable. The conclusion one can draw from
this is that the expressive power of first-order logic is rather weak. This is one reason that
research in finite model theory has focused on extensions of the logic.

On the other hand, it is easy to write, for each k a first-order sentence that defines the
graphs that contain an independent set of k vertices, or a dominating set with k vertices.
Thus, if one considers the combined complexity of first-order logic, i.e. the following de-
cision problem: given a graph G and a first-order formula ¢, determine whether G = ¢,
then it is clearly hard. In fact, the problem is PSpace-complete. In terms of parameterized
complexity, taking the length of ¢ as parameter, the problem is AW[*]-complete. Moreover,
restricting the first-order sentences to a fixed-number of quantifier alternations yields com-
plete problems at every level of the W-hierarchy and thus the problem of evaluating first-
order sentences in graphs is central to parameterized complexity. I return to connections
with parameterized complexity in the next section. Futher details may also be found in the
excellent text [19].

Searching for a specification language more expressive than first-order logic, the logi-
cian may turn first to second-order logic. Here, it is known since the work of Fagin [17]
that the existential fragment is rich enough to express all (and only) the problems in NP.
It follows that second-order logic expresses all decision problems in the polynomial hierar-
chy [32]. From the complexity-theoretic point of view, the interesting logics are intermediate
in expressive power between first and second-order logic. In particular, it remains an open
question whether there is a logic that expresses exactly the polynomial-time decidable prop-
erties of graphs.

Immerman [25] and Vardi [34] showed that LFP, the extension of first-order logic with
inductive definitions expesses exactly the polynomial-time properies of ordered graphs but
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this is too weak in general. An extension of LFP with a mechanism for counting was pro-
posed by Immerman, but shown to be too weak in [3]. Since then, a number of further logic
have been proposed that all properly extend the expressive power of LFP with counting and
for which it remains an open question whether they can express all polynomial-time proper-
ties. They include the language of choiceless polynomial-time with counting of Blass, Gurevich
and Shelah [2] and the language of specified symmetric choice of Gire and Hoang [22, 12]. A
significant recent development in this direction is the proposal to extend LFP with linear
algabraic operators [8]. The mutual interrelationship between these various extensions also
remains to be explored (see [13] for related results). A useful recent survey on the problem
of characterising P is given by Grohe in [24].

3 Resticted Graph Classes

We now turn our attention to the combined complexity of first-order logic and to the ques-
tion about how constraints on the structure can limit the search space and make hard prob-
lems tractable. As mentioned above, the problem of deciding, given a graph G and a first-
order sentence ¢ whether G |= ¢ is PSpace-complete, while for any fixed ¢, the class of
graphs that satisfy it is in L. To be more precise, if ¢ has length I and m distinct variables
and G is a graph on n vertices, then G |= ¢ can be decided in time O(In™) and space
O(mlogn). In [33], Stolboushkin and Taitslin asked whether there is a constant ¢ such that
every first-order sentence defines a problem decidable in time O(n°). They conjectured that
this was not the case and noted that a proof of the conjecture would imply a separation of P
from PSpace. A more uniform version of their question would ask for a computable func-
tion that maps ¢ to a O(n°) clocked algorithm for deciding the models of ¢. The existence
of such a function would imply that the problem of deciding whether G |= ¢ was fixed-
parameter tractable. Since this problem is AW[*]-complete (see [19] for details) this would
imply the collapse of the edifice of parameterized complexity.

Indeed, many natural problems that are hard from the point of view of parameterized
complexity can be naturally formulated in first-order logic. As an example, consider two
problems mentioned above: INDEPENDENT SET and DOMINATING SET. They are complete
for W[1] and W|2] respectively and, as noted above, naturally expressed by a (parameter-
dependent) first-order formula.

A subject of intensive investigation in recent years has been the fixed-parameter tractabil-
ity of otherwise hard problems, when the class of input graphs is restricted. A typical exam-
ple is the fixed-paramter tractability of DOMINATING SET when restricted to planar graphs.
Indeed, for many interesting restrictions on graphs, one can show that first-order satisfac-
tion is itself fixed-parameter tractable and as a result the tractability of a whole host of other
individual problems follows. In the rest of this section, we briefly survey results that estab-
lish the fixed-parameter tractability of first-order satisfaction on a number of such classes.
The classes we examine are all classes of sparse graphs. That is, though the classes may be
defined in other terms, they have the property that the number of edges in a graph in the
class as a function of the number of vertices does not grow very fast. It should be remarked
that there are other classes of graphs (such as those of bounded cliquewidth) which are not
sparse in this sense, but where it is known that first-order logic (and, indeed, even monadic
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second-order logic) admit fixed-parameter tractable algorithms for the satisfaction problem
(see [6, B]).

Sparse Classes The relationships between various classes of sparse graphs that have been
studied are depicted in Figure 1.

acyclic graphs
planar graphs

[bounded treewidth ]
bounded genus
L —

\f

bounded degree

{
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Figure 1: Relationships between sparse graph classes.

Among the restrictions given in Figure 1, those of acyclicity and planarity are of a dif-
ferent character to the others in that they apply to single graphs. We can say of graph G that
it is acyclic or planar. When we apply this restriction to a class C, we mean that all struc-
tures in the class satisfy it. The other conditions in the figure only make sense in relation
to classes of graphs. Thus, it makes little sense to say of a single finite graph that it is of
bounded degree (it is necessarily so). When we say of a class C that it is of bounded degree,
we mean that there is a uniform bound on the degree of all graphs in C.

The arrows in Figure 1 should be read as implications. Thus, any graph that is acyclic is
necessarily planar. Similarly, any class of acyclic graphs has bounded treewidth. The arrows
given in the figure are complete in the sense that when two restrictions are not connected by
an arrow (or sequence of arrows) then the first does not imply the second and separating
examples are known in all such cases.

The restrictions of acyclicity, planarity and bounded degree are self-explanatory. We
say that a class of graphs C has bounded genus if there is a fixed orientable surface S such
that all graphs in C can be embedded in S (see [27]). In particular, as planar graphs are
embeddable in a sphere, any class of planar graphs has bounded genus. The treewidth of
a graph is a measure of how tree-like it is (see [14]). In particular, trees have treewidth 1,
and so any class of acyclic graphs has treewidth bounded by 1. The measure plays a crucial
role in the graph structure theory developed by Robertson and Seymour in their proof of
the graph minor theorem. We say that a graph G is a minor of H (written G < H) if G can
be obtained from a subgraph of H by a series of edge contractions (see [14] for details). We
say that a class of graphs C excludes a minor if there is some G such that for all H € C we
have G £ H. In particular, this includes all classes C which are closed under taking minors
and which do not include all graphs. If G is embeddable in a surface S then so are all its
minors. Since, for any fixed integer k, there are graphs that are not of genus k, it follows that
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any class of bounded genus excludes some minor.

The notion of bounded local treewidth was introduced as a common generalisation of
classes of bounded treewidth and bounded genus. A variant, called the diameter width
property was introduced in [16] while bounded local treewidth is from [20]. Recall that the
r-neighbourhood of a vertex v in a graph G, denoted N{;(v), is the subgraph of G induced by
the set of vertices at distance at most r from v. We say that a class of graphs C has bounded
local treewidth if there is a nondecreasing function t : IN — IN such that for any graph
G € C, any vertex v in G and any 7, the treewidth of N{,(v) is at most ¢(r). It is clear that
any class of graphs of bounded treewidth has bounded local treewidth (indeed, bounded
by a constant function t). Similarly, any class of graphs of degree bounded by d has local
treewidth bounded by the function d”, since the number of elements in N/ (v) is at most d".
The fact that classes of bounded genus also have bounded local treewidth follows from a
result of Eppstein [16].

We say that a class of graphs C locally excludes minors if there is a nondecreasing
function ¢ : IN — IN such that for any graph G € C, any vertex v in G and any 7, the clique
Kj(y) is not a minor of the graph N{(v). This notion is introduced in [9] as a natural common
generalisation of bounded local treewidth and classes with excluded minors. Classes of
graphs with bounded expansion were introduced by Nesetfil and Ossona de Mendez [30]
as a common generalisation of classes of bounded degree and proper minor-closed classes.
A class of graphs C has bounded expansion if there is a function t : IN — IN such that
for any graph G € C, any subgraph H of G and any minor H’' of H obtained from H by
contracting neighbourhoods of radius at most r, the average degree in H' is bounded by
t(r). In particular, classes that exclude a minor have bounded expansion witnessed by a
constant function f.

Finally, we say that a class C of graphs is nowhere dense if there is a function t : N —
IN such that for each r, the graph K;(,) cannot be obtained as a minor of any G € C by
contracting neighbourhoods of radius at most r. This notion is introduced by NesSetfil and
Ossona de Mendez in [28, 29]. They present convincing arguments to show that this is the
natural upper limit to well-behaved classes of graphs based on sparseness conditions.

Automata and Locality The following is a sampling of results on the fixed-parameter
tractability of the first-order satisfaction problem on classes of sparse graphs. In each of
these, [ is the length of the formula ¢, n is the size of the graph G and f is some computable
function.

1. If 7y is the class of graphs of treewidth at most k, then G |= ¢ is decidable in time
O(f(I)n). Indeed this is true not just for first-order ¢ but even in monadic second-
order logic by [4].

2. If Dy is the class of graphs of degree at most k, then G |= ¢ is decidable in time
O(f(I)n). This is established by Seese in [31].

3. If LTW; is the class of graphs of local treewidth bounded by a function ¢, then G |= ¢
is decidable in time O(f(I)n?) by a result of Frick and Grohe [20].

4. If My is the class of graphs excluding K as a minor, then G |= ¢ is decidable in time
O(f(I)n°) by results of Flum and Grohe [18].
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5. If LEM; is the class of graphs with locally excluded minors given by ¢, then G = ¢ is
decidable in time O(f(I)n®) by a result of Dawar et al. [9].

These results are established by a combination of two essential methods. One is some-
times called the method of automata or the method of decompositions. The other is based on
the locality of first-order logic. These two basic methods are best illustrated by the first two
results on the list above.

For two graphs G and H and tuples of vertices u and v we write (G, u) =, (H,v) to
denote that any formula ¢(x) with quantifier depth at most m is true of u in G if, and only
if, it is true of v in H. Two key facts about this equivalence relation are (1) that, for any fixed
m and fixed length of tuple, it has finite index and (2) that it is a congruence with respect
to a certain gluing operation. That is, if v is a tuple of vertices inducing the same subgraph
in both G and H, let G ®y H denote the graph obtained by taking the disjoint union of G
and H while identifying the vertices in v. Then, it can be shown that the =,, equivalence
class of (G @y H,v) is determined by the classes of (G,v) and (H, v) respectively. Since
graphs in 7; can be constructed from a finite collection of graphs (i.e. the graphs with at
most k vertices) using this gluing operation (and some vertex renaming operations needed
for technical reasons), we can use dynamic programming to determine the =,,-class of an
arbitrary graph in 7 in linear time from its tree decomposition.

Abstractly, the method of decompositions can be formulated as follows. Suppose C is a
class of graphs such that there is a finite class B and a finite collection of operations Op such
that:

e (C is contained in the closure of B under the operations in Op;
e there is a polynomial-time algorithm which constructs, given any G € C an Op-
decomposition of G over B; and
e for each m, the equivalence relation =, is an effective congruence with respect to all
the operations 0 € Op (by which we mean that the =, class of 0(Gy, ..., Gs) can be
computed from the classes of G, .. ., Gs),
then, satisfaction of first-order formulas for graphs in C is fixed-parameter tractable.

More generally, instead of requiring 5 to be finite, it suffices that first-order satisfaction
is itself fixed-parameter tractable on B. Indeed, result (4) above, on classes of graphs that
exclude a minor, is obtained by considering a tree-decomposition of graphs in such a class
over a class of bounded local treewidth and then using the result (3).

Another possible relaxation of the method is to replace =, by some other sequence
~m of congruence relations. The properties required to make this work are that for every
tirst-order formula ¢ there is an m such that ¢ is invariant under ~,, and that for each m,
~m is a relation of finite index. In this context, it should be noted that taking G ~,, H
to denote that G and H cannot be distinguished by any formula of length at most m does
not yield a congruence relation even with respect to disjoint union. Indeed, it was shown
in [10] that there is no elementary function e such that G; ~e(m) H1 and G, ~e(m) H2 implies
G1® G ~y Hy © Ha.

In contrast, the proof of result (2) above is based on the locality of first-order logic.
This property essentially says that the truth of a formula ¢ in a graph G can be determined
by examining local neighbourhoods inside G. A precise statement is given by Gaifman’s
locality theorem [21] the statement of which requires some definitions.
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For every integer r > 0, let §(x,y) < r denote the first-order formula expressing that
the distance between x and y in the Gaifman graph is at most r. Let §(x,y) > r denote the
negation of this formula. Note that the quanfier rank of §(x, y) < r is bounded by r. A basic
local sentence is a sentence of the form

(Fx1) - -+ (3xn) (/\ 8(xi,xj) > 2r A /\ngr("i)(xi)) , (1)
i%j i

where 1 is a first-order formula with one free variable. Here, ¢V (%) (x;) stands for the rel-
ativization of ¢ to N”(x;); that is, the subformulas of i of the form (3x)(0) are replaced by
(3x)(6(x, x;) < rAB), and the subformulas of the form (Vx)(6) are replaced by (Vx)(é(x, x;) <
r—0).

THEOREM 1.[Gaifman Locality] Every first-order sentence is equivalent to a Boolean com-
bination of basic local sentences.

We call the Boolean combination of basic local sentences that is equivalent to a given
tirst-order sentence ¢ a Gaifman normal form of ¢. Since the proof of Theorem 1 (see for
instance [15, Thm 2.5.1]) gives an effective construction of the Gaifman normal form from
@, to prove (2), it suffices to consider how a basic local sentence can be evaluated. Since,
in a graph of bounded degree, there is a bound on the size of neighbourhoods, we can
easily (in linear time) label elements by whether or not they satisfy the formulas ¥ (%) (x;).
The problem then reduces to determining in a vertex-coloured graph whether there is a
large enough r-scattered set of a given colour. This can be done easily enough on graphs of
bounded degree. However, Frick and Grohe [20] show that this can be solved in a somewhat
more general setting giving an abstract method of locality. See [23, Sec. 4] for a very readable
account.

The abstract formulation of the method of locality is as follows. Suppose we have a
function, associating an integer parameter kg with each graph G. Suppose further that we
have an algorithm which, given a graph G and a formula ¢ decides G |= ¢ in time g(I, kg )n°
for some computable g and some constant c. Finally, let C be a class of graphs of bounded
local k. That is, there is a computable function t such that for every G € C and every vertex
vin G, kyr () < t(r). Then, there is an algorithm which decides G |= ¢ in time f(! )nct for
some computable f.

It is this general localisation principle that gives us (3) from (1) above. It may seem
that (5) follows from (4) by a similar application of the method of locality. However, while
the result in [18] gives, for each k, a fixed-parameter tractable algorithm for deciding G =
@ for classes that exclude K as a minor, it is not clear from the proof that the parameter
dependence is computable from k. The proof relies on Robertson-Seymour decompositions
which do not yield computable bounds. Thus, the result in [9] relies on rather different
decompositions.

Nowhere-Dense Classes As of this writing, it remains an open question whether the
fixed-parameter tractability of first-order satisfaction can be pushed beyond the classes of
locally excluded minors. In particular, the box at the bottom of Figure 1, containing the
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nowhere-dense classes, is an interesting case. This property was identified by Nesetfil and
Ossona de Mendez in [28, 29]. They show that it is closely related to a property of classes
of graphs called quasi-wideness in [7]. They give strong evidence that this property is the
natural limit for methods which rely on the sparsity of graphs. To be precise, they associate
the following parameter with any infinite class C of graphs.
dc = lim limsup li)(;gg|lg= | ,

r—00 Gec,

where C, denotes the collection of graphs that can be obtained as minors of a graph in C by
contracting neighbourhoods of radius at most . As usual, ||G|| and |G| denote the number
of edges and the number of vertices in G respectively. The remarkable result they then prove
is what they call the trichotomy theorem [29] which states that d¢ only takes values 0, 1 and 2.
Moreover, the nowhere-dense classes are exactly the ones where it does not take value 2.

So, could it be that first-order satisfaction is fixed-parameter tractable on all nowhere-
dense classes? The connection with quasi-wideness provides some clues. It is easy to estab-
lish that problems such as INDEPENDENT SET are fixed-parameter tractable on such classes.
A paper in the present volume [11] shows that variations on the DOMINATING SET prob-
lem are also fixed-parameter tractable. However, it remains a challenge to extend this to all
first-order definable properties. In particular, such a result would generalise the tractability
of first-order logic on excluded minor classes, which depends on deep decomposition theo-
rems. In contrast, the results in [11] depend on rather more straightforward combinatorial
properties of nowhere-dense classes.
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