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ABSTRACT. Randomness extractors are efficient algorithms which convert weak random sources
into nearly perfect ones. While such purification of randomness was the original motivation for
constructing extractors, these constructions turn out to have strong pseudorandom properties which
found applications in diverse areas of computer science and combinatorics. We will highlight some
of the applications, as well as recent constructions achieving near-optimal extraction.

Introduction

The quest to purify the randomness in “weak” random sources (of biased and correlated
bits) was initiated in the papers of Blum [1] and Santha and Vazirani [16].

The amount of randomness in a distribution for this purpose is captured by the no-
tion of min-entropy, first suggested in this context by Chor and Goldreich [2] and Zucker-
man [22]. We say that a random variable has min entropy > k if its probability of it hitting
any specific value is at most 27*.

Purifying the randomness from such distributions is captured by the notion of extrac-
tors, first defined in the seminal paper of Nisan and Zuckerman [13]. A (k, €)-extractor is
a function E : {0,1}" x {0,1}% — {0,1}" such that for every random variable X with min
entropy k, the distribution of E(X, U,) has statistical distance < € from the uniform distri-
bution, where U, denotes a random variable independent of X and uniform on {0,1}“. The
input Uy is called a seed and is thought of as being much shorter (in bits) than X. It is not
hard to see that a seed is essential for an extractor to work in this general setting. Such ex-
tractors are often called “seeded extractors”, to distinguish them from “seedless extractors”
(such determinsitic seedless extractors can work only when additional structure is imposed
on the source, and will not be discussed here). An excellent survey of seeded extractors is
[15].

An extractor has three important parameters. The first is the seed length d, which we
wish to minimize. The second is the output length 7, which we want to maximize (we want
to have m =~ k). The third parameter we wish to minimize is the ‘error” € — the statistical
distance of the output of the extractor from the uniform distribution. It can be shown, using
the probabilistic method, that a random function gives an extractor which is optimal in all
three parameters, which allows (roughly) m = k and d = log(n/€?). A random function,
however, is not satisfactory since in applications we need to be able to compute the extractor
efficiently. An extractor which is efficiently computable is called explicit. Below we list the
progress on explicit constructions, as well as the numerous applications of such explicit
extractors.
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Constructions Since the 80’s there many works devised a variety of techniques to con-
struct explicit extractors of better and better parameters (see [15] for a complete list of ref-
erences). The first paper to give an explicit extractor which was optimal (up to constant
factors) both in seed length and in entropy output was the work of Lu, Reingold, Vadhan
and Wigderson [12]. The first to achive this for the error parameter as well were Guruswami,
Umans and Vadhan [8], in an elegant construction based on list-decodable Parvaresh-Vardy
codes [14], which is also much simpler than [12]. An alternative construction, with the same
parameters based on the resolution of the Kakeya conjecture in finite fields [4], was give by
Dvir and Wigderson [5]. In all of these the output m was a constant fraction (arbitrarily close
to 1) of k. This year Dvir, Kopparty, Saraf and Sudan [6] managed to extract m = (1 —o(1))k
for the first time, as byproduct of tight analysis of the Kakeya conjecture. Achieving m = k
and removing the large constant factor in the seed length remain challenging openquestions,
of relevance to some of the applications.

Applications Extractors posses remarkable pseudorandom properties, which have found
applications in a remarkably diverse areas. We list here only some of them, with sample
references of each, noting that there are many others.
e Probabilistic algorithms with weak randomness [20, 22, 18]
Derandomizing small-space computations [13, 10]
List-decodable error-correcting codes [17]
Expanders beating the eigenvalue bound (and the applications of these) [21]
Lossless expanders (and the applications of these) [3]
Sampling and Hashing [7, 9]
Cryptography [19]
Pseudorandom generators [18]
Metric embeddings [11]
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