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Abstract. We revisit several maximization problems for geometric networks design under
the non-crossing constraint, first studied by Alon, Rajagopalan and Suri (ACM Symposium
on Computational Geometry, 1993). Given a set of n points in the plane in general position
(no three points collinear), compute a longest non-crossing configuration composed of
straight line segments that is: (a) a matching (b) a Hamiltonian path (c) a spanning tree.
Here we obtain new results for (b) and (c), as well as for the Hamiltonian cycle problem:

(i) For the longest non-crossing Hamiltonian path problem, we give an approximation
algorithm with ratio 2

π+1
≈ 0.4829. The previous best ratio, due to Alon et al., was

1/π ≈ 0.3183. Moreover, the ratio of our algorithm is close to 2/π on a relatively broad
class of instances: for point sets whose perimeter (or diameter) is much shorter than the

maximum length matching. The algorithm runs in O(n7/3 log n) time.
(ii) For the longest non-crossing spanning tree problem, we give an approximation

algorithm with ratio 0.502 which runs in O(n log n) time. The previous ratio, 1/2, due to
Alon et al., was achieved by a quadratic time algorithm. Along the way, we first re-derive
the result of Alon et al. with a faster O(n log n)-time algorithm and a very simple analysis.

(iii) For the longest non-crossing Hamiltonian cycle problem, we give an approximation
algorithm whose ratio is close to 2/π on a relatively broad class of instances: for point sets
with the product 〈 diameter × convex hull size 〉 much smaller than the maximum length

matching. The algorithm runs in O(n7/3 log n) time. No previous approximation results
were known for this problem.

1. Introduction

Self-crossing in planar configurations is typically an undesirable attribute. Many struc-
tures studied in computational geometry, in particular those involving a minimization con-
dition, have the non-crossing attribute for free, for instance minimum spanning trees, min-
imum length matchings, Voronoi diagrams, etc. The non-crossing property usually follows
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from the triangle inequality. Alon et al. [3] have considered the problems of computing (i)
the longest non-crossing matching, (ii) the longest non-crossing Hamiltonian path and (iii)
the longest non-crossing spanning tree, given n points in the plane. Although they were
unable to prove it, they suspected that all these problems are NP -hard. The survey articles
by Eppstein [8, pp. 439] and Mitchell [14, pp. 680] list these as open problems in the area
of geometric network optimization. The problem of approximating the longest non-crossing
Hamiltonian cycle is also of interest and wide open [4, pp. 338].

Without the non-crossing condition explicitly enforced, the problem of minimizing or
maximizing the length of a spanning tree, Hamiltonian cycle or path, perfect matching, tri-
angulation, etc. has a rich history. However if such structures are required to be non-crossing
much less is known, in particular for the maximization variants. While for minimization
problems, the non-crossing property comes usually for free via the triangle inequality, in
contrast, for maximization problems, the non-crossing property conflicts directly with the
length maximizing objective. This is another reason why these problems are interesting to
study.

Related work. The existence of non-crossing Hamiltonian paths and cycles in geometric
graphs has been studied in [2, 5]. Various Ramsey-type results for non-crossing spanning
trees, paths and cycles have been obtained in [11] and [12]. The Euclidean MAX TSP, the
problem of computing a longest straight-line tour of a set of points, has been proven NP -
hard in dimensions three or higher [9], while its complexity in the Euclidean plane remains
open [14]. In contrast, the shortest non-crossing matching and the shortest non-crossing
spanning tree are both computable in polynomial time [8, 14], as they coincide with the
shortest matching and the shortest spanning tree respectively.

Definitions and notations. A set S of points in the plane is said to be in general
position if no three points are collinear. General position will be assumed throughout this
paper. Given a set of n points in the plane, the results of Alon al. are as follows: (i) A
non-crossing matching whose total length is at least 2/π of the longest (possibly crossing)

matching can be computed in O(n7/3 log n) time. (ii) A non-crossing Hamiltonian path
whose total length is at least 1/π of the longest (possibly crossing) Hamiltonian path can

be computed in O(n7/3 log n) time. (iii) A non-crossing spanning tree whose total length is
at least n/(2n − 2) ≥ 1/2 of the longest (possibly crossing) spanning tree can be computed
in O(n2) time. The running times have been adjusted to reflect the current best upper

bound of O(n4/3) on the number of halving lines as established by Dey [6].
A geometric graph G is a pair (V,E) where V is a finite set of points in general position

in the plane, and E is a set set of segments (edges) connecting points in V . The length of
G, denoted L(G), is the sum of the Euclidean lengths of all edges in G. The graph G is said
to be non-crossing if its edges have pairwise disjoint interiors (collinear triples of points are
forbidden in order to avoid overlapping collinear edges).

For a point set S, let conv(S) be the convex hull of S, and let P = P (S) denote the
perimeter of conv(S). Denote by D = D(S) the diameter of S and write n = |S|. Let
MOPT be a longest (possibly crossing) matching of S, and let M∗

OPT be a longest non-
crossing matching of S; observe that for odd n, MOPT is a nearly perfect matching, with
(n − 1)/2 edges. Let HOPT be a longest (possibly crossing) Hamiltonian path of S, and let
H∗

OPT be a longest non-crossing Hamiltonian path of S. Let TOPT be a longest (possibly
crossing) spanning tree of S, and let T ∗

OPT be a longest non-crossing spanning tree of S.
Finally, let QOPT be a longest (possibly crossing) Hamiltonian cycle of S, and let Q∗

OPT
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be a longest non-crossing Hamiltonian cycle of S. The following inequalities are obvious:
L(MOPT) ≤ L(HOPT) ≤ L(TOPT).

Given a set S of n points in the plane, a line ℓ going through two points of S is called a
halving line if there are ⌊(n − 2)/2⌋ points on one side and ⌈(n − 2)/2⌉ points on the other
side [13]. A bisecting line ℓ of S is any line that partitions the point set evenly, i. e., neither
of the two open halfplanes defined by ℓ contains more than n/2 points of S [7]. Observe that
any halving line of S is also a bisecting line of S. Any bisecting line of S yields (perhaps
non-uniquely) a bipartition S = R ∪ B, with R ∩ B = ∅, ||R| − |B|| ≤ 1, with R contained
in one of the closed halfplanes determined by ℓ, and B contained in the other. We call
S = R∪B a linearly separable bipartition, or balanced partition of S. Observe that for any
non-zero direction vector ~v, there is a bisecting line orthogonal to ~v, see [7, Lemma 4.4].
Two bisecting lines are called equivalent if they can yield the same balanced partition of
S. It is well known that the number of non-equivalent bisecting lines of a set is of the
same order as the number of halving lines of the set, and any balanced bipartition can be
obtained from a halving line [7, pp. 67].

Our results are summarized in the following three theorems1.

Theorem 1.1. (i) For the longest non-crossing Hamiltonian path problem, there is an

approximation algorithm with ratio 2
π+1 ≈ 0.4829 that runs in O(n7/3 log n) time.

(ii) Given a set of n points in the plane, one can compute a non-crossing Hamiltonian path

H in O(n7/3 log n) time such that L(H) ≥ 2
πL(HOPT) − P

π . In particular, if the point set

satisfies the condition P
π ≤ δL(HOPT) for some small δ > 0, then L(H) ≥ ( 2

π − δ)L(HOPT).
(iii) Alternatively, one can compute a non-crossing Hamiltonian path H in O(n log n/

√
ε)

time, such that L(H) ≥ (1 − ε) 2
π L(HOPT) − P

π .

Theorem 1.2. For the longest non-crossing spanning tree problem for a given set of n
points in the plane, there is an approximation algorithm with ratio 0.502 and O(n log n)
running time. More precisely, the algorithm computes a non-crossing spanning tree T such
that L(T ) ≥ 0.502 · L(TOPT).

Theorem 1.3. Given a set S of n points in the plane, with |conv(S)| = h:

(i) One can compute a non-crossing Hamiltonian cycle Q in O(n7/3 log n) time such that
L(Q) ≥ 2

πL(QOPT) − (2h − 1)P
π . In particular, if the point set satisfies the condition

(2h − 1)P
π ≤ δL(QOPT) for some small δ > 0, then L(Q) ≥

(

2
π − δ

)

L(QOPT).

(ii) Alternatively, one can compute a non-crossing Hamiltonian cycle Q in O(n3 log n) time
such that L(Q) ≥ 2

πL(QOPT) − (h + 2)P
π .

(iii) Alternatively, one can compute a non-crossing Hamiltonian cycle Q in O(n log n/
√

ε)
time, such that L(Q) ≥ (1 − ε) 2

πL(QOPT) − (2h − 1)P
π .

2. The Hamiltonian path

In this section we prove Theorem 1.1. Let S = {p1, . . . , pn}. We follow an approach
similar to that of Alon et al. using projections and an averaging argument, in conjunction
with a result on bipartite embeddings of spanning paths in the plane. Abellanas et al. [1,
Theorem 3.1] showed that every linearly separable bipartition S = R∪B with ||R|−|B|| ≤ 1,
admits an alternating non-crossing spanning path such that the edges cross any separating

1Due to space limitations, some proofs are omitted.
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line ℓ at points ordered monotonically along ℓ. Such a Hamiltonian path can be computed
in O(n log n) time. Their algorithm computes the same Hamiltonian path for any two
equivalent halving lines, that is, the alternating path depends on the bipartition only rather
than the separating line.

We now recall the algorithm of Abellanas et al. [1]; see Fig. 4 for an example. Let
S = R ∪ B with ||R| − |B|| ≤ 1 be the red-blue bipartition given by a vertical line ℓ: R on
the left, B on the right. Their algorithm constructs an alternating path A in the following
way: Let rb be the top red-blue edge of the convex hull conv(S), called the top bridge. If
|R| > |B|, set A := {r}, if |R| < |B|, set A := {b}, else set A to {r} or {b} arbitrarily.
At every step, recompute the top bridge rb of S \ A, and add r to A if the last point in A
was blue, or add b to A if the last point in A was red. As pointed out by the authors, the
resulting path A is non-crossing because A is disjoint from the convex hull of S \A at each
step.

We improve the lower bound of Alon et al. by computing the longest Hamiltonian path
corresponding to a bipartition and a Hamiltonian path of length at least the perimeter of
the convex hull, and returning the longest of the two.

Lemma 2.1. For a point set S, |S| = n ≥ 31, a non-crossing Hamiltonian path of length
at least P (S) can be computed in O(n log n) time. The bound on the length is best possible.

Consider a geometric graph G = (V,E), and a point q /∈ V , so that V ∪{q} is in general
position. We say that q sees a vertex v ∈ V if the segment qv does not intersect any edge
of G. Similarly, we say that q sees an edge e ∈ E, if the triangle formed by v and e does
not intersect any other edge of G. We make use of the fact that if n is even then the two
endpoints of an alternating path are on opposite sides of the separating line ℓ. If n is odd,
we first construct an alternating path for a specific subset of n−1 points, and then augment
it to a Hamiltonian path on all n points using the following lemma.

Lemma 2.2. Let S = R ∪ B with ||R| − |B|| ≤ 1, be a linearly separable bipartition given
by line ℓ. Let q ∈ S, and A′ be a non-crossing alternating path on S \ {q} such that its
(consecutive) edges cross ℓ at points ordered monotonically along ℓ. Then q sees one edge of
A′ and consequently, A′ can be extended to a Hamiltonian path A on S, with L(A′) < L(A).
The path A can be computed in O(n) time, given A′.

Fix a Cartesian coordinate system Γ. Let k be the number of halving lines of S, denote
the angles they make with the x-axis of Γ by 0 ≤ α1 < . . . αk < π. By relabeling the points
assume that the optimal path is HOPT = p1, p2, . . . , pn. For two points pi, pj ∈ S, let βij

be the angle in [0, π) formed by the line through pipj and the x-axis. If n is odd, then a
bisecting line of direction α (for any α) must be incident to at least one point of S, and
denote an arbitrary such point by qα.

Algorithm A1:
Step 1. Compute a non-crossing Hamiltonian path H1 of length at least P (S), by Lemma 2.1.
Step 2. If n is even, then for all non-equivalent bisections of S (i.e., for all balanced bi-
partitions of S), compute a non-crossing alternating path using the algorithm of Abellanas
et al. [1], and let the longest such path be H2. If n is odd, then for all non-equivalent bi-
sections of S, compute a non-crossing alternating path of the even point set S \ {qα} using
the algorithm of [1] and let the longest such path be H ′

2. Augment H ′
2 with vertex qα by

Lemma 2.2 to a Hamiltonian path H2.
Step 3. Output the longest of the two paths H1 and H2.
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By Lemma 2.1, the running time of Step 1 is O(n log n). Since the number of halving
lines of an n-element point set is O(n4/3) and all can be generated within this time [6], the

running time of Step 2 is O(n7/3 log n), consequently the total running time of A1 is also

O(n7/3 log n).
We proceed with the analysis of the approximation ratio. For simplicity, we assume

that n is even. The case of n odd is slightly different. For each α ∈ [0, π), let Γα be a
(rotated) coordinate system, obtained from Γ via a counterclockwise rotation by α, and
with the y-axis dividing evenly the point set S. Let xi be the x-coordinate of point pi with
respect to Γα. For a given α, let Hα be a non-crossing alternating path with respect to a
balanced bipartition induced by the y-axis of Γα, as computed by the algorithm. There are
O(1) balanced bipartitions given by any halving line of S. Recall that Hα does not depend
continuously on α; it depends only on the discrete bipartition. However, the coordinates of
the points depend continuously on α. Assume that Hα = pσ(1), pσ(2), . . . , pσ(n), where σ is
a permutation of [n]; here σ depends on the bipartition (hence also on α). Let Wα denote
the width of S in direction α, that is, the width of the smallest parallel strip of direction α
that contains S. By projecting on the x-axis of Γα, we get

L(Hα) ≥ |xσ(1)| + 2|xσ(2)| + . . . + 2|xσ(n−1)| + |xσ(n)| = 2

n
∑

i=1

|xi| − |xσ(1)| − |xσ(n)|

=

n−1
∑

j=1

(|xj | + |xj+1|) + |x1| + |xn| − |xσ(1)| − |xσ(n)| ≥
n−1
∑

j=1

(|xj | + |xj+1|) − Wα

≥
n−1
∑

j=1

|pjpj+1|| cos(βjj+1 − α)| − Wα (2.1)

In the 2nd line of the above chain of inequalities, we use the fact that pσ(1) and pσ(n)

lie on opposite sides of ℓ, since n is even, hence |xσ(1)| + |xσ(n)| ≤ |pσ(1)pσ(n)| ≤ Wα,
In the 3rd line, we make use of the following inequality: for any two points pi, pj ∈ S,
|pipj|| cos(βij − α)| ≤ |xi| + |xj |, with equality if and only if the two points lie on opposite
sides of the y-axis of Γα. Recall: for even n, H2 is the longest of the O(k) Hamiltonian
non-crossing paths Hαi over all O(k) balanced bipartitions of S. (A given angle αi yields
O(1) balanced partitions, and corresponding alternating paths denoted here Hαi .) We thus
have for each α ∈ [0, π):

L(H2) ≥
n−1
∑

j=1

|pjpj+1|| cos(βjj+1 − α)| − Wα.

Note that
∫ π

0
| cos(βjj+1 − α)| dα =

∫ π

0
| cos α| dα = 2,

and according to Cauchy’s surface area formula, we have
∫ π
0 Wα dα = P (S). By integrating

both sides of the previous inequality over the α-interval [0, π], we obtain

πL(H2) ≥ 2

n−1
∑

j=1

|pjpj+1| − P (S) = 2L(HOPT) − P (S),

L(H2) ≥
2

π
L(HOPT) − P (S)

π
. (2.2)



316 ADRIAN DUMITRESCU AND CSABA D. TÓTH

We now improve the old approximation ratio of 1
π ≈ 0.3183 to 2

π+1 ≈ 0.4829, by balancing

the lengths of the two paths computed in Step 1 and Step 2. Set c = π+1
2 .

Case 1: L(HOPT) ≤ cP (S). By considering the path computed in Step 1, we get a
ratio of at least

L(H1)

L(HOPT)
≥ P (S)

L(HOPT)
≥ P (S)

cP (S)
=

2

π + 1
.

Case 2: L(HOPT) ≥ cP (S). By considering the path computed in Step 2 (inequality
(2.2)), we get a ratio of at least

L(H2)

L(HOPT)
≥

2
πL(HOPT) − 1

πP (S)

L(HOPT)
≥ 2

π
− 1

cπ
=

2

π

(

1 − 1

π + 1

)

=
2

π + 1
.

Observe that if the point set satisfies the condition P (S)
π ≤ δL(HOPT), then by (2.2),

we have

L(H) ≥ 2

π
L(HOPT) − δL(HOPT) =

(

2

π
− δ

)

L(HOPT).

This concludes the proofs of parts (i) and (ii) of Theorem 1.1.

(iii) With the same approach as in [3], a Hamiltonian path of length at least (1 −
ε) 2

π L(HOPT) − P (S)
π can be found by considering only b/

√
ε angles θi = iπ

√
ε

b , for i =
0, 1, . . . , ⌊b/√ε⌋, where b is a suitable absolute constant. The resulting running time is
O(n log n/

√
ε). This concludes the proof of Theorem 1.1.

3. The spanning tree

In this section we prove Theorem 1.2. Let S = {p1, . . . , pn}, where pi = (xi, yi). Given
a point p ∈ S, the star centered at p, denoted Sp, is the spanning tree on S whose edges join
p to all the other points. Since S is in general position, Sp is non-crossing for any p ∈ S.
An extended star centered at p is a spanning tree of S consisting of paths of length 1 or 2
(edges) connecting p to all the other points. See Fig. 1. While the star centered at a point
is unique, there may be many extended stars centered at the same point, and some of them
may be self-crossing. In particular Sp is also an extended star.

pp

Figure 1: A star (left) and a non-crossing extended star (right) on a same point set, both centered
at the same point p.

The algorithm of Alon et al. computes the n stars centered at each of the points, and
then outputs the longest one. The algorithm takes quadratic time, and the analysis shows a
ratio of n

2n−2 (which tends to 1/2 in the limit). Their algorithm works in any metric space.
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As pointed out by Alon et al., the ratio 1/2 is best possible (in the limit) for this specific
algorithm. We first re-establish the 1/2 approximation ratio using a faster algorithm, and
also with a simpler analysis. Our algorithm works also in any metric space; however in this
general setting, the running time remains quadratic.

Algorithm A2: Compute a diameter of the point set, and output the longest of the two
stars centered at one of its endpoints.

Obviously the algorithm runs in O(n log n) time, with bottleneck being the diameter
computation [15]. Let ab be a diameter pair, and assume w.l.o.g. that |ab| = 1. The ratio
1/2 (or even n

2n−2) follows from the next lemma in conjunction with the obvious upper

bound L(TOPT) ≤ n (or L(TOPT) ≤ n − 1).

Lemma 3.1. Let Sa and Sb be the stars centered at the points a and b, respectively. Then
L(Sa) + L(Sb) ≥ n.

Proof. Assume that a = p1, b = p2. For each i = 3, . . . , n, the triangle inequality for the
triple a, b, pi gives

|api| + |bpi| ≥ |ab| = 1.

By summing up we have

L(Sa) + L(Sb) =

n
∑

i=3

(|api| + |bpi|) + 2|ab| ≥ (n − 2) + 2 = n.

We now continue with the new algorithm that achieves a (provable) 1
2 + 1

500 approxi-
mation ratio within the same running time O(n log n).

Algorithm A3: Compute a diameter ab of the point set, and output the longest of the 5
non-crossing structures Sa, Sb, Sh, Ea, Eb, described below.

Assume w.l.o.g. that the ab is a horizontal unit segment, where a = (0, 0) and b = (1, 0).
Let h = (xh, yh) be a point in S with a largest value of |y|. By symmetry, we can assume
that yh ≥ 0. Sa, Sb, and Sh are the 3 stars centered at a, b, and h respectively. Ea, resp.
Eb, are two non-crossing extended stars centered at a, resp, b; details to follow. Each of
the five structures can be computed in O(n log n) time, so the total execution time is also
O(n log n).

Set δ = 0.05, w = 0.6, t = 0.6 and z = 0.48, and refer to Fig. 2. Let ℓ1, ℓ2, ℓ3, and ℓ4,
be four parallel vertical lines: ℓ1 : x = 0, ℓ2 : x = 0.2, ℓ3 : x = 0.8, ℓ4 : x = 1. Obviously,
all points in S lie in the strip bounded by ℓ1 and ℓ4. Let Vm be the vertical parallel strip
symmetric about the midpoint of ab and of width w. We refer to Vm as the middle strip; Vm

is bounded by the vertical lines ℓ2 and ℓ3. Let Va and Vb be the two vertical strips of width
0.2 bounded by ℓ1 and ℓ2, and by ℓ3 and ℓ4 respectively. Let c = (xc, yc) be the intersection
point between ℓ3 and the circular arc γa of unit radius centered at a and sub-tending an
angle of 60◦. We have xc = 0.8 and

yc =
√

1 − 0.82 = 0.6 = t.

We now describe the two extended star structures Ea and Eb. See also Fig. 3 for an
example. To construct Ea, first compute the order of visibility of the points in Vb from point
a by sorting. Then connect a with each point in the right strip Vb. Note that b ∈ Vb, thus
Vb 6= ∅. Call S′

a the resulting star. The edges of this star together with the vertical line ℓ3

divide Va ∪Vm into convex regions (wedges with a common apex a) ordered top-down. The
subset of points in each wedge can be computed using binary search in overall O(n log n)
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c

ℓ1 ℓ2 ℓ4

Vm

p

ℓ3

Va Vb

ba

y = 0.6

Figure 2: A diameter pair a, b at unit distance, and the three vertical strips Va, Vm, and Vb. The
two circular arcs γa and γb of unit radius centered at a and b intersect at the point
(1/2,

√
3/2). All points of S above ab lie in the region bounded by ab, γa and γb.

time (over all wedges). S′
a is extended (augmented) as follows. In each wedge, say paq, all

points are connected either to a or to p, depending on the best (longest) overall connection
cost. We denote the resulting extended star structure by Ea. The construction of Eb is
analogous. It is clear by construction that both Ea and Eb are non-crossing.

Lemma 3.2. For each p ∈ S, let dmax(p) denote the maximum distance from p to other
points in S. Then

L(TOPT) ≤
[

n
∑

i=1

dmax(pi)

]

− 1.

Proof. Consider TOPT rooted at a and drawn as an abstract tree with the root at the top in
the usual manner. Let π(v) denote the parent of a (non-root) vertex v. Uniquely assign each
edge π(v)v of TOPT to vertex v. Obviously, L(π(v)v) ≤ dmax(v) holds for each edge in the
tree. By adding up the above inequalities, and taking into account that dmax(a) = |ab| = 1,
the lemma follows.

Lemma 3.3. Assume that
∑n

i=1 |yi| ≥ δn for some positive constant δ ≤ 1. Then

L(Sa) + L(Sb) ≥ 2n

√

1

4
+ δ2.

Lemma 3.4. Let na and nb denote the number of points in the left and right vertical strips
Va and Vb. Then L(Ea) ≥ 1+w

4 (n + nb), and similarly L(Eb) ≥ 1+w
4 (n + na). Consequently

L(Ea) + L(Eb) ≥ 1+w
4 (2n + na + nb). Ea and Eb can be constructed in O(n log n) time.

Proof. The distance between ℓ1 and ℓ3 is 1+w
2 . By an argument similar to that in the proof

of Lemma 3.1, the connection cost for a wedge with m points is at least 1+w
4 m. Therefore

the total length of Ea is

L(Ea) ≥
1 + w

2
nb +

1 + w

4
(n − nb) =

1 + w

4
(n + nb).

The estimation of L(Eb) is analogous. The running time has been established previously.
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Lemma 3.5. Assume that
∑n

i=1 |yi| ≤ δn and yh ≥ t. Then L(Sh) ≥ (t − δ)n.

Proof.

L(Sh) ≥
n

∑

i=1

(yh − yi) = nyh −
n

∑

i=1

yi ≥ nyh −
n

∑

i=1

|yi| ≥ nyh − δn ≥ (t − δ)n.

Lemma 3.6. Assume that |yh| ≤ t = 0.6. Let p ∈ S be a point in the middle strip Vm, with
y-coordinate satisfying |y| ≤ 0.15. Then dmax(p) ≤ 0.9605.

Proof. It is straightforward to check that the maximum distance is attained for a point p
on ℓ2 with y-coordinate −0.15. The furthest point from p in the allowed region is c. Hence

dmax(p) ≤ |pc| =
√

w2 + (0.15 + t)2 =
√

0.62 + 0.752 ≤ 0.9605.

We now distinguish the following four cases to complete our estimation of the approxi-
mation ratio.

Case 1:
∑n

i=1 |yi| ≥ δn. The algorithm outputs2 Sa or Sb. By Lemma 3.3, the approx-
imation ratio is at least

L(Sa) + L(Sb)

2L(TOPT)
≥

√

1

4
+ δ2 ≥ 0.502.

Case 2:
∑n

i=1 |yi| ≤ δn and yh ≥ t. The algorithm outputs Sh. By Lemma 3.5, the
approximation ratio is at least t − δ = 0.55.

Case 3:
∑n

i=1 |yi| ≤ δn and yh ≤ t and na + nb ≥ (1 − z)n. The algorithm outputs
Ea or Eb. We only need the last inequality in estimating the length. By Lemma 3.4, the
approximation ratio is at least

L(Ea) + L(Eb)

2L(TOPT)
≥ 1 + w

4
· 2n + na + nb

2n
≥ (1 + w)(3 − z)

8
=

1.6 · 2.52
8

= 0.504.

Case 4:
∑n

i=1 |yi| ≤ δn and yh ≤ t and na + nb ≤ (1 − z)n. The algorithm outputs Sa

or Sb. There are at least zn = 0.48n points in the middle strip Vm. Observe that at most
n/3 points in Vm have |yi| ≥ 0.15; otherwise we would have

n
∑

i=1

|yi| ≥
∑

Vm

|yi| > 0.15 · n

3
= 0.05n = δn,

a contradiction. It follows that at least 12n/25 − n/3 = 11n/75 points in the middle strip
have |yi| ≤ 0.15. By Lemma 3.2 and Lemma 3.6,

L(TOPT) ≤ 64n

75
+ 0.9605 · 11n

75
≤ 0.9943n.

The approximation ratio is at least

L(Sa) + L(Sb)

2L(TOPT)
≥ n

2 · 0.9943n ≥ 0.502.

This completes the list of cases and thereby the proof of Theorem 1.2.

Remark. The example in Fig. 3 with n points (n even) equally spaced along a circle shows
that the constant 0.502 measuring the approximation ratio achieved by our algorithm A3

2Here and in other instances it is meant that the algorithm outputs a structure at least as long as these.
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cannot be improved to anything larger than 2/π. Indeed the lengths of the five structures
computed by the algorithm are L(Sa) = L(Sb) = L(Sh) = L(Ea) = L(Eb) = (1 − o(1)) 2

π n,
while L(TOPT) ≥ L(HOPT) = (1 − o(1))n.

ba

h

Figure 3: The non-crossing structure Ea for an example with n = 16 points on the circle. The
middle strip Vm is bounded by the two dashed vertical lines.

4. The Hamiltonian cycle

In this section we present the proof of Theorem 1.3, which is similar (including notation)
to that of Theorem 1.1. The rotated coordinate system Γα, and the x-coordinates xi with
respect to this system are denoted in the same way. By relabeling the points assume that
the optimal cycle is QOPT = p1, p2, . . . , pn (with the convention that pn+1 = p1). We
approximate QOPT by constructing a non-crossing alternating path A on a subset of S, and
then completing it to a non-crossing cycle using convex hull vertices. We need to observe
that the alternating path A on the subset I of interior (non-hull) vertices of S produced
by the algorithm of Abellanas et al. [1] is not good enough for this strategy: even though
one endpoint of A (the first computed by the algorithm) is always on the convex hull of I,
the other endpoint might be blocked by edges of A, so that A might not be extendible to a
non-crossing Hamiltonian cycle (an example is shown in Fig. 4). Here, we give a stronger
result that fits our purpose (for an even number of points).

Lemma 4.1. Let S = R ∪ B with with |R| = |B|, be a linearly separable bipartition given
by line ℓ. Then S admits an alternating non-crossing spanning path A such that (1) the
edges of A cross ℓ at points ordered monotonically along ℓ; and (2) the two endpoints of
A are incident to the two distinct edges of the convex hull that connect R and B (the two
red-blue bridges). Such a Hamiltonian path can be computed in O(n log n) time. We refer
to the underlying procedure as the two-endpoint path construction algorithm.

Proof. We modify the algorithm of Abellanas et al. for path construction, so that the path
is grown from the two endpoints and the two sub-paths merge ”in the middle”. Recall that
S = R ∪ B, and |R| = |B|, thus |S| is even. Let r1b1 and r2b2 be the top and bottom
red-blue edges of the convex hull conv(S), respectively, called top and bottom bridges; it
is possible that r1 = r2 or b1 = b2 but not both. One endpoint of A is an endpoint of
the top bridge, and the other endpoint of A is an endpoint of the bottom bridge, and they
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ℓ

3

4

6

7

5

Figure 4: A non-crossing alternating path obtained by the algorithm of Abellanas et al. For the
purpose of cycle construction, the path is non-extendible from its 2nd endpoint, vertex 7.

are chosen of opposite colors. Let A = {r1, b2} or A = {b1, r2} arbitrarily, containing two
endpoints of the path. At every step, recompute the top and bottom bridges of S \ A,
and append either the red or the blue vertex of each bridge to A such that the appended
edges cross the separating line ℓ. In the last step, the convex hull of S \ A is a red-blue
segment that merges the two sub-paths. The two new edges added simultaneously at each
step cannot cross each other; and they cannot cross previous edges, since they are separated
from them by the convex hull of S \ A. Finally, they cannot extend the two sub-paths by
the same point either, because |S| is even.

The next lemma follows from [10, Lemma 2.1]; we will only need its corollary, Lemma 4.3.

Lemma 4.2. ([10]). Let P = p1, p2, . . . , pn be a simple polygon (with the convention that
pn+1 = p1) and q be a point in the exterior of the convex hull of P , where P ∪ {q} is in
general position. Then q sees one edge pipi+1 of P . Such an edge can be found in O(n)
time.

Lemma 4.3. Let P = p1, p2, . . . , pn be a simple polygon (with the convention that pn+1 =
p1) and q be a point in the exterior of the convex hull of P , where P ∪ {q} is in general
position. Then the polygonal cycle P can be extended to include q so that P ∪ {q} is still a
simple polygon. More precisely, there exists i ∈ [n], so that Q = p1, . . . , pi, q, pi+1, . . . , pn is
a simple polygon. Moreover, L(Q) > L(P ). The extension can be computed in O(n) time.

Proof. By Lemma 4.2, q sees one edge pipi+1 of P . Replacing this edge of P by the two
edges piq and qpi+1 results in a simple polygon Q = p1, . . . , pi, q, pi+1, . . . , pn. By the triangle
inequality, L(Q) > L(P ). The extension can be computed in O(n) time, as determined by
the time needed to find a visible edge.

Note that the condition in the lemma that q lies in the exterior of the convex hull of
P , is indeed necessary. Otherwise one cannot guarantee that q sees an edge of P .

(i) Let S = S′∪S′′, where S′ is the set of convex hull vertices and S′′ is the set of interior
points. Let S′ = {pj1, pj2, . . . , pjh

}. Put h = |S′|, m = |S′′|, thus n = h + m. Assume first
for simplicity that m is even. An easy modification of the algorithm, explained below, is
used for m odd.
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Algorithm A4:
Step 1. For all non-equivalent bisections of S′′ (i.e., for all balanced bipartitions of S′′):
1. Compute a non-crossing alternating path A by using the two-endpoint path construction
algorithm (Lemma 4.1). 2. Extend A to a cycle by connecting its endpoints to (one or two)
convex hull vertices. 3. Further extend this cycle to include the remaining hull vertices, by
repeated invocation of Lemma 4.3.
Step 2. Output the longest such cycle (containing all points of S).

Observe that after Step 1.1, the two endpoints of the path are vertices of conv(S′′),
hence they can be connected to hull vertices to make a cycle. If m is odd, then there is a
point q ∈ S′′ on the line ℓ. Use the two-endpoint path construction algorithm for S′′ \ {q},
and the same bisecting line ℓ. If q is in the interior of conv(S′′ \ {q}), then extend the path
with point q, using Lemma 2.2. Otherwise, q sees the top or bottom bridge of conv(S′′\{q}),
so the path can be extended by connecting q to the endpoint visible to q. The two endpoints
of the extended path are on conv(S′′), hence they can be connected to hull vertices to make
a cycle, as in the case of even m.

References

[1] M. Abellanas, J. Garcia, G. Hernández, M. Noy, and P. Ramos: Bipartite embeddings of trees in the
plane, Discrete Applied Mathematics, 93 (1999), 141–148.

[2] O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl, C. Huemer, F. Hurtado, and
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[12] G. Károlyi, J. Pach, G. Tóth and P. Valtr: Ramsey-type results for geometric graphs. II, Discrete and

Computational Geometry, 20 (1998), 375–388.
[13] L. Lovász: On the number of halving lines, Ann. Univ. Sci. Budapest, Eötvös, Sec. Math., 14 (1971),
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