
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 323-334
www.stacs-conf.org

THE COMPLEXITY OF APPROXIMATING

BOUNDED-DEGREE BOOLEAN #CSP

MARTIN DYER 1 AND LESLIE ANN GOLDBERG 2 AND MARKUS JALSENIUS 2,3 AND
DAVID RICHERBY 1

1 School of Computing, University of Leeds, Leeds, LS2 9JT, U.K.
E-mail address: {M.E.Dyer,D.M.Richerby}@leeds.ac.uk

2 Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, U.K.
E-mail address: L.A.Goldberg@liverpool.ac.uk

3 Current address: Department of Computer Science, University of Bristol, Merchant Venturers
Building, Woodland Road, Bristol, BS8 1UB, U.K.
E-mail address: M.Jalsenius@bristol.ac.uk

Abstract. The degree of a CSP instance is the maximum number of times that a variable
may appear in the scope of constraints. We consider the approximate counting problem
for Boolean CSPs with bounded-degree instances, for constraint languages containing the
two unary constant relations {0} and {1}. When the maximum degree is at least 25 we
obtain a complete classification of the complexity of this problem. It is exactly solvable
in polynomial-time if every relation in the constraint language is affine. It is equivalent
to the problem of approximately counting independent sets in bipartite graphs if every
relation can be expressed as conjunctions of {0}, {1} and binary implication. Otherwise,
there is no FPRAS unless NP = RP. For lower degree bounds, additional cases arise in
which the complexity is related to the complexity of approximately counting independent
sets in hypergraphs.

1. Introduction

In the constraint satisfaction problem (CSP), we seek to assign values from some domain
to a set of variables, while satisfying given constraints on the combinations of values that
certain subsets of the variables may take. Constraint satisfaction problems are ubiquitous in
computer science, with close connections to graph theory, database query evaluation, type
inference, satisfiability, scheduling and artificial intelligence [20, 22, 25]. CSP can also be
reformulated in terms of homomorphisms between relational structures [14] and conjunctive
query containment in database theory [20]. Weighted versions of CSP appear in statistical
physics, where they correspond to partition functions of spin systems [31].

1998 ACM Subject Classification: F.2.2, G.2.1.
Key words and phrases: Boolean constraint satisfaction problem, generalized satisfiability, counting, ap-

proximation algorithms.
Funded in part by the EPSRC grant “The Complexity of Counting in Constraint Satisfaction Problems”.

c© M. Dyer, L. A. Goldberg, M. Jalsenius, and D. M. Richerby
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2466

324 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

We give formal definitions in Section 2 but, for now, consider an undirected graph G
and the CSP where the domain is {red, green,blue}, the variables are the vertices of G
and the constraints specify that, for every edge xy ∈ G, x and y must be assigned different
values. Thus, in a satisfying assignment, no two adjacent vertices are given the same colour:
the CSP is satisfiable if, and only if, the graph is 3-colourable. As a second example, given
a formula in 3-CNF, we can write a system of constraints over the variables, with domain
{true, false}, that requires the assignment to each clause to satisfy at least one literal.
Clearly, the resulting CSP is directly equivalent to the original satisfiability problem.

1.1. Decision CSP

In the uniform constraint satisfaction problem, we are given the set of constraints ex-
plicitly, as lists of allowable combinations for given subsets of the variables; these lists can
be considered as relations over the domain. Since it includes problems such as 3-sat and
3-colourability, uniform CSP is NP-complete. However, uniform CSP also includes
problems in P, such as 2-sat and 2-colourability, raising the natural question of what
restrictions lead to tractable problems. There are two natural ways to restrict CSP: we can
restrict the form of the instances and we can restrict the form of the constraints.

The most common restriction to CSP is to allow only certain fixed relations in the
constraints. The list of allowed relations is known as the constraint language and we write
CSP(Γ) for the so-called non-uniform CSP in which each constraint states that the values
assigned to some tuple of variables must be a tuple in a specified relation in Γ.

The classic example of this is Schaefer’s dichotomy for Boolean constraint languages Γ
(i.e., those with domain {0, 1}; often called “generalized satisfiability”) [26]. He showed that
CSP(Γ) is in P if Γ is included in one of six classes and is NP-complete, otherwise. More
recently, Bulatov has produced a corresponding dichotomy for the three-element domain [2].
These two results restrict the size of the domain but allow relations of arbitrary arity in
the constraint language. The converse restriction — relations of restricted arity, especially
binary relations, over arbitrary finite domains — has also been studied in depth [16,17].

For all Γ studied so far, CSP(Γ) has been either in P or NP-complete and Feder and
Vardi have conjectured that this holds for every constraint language [14]. Ladner has shown
that it is not the case that every problem in NP is either in P or NP-complete since, if
P 6= NP, there is an infinite, strict hierarchy between the two [23]. However, there are
problems in NP, such as graph Hamiltonicity and even connectedness, that cannot be
expressed as CSP(Γ) for any finite Γ 1 and Ladner’s diagonalization does not seem to be
expressible in CSP [14], so a dichotomy for CSP appears possible.

Restricting the tree-width of instances has also been a fruitful direction of research
[15, 21]. In contrast, little is known about restrictions on the degree of instances, i.e., the
maximum number of times that any variable may appear. Dalmau and Ford have shown
that, for any fixed Boolean constraint language Γ containing the constant unary relations
Rzero = {0} and Rone = {1}, the complexity of CSP(Γ) for instances of degree at most
three is exactly the same as the complexity of CSP(Γ) with no degree restriction [6]. The
case where variables may appear at most twice has not yet been completely classified; it is
known that degree-2 CSP(Γ) is as hard as general CSP(Γ) whenever Γ contains Rzero and
Rone and some relation that is not a ∆-matroid [13]; the known polynomial-time cases come
from restrictions on the kinds of ∆-matroids that appear in Γ [6].

1This follows from results on the expressive power of existential monadic second-order logic [12].

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 325

1.2. Counting CSP

A generalization of classical CSP is to ask how many satisfying solutions there are.
This is referred to as counting CSP, #CSP. Clearly, the decision problem is reducible to
counting: if we can efficiently count the solutions, we can efficiently determine whether there
is at least one. The converse does not hold: for example, we can determine in polynomial
time whether a graph admits a perfect matching but it is #P-complete to count the perfect
matchings, even in a bipartite graph [29].

#P is the class of functions f for which there is a nondeterministic, polynomial-time
Turing machine that has exactly f(x) accepting paths for input x [28]. It is easily seen
that the counting version of any NP decision problem is in #P and #P can be considered
the counting “analogue” of NP. Note, though that problems that are #P-complete under
appropriate reductions are, under standard complexity-theoretic assumptions, considerably
harder than NP-complete problems: P#P includes the whole of the polynomial hierarchy
[27], whereas PNP is generally thought not to.

Although no dichotomy is known for CSP, Bulatov has recently shown that, for all
Γ, #CSP(Γ) is either computable in polynomial time or #P-complete [3]. However, Bu-
latov’s dichotomy sheds little light on which constraint languages yield polynomial-time
counting CSPs and which do not. The criterion of the dichotomy is based on “defects” in
a certain infinite algebra built up from the polymorphisms of Γ and it is open whether the
characterization is even decidable. It also seems not to apply to bounded-degree #CSP.

So, although there is a full dichotomy for #CSP(Γ), results for restricted forms of
constraint language are still of interest. Creignou and Hermann have shown that only one of
Schaefer’s polynomial-time cases for Boolean languages survives the transition to counting:
#CSP(Γ) ∈ FP (i.e., has a polynomial time algorithm) if Γ is affine (i.e., each relation is
the solution set of a system of linear equations over GF2) and is #P-complete, otherwise [5].
This result has been extended to rational and even complex-weighted instances [4,10] and, in
the latter case, the dichotomy is shown to hold for the restriction of the problem in which
instances have degree 3. This implies that the degree-3 problem #CSP3(Γ) (#CSP(Γ)
restricted to instances of degree 3) is in FP if Γ is affine and is #P-complete, otherwise.

1.3. Approximate counting

Since #CSP(Γ) is very often #P-complete, approximation algorithms play an impor-
tant role. The key concept is that of a fully polynomial randomized approximation scheme
(FPRAS). This is a randomized algorithm for computing some function f(x), taking as its
input x and a constant ǫ > 0, and computing a value Y such that e−ǫ 6 Y/f(x) 6 eǫ with
probability at least 3

4
, in time polynomial in both |x| and ǫ−1. (See Section 2.4.)

Dyer, Goldberg and Jerrum have classified the complexity of approximately computing
#CSP(Γ) for Boolean constraint languages [9]. When all relations in Γ are affine, #CSP(Γ)
can be computed exactly in polynomial time by the result of Creignou and Hermann dis-
cussed above [5]. Otherwise, if every relation in Γ can be defined by a conjunction of pins
(i.e., assertions v = 0 or v = 1) and Boolean implications, then #CSP(Γ) is as hard to
approximate as the problem #BIS of counting independent sets in a bipartite graph; other-
wise, #CSP(Γ) is as hard to approximate as the problem #SAT of counting the satisfying
truth assignments of a Boolean formula. Dyer, Goldberg, Greenhill and Jerrum have shown
that the latter problem is complete for #P under appropriate approximation-preserving
reductions (see Section 2.4) and has no FPRAS unless NP = RP [8], which is thought to

326 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

be unlikely. The complexity of #BIS is currently open: there is no known FPRAS but it is
not known to be #P-complete, either. #BIS is known to be complete for a logically-defined
subclass of #P with respect to approximation-preserving reductions [8].

1.4. Our result

We consider the complexity of approximately solving Boolean #CSP problems when
instances have bounded degree. Following Dalmau and Ford [6] and Feder [13] we consider
the case in which Rzero = {0} and Rone = {1} are available. We proceed by showing that
any Boolean relation that is not definable as a conjunction of ORs or NANDs can be used
in low-degree instances to assert equalities between variables. Thus, we can side-step degree
restrictions by replacing high-degree variables with distinct variables asserted to be equal.

Our main result, Corollary 6.6, is a trichotomy for the case in which instances have
maximum degree d for some d > 25. If every relation in Γ is affine, then #CSPd(Γ ∪
{Rzero, Rone}) is solvable in polynomial time. Otherwise, if every relation in Γ can be defined
as a conjunction of Rzero, Rone and binary implications, then #CSPd(Γ ∪ {Rzero, Rone}) is
equivalent in approximation complexity to #BIS. Otherwise, it has no FPRAS unless
NP = RP. Theorem 6.5 gives a partial classification of the complexity when d < 25. In
the new cases that arise here, the complexity is given in terms of the complexity of counting
independent sets in hypergraphs with bounded degree and bounded hyper-edge size. The
complexity of this problem is not fully understood and we explain what is known about it
in Section 6.

2. Preliminaries

2.1. Basic notation

We write a for the tuple 〈 a1, . . . , ar 〉, which we often shorten to a = a1 . . . ar. We
write ar for the r-tuple a . . . a and ab for the tuple formed from the elements of a followed

by those of b. The bit-wise complement of a relation R ⊆ {0, 1}r is the relation R̃ =
{〈 a1 ⊕ 1, . . . , ar ⊕ 1 〉 | a ∈ R}, where ⊕ denotes addition modulo 2.

We say that a relation R is ppp-definable2 in a relation R′ and write R 6ppp R′ if R
can be obtained from R′ by some sequence of the following operations:

• permutation of columns (for notational convenience only);
• pinning (taking sub-relations of the form Ri7→c = {a ∈ R | ai = c} for some i and

some c ∈ {0, 1}); and
• projection (“deleting the ith column” to give the relation {a1 . . . ai−1ai+1 . . . ar |

a1 . . . ar ∈ R}).

It is easy to see that 6ppp is reflexive and transitive and that, if R 6ppp R′, then R can
be obtained from R′ by first permuting the columns, then making some pins and then
projecting.

We write R= = {00, 11}, R 6= = {01, 10}, ROR = {01, 10, 11}, RNAND = {00, 01, 10},

R→ = {00, 01, 11} and R← = {00, 10, 11}. For k > 2, we write R=,k = {0k, 1k}, ROR,k =

{0, 1}k \ {0k} and RNAND,k = {0, 1}k \ {1k} (i.e., k-ary equality, OR and NAND).

2This should not be confused with the concept of primitive positive definability (pp-definability) which
appears in algebraic treatments of CSP and #CSP, for example in the work of Bulatov [3].

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 327

2.2. Boolean constraint satisfaction problems

A constraint language is a set Γ = {R1, . . . , Rm} of named Boolean relations. Given a
set V of variables, the set of constraints over Γ is the set Cons(V,Γ) which contains R(v)
for every relation R ∈ Γ with arity r and every v ∈ V r. Note that v = v′ and v 6= v′ are
not constraints unless the appropriate relations are included in Γ. The scope of a constraint
R(v) is the tuple v, which need not consist of distinct variables.

An instance of the constraint satisfaction problem (CSP) over Γ is a set V of variables
and a set C ⊆ Cons(V,Γ) of constraints. An assignment to a set V of variables is a function
σ : V → {0, 1}. An assignment to V satisfies an instance (V,C) if 〈σ(v1), . . . , σ(vr) 〉 ∈ R
for every constraint R(v1, . . . , vr). We write Z(I) for the number of satisfying assignments
to a CSP instance I. We study the counting CSP problem #CSP(Γ), parameterized by Γ,
in which we must compute Z(I) for an instance I = (V,C) of CSP over Γ.

The degree of an instance is the greatest number of times any variable appears among
its constraints. Note that the variable v appears twice in the constraint R(v, v). Our specific
interest in this paper is in classifying the complexity of bounded-degree counting CSPs. For
a constraint language Γ and a positive integer d, define #CSPd(Γ) to be the restriction of
#CSP(Γ) to instances of degree at most d. Instances of degree 1 are trivial.

Theorem 2.1. For any Γ, #CSP1(Γ) ∈ FP.

When considering #CSPd for d > 2, we follow established practice by allowing pinning
in the constraint language [6, 13]. We write Rzero = {0} and Rone = {1} for the two
singleton unary relations. We refer to constraints in Rzero and Rone as pins. To make
notation easier, we will sometimes write constraints using constants instead of explicit pins.
That is, we will allow the constants 0 and 1 to appear in the place of variables in the scopes
of constraints. Such constraints can obviously be rewritten as a set of “proper” constraints,
without increasing degree. We let Γpin denote the constraint language {Rzero, Rone}.

2.3. Hypergraphs

A hypergraph H = (V,E) is a set V = V (H) of vertices and a set E = E(H) ⊆ P(V)
of non-empty hyper-edges. The degree of a vertex v ∈ V (H) is the number d(v) = |{e ∈
E(H) | v ∈ e}| and the degree of a hypergraph is the maximum degree of its vertices. If
w = max{|e| | e ∈ E(H)}, we say that H has width w. An independent set in a hypergraph
H is a set S ⊆ V (H) such that e * S for every e ∈ E(H). Note that an independent set
may contain more than one vertex from any hyper-edge of size at least three.

We write #w-HIS for the problem of counting the independent sets in a width-w hy-
pergraph H, and #w-HISd for the restriction of #w-HIS to inputs of degree at most d.

2.4. Approximation complexity

A randomized approximation scheme (RAS) for a function f : Σ∗ → N is a probabilistic
Turing machine that takes as input a pair (x, ǫ) ∈ Σ∗ × (0, 1), and produces, on an output
tape, an integer random variable Y with Pr(e−ǫ 6 Y/f(x) 6 eǫ) > 3

4
.3 A fully polynomial

randomized approximation scheme (FPRAS) is a RAS that runs in time poly(|x|, ǫ−1).

3The choice of the value 3

4
is inconsequential: the same class of problems has an FPRAS if we choose any

probability p with 1

2
< p < 1 [18].

328 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

To compare the complexity of approximate counting problems, we use the AP-reductions
of [8]. Suppose f and g are two functions from some input domain Σ∗ to the natural numbers
and we wish to compare the complexity of approximately computing f to that of approxi-
mately computing g. An approximation-preserving reduction from f to g is a probabilistic
oracle Turing machine M that takes as input a pair (x, ǫ) ∈ Σ∗ × (0, 1), and satisfies the
following three conditions: (i) every oracle call made by M is of the form (w, δ) where
w ∈ Σ∗ is an instance of g, and 0 < δ < 1 is an error bound satisfying δ−1 6 poly(|x|, ǫ−1);
(ii) M is a randomized approximation scheme for f whenever the oracle is a randomized
approximation scheme for g; and (iii) the run-time of M is polynomial in |x| and ǫ−1.

If there is an approximation-preserving reduction from f to g, we write f 6AP g and
say that f is AP-reducible to g. If g has an FPRAS, then so does f . If f 6AP g and
g 6AP f , then we say that f and g are AP-interreducible and write f ≡AP g.

3. Classes of relations

A relation R ⊆ {0, 1}r is affine if it is the set of solutions to some system of linear
equations over GF2. That is, there is a set Σ of equations in variables x1, . . . , xr, each of
the form xi1 ⊕ · · · ⊕ xin = c, where ⊕ denotes addition modulo 2 and c ∈ {0, 1}, such that
a ∈ R if, and only if, the assignment x1 7→ a1, . . . , xr 7→ ar satisfies every equation in Σ.
Note that the empty and complete relations are affine.

We define IM-conj to be the class of relations defined by a conjunction of pins and
(binary) implications. This class is called IM2 in [9].

Lemma 3.1. If R ∈ IM-conj is not affine, then R→ 6ppp R.

Let OR-conj be the set of Boolean relations that are defined by a conjunction of pins
and ORs of any arity and NAND-conj the set of Boolean relations definable by conjunctions
of pins and NANDs (i.e., negated conjunctions) of any arity. We say that one of the defining
formulae of these relations is normalized if no pinned variable appears in any OR or NAND,
the arguments of each individual OR and NAND are distinct, every OR or NAND has at
least two arguments and no OR or NAND’s arguments are a subset of any other’s.

Lemma 3.2. Every OR-conj (respectively, NAND-conj) relation is defined by a unique
normalized formula.

Given the uniqueness of defining normalized formulae, we define the width of an OR-conj
or NAND-conj relation R to be wd(R), the greatest number of arguments to any of the
ORs or NANDs in the normalized formula that defines it. Note that, from the definition of
normalized formulae, there are no relations of width 1.

Lemma 3.3. If R ∈ OR-conj has width w, then ROR,2, . . . , ROR,w 6ppp R. Similarly, if
R ∈ NAND-conj has width w, then RNAND,2, . . . , RNAND,w 6ppp R.

Given tuples a, b ∈ {0, 1}r, we write a 6 b if ai 6 bi for all i ∈ [1, r]. If a 6 b and a 6= b,
we write a < b. We say that a relation R ⊆ {0, 1}r is monotone if, whenever a ∈ R and
a 6 b, then b ∈ R. We say that R is antitone if, whenever a ∈ R and b 6 a, then b ∈ R.

Clearly, R is monotone if, and only if, R̃ is antitone. Call a relation pseudo-monotone
(respectively, pseudo-antitone) if its restriction to non-constant columns is monotone (re-
spectively, antitone). The following is a consequence of results in [19, Chapter 7.1.1].

Proposition 3.4. A relation R ⊆ {0, 1}r is in OR-conj (respectively, NAND-conj) if, and
only if, it is pseudo-monotone (respectively, pseudo-antitone).

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 329

4. Simulating equality

An important ingredient in bounded-degree dichotomy theorems [4] is expressing equal-
ity using constraints from a language that does not necessarily include the equality relation.

A constraint language Γ is said to simulate the k-ary equality relation R=,k if, for some
ℓ > k, there is a (Γ∪ Γpin)-CSP instance I with variables x1, . . . , xℓ that has exactly m > 1
satisfying assignments σ with σ(x1) = · · · = σ(xk) = 0, exactly m with σ(x1) = · · · =
σ(xk) = 1 and no other satisfying assignments. If, further, the degree of I is d and the
degree of each variable x1, . . . , xk is at most d− 1, we say that Γ d-simulates R=,k. We say
that Γ d-simulates equality if it d-simulates R=,k for all k > 2.

The point is that, if Γ d-simulates equality, we can express the constraint y1 = · · · = yr

in Γ ∪ Γpin and then use each yi in one further constraint, while still having an instance of
degree d. The variables xk+1, . . . , xℓ in the definition function as auxiliary variables and are
not used in any other constraint. Simulating equality makes degree bounds moot.

Proposition 4.1. If Γ d-simulates equality, then #CSP(Γ) 6AP #CSPd(Γ ∪ Γpin).

We now investigate which relations simulate equality.

Lemma 4.2. R ∈ {0, 1}r 3-simulates equality if R= 6ppp R, R 6= 6ppp R or R→ 6ppp R.

Proof. For each k > 2, we show how to 3-simulate R=,k. We may assume without loss of
generality that the ppp-definition of R=, R 6= or R→ from R involves applying the identity
permutation to the columns, pinning columns 3 to 3 + p − 1 inclusive to zero, pinning
columns 3 + p to 3 + p + q − 1 inclusive to one (that is, pinning p > 0 columns to zero and
q > 0 to one) and then projecting away all but the first two columns.

Suppose first that R= 6ppp R or R→ 6ppp R. R must contain α > 1 tuples that begin
000p1q, β > 0 that begin 010p1q and γ > 1 that begin 110p1q, with β = 0 unless we are
ppp-defining R→. We consider, first, the case where α = γ, and show that we can 3-simulate
R=,k, expressing the constraint R=,k(x1, . . . , xk) with the constraints

R(x1x20
p1q∗), R(x2x30

p1q∗), . . . , R(xk−1xk0
p1q∗), R(xkx10

p1q∗) ,

where ∗ denotes a fresh (r−2−p−q)-tuple of variables in each constraint. These constraints
are equivalent to x1 = · · · = xk = x1 or to x1 → . . . → xk → x1 so constrain the variables
x1, . . . , xk to have the same value, as required. Every variable appears at most twice and
there are αk solutions to these constraints that put x1 = · · · = xk = 0, γk = αk solutions
with x1 = · · · = xk = 1 and no other solutions. Hence, R 3-simulates R=,k, as required.

We now show, by induction on r, that we can 3-simulate R=,k even in the case that
α 6= γ. For the base case, r = 2, we have α = γ = 1 and we are done. For the inductive
step, let r > 2 and assume, w.l.o.g. that α > γ (α < γ is symmetric). In particular, we have
α > 2, so there are distinct tuples 000p1qa, and 000p1qb and 110p1qc in R. Choose j such
that aj 6= bj. Pinning the (2+p+q+j)th column of R to cj and projecting out the resulting
constant column gives a relation R′ of arity r − 1 containing at least one tuple beginning
000p1q and at least one beginning 110p1q: by the inductive hypothesis, R′ 3-simulates R=,k.

Finally, we consider the case that R 6= 6ppp R. R contains α > 1 tuples beginning 010p1q

and β > 1 beginning 100p1q. We express the constraint R=,k(x1, . . . , xk) by introducing
fresh variables y1, . . . , yk and using the constraints

R(x1y10
p1q∗), R(x2y20

p1q∗), . . . , R(xk−1yk−10
p1q∗), R(xkyk0

p1q∗),
R(y1x20

p1q∗), R(y2x30
p1q∗), . . . , R(yk−1xk0

p1q∗), R(ykx10
p1q∗) .

330 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

There are αkβk solutions when x1 = · · · = xk = 0 (and y1 = · · · = yk = 1) and βkαk

solutions when the xs are 1 and the ys are 0. There are no other solutions and no variable
is used more than twice.

For c ∈ {0, 1}, an r-ary relation is c-valid if it contains the tuple cr.

Lemma 4.3. Let r > 2 and let R ⊆ {0, 1}r be 0- and 1-valid but not complete. Then R
3-simulates equality.

In the following lemma, we do not require R and R′ to be distinct. The technique is to
assert x1 = · · · = xk by simulating the formula OR(x1, y1) ∧ NAND(y1, x2) ∧ OR(x2, y2) ∧
NAND(y2, x3) ∧ · · · ∧ OR(xk, yk) ∧ NAND(yk, x1).

Lemma 4.4. If ROR 6ppp R and RNAND 6ppp R′, then {R,R′} 3-simulates equality.

5. Classifying relations

We are now ready to prove that every Boolean relation R is in OR-conj, in NAND-conj
or 3-simulates equality. If R0 and R1 are r-ary, let R0 +R1 = {0a | a ∈ R0}∪{1a | a ∈ R1}.

Lemma 5.1. Let R0, R1 ∈ OR-conj and let R = R0 + R1. Then R ∈ OR-conj, R ∈
NAND-conj or R 3-simulates equality.

Proof. Let R0 and R1 have arity r. We may assume that R has no constant columns. If it
does, let R′ be the relation that results from projecting them away. R′ = R′0 + R′1, where
both R′0 and R′1 are OR-conj relations. By the remainder of the proof, R′ ∈ OR-conj,
R′ ∈ NAND-conj or R′ 3-simulates equality. Re-instating the constant columns does not
alter this. For R without constant columns, there are two cases.

Case 1. R0 ⊆ R1. Suppose Ri is defined by the normalized OR-conj formula φi in variables
x2, . . . , xr+1. Then R is defined by the formula

φ0 ∨ (x1 = 1 ∧ φ1) ≡ (φ0 ∨ x1 = 1) ∧ (φ0 ∨ φ1) ≡ (φ0 ∨ x1 = 1) ∧ φ1 , (5.1)

where the second equivalence is because φ0 implies φ1, because R0 ⊆ R1. R1 has no
constant column, since such a column would have to be constant with the same value in
R0, contradicting our assumption that R has no constant columns. There are two cases.

Case 1.1. R0 has no constant columns. x1 = 1 is equivalent to OR(x1) and φ0 contains
no pins, so we can rewrite φ0 ∨ x1 = 1 in CNF. Therefore, (5.1) is OR-conj.

Case 1.2. R0 has a constant column. Suppose first that the kth column of R0 is constant-
zero. R1 has no constant columns, so the projection of R onto its first and (k+1)st columns
gives the relation R←, and R 3-simulates equality by Lemma 4.2. Otherwise, all constant
columns of R0 contain ones. Then φ0 is in CNF, since every pin xi = 1 in φ0 can be written
OR(xi). Thus, we can write φ0 ∨ x1 = 1 in CNF, so (5.1) defines an OR-conj relation.

Case 2. R0 * R1. We will show that R 3-simulates equality or is in NAND-conj. We
consider two cases (recall that no relation has width 1).

Case 2.1. At least one of R0 and R1 has positive width. There are two sub-cases.

Case 2.1.1. R1 has a constant column. Suppose the kth column of R1 is constant. If the
kth column of R0 is also constant, then the projection of R to its first and (k+1)st columns
is either equality or disequality (since the corresponding column of R is not constant) so R 3-
simulates equality by Lemma 4.2. Otherwise, if the projection of R to the first and (k+1)st

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 331

columns is R→, then R 3-simulates equality by Lemma 4.2. Otherwise, that projection
must be RNAND. By Lemma 3.3 and the assumption of Case 2.1, ROR is ppp-definable in
at least one of R0 and R1 so R 3-simulates equality by Lemma 4.4.

Case 2.1.2. R1 has no constant columns. By Proposition 3.4, R1 is monotone. Let
a ∈ R0 \ R1: by applying the same permutation to the columns of R0 and R1, we may
assume that a = 0ℓ1r−ℓ. We must have ℓ > 1 as every non-empty r-ary monotone relation
contains the tuple 1r. Let b ∈ R1 be a tuple such that ai = bi for a maximal initial segment
of [1, r]. By monotonicity of R1, we may assume that b = 0k1r−k. Further, we must have
k < ℓ, since, otherwise, we would have b < a, contradicting our choice of a /∈ R1.

Now, consider the relation R′ = {a0a1 . . . aℓ−k | a00
ka1 . . . aℓ−k1

r−ℓ ∈ R}, which is the
result of pinning columns 2 to (k + 1) of R to zero and columns (r − ℓ + 1) to (r + 1) to
one and discarding the resulting constant columns. R′ contains 0ℓ−k+1 and 1ℓ−k+1 but is
not complete, since 10ℓ−k /∈ R′. By Lemma 4.3, R′ and, hence, R 3-simulates equality.

Case 2.2. Both R0 and R1 have width zero, i.e., are complete relations, possibly padded
with constant columns. For i ∈ [1, r], let R′i be the relation obtained from R by projecting
onto its first and (i+1)st columns. Since R has no constant columns, R′i is either complete,
R=, R 6=, ROR, RNAND, R→ or R←. If there is a k such that R′k is R=, R 6=, R→ or R←, then
R=, R6= or R→ is ppp-definable in R and hence R 3-simulates equality by Lemma 4.2. If
there are k1 and k2 such that R′k1

= ROR and R′k2
= RNAND, then R 3-simulates equality

by Lemma 4.4. It remains to consider the following two cases.

Case 2.2.1. Each R′i is either ROR or complete. R1 must be complete, which contradicts
the assumption that R0 6⊆ R1.

Case 2.2.1. Each R′i is either RNAND or complete. R0 must be complete. Let I = {i |
R′i = RNAND}. Then R =

∧
i∈I NAND(x1, xi+1), so R ∈ NAND-conj.

Using the duality between OR-conj and NAND-conj relations, we can prove the corre-
sponding result for R0, R1 ∈ NAND-conj. The proof of the classification is completed by a
simple induction on the arity of R. Decomposing R as R0 + R1 and assuming inductively
that R0 and R1 are of one of the stated types, we use the previous results in this section
and Lemma 4.4 to show that R is.

Theorem 5.2. Every Boolean relation is OR-conj or NAND-conj or 3-simulates equality.

6. Complexity

The complexity of approximating #CSP(Γ) where the degree of instances is unbounded
is given by Dyer, Goldberg and Jerrum [9, Theorem 3].

Theorem 6.1. Let Γ be a Boolean constraint language.

• If every R ∈ Γ is affine, then #CSP(Γ) ∈ FP.
• Otherwise, if Γ ⊆ IM-conj, then #CSP(Γ) ≡AP #BIS.
• Otherwise, #CSP(Γ) ≡AP #SAT.

Working towards our classification of the approximation complexity of #CSP(Γ), we
first deal with subcases. The IM-conj case and OR-conj/NAND-conj cases are based on
links between those classes of relations and the problems of counting independent sets in
bipartite and general graphs, respectively [8, 9], the latter extended to hypergraphs.

332 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

Proposition 6.2. If Γ ⊆ IM-conj contains at least one non-affine relation, then #CSPd(Γ∪
Γpin) ≡AP #BIS for all d > 3.

Proposition 6.3. Let R be an OR-conj or NAND-conj relation of width w. Then, for
d > 2, #w-HISd 6AP #CSPd({R} ∪ Γpin).

Proposition 6.4. Let R be an OR-conj or NAND-conj relation of width w. Then, for
d > 2, #CSPd({R} ∪ Γpin) 6AP #w-HISkd, where k is the greatest number of times that
any variable appears in the normalized formula defining R.

We now give the complexity of approximating #CSPd(Γ ∪ Γpin) for d > 3.

Theorem 6.5. Let Γ be a Boolean constraint language and let d > 3.

• If every R ∈ Γ is affine, then #CSPd(Γ ∪ Γpin) ∈ FP.
• Otherwise, if Γ ⊆ IM-conj, then #CSPd(Γ ∪ Γpin) ≡AP #BIS.
• Otherwise, if Γ ⊆ OR-conj or Γ ⊆ NAND-conj, then let w be the greatest width

of any relation in Γ and let k be the greatest number of times that any variable
appears in the normalized formulae defining the relations of Γ. Then #w-HISd 6AP

#CSPd(Γ ∪ Γpin) 6AP #w-HISkd.
• Otherwise, #CSPd(Γ ∪ Γpin) ≡AP #SAT.

Proof. The affine case is immediate from Theorem 6.1. (Γ∪Γpin is affine if, and only if, Γ is.)
Otherwise, if Γ ⊆ IM-conj and some R ∈ Γ is not affine, then #CSPd(Γ ∪ Γpin) ≡AP #BIS
by Proposition 6.2. Otherwise, if Γ ⊆ OR-conj or Γ ⊆ NAND-conj, then #w-HISd 6AP

#CSPd(Γ ∪ Γpin) 6AP #w-HISkd by Propositions 6.3 and 6.4.
Finally, suppose that Γ is not affine, Γ * IM-conj, Γ * OR-conj and Γ * NAND-conj.

Since (Γ∪Γpin) is neither affine or a subset of IM-conj, we have #CSP(Γ∪Γpin) ≡AP #SAT
by Theorem 6.1 so, if we can show that Γ d-simulates equality, then #CSPd(Γ ∪ Γpin) ≡AP

#CSP(Γ ∪ Γpin) by Proposition 4.1 and we are done. If Γ contains a R relation that is
neither OR-conj nor NAND-conj, then R 3-simulates equality by Theorem 5.2. Otherwise,
Γ must contain distinct relations R1 ∈ OR-conj and R2 ∈ NAND-conj that are non-affine
so have width at least two. So Γ 3-simulates equality by Lemma 4.4.

Unless NP = RP, there is no FPRAS for counting independent sets in graphs of
maximum degree at least 25 [7], and, therefore, no FPRAS for #w-HISd with r > 2 and
d > 25. Further, since #SAT is complete for #P under AP-reductions [8], #SAT cannot
have an FPRAS unless NP = RP. From Theorem 6.5 above we have the following corollary.

Corollary 6.6. Let Γ be a Boolean constraint language and let d > 25.

• If every R ∈ Γ is affine, then #CSPd(Γ ∪ Γpin) ∈ FP.
• Otherwise, if Γ ⊆ IM-conj, then #CSPd(Γ ∪ Γpin) ≡AP #BIS.
• Otherwise there is no FPRAS for #CSPd(Γ ∪ Γpin), unless NP = RP.

Γ ∪ Γpin is affine (respectively, in OR-conj or in NAND-conj) if, and only if Γ is, so the
case for large-degree instances (d > 25) corresponds exactly in complexity to the unbounded
case [9]. The case for lower degree bounds is more complex. To put Theorem 6.5 in context,
we summarize the known approximability of #w-HISd, parameterized by d and w.

The case d = 1 is clearly in FP (Theorem 2.1) and so is the case d = w = 2, which
corresponds to counting independent sets in graphs of maximum degree two. For d = 2 and
width w > 3, Dyer and Greenhill have shown that there is an FPRAS for #w-HISd [11].
For d = 3, they have shown that there is an FPRAS if the the width w is at most 3.

APPROXIMATING BOUNDED-DEGREE BOOLEAN #CSP 333

Degree d Width w Approximability of #w-HISd

1 > 2 FP

2 2 FP

2 > 3 FPRAS [11]

3 2, 3 FPRAS [11]

3, 4, 5 2 PTAS [30]

6, . . . , 24 > 2 The MCMC method is likely to fail [7]

> 25 > 2 No FPRAS unless NP = RP [7]

Table 1: Approximability of #w-HISd (still open for all other values of d and w).

For larger width, the approximability of #w-HIS3 is still not known. With the width
restricted to w = 2 (normal graphs), Weitz has shown that, for degree d ∈ {3, 4, 5}, there
is a deterministic approximation scheme that runs in polynomial time (a PTAS) [30]. This
extends a result of Luby and Vigoda, who gave an FPRAS for d 6 4 [24]. For d > 5,
approximating #w-HISd becomes considerably harder. More precisely, Dyer, Frieze and
Jerrum have shown that for d = 6 the Monte Carlo Markov chain technique is likely to
fail, in the sense that “cautious” Markov chains are provably slowly mixing [7]. They
also showed that, for d = 25, there can be no polynomial-time algorithm for approximate
counting, unless NP = RP. These results imply that for d ∈ {6, . . . , 24} and w > 2 the
Monte Carlo Markov chain technique is likely to fail and for d > 25 and w > 2, there can
be no FPRAS unless NP = RP. Table 1 summarizes the results.

Returning to bounded-degree #CSP, the case d = 2 seems to be rather different to
degree bounds three and higher. This is also the case for decision CSP — recall that
degree-d CSP(Γ∪Γpin) has the same complexity as unbounded-degree CSP(Γ∪Γpin) for all
d > 3 [6], while degree-2 CSP(Γ∪Γpin) is often easier than the unbounded-degree case [6,13]
but the complexity of degree-2 CSP(Γ ∪ Γpin) is still open for some Γ.

Our key techniques for determining the complexity of #CSPd(Γ ∪ Γpin) for d > 3 were
the 3-simulation of equality and Theorem 5.2, which says that every Boolean relation is in
OR-conj, in NAND-conj or 3-simulates equality. However, it seems that not all relations that
3-simulate equality also 2-simulate equality so the corresponding classification of relations
does not appear to hold. It seems that different techniques will be required for the degree-2
case. For example, it is possible that there is no FPRAS for #CSP3(Γ ∪ Γpin) except when
Γ is affine. However, Bubley and Dyer have shown that there is an FPRAS for degree-2
#SAT, even though the exact counting problem is #P-complete [1]. This shows that there
is a class C of constraint languages for which #CSP2(Γ ∪ Γpin) has an FPRAS for every
Γ ∈ C but for which no exact polynomial-time algorithm is known.

We leave the complexity of degree-2 #CSP and of #BIS and the the various parame-
terized versions of the counting hypergraph independent sets problem as open questions.

References

[1] R. Bubley and M. Dyer. Graph orientations with no sink and an approximation for a hard case of
#SAT. In 8th ACM–SIAM Symp. on Discrete Algorithms (SODA 1997), pages 248–257, 1997.

[2] A. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element domain.
J. ACM, 53(1):66–120, 2006.

334 M. DYER, L. A. GOLDBERG, M. JALSENIUS, AND D. M. RICHERBY

[3] A. A. Bulatov. The complexity of the counting constraint satisfaction problem. In 35th Intl Colloq. on
Automata, Languages and Programming (ICALP 2008) Part I, volume 5125 of LNCS, pages 646–661.
Springer, 2008.

[4] J.-Y. Cai, P. Lu, and M. Xia. The complexity of complex weighted Boolean #CSP. Upcoming journal
submission, 2009.

[5] N. Creignou and M. Hermann. Complexity of generalized satisfiablility counting problems. Inform. and
Comput., 125(1):1–12, 1996.

[6] V. Dalmau and D. K. Ford. Generalized satisfiability with limited occurrences per variable: A study
through Delta-matroid parity. In Math. Founds of Comput. Sci. (MFCS 2003), volume 2747 of LNCS,
pages 358–367. Springer, 2003.

[7] M. Dyer, A. Frieze, and M. Jerrum. On counting independent sets in sparse graphs. SIAM J. Computing,
31(5):1527–1541, 2002.

[8] M. Dyer, L. A. Goldberg, C. S. Greenhill, and M. Jerrum. The relative complexity of approximate
counting problems. Algorithmica, 38(3):471–500, 2003.

[9] M. Dyer, L. A. Goldberg, and M. Jerrum. An approximation trichotomy for Boolean #CSP. To appear
in J. Comput. Sys. Sci. http://arxiv.org/abs/0710.4272, 2007.

[10] M. Dyer, L. A. Goldberg, and M. Jerrum. The complexity of weighted Boolean CSP. SIAM J. Comput.,
38(5):1970–1986, 2009.

[11] M. Dyer and C. S. Greenhill. On Markov chains for independent sets. J. Algorithms, 35(1):17–49, 2000.
[12] R. Fagin, L. J. Stockmeyer, and M. Y. Vardi. On monadic NP vs monadic co-NP. Inform. and Comput.,

120(1):78–92, 1995.
[13] T. Feder. Fanout limitations on constraint systems. Theor. Comput. Sci., 255(1–2):281–293, 2001.
[14] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and constraint

satisfaction: A study through Datalog and group theory. SIAM J. Comput., 28(1):57–104, 1998.
[15] E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In 8th Conf. of Amer-

ican Assoc. for Art. Intelligence, pages 4–9. AAAI Press/MIT Press, 1990.
[16] P. Hell and J. Nešetřil. On the complexity of h-coloring. J. Combin. Theory B, 48(1):92–110, 1990.
[17] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press, 2004.
[18] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures from a

uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.
[19] D. E. Knuth. The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms. In preparation.
[20] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive query containment and constraint satisfaction. J. Comput.

Sys. Sci., 61(2):302–332, 2000.
[21] Ph. G. Kolaitis and M. Y. Vardi. A game-theoretic approach to constraint satisfaction. In 17th Conf.

of American Assoc. for Artif. Intelligence, pages 175–181. AAAI Press/MIT Press, 2000.
[22] V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI Magazine, 13(1):33–42, 1992.
[23] R. E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–171, 1975.
[24] M. Luby and E. Vigoda. Fast convergence of the Glauber dynamics for sampling independent sets.

Random Structures and Algorithms, 15(3–4):229–241, 1999.
[25] U. Montanari. Networks of constraints: Fundamental properties and applications to picture processing.

Inform. Sci., 7:95–135, 1974.
[26] T. J. Schaefer. The complexity of satisfiability problems. In 10th ACM Symp. on Theory of Computing,

pages 216–226, 1978.
[27] S. Toda. On the computational power of PP and

L

P. In 30th Ann. Symp. on Founds of Comput. Sci.
(FOCS 1989), pages 514–519. IEEE Computer Society, 1989.

[28] L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201, 1979.
[29] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 8(3):410–421,

1979.
[30] D. Weitz. Counting independent sets up to the tree threshold. In 38th ACM Symp. on Theory of

Computing, pages 140–149, 2006.
[31] D. Welsh. Complexity: Knots, Colourings and Counting. Cambridge University Press, 1993.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

