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AsstracT. We study the maximum weight matching problem in the semi-streaming model, and im-
prove on the currently best one-pass algorithm due to Zelke (Proc. STACS '08, pages 669—-680) by
devising a deterministic approach whose performance guarante®lis 4. In addition, we study
preemptiveonline algorithms, a sub-class of one-pass algorithms where we are only allowed to main-
tain a feasible matching in memory at any point in time. All known results prior to Zelke’s belong to
this sub-class. We provide a lower bound @8 on the competitive ratio of any such deterministic
algorithm, and hence show that future improvements will have to store in memory a set of edges
which is not necessarily a feasible matching. We conclude by presenting an empirical study, con-
ducted in order to compare the practical performance of our approach to that of previously suggested
algorithms.

1. Introduction

The computational task of detecting maximum weight matchings is one of the most fundamen-
tal problems in discrete optimization, attracting plenty of attention from the operations research,
computer science, and mathematics communities. (For a wealth of references on matching prob-
lems see [16].) In such settings, we are given an undirected @ggaph(V, E) whose edges are
associated with non-negative weights specifievbyE — R, . A set of edged C E is amatching
if no two of the edges share a common vertex, that is, the degree of any veexihig at most 1.

The weightw(M) of a matchingM is defined as the combined weight of its edges, }Macyv W(e).
The objective is to compute a matching of maximum weight. We study this problem in two related
computational models: theemi-streamingnodel and thgpreemptive onlinenodel.

The semi-streaming model. Even though these settings appear to be rather simple as first glance, it
is worth noting that matching problems have an abundance of flavors, usually depending on how the
input is specified. In this paper, we investigate weighted matchings iseimestreamingnodel,

first suggested by Muthukrishnan [14]. Specificallygraph streamis a sequence,,e,, ... of
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distinct edges, where,, e,,. .. is an arbitrary permutation d&&. When an algorithm is processing
the stream, edges are revealed sequentially, one at a time. Lrettifg| andm = |E|, efficiency in
this model is measured by the sp&@, m) a graph algorithm uses, the tinig¢n, m) it requires to
process each edge, and the number of pa@ges) it makes over the input stream. Throughout the
paper, however, we focus on one-pass algorithms, th&sm) = 1. The main restriction is that
the spacé&(n, m) is limited toO(n - polylog(n)) bits of memory. We refer the reader to a number of
recent papers [14, 4, 5, 2, 12] and to the references therein for a detailed literature review.

Online version. Online matching has previously been modeled as follows [9]. Edges are presented
one by one to the algorithm, along with their weight. Once an edge is presented, we must make an
irrevocable decision, whether to accept it or not. An edge may be accepted only if its addition to
the set of previously accepted edges forms a feasible matching. In other words, an algorithm must
keep a matching at all times, and its final output consists of all edges which were ever accepted.
In this model, it is easy to verify that the competitive ratio of any (deterministic or randomized)
algorithm exceeds any function of the number of vertices, meaning that no competitive algorithm
exists. However, if all weights are equal, a greedy approach which accepts an edge whenever
possible, has a competitive ratio of 2, which is best possible for deterministic algorithms [9].

Similarly to other online settings (such as call control problems [6]), a preemptive model can
be defined, allowing us to remove a previously accepted edge from the current matching at any
point in time; this event is calledreemption Nevertheless, an edge which was either rejected or
preempted cannot be inserted to the matching later on. We point out that other types of online
matching problems were studied as well [9, 7, 10, 1].

Comparison between the models. Both one-pass semi-streaming algorithms and online algo-
rithms perform a single scan of the input. However, unlike semi-streaming algorithms, online algo-
rithms are allowed to concurrently utilize memory for twdfeient purposes. The first purpose is
obviously to maintain the current solution, which must always be a feasible matching, implying that
the memory size of this nature is bounded by the maximal size of a matching. The second purpose is
to keep track of arbitrary information regarding the past, without any concrete bound on the size of
memory used. Therefore, in theory, online algorithms are allowed to use much larger memory than
is allowed in the semi-streaming model. Moreover, although this possibility is rarely used, online
algorithms may perform exponential time computations whenever a new piece of input is revealed.
On the other hand, a semi-streaming algorithm may re-insert an edge to the current solution, even
if it has been temporarily removed, as long as this edge was kept in memory. This extra power is
not allowed for online (preemptive) algorithms, making them inferior in this sense in comparison to
their semi-streaming counterparts.

Previous work. Feigenbaum et al. [4] were the first to study matching problems under similar
assumptions. Their main results in this context were a semi-streaming algorithm that computes a
(3/2 + &)-approximation inO(log(1/e)/e) passes for maximum cardinality matching in bipartite
graphs, as well as a one-pass 6-approximation for maximum weighted matching in arbitrary graphs.
Later on, McGregor [12] improved on these findings, to obtain performance guarantees of (1

and (2+ ¢) for the maximum cardinality and maximum weight versions, respectively, being able
to handle arbitrary graphs with only a constant number of passes (dependirig)omnladdition,
McGregor [12] tweaked the one-pass algorithm of Feigenbaum et al. into achieving a ra88&f 5
Finally, Zelke [17] has recently attained an improved approximation factab865which stands as

the currently best one-pass algorithm. Note that the 6-approximation algorithm in [4] an828e 5
approximation algorithm in [12] are preemptive online algorithms. On the other hand, the algorithm
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of Zelke [17] uses the notion of shadow-edges, which may be re-inserted into the matching, and
hence it is not an online algorithm.

Main result I. The first contribution of this paper is to improve on the above-mentioned results,
by devising a deterministic one-pass algorithm in the semi-streaming model, whose performance
guarantee is 81+ ¢. In a nutshell, our approach is based on partitioning the edge sedfldgn)

weight classes, and computing a separate maximal matching for each such class in online fashion,
usingO(n - polylog(n)) memory bits overall. The crux lies in proving that the union of these match-
ings contains a single matching whose weight compares favorably to the optimal one. The specifics
of this algorithm are presented in Section 2.

Main result Il.  Our second contribution is motivated by the relation between semi-streaming al-
gorithms andpreemptiveonline algorithms, which must maintain a feasible matching at any point

in time. To our knowledge, there are currently no lower bounds on the competitive ratio that can
be achieved by incorporating preemption. Thus, we also provide a lower boun#6af dn the
performance guarantee of any such deterministic algorithm. As a result, we show that improved one
pass algorithms for this problem must store more than just a matching in memory. Further details
are provided in Section 3.

Main result 1ll.  We conclude with the first ever experimental study in the context of semi-
streaming algorithms for matching problems, conducted in order to compare the practical perfor-
mance of our approach to that of previously suggested algorithms. In Section 4, we demonstrate
that by carefully calibrating some cuffgarameters, combined with the idea of running multiple
algorithms in parallel, one can achieve practical performance guarantees that far exceed theoretical
ones, at least when real-life instances are considered.

2. The Semi-Streaming Algorithm

This section is devoted to obtaining main result I, that is, an improved one-pass algorithm for
the weighted matching problem in the semi-streaming model. We begin by presenting a simple
deterministic algorithm with a performance guarantee of 8. We then show how to randomize its
parameters, still within the semi-streaming framework, and obtain an expected approximation ratio
of 4.9108. Finally, we de-randomize the algorithm by showing how to emulate the required ran-
domness using multiple copies (constant number) of the deterministic algorithm, while paying an
additional additive factor of at most for any fixede > 0.

2.1. A simple deterministic approach

Preliminaries. We maintain the maximum weight of any edgg,.x seen so far in the input
stream. Clearly, the maximum weight matching of the edges seen so far has weight in the interval
[wmax, EWmax]- We denote a maximum weight matching and its costrayit should be clear which

one is meant from the context. Note that if we disregard all edges with weight atg%@%t the
weight of the maximum weight matching in the resulting instance decreases by an additive term of
at mostsWmax < € OPT.

Our algorithm has a parametgr> 1, and a value > 0. We define weight classes of edges
in the following way. For every € Z, we let the clas®V; be the collection of edges whose weight
is in the interval[qbyi, ¢yi+1). We note that by our initial assumption, the weight of each edge is in

ngr‘gmax,wmax], and we say that a weight cla®4 is under consideratiorif its weight

the interval[
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interval [¢yi, ¢7i+1) intersects[zg";’]max,wmax]. The number of classes which are under consideration
atany point in time i (log, 2).

The algorithm. Our algorithm simply maintains the list of classes under consideration and main-
tains a maximal (unweighted) matching for each such class. In other words, when the walyg of
changes, we delete from the memory some of these matchings, corresponding to classes that are
no longer under consideration. Note that to maintain a maximal matching in a given subgraph, we
only need to check if the two endpoints of the new edge are not covered by existing edges of the
matching.

To conclude, for every new edgs= E we proceed as follows. We first checkni{e) is greater
than the current value afinax If SO, we updatevmax and the list of weight classes under consid-
eration accordingly. Then, we find the weight classmi#), and try to extend its corresponding
matching; i.e.e will be added to this matching if it remains a matching after doing so.

Note that at each point the content of the memory is comprised of a fixed number of parameter
values and a collection @(Iogy 2) matchings, consisting dD(n log, 2) edges overall. Therefore,
our algorithm indeed falls in the semi-streaming model.

At the conclusion of the input sequence, we need to return a single matching rather than a
collection of matchings. To this end, we could compute a maximum weighted matching of the edges
in the current memory. However, for the specific purposes of our analysis, we use the following
faster algorithm. We sort the edges in memory in decreasing order of weight classes, such that
the edges iV appear before those W_1, for everyi. Using this sorted list of edges, we apply
a greedy algorithm for selecting a maximal matching, in which the current edge is added to this
matching if it remains a matching after doing so. Then, the post-processing time needed is linear in
the size of the memory used, that@(nlogy g) This concludes the presentation of the algorithm
and its implementation as a semi-streaming algorithm.

Analysis. For purposes of analysis, we round down the weight of each edge so that the weight of
all edges il equalspy'. This way, we obtaimoundededge weights. For our optimal solutionr
let us denote byrr’ its rounded weight. The next claim follows from the definitiorvgt

Lemma 2.1. opt < yoprr’.

As an intermediate step, we analyze an improved algorithm that keeps all weight classes. That
is, for eachi, we useM; to denote the maximal matching of cla#é at the end of the input, and
denote byM the solution obtained by this algorithm, if we would have applied it. Similarly, we
denote byorr; the set of edges iopr which belong toM. For everyi, we define the set of vertices
P;, associated wit;, to be the set of endpoints of edgesMinthat are not associated with higher
weight classes:

Pi={uv|(Vv)eMi}\(Pi1UP2U--).
For a vertexp € P;, we define its associated weight to #¢. For vertices which do not belong
to anyP;, we let their associated weight be zero. We next bound the total associated weight of all
vertices.

Lemma 2.2. The total associated weight of all vertices is at myéﬁt w(M).

Proof. Consider a vertexi € P; and let (1, v) be the edge iM; adjacent tau. If (u,v) € M then
we charge the weight associated witko the edge, v). Thus, an edge € M; is charged at most
twice from vertices associated with its own weight class. Otherwise, VW) @ M then there must
be some other edgec M N My, for somej > i, that prevented us from adding, {/) to M, in which
case we charge the weight associated with e. Notice thatu ¢ e, or otherwiseu would not be
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associated withWV;. Thus, the edge € Mj must be of the forne = (v, x) and can only be charged
twice from vertices in weight clagsonce througlv and once through.

To bound the ratio betweesn(M) and the total associated weight of the vertices, flices to
bound the ratio between the weight of an edgeM and the total associated weight of the vertices
which are charged te. Assume thae € Mj, then there are at most two vertices which are charged
to eand class for all i < j, and no vertex is associatedeé@nd class for i > j. Hence, the total
associated weight of these vertices is at most

. 1 . 1 L2y
2 ' < 2¢v! - — =20y - I. =
;qﬁy by ;y, by -1/ oy y-1
and the claim follows sincev(e) > ¢y/. n

It remains to bounapt’ with respect to the total associated weight.
Lemma 2.3. The total weight associated with all vertices is at mast.

Proof. It suffices to show that for every edge= (X, y) € opr; the maximum of the associated
weights ofx andy is at least the rounded weight ef Suppose that this claim does not hold, then
x andy are not covered b, as otherwise their associated weight would be at kegstHence,
when the algorithm consideragl we would have addedto M;, contradicting our assumption that
x andy are not covered biu;. [

Now instead of considering all weight categories, we cogsttiie matchingM only using
edges with weight at Iea§f~";’]ﬂx. Using the above sequence of lemmas, and recalling that we lose
anotherﬁ factor in the approximation ratio due to disregarding these cheap edges, we obtain the
following inequality:

1 2y?
1-% y-1
For anye > 0, settinge™= m we get an approximation ratio éé + &. This ratio is
optimized fory = 2, where it equals (8 ¢). Hence, we have established the following theorem.

opT < yorT’ < -w(M). (2.1)

Theorem 2.4. For any fixede > 0, there is a deterministic one-pass semi-streaming algorithm
whose approximation ratio i8 + «.

2.2. Improved approximation ratio through randomization

In what follows, we analyze a randomized variant of the deterministic algorithm which was
presented in the previous subsection. In general, this variant sets the valtelsp = y° wheres
is a random variable. This method is commonly referred t@adomized geometric groupiri§].
Formally, leté be a continuous random variable which is uniformly distributed on the interval
[0, 1). We define the weight cla¥¥;(6) to be the edges whose weight is in the inte{véﬂ‘s, y‘+1+5),
and run the algorithm as in the previous subsection. Note that this algorithm uses only the patrtition
of the edges into classes and not the precise values of their weights. In addition, we deid®® by
the resulting matching obtained by the algorithm, andr®/(s) the total associated weight of the
vertices, where for a vertex e P; we define its associated weight to$#; i.e., the minimal value
in the interval definingV;(6). We also denote byet’(6) the value ofort’ for this particulars.
For any fixed value 08, inequality (2.1) immediately implieser’(6) < (% + ) - W(M(9)).
Note thatort’(6) andw(M(6)) are random variables, such that for each realizatiof thie above
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inequality holds. Hence, this inequality holds also for their expected values. That is, we have
established the following lemma wherg[H represents expectation with respect to the random
variableé.

Lemma 2.5. Esorr’(6)] < (2% + &) - Es[w(M(9))].
We next upper boundpr in terms of E[opt’(5)].
Lemma 2.6. );/lTnf/ - Es[op1’(6)] > opr.

Proof. We will show the corresponding inequality for each edége opr. We denote byw;(€) the
rounded weight oé for a specific value of. Then, it sdfices to show tha{y'f—l7 - Es[w;(€)] = w(e).
Let p be an integer, and let @ a < 1 be the value that satisfiege) = y***. Then, for§ < «,
wi(e) = yP* and fors > «, wi(€e) = yP~1+9thus the expected rounded weigheaiver the choices
of 6 is
% 1 1 1 1 1 1
Es[w;(e)] = f yPHds + f YPds = = - (PO - 1) +yP - v) = w(e) - (1 - —) —,
0 o Iny y)Iny
and the claim follows. [
Combining the above two lemmas we obtain that the expecteghivef the resulting solution
is at Ieas( o1 8)-OPT. This approximation ratio is optimized for~ 3.513, where it is roughly

2y2Iny
(4.9108+ £). Hence, we have established the following theorem.

Theorem 2.7. For any fixede > 0, there is a randomized one-pass semi-streaming algorithm whose
expected approximation ratio is rough#y9108+ ¢.

2.3. Derandomization

Prior to presenting our de-randomization, we slightly modify the randomized algorithm of the
previous subsection. In this variation, instead of pickéhgniformly at random from the interval
[0,1) we pickd” uniformly at random from the discrete s{@: % % cees %} whereq is a param-
eter whose value will be determined later. We apply the same method as in the previous section,
replacings by ¢’. Then, using Lemma 2.5, we obtai forr’(¢6")] < (% + s) - Es[W(M(6"))]. To
extend Lemma 2.6 to this new setting, we note tatan be obtained by first pickingand then
rounding it down to the largest number {iﬁ, é % . %} which is at mos®. In this way, we
couple the distributions af andé’. Now consider the rounded weight of an edge ort in the two
distinct values ob andé’. The ratio between the two rounded weights is at myé$t Therefore,
we establish thai“y'f—ly -yY9 . Es[opr’(6")] > opr, and the resulting approximation ratio of the new
2y2+1/q Iny

(r-1) ,
the resulting approximation ratio is bounded '1”)27 + 2e.

De-randomizing the new variation in the semi-streaming model is straightforward. We simply
run in parallel allg possible outcomes of the algorithm, one for each possible valée ahd pick
the best solution among tleesolutions obtained. Sinagis a constant (for fixed values e, the
resulting algorithm is still a semi-streaming algorithm whose performance guarant8&0842¢.

By scalinge prior to applying the algorithm, we establish the following result.

variation is + &. By settingq to be large enough (picking = [Iog;l(s/S)] is suficient),
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Theorem 2.8. For any fixedes > 0, there is a deterministic one-pass semi-strean{thg108+ &)-
approximation algorithm for the weighted matching problem. This algorithm processes each input
edge in constant time and requiredrptime at the end of the input to compute the final output.

3. Online Preemptive Matching
In this section, we establish the following theorem.

Theorem 3.1. The competitive ratio of any deterministic preemptive online algorithm is at least
R — ¢ for anye > 0, whereR ~ 4.967is the unique real solution of the equatiof x 4(x* + x + 1).

Recall that the algorithm of Feigenbaum et al. [4] and that of McGregor [12] can be viewed as
online preemptive algorithms; their competitive ratios are 6 aBa& respectively.

Definitions and properties. LetC = R — ¢ for some arbitrary but fixed > 0. Our goal is to show

that the competitive ratio of any deterministic algorithm is at I€asto this end, we construct an
input graph iteratively. In the construction of the input, edge weights come from two sequences.
The main sequenogy, Wy, . . ., and the additional sequenceN§,w’ ,..., are defined as follows:

L[ =1 [ =1
g (CPrywia-cXEw) ix1 A (C+rDwi-wig) i>1 3-1)

The sequences are defined according to (3.1) as lomg.a$ W,_». AS SO0ON a1 < Wp_2
for somen, both sequences stop witly, andwy, respectively. In the full version [3] of this paper
we show that the sequences are well defined in the sense that they indeed have finite length. Let
Si = |j:1 Wi andSg = 0.

From the definition (3.1) and simple algebra, one can derive the following properties of these
sequences. We omit their justification due to lack of space.

Property 1. Foralli =1,...,n—2we havew; <w/, butw,_1 > W,_q-
Property 2. Foralli =1,...,n-2we haveCw; = Sj_1 + Wi + W, ;.

Property 3. Foralli =1,...,n-2we haveCw, = Sj_2 + Wi + Wi;1 + W/ ;.

Input construction, step 1. To better understand our construction, we advise the reader to consult
Figure 1. The input is created msteps. In the initial step, two edgess (x;1) and 3, X1), each of
weightw;, are introduced. Assume that after both edges have arrived, the online algorithm keeps
the edgeds, x1).

Every future step can be of two distinct types, which will be described later on. We maintain
the following invariants throughout the construction.

Invariant 1. Immediately after théth step, the sel; = {(x1, b1), ..., (X, b))} forms a matching.

Invariant 2. Immediately after théth step, the algorithm keeps a single edgevhich can be one
of two edges:

i) If g = (X, g) then its weight isv, anda; is unmatched irvi;.

i) If & = (vi,q) then its weight isv, y; = x;j for somej < i, andc; is unmatched iM;.
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i1 i=2 i=3| &
a X2 &
X1 =Y X1 X2 a X1 V& X3 ag C3
bl b]_ b2 bl b2 b3
a a
i=4 X2 i=5 X2
Y3 & Cs Y3 a Cs Cy
X1 Ya X3 az Xa as Cq X1 Ya X3 az Xa as X5 as
by b, bs by b, b, bs bs bs

Figure 1: An example of five steps of the lower bound constuctiThe curved edges denote the
edge kept by the online algorithm at each time. In the first two steps, the edga$ (
are chosen by the algorithm. In the third steg, &3) is not chosen by the algorithm, so
(vs, C3) arrives next. In the fourth stepx4, a4) is not chosen by the algorithm, sm{c4)
arrives next. In the fifth stepx§, as) is chosen by the algorithm, so no further edges
arrive in this step.

The invariants clearly holds after the first step: The algorithm keepsy) anda; is free in
M1 = {(x1, b1)}. We next define the subsequent steps and show that the invariants holds throughout.

Input construction, stepi + 1 < n. We now show how to construct the edges of stepl, for
the caseé + 1 < n. We introduce two new edges of weight, ;. Let x,1 beg if g = (X, &), and
Xi+1 bec if = (y,¢). The new edges arei(1,bi+1), and .1, a.1), wherea;,; andb;,; are
new vertices. According to Invariant 2, the vertex; is unmatched irM;. It follows thatM;, 1 is a
matching and thus Invariant 1 holds in this step. Both edges have a common endpoint with the edge
that the algorithm has, and the algorithm can either preempt which case we assume (without
loss of generality) that it now hasi(1,a,.1), or else it keeps the previous edge. If the algorithm
holds ontog then lety;,1 be % if = (X, &), andy.1 bey; if § = (yi,¢). In this case a third
edge, Vii1,Ci+1), with weight ofw/,, is introduced. The verteg;,; is new. There are four cases
to consider depending on which edge the algorithm had at the end ahtbtep and whether it is
preempted right away or not.

In the first case, the algorithm has= (x, &) at the end of theth step and replaces it with
(Xi+1, 8+1) = (&, @+1). Sincea,1 is a new vertex (and fferent tharx;, 1) it follows thata;, 1 is free
in Mi;1. Thus, case i) of Invariant 2 holds.

In the second case, the algorithm leas (y;, ¢;) at the end of théh step and it replaces it with
(Xi+1, &+1) = (G, a41). It follows thata;,; is free inM;, 1. Thus, case ii) of Invariant 2 holds.

For the remaining two cases note thatMf < 0 orw; < 0 and the algorithm has a single
edge of weightw or w;, respectively, then the optimal solution is strictly positive and the value
of the algorithm is non-positive, hence the resulting approximation ratio in this case is unbounded.
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Consequently, we can assume without loss of generality that if the algorithm has a single edge at
the end of stepthen its weight is strictly positive.

Now consider the case where the algorithm fgas (g, X)) at the end of théth step but does
not replace it with %,1, &+1) = (&, a1). If this happens, we show that the algorithm must replace
the edge with¥j,1,Ci11) = (X,C1). Assume that this is not the case. Then the profit of the
algorithm isw;. Consider the solutioM;,1 — (X, b)) + (Yi+1,Ci+1). The cost of this matching is
Sit1—W +W,,,, which equal€w;, by Property 2. In other words, the solution kept by the algorithm
is C-competitive. Since our goal is to prove precisely this, we can assume this event never happens.
Thus, the algorithm must switch to the edgg {; ¢i.1), which leads us to case ii) of Invariant 2.

Finally, consider the case where the algorithm Bas (y;, ¢;) at the end of theth step but
does not replace it withx(,1, a41) = (G, a41). If this happens, we show that the algorithm must
replace the edge witlyit.1, Ci+1) = (Vi, Gi+1). Assume that this is not the case. Then the profit of the
algorithm isw;. Consider the solutioj,1 — (Xj, bj) + (Yi+1, Ci+1), Wherej < i is the index from
case ii) in Invariant 2 that correspondsgo The cost of this matching is at leaSt.q — w1 + W, ;,
which equalCw!, by Property 3. As in the previous case, we can assume this never happens. Thus,
the algorithm must switch to the edge.(, a,1), which leads us to case ii) of Invariant 2.

This finishes the description of the input graph construction, as well as the justification that

Invariants 1 and 2 hold at each step along the way.

Bounding the competitive ratio. We next define a recursive formula 8. By definition (3.1) of
the sequence/;, we have

So=0
Sl =1 5 , (32)
Sk = G2, - S, ) fork> 1

Lemma 3.2. There exists a value of n such that.w> wy_1; for this value,f’vgj > C holds.

Proof. The first claim is proved by solving the recurrence (3.2), using standard tools [3]. To prove
the second part, note that, » > wy,_; is equivalent td&5,_1 — Sp_2 < Sp_2 — Sp_3. Hence using the
recursive formula we conclude that
0+1 ¢ C?+2C+2
i I

Sn-1—25h2 + Sh-2 <0,

c2-Cc-1
that is,
Sn1-(C?°+C+1-2C-1)+Sh2-(C?°+2C+2-2C*-2C-2)<0,
which is equivalent to@? — C)Sn-1 — C?Sn_2 < 0, SOC(Sn-1 — Sn-2) < Sn_1, and we conclude that
CWph_1 < Sp_1, as claimed. m

Everything is in place to prove the main claim of this section.

Proof of Theorem 3.1From Invariant 2, we conclude that at the end of iteratierl, the algorithm
only has the edge, 1, which can have weightv. , or wn_3. From Property 1, it follows that
maxWn-1,W,,_;} = Wp_1. On the other hand, from Invariant 1, we know that there is a matching
with costS,,_1. Therefore, the competitive ratio of any algorithm is at I%ﬁt. From Lemma 3.2

we then conclude that the competitive ratio is at l€ast [
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4. Experimental Evaluation

In this section, we present the results of an empirical study, conducted in order to compare the
practical performance of our approach to that of previously suggested algorithms. More specifically,
the complete set of algorithms that have been implemented and extensively tested can be briefly
listed as follows:

e LAYERED: The algorithm described in Section 2, which keQ(stog E) matchings.
e onLINE: The algorithm of McGregor [12], based on keeping a single matching at all times.
e suapow: The algorithm of Zelke [17], with two shadow edges for each matching edge.

ForLaverep andsaapow, we made use of an addition optimization phase, in which a maximum
weight matching is computed among the edges that were kept in memory. The main reason for this
extra dfort is that we were interested in determining the best possible practical performance that
can be extracted out of these algorithms, rather than in worse case performance and nothing more.
We point out that this phase is performed only once, and that one can always employ a linear-time
approximation [11] should running time be a concern.

Special features. Each of above-mentioned algorithms is parameterized. Typically, this parameter

is chosen to minimize the worst-case approximation ratio obtained in theory. However, this choice
need not be the one leading to the best performance in practice. Therefore, we considered three
versions of each algorithm, with ftierent parameters: one was chosen empirically to obtain best
possible guarantees; another is the value emanating from the theoretical analysis; and the last one
is just averaging these two. We also examined the consequences of combfféngntialgorithms.

Under this scheme, all algorithms are executed in parallel and, at the end, a maximum weight
matching is computed with respect to the collection of edges kept by any of these algorithms.

Actual tests performed. We evaluated.averep, oNLINE, andsHapow with test graphs of roughly
1000 vertices. Following the approach of previous experimental papers in this context [13, 11], we
investigated three fierent classes of graphs:

e Geometric: Points were drawn uniformly at random from the unit square; the weight of an
edge is the Euclidean distance between its endpoints.

e Real world: Points are taken from geometric instances in the TSPLIB [15]; once again,
edge weights are determined by Euclidean distances.

e Random: The weight of each edge is an integer picked uniformly and independently at
random from 1...,|V|.

From each of these classes, we generated 10 base instances. In addition, as the performance
of all algorithms under consideration depends heavily on the particular order by which edges are
revealed, each algorithm was tested on every base instance for 200 independent runs, with a random
edge permutation each time. To speed up the experiments all graphs were sparsified by keeping, for
each vertex, the connections to one third of its closest nodes. The results are presented in Figure 2.

Conclusions. One can notice right away that the algorithms in question perform significantly better
when their respective parameters are set considerably lower than the best theoretical value (1.2 for
LAYERED, and 1.1 foronLine andsuapow). With this optimization in place, it appears that.ine and

sHapow have comparable performance, but outperfessErep.

Regarding the combination of several algorithms, we compared for each algorithm the com-
bined output of its three versions (depending on parameter setting) and the outcome of combining
the best version of each of the three algorithms. We consistently observed that it is preferable to
combine the output of completelyftirent algorithms rather than the same algorithm witfedent
parameters.
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(e) Real. Individual algorithms.

(f) Real. Combined algorithms.

Figure 2: The results of individual algorithms appear on the left column, while the performance
of combining them is shown on the right. The algorithms are specified as x-axis labels
using first letters (L foraverep, O for onLing, and S forsuapow), followed by the precise
parameter value for that version. Box plots describing the outcome of our experiments
are given above. Each box contains outcomes with performance between the .25 and .75
guartile, where the horizontal line inside designated the median.
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Finally, we point out that, as it is often the case for approximation algorithms, the observed
performance of all algorithms is significantly better than the theoretical worst case guarantee. It
is worth noting, however, that their performance is still worse than traditional heuristics (such as
the greedy algorithm) that are not constrained by the extent of memory usage. For example, in
geometric graphs, these heuristics can recover on average 99% of the optimal value [11], whereas
none of the individual algorithms can recover more than 90%.
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