
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 347-358
www.stacs-conf.org

IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING
IN THE SEMI-STREAMING MODEL

LEAH EPSTEIN1 AND ASAF LEVIN 2 AND JULIÁN MESTRE3 AND DANNY SEGEV4

1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel.

2 Chaya fellow. Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel.

3 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany.

4 Department of Statistics, University of Haifa, 31905 Haifa, Israel.

A. We study the maximum weight matching problem in the semi-streaming model, and im-
prove on the currently best one-pass algorithm due to Zelke (Proc. STACS ’08, pages 669–680) by
devising a deterministic approach whose performance guarantee is 4.91+ ε. In addition, we study
preemptiveonline algorithms, a sub-class of one-pass algorithms where we are only allowed to main-
tain a feasible matching in memory at any point in time. All known results prior to Zelke’s belong to
this sub-class. We provide a lower bound of 4.967 on the competitive ratio of any such deterministic
algorithm, and hence show that future improvements will have to store in memory a set of edges
which is not necessarily a feasible matching. We conclude by presenting an empirical study, con-
ducted in order to compare the practical performance of our approach to that of previously suggested
algorithms.

1. Introduction

The computational task of detecting maximum weight matchings is one of the most fundamen-
tal problems in discrete optimization, attracting plenty of attention from the operations research,
computer science, and mathematics communities. (For a wealth of references on matching prob-
lems see [16].) In such settings, we are given an undirected graphG = (V,E) whose edges are
associated with non-negative weights specified byw : E→ R+. A set of edgesM ⊆ E is amatching
if no two of the edges share a common vertex, that is, the degree of any vertex in (V,M) is at most 1.
The weightw(M) of a matchingM is defined as the combined weight of its edges, i.e.,

∑

e∈M w(e).
The objective is to compute a matching of maximum weight. We study this problem in two related
computational models: thesemi-streamingmodel and thepreemptive onlinemodel.

The semi-streaming model.Even though these settings appear to be rather simple as first glance, it
is worth noting that matching problems have an abundance of flavors, usually depending on how the
input is specified. In this paper, we investigate weighted matchings in thesemi-streamingmodel,
first suggested by Muthukrishnan [14]. Specifically, agraph streamis a sequenceei1 , ei2, . . . of

The third author was supported by an Alexander von Humboldt Fellowship.

c© L. Epstein, A. Levin, J. Mestre, and D. Segev
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010 
Editors: Jean-Yves Marion, Thomas Schwentick 
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2476



348 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

distinct edges, whereei1, ei2, . . . is an arbitrary permutation ofE. When an algorithm is processing
the stream, edges are revealed sequentially, one at a time. Lettingn = |V| andm= |E|, efficiency in
this model is measured by the spaceS(n,m) a graph algorithm uses, the timeT(n,m) it requires to
process each edge, and the number of passesP(n,m) it makes over the input stream. Throughout the
paper, however, we focus on one-pass algorithms, that is,P(n,m) = 1. The main restriction is that
the spaceS(n,m) is limited toO(n · polylog(n)) bits of memory. We refer the reader to a number of
recent papers [14, 4, 5, 2, 12] and to the references therein for a detailed literature review.

Online version. Online matching has previously been modeled as follows [9]. Edges are presented
one by one to the algorithm, along with their weight. Once an edge is presented, we must make an
irrevocable decision, whether to accept it or not. An edge may be accepted only if its addition to
the set of previously accepted edges forms a feasible matching. In other words, an algorithm must
keep a matching at all times, and its final output consists of all edges which were ever accepted.
In this model, it is easy to verify that the competitive ratio of any (deterministic or randomized)
algorithm exceeds any function of the number of vertices, meaning that no competitive algorithm
exists. However, if all weights are equal, a greedy approach which accepts an edge whenever
possible, has a competitive ratio of 2, which is best possible for deterministic algorithms [9].

Similarly to other online settings (such as call control problems [6]), a preemptive model can
be defined, allowing us to remove a previously accepted edge from the current matching at any
point in time; this event is calledpreemption. Nevertheless, an edge which was either rejected or
preempted cannot be inserted to the matching later on. We point out that other types of online
matching problems were studied as well [9, 7, 10, 1].

Comparison between the models. Both one-pass semi-streaming algorithms and online algo-
rithms perform a single scan of the input. However, unlike semi-streaming algorithms, online algo-
rithms are allowed to concurrently utilize memory for two different purposes. The first purpose is
obviously to maintain the current solution, which must always be a feasible matching, implying that
the memory size of this nature is bounded by the maximal size of a matching. The second purpose is
to keep track of arbitrary information regarding the past, without any concrete bound on the size of
memory used. Therefore, in theory, online algorithms are allowed to use much larger memory than
is allowed in the semi-streaming model. Moreover, although this possibility is rarely used, online
algorithms may perform exponential time computations whenever a new piece of input is revealed.
On the other hand, a semi-streaming algorithm may re-insert an edge to the current solution, even
if it has been temporarily removed, as long as this edge was kept in memory. This extra power is
not allowed for online (preemptive) algorithms, making them inferior in this sense in comparison to
their semi-streaming counterparts.

Previous work. Feigenbaum et al. [4] were the first to study matching problems under similar
assumptions. Their main results in this context were a semi-streaming algorithm that computes a
(3/2 + ε)-approximation inO(log(1/ε)/ε) passes for maximum cardinality matching in bipartite
graphs, as well as a one-pass 6-approximation for maximum weighted matching in arbitrary graphs.
Later on, McGregor [12] improved on these findings, to obtain performance guarantees of (1+ ε)
and (2+ ε) for the maximum cardinality and maximum weight versions, respectively, being able
to handle arbitrary graphs with only a constant number of passes (depending on 1/ε). In addition,
McGregor [12] tweaked the one-pass algorithm of Feigenbaum et al. into achieving a ratio of 5.828.
Finally, Zelke [17] has recently attained an improved approximation factor of 5.585, which stands as
the currently best one-pass algorithm. Note that the 6-approximation algorithm in [4] and the 5.828-
approximation algorithm in [12] are preemptive online algorithms. On the other hand, the algorithm



IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 349

of Zelke [17] uses the notion of shadow-edges, which may be re-inserted into the matching, and
hence it is not an online algorithm.

Main result I. The first contribution of this paper is to improve on the above-mentioned results,
by devising a deterministic one-pass algorithm in the semi-streaming model, whose performance
guarantee is 4.91+ ε. In a nutshell, our approach is based on partitioning the edge set intoO(logn)
weight classes, and computing a separate maximal matching for each such class in online fashion,
usingO(n · polylog(n)) memory bits overall. The crux lies in proving that the union of these match-
ings contains a single matching whose weight compares favorably to the optimal one. The specifics
of this algorithm are presented in Section 2.

Main result II. Our second contribution is motivated by the relation between semi-streaming al-
gorithms andpreemptiveonline algorithms, which must maintain a feasible matching at any point
in time. To our knowledge, there are currently no lower bounds on the competitive ratio that can
be achieved by incorporating preemption. Thus, we also provide a lower bound of 4.967 on the
performance guarantee of any such deterministic algorithm. As a result, we show that improved one
pass algorithms for this problem must store more than just a matching in memory. Further details
are provided in Section 3.

Main result III. We conclude with the first ever experimental study in the context of semi-
streaming algorithms for matching problems, conducted in order to compare the practical perfor-
mance of our approach to that of previously suggested algorithms. In Section 4, we demonstrate
that by carefully calibrating some cut-off parameters, combined with the idea of running multiple
algorithms in parallel, one can achieve practical performance guarantees that far exceed theoretical
ones, at least when real-life instances are considered.

2. The Semi-Streaming Algorithm

This section is devoted to obtaining main result I, that is, an improved one-pass algorithm for
the weighted matching problem in the semi-streaming model. We begin by presenting a simple
deterministic algorithm with a performance guarantee of 8. We then show how to randomize its
parameters, still within the semi-streaming framework, and obtain an expected approximation ratio
of 4.9108. Finally, we de-randomize the algorithm by showing how to emulate the required ran-
domness using multiple copies (constant number) of the deterministic algorithm, while paying an
additional additive factor of at mostε, for any fixedε > 0.

2.1. A simple deterministic approach

Preliminaries. We maintain the maximum weight of any edgewmax seen so far in the input
stream. Clearly, the maximum weight matching of the edges seen so far has weight in the interval
[

wmax,
n
2wmax

]

. We denote a maximum weight matching and its cost by; it should be clear which

one is meant from the context. Note that if we disregard all edges with weight at most2ε̃wmax
n , the

weight of the maximum weight matching in the resulting instance decreases by an additive term of
at most ˜εwmax ≤ ε̃ .

Our algorithm has a parameterγ > 1, and a valueφ > 0. We define weight classes of edges
in the following way. For everyi ∈ Z, we let the classWi be the collection of edges whose weight
is in the interval

[

φγi , φγi+1
)

. We note that by our initial assumption, the weight of each edge is in

the interval
[

2ε̃wmax
n ,wmax

]

, and we say that a weight classWi is under considerationif its weight



350 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

interval
[

φγi , φγi+1
)

intersects
[

2ε̃wmax
n ,wmax

]

. The number of classes which are under consideration

at any point in time isO
(

logγ
n
ε̃

)

.

The algorithm. Our algorithm simply maintains the list of classes under consideration and main-
tains a maximal (unweighted) matching for each such class. In other words, when the value ofwmax

changes, we delete from the memory some of these matchings, corresponding to classes that are
no longer under consideration. Note that to maintain a maximal matching in a given subgraph, we
only need to check if the two endpoints of the new edge are not covered by existing edges of the
matching.

To conclude, for every new edgee ∈ E we proceed as follows. We first check ifw(e) is greater
than the current value ofwmax. If so, we updatewmax and the list of weight classes under consid-
eration accordingly. Then, we find the weight class ofw(e), and try to extend its corresponding
matching; i.e.,ewill be added to this matching if it remains a matching after doing so.

Note that at each point the content of the memory is comprised of a fixed number of parameter
values and a collection ofO

(

logγ
n
ε̃

)

matchings, consisting ofO
(

n logγ
n
ε̃

)

edges overall. Therefore,
our algorithm indeed falls in the semi-streaming model.

At the conclusion of the input sequence, we need to return a single matching rather than a
collection of matchings. To this end, we could compute a maximum weighted matching of the edges
in the current memory. However, for the specific purposes of our analysis, we use the following
faster algorithm. We sort the edges in memory in decreasing order of weight classes, such that
the edges inWi appear before those inWi−1, for everyi. Using this sorted list of edges, we apply
a greedy algorithm for selecting a maximal matching, in which the current edge is added to this
matching if it remains a matching after doing so. Then, the post-processing time needed is linear in
the size of the memory used, that is,O

(

n logγ
n
ε̃

)

. This concludes the presentation of the algorithm
and its implementation as a semi-streaming algorithm.

Analysis. For purposes of analysis, we round down the weight of each edge so that the weight of
all edges inWi equalsφγi . This way, we obtainroundededge weights. For our optimal solution
let us denote by′ its rounded weight. The next claim follows from the definition ofWi.

Lemma 2.1.  ≤ γ ′.

As an intermediate step, we analyze an improved algorithm that keeps all weight classes. That
is, for eachi, we useMi to denote the maximal matching of classWi at the end of the input, and
denote byM the solution obtained by this algorithm, if we would have applied it. Similarly, we
denote byi the set of edges in which belong toWi. For everyi, we define the set of vertices
Pi, associated withWi, to be the set of endpoints of edges inMi that are not associated with higher
weight classes:

Pi = { u, v | (u, v) ∈ Mi} \ (Pi+1 ∪ Pi+2 ∪ · · · ).

For a vertexp ∈ Pi, we define its associated weight to beφγi . For vertices which do not belong
to anyPi, we let their associated weight be zero. We next bound the total associated weight of all
vertices.

Lemma 2.2. The total associated weight of all vertices is at most2γ
γ−1 ·w(M).

Proof. Consider a vertexu ∈ Pi and let (u, v) be the edge inMi adjacent tou. If (u, v) ∈ M then
we charge the weight associated withu to the edge (u, v). Thus, an edgee ∈ Mi is charged at most
twice from vertices associated with its own weight class. Otherwise, if (u, v) < M then there must
be some other edgee∈ M ∩M j, for somej > i, that prevented us from adding (u, v) to M, in which
case we charge the weight associated withu to e. Notice thatu < e, or otherwise,u would not be



IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 351

associated withWi . Thus, the edgee ∈ M j must be of the forme = (v, x) and can only be charged
twice from vertices in weight classi, once throughv and once throughx.

To bound the ratio betweenw(M) and the total associated weight of the vertices, it suffices to
bound the ratio between the weight of an edgee∈ M and the total associated weight of the vertices
which are charged toe. Assume thate ∈ M j, then there are at most two vertices which are charged
to e and classi for all i ≤ j, and no vertex is associated toe and classi for i > j. Hence, the total
associated weight of these vertices is at most

2
∑

i≤ j

φγi < 2φγ j ·

∞
∑

i=0

1
γi
= 2φγ j ·

1
1− 1/γ

= φγ j ·
2γ
γ − 1

,

and the claim follows sincew(e) ≥ φγ j .

It remains to bound′ with respect to the total associated weight.

Lemma 2.3. The total weight associated with all vertices is at most′.

Proof. It suffices to show that for every edgee = (x, y) ∈ i the maximum of the associated
weights ofx andy is at least the rounded weight ofe. Suppose that this claim does not hold, then
x andy are not covered byMi, as otherwise their associated weight would be at leastφγi . Hence,
when the algorithm considerede, we would have addede to Mi, contradicting our assumption that
x andy are not covered byMi.

Now instead of considering all weight categories, we construct the matchingM only using
edges with weight at least2ε̃wmax

n . Using the above sequence of lemmas, and recalling that we lose
another 1

1−ε̃ factor in the approximation ratio due to disregarding these cheap edges, we obtain the
following inequality:

 ≤ γ′ ≤
1

1− ε̃
·

2γ2

γ − 1
· w(M). (2.1)

For anyε > 0, setting ˜ε = ε

(2γ2/(γ−1))+ε , we get an approximation ratio of2γ
2

γ−1 + ε. This ratio is

optimized forγ = 2, where it equals (8+ ε). Hence, we have established the following theorem.

Theorem 2.4. For any fixedε > 0, there is a deterministic one-pass semi-streaming algorithm
whose approximation ratio is8+ ε.

2.2. Improved approximation ratio through randomization

In what follows, we analyze a randomized variant of the deterministic algorithm which was
presented in the previous subsection. In general, this variant sets the value ofφ to beφ = γδ whereδ
is a random variable. This method is commonly referred to asrandomized geometric grouping[8].

Formally, letδ be a continuous random variable which is uniformly distributed on the interval
[0, 1). We define the weight classWi(δ) to be the edges whose weight is in the interval

[

γi+δ, γi+1+δ
)

,
and run the algorithm as in the previous subsection. Note that this algorithm uses only the partition
of the edges into classes and not the precise values of their weights. In addition, we denote byM(δ)
the resulting matching obtained by the algorithm, and byTW(δ) the total associated weight of the
vertices, where for a vertexp ∈ Pi we define its associated weight to beγi+δ; i.e., the minimal value
in the interval definingWi(δ). We also denote by′(δ) the value of′ for this particularδ.

For any fixed value ofδ, inequality (2.1) immediately implies′(δ) ≤
(

2γ
γ−1 + ε

)

· w(M(δ)).
Note that′(δ) andw(M(δ)) are random variables, such that for each realization ofδ the above



352 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

inequality holds. Hence, this inequality holds also for their expected values. That is, we have
established the following lemma where Eδ[·] represents expectation with respect to the random
variableδ.

Lemma 2.5. Eδ[′(δ)] ≤
(

2γ
γ−1 + ε

)

· Eδ[w(M(δ))].

We next upper bound in terms of Eδ[′(δ)].

Lemma 2.6. γ ln γ
γ−1 · Eδ[

′(δ)] ≥ .

Proof. We will show the corresponding inequality for each edgee ∈ . We denote byw′
δ
(e) the

rounded weight ofe for a specific value ofδ. Then, it suffices to show thatγ ln γ
γ−1 · Eδ[w

′
δ
(e)] ≥ w(e).

Let p be an integer, and let 0≤ α < 1 be the value that satisfiesw(e) = γp+α. Then, forδ ≤ α,
w′
δ
(e) = γp+δ, and forδ > α, w′

δ
(e) = γp−1+δ, thus the expected rounded weight ofeover the choices

of δ is

Eδ[w
′
δ(e)] =

∫ α

0
γp+δdδ +

∫ 1

α

γp−1+δdδ =
1

ln γ
·
(

γp(γα − 1) + γp−1(γ − γα)
)

= w(e) ·

(

1−
1
γ

)

1
ln γ
,

and the claim follows.

Combining the above two lemmas we obtain that the expected weight of the resulting solution

is at least
(

(γ−1)2

2γ2 lnγ + ε

)

·. This approximation ratio is optimized forγ ≈ 3.513, where it is roughly

(4.9108+ ε). Hence, we have established the following theorem.

Theorem 2.7. For any fixedε > 0, there is a randomized one-pass semi-streaming algorithm whose
expected approximation ratio is roughly4.9108+ ε.

2.3. Derandomization

Prior to presenting our de-randomization, we slightly modify the randomized algorithm of the
previous subsection. In this variation, instead of pickingδ uniformly at random from the interval
[0, 1) we pickδ′ uniformly at random from the discrete set

{

0, 1
q ,

2
q , . . . ,

q−1
q

}

, whereq is a param-
eter whose value will be determined later. We apply the same method as in the previous section,
replacingδ by δ′. Then, using Lemma 2.5, we obtain Eδ′ [′(δ′)] ≤

(

2γ
γ−1 + ε

)

· Eδ′ [w(M(δ′))]. To
extend Lemma 2.6 to this new setting, we note thatδ′ can be obtained by first pickingδ and then
rounding it down to the largest number in

{

0, 1
q,

2
q, . . . ,

q−1
q

}

which is at mostδ. In this way, we
couple the distributions ofδ andδ′. Now consider the rounded weight of an edgee in  in the two
distinct values ofδ andδ′. The ratio between the two rounded weights is at mostγ1/q. Therefore,
we establish thatγ ln γ

γ−1 · γ
1/q · Eδ′ [′(δ′)] ≥ , and the resulting approximation ratio of the new

variation is 2γ2+1/q ln γ
(γ−1)2 + ε. By settingq to be large enough (pickingq =

⌈

log−1
γ (ε/5)

⌉

is sufficient),

the resulting approximation ratio is bounded by2γ2 ln γ
(γ−1)2 + 2ε.

De-randomizing the new variation in the semi-streaming model is straightforward. We simply
run in parallel allq possible outcomes of the algorithm, one for each possible value ofδ′, and pick
the best solution among theq solutions obtained. Sinceq is a constant (for fixed values ofε), the
resulting algorithm is still a semi-streaming algorithm whose performance guarantee is 4.9108+2ε.
By scalingε prior to applying the algorithm, we establish the following result.



IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 353

Theorem 2.8. For any fixedε > 0, there is a deterministic one-pass semi-streaming(4.9108+ ε)-
approximation algorithm for the weighted matching problem. This algorithm processes each input
edge in constant time and required O(n) time at the end of the input to compute the final output.

3. Online Preemptive Matching

In this section, we establish the following theorem.

Theorem 3.1. The competitive ratio of any deterministic preemptive online algorithm is at least
R − ε for anyε > 0, whereR ≈ 4.967 is the unique real solution of the equation x3 = 4(x2 + x+ 1).

Recall that the algorithm of Feigenbaum et al. [4] and that of McGregor [12] can be viewed as
online preemptive algorithms; their competitive ratios are 6 and 5.828, respectively.

Definitions and properties. LetC = R − ε for some arbitrary but fixedε > 0. Our goal is to show
that the competitive ratio of any deterministic algorithm is at leastC. To this end, we construct an
input graph iteratively. In the construction of the input, edge weights come from two sequences.
The main sequencew1,w2, . . ., and the additional sequence isw′1,w

′
2, . . ., are defined as follows:

wi =















1 i=1
1

2C+1

(

(C2 + 1)wi−1 − C
∑i−2

j=1 w j

)

i>1
w′i =















1 i=1
1
C

(

(C + 1)wi − wi−1

)

i>1
(3.1)

The sequences are defined according to (3.1) as long aswi−1 ≥ wi−2. As soon aswn−1 < wn−2

for somen, both sequences stop withwn andw′n, respectively. In the full version [3] of this paper
we show that the sequences are well defined in the sense that they indeed have finite length. Let
Si =

∑i
j=1 w j andS0 = 0.

From the definition (3.1) and simple algebra, one can derive the following properties of these
sequences. We omit their justification due to lack of space.

Property 1. For all i = 1, . . . , n− 2 we havewi ≤ w′i , butwn−1 > w′n−1.

Property 2. For all i = 1, . . . , n− 2 we haveCwi = Si−1 + wi+1 + w′i+1.

Property 3. For all i = 1, . . . , n− 2 we haveCw′i = Si−2 + wi + wi+1 + w′i+1.

Input construction, step 1. To better understand our construction, we advise the reader to consult
Figure 1. The input is created inn steps. In the initial step, two edges (a1, x1) and (b1, x1), each of
weight w1, are introduced. Assume that after both edges have arrived, the online algorithm keeps
the edge (a1, x1).

Every future step can be of two distinct types, which will be described later on. We maintain
the following invariants throughout the construction.

Invariant 1. Immediately after theith step, the setMi = {(x1, b1), . . . , (xi , bi)} forms a matching.

Invariant 2. Immediately after theith step, the algorithm keeps a single edgeei , which can be one
of two edges:

i) If ei = (xi , ai) then its weight iswi andai is unmatched inMi.
ii) If ei = (yi , ci) then its weight isw′i , yi = x j for some j < i, andci is unmatched inMi.



354 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

i = 1

b1

x1 a1

i = 2

b1

x1

a1

x2

b2

a2

i = 3

b1

x1

a1

x2

y3

b2

a2

x3

b3

a3 c3

i = 4

b1

x1

a1

x2

y3

y4

b2

a2

x3

b3

a3

c3

x4

b4

a4 c4

i = 5

b1

x1

a1

x2

y3

y4

b2

a2

x3

b3

a3

c3

x4

b4

a4

c4

x5

b5

a5

Figure 1: An example of five steps of the lower bound construction. The curved edges denote the
edge kept by the online algorithm at each time. In the first two steps, the edges (xi , ai)
are chosen by the algorithm. In the third step, (x3, a3) is not chosen by the algorithm, so
(y3, c3) arrives next. In the fourth step, (x4, a4) is not chosen by the algorithm, so (y4, c4)
arrives next. In the fifth step, (x5, a5) is chosen by the algorithm, so no further edges
arrive in this step.

The invariants clearly holds after the first step: The algorithm keeps (x1, a1) anda1 is free in
M1 = {(x1, b1)}. We next define the subsequent steps and show that the invariants holds throughout.

Input construction, step i + 1 < n. We now show how to construct the edges of stepi + 1, for
the casei + 1 < n. We introduce two new edges of weightwi+1. Let xi+1 beai if ei = (xi , ai), and
xi+1 be ci if ei = (yi , ci). The new edges are (xi+1, bi+1), and (xi+1, ai+1), whereai+1 andbi+1 are
new vertices. According to Invariant 2, the vertexxi+1 is unmatched inMi. It follows thatMi+1 is a
matching and thus Invariant 1 holds in this step. Both edges have a common endpoint with the edge
that the algorithm has, and the algorithm can either preemptei , in which case we assume (without
loss of generality) that it now has (xi+1, ai+1), or else it keeps the previous edge. If the algorithm
holds ontoei then letyi+1 be xi if ei = (xi , ai), andyi+1 be yi if ei = (yi , ci). In this case a third
edge, (yi+1, ci+1), with weight ofw′i+1 is introduced. The vertexci+1 is new. There are four cases
to consider depending on which edge the algorithm had at the end of theith step and whether it is
preempted right away or not.

In the first case, the algorithm hasei = (xi , ai) at the end of theith step and replaces it with
(xi+1, ai+1) = (ai , ai+1). Sinceai+1 is a new vertex (and different thanxi+1) it follows thatai+1 is free
in Mi+1. Thus, case i) of Invariant 2 holds.

In the second case, the algorithm hasei = (yi , ci) at the end of theith step and it replaces it with
(xi+1, ai+1) = (ci , ai+1). It follows thatai+1 is free inMi+1. Thus, case ii) of Invariant 2 holds.

For the remaining two cases note that ifw′i ≤ 0 or wi < 0 and the algorithm has a single
edge of weightw′i or wi , respectively, then the optimal solution is strictly positive and the value
of the algorithm is non-positive, hence the resulting approximation ratio in this case is unbounded.



IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 355

Consequently, we can assume without loss of generality that if the algorithm has a single edge at
the end of stepi then its weight is strictly positive.

Now consider the case where the algorithm hasei = (ai , xi) at the end of theith step but does
not replace it with (xi+1, ai+1) = (ai , ai+1). If this happens, we show that the algorithm must replace
the edge with (yi+1, ci+1) = (xi , ci+1). Assume that this is not the case. Then the profit of the
algorithm iswi. Consider the solutionMi+1 − (xi , bi) + (yi+1, ci+1). The cost of this matching is
Si+1−wi+w′i+1, which equalsCwi, by Property 2. In other words, the solution kept by the algorithm
isC-competitive. Since our goal is to prove precisely this, we can assume this event never happens.
Thus, the algorithm must switch to the edge (yi+1, ci+1), which leads us to case ii) of Invariant 2.

Finally, consider the case where the algorithm hasei = (yi , ci) at the end of theith step but
does not replace it with (xi+1, ai+1) = (ci , ai+1). If this happens, we show that the algorithm must
replace the edge with (yi+1, ci+1) = (yi , ci+1). Assume that this is not the case. Then the profit of the
algorithm isw′i . Consider the solutionMi+1 − (x j , b j) + (yi+1, ci+1), where j < i is the index from
case ii) in Invariant 2 that corresponds toei . The cost of this matching is at leastSi+1 −wi−1 +w′i+1,
which equalsCw′i , by Property 3. As in the previous case, we can assume this never happens. Thus,
the algorithm must switch to the edge (xi+1, ai+1), which leads us to case ii) of Invariant 2.

This finishes the description of the input graph construction, as well as the justification that
Invariants 1 and 2 hold at each step along the way.

Bounding the competitive ratio. We next define a recursive formula forSi . By definition (3.1) of
the sequencewi, we have























S0 = 0
S1 = 1
Sk+1 =

C2+2C+2
2C+1 Sk −

C2+C+1
2C+1 Sk−1, for k ≥ 1

(3.2)

Lemma 3.2. There exists a value of n such that wn−2 > wn−1; for this value,Sn−1
wn−1
> C holds.

Proof. The first claim is proved by solving the recurrence (3.2), using standard tools [3]. To prove
the second part, note thatwn−2 > wn−1 is equivalent toSn−1 −Sn−2 < Sn−2 −Sn−3. Hence using the
recursive formula we conclude that

Sn−1 − 2Sn−2 +
2C + 1

−C2 − C − 1
Sn−1 +

C2 + 2C + 2
C2 + C + 1

Sn−2 < 0,

that is,
Sn−1 · (C

2 + C + 1− 2C − 1)+ Sn−2 · (C
2 + 2C + 2− 2C2 − 2C − 2) < 0,

which is equivalent to (C2−C)Sn−1 −C
2Sn−2 < 0, soC(Sn−1−Sn−2) < Sn−1, and we conclude that

Cwn−1 < Sn−1, as claimed.

Everything is in place to prove the main claim of this section.

Proof of Theorem 3.1.From Invariant 2, we conclude that at the end of iterationn−1, the algorithm
only has the edgeen−1, which can have weightw′n−1 or wn−1. From Property 1, it follows that
max{wn−1,w′n−1} = wn−1. On the other hand, from Invariant 1, we know that there is a matching
with costSn−1. Therefore, the competitive ratio of any algorithm is at leastSn−1

wn−1
. From Lemma 3.2

we then conclude that the competitive ratio is at leastC.



356 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

4. Experimental Evaluation

In this section, we present the results of an empirical study, conducted in order to compare the
practical performance of our approach to that of previously suggested algorithms. More specifically,
the complete set of algorithms that have been implemented and extensively tested can be briefly
listed as follows:

• : The algorithm described in Section 2, which keepsO
(

log n
ǫ

)

matchings.
• : The algorithm of McGregor [12], based on keeping a single matching at all times.
• : The algorithm of Zelke [17], with two shadow edges for each matching edge.

For and, we made use of an addition optimization phase, in which a maximum
weight matching is computed among the edges that were kept in memory. The main reason for this
extra effort is that we were interested in determining the best possible practical performance that
can be extracted out of these algorithms, rather than in worse case performance and nothing more.
We point out that this phase is performed only once, and that one can always employ a linear-time
approximation [11] should running time be a concern.

Special features. Each of above-mentioned algorithms is parameterized. Typically, this parameter
is chosen to minimize the worst-case approximation ratio obtained in theory. However, this choice
need not be the one leading to the best performance in practice. Therefore, we considered three
versions of each algorithm, with different parameters: one was chosen empirically to obtain best
possible guarantees; another is the value emanating from the theoretical analysis; and the last one
is just averaging these two. We also examined the consequences of combining different algorithms.
Under this scheme, all algorithms are executed in parallel and, at the end, a maximum weight
matching is computed with respect to the collection of edges kept by any of these algorithms.

Actual tests performed. We evaluated, , and with test graphs of roughly
1000 vertices. Following the approach of previous experimental papers in this context [13, 11], we
investigated three different classes of graphs:

• Geometric: Points were drawn uniformly at random from the unit square; the weight of an
edge is the Euclidean distance between its endpoints.
• Real world: Points are taken from geometric instances in the TSPLIB [15]; once again,

edge weights are determined by Euclidean distances.
• Random: The weight of each edge is an integer picked uniformly and independently at

random from 1, . . . , |V|.

From each of these classes, we generated 10 base instances. In addition, as the performance
of all algorithms under consideration depends heavily on the particular order by which edges are
revealed, each algorithm was tested on every base instance for 200 independent runs, with a random
edge permutation each time. To speed up the experiments all graphs were sparsified by keeping, for
each vertex, the connections to one third of its closest nodes. The results are presented in Figure 2.

Conclusions. One can notice right away that the algorithms in question perform significantly better
when their respective parameters are set considerably lower than the best theoretical value (1.2 for
, and 1.1 for and). With this optimization in place, it appears that and
 have comparable performance, but outperform.

Regarding the combination of several algorithms, we compared for each algorithm the com-
bined output of its three versions (depending on parameter setting) and the outcome of combining
the best version of each of the three algorithms. We consistently observed that it is preferable to
combine the output of completely different algorithms rather than the same algorithm with different
parameters.



IMPROVED APPROXIMATION GUARANTEES FOR WEIGHTED MATCHING INTHE SEMI-STREAMING MODEL 357

L 1.2 L 2.25 L 3.5 O 1.1 O 1.4 O 1.7 S 1.1 S 1.4 S 1.7
0.5

0.6

0.7

0.8

0.9

1.0

(a) Geometric. Individual algorithms.

L 1.2
L 2.25
L 3.5

O 1.1
O 1.4
O 1.7

S 1.1
S 1.4
S 1.7

L 1.2
O 1.1
S 1.1

L 2.25
O 1.4
S 1.4

L 3.5
O 1.7
S 1.7

0.5

0.6

0.7

0.8

0.9

1.0

(b) Geometric. Combined algorithms.

L 1.2 L 2.25 L 3.5 O 1.1 O 1.4 O 1.7 S 1.1 S 1.4 S 1.7
0.5

0.6

0.7

0.8

0.9

1.0

(c) Random. Individual algorithms.

L 1.2
L 2.25
L 3.5

O 1.1
O 1.4
O 1.7

S 1.1
S 1.4
S 1.7

L 1.2
O 1.1
S 1.1

L 2.25
O 1.4
S 1.4

L 3.5
O 1.7
S 1.7

0.5

0.6

0.7

0.8

0.9

1.0

(d) Random. Combined algorithms.

L 1.2 L 2.25 L 3.5 O 1.1 O 1.4 O 1.7 S 1.1 S 1.4 S 1.7
0.5

0.6

0.7

0.8

0.9

1.0

(e) Real. Individual algorithms.

L 1.2
L 2.25
L 3.5

O 1.1
O 1.4
O 1.7

S 1.1
S 1.4
S 1.7

L 1.2
O 1.1
S 1.1

L 2.25
O 1.4
S 1.4

L 3.5
O 1.7
S 1.7

0.5

0.6

0.7

0.8

0.9

1.0

(f) Real. Combined algorithms.

Figure 2: The results of individual algorithms appear on the left column, while the performance
of combining them is shown on the right. The algorithms are specified as x-axis labels
using first letters (L for, O for , and S for), followed by the precise
parameter value for that version. Box plots describing the outcome of our experiments
are given above. Each box contains outcomes with performance between the .25 and .75
quartile, where the horizontal line inside designated the median.



358 L. EPSTEIN, A. LEVIN, J. MESTRE, AND D. SEGEV

Finally, we point out that, as it is often the case for approximation algorithms, the observed
performance of all algorithms is significantly better than the theoretical worst case guarantee. It
is worth noting, however, that their performance is still worse than traditional heuristics (such as
the greedy algorithm) that are not constrained by the extent of memory usage. For example, in
geometric graphs, these heuristics can recover on average 99% of the optimal value [11], whereas
none of the individual algorithms can recover more than 90%.

References

[1] N. Bansal, N. Buchbinder, A. Gupta, and J. Naor. AnO(log2 k)-competitive algorithm for metric bipartite matching.
In Proceedings of the 15th Annual European Symposium on Algorithms, pages 522–533, 2007.

[2] M. Elkin and J. Zhang. Efficient algorithms for constructing (1+ ǫ, β)-spanners in the distributed and streaming
models.Distributed Computing, 18(5):375–385, 2006.

[3] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for weighted matching in the
semi-streaming model, 2009. http://arxiv.org/abs/0907.0305.

[4] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming model.
Theoretical Computer Science, 348(2-3):207–216, 2005.

[5] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the data-stream model.SIAM
Journal on Computing, 38(5):1709–1727, 2008.

[6] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung. Efficient on-line call control algorithms.Journal of
Algorithms, 23(1):180–194, 1997.

[7] B. Kalyanasundaram and K. Pruhs. Online weighted matching.Journal of Algorithms, 14(3):478–488, 1993.
[8] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment: An optimal randomized algorithm for

the cow-path problem.Information and Computation, 131(1):63–79, 1996.
[9] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite matching. InProceedings

of the 22nd Annual ACM Symposium on Theory of Computing, pages 352–358, 1990.
[10] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite matching and stable mar-

riages.Theoretical Computer Science, 127(2):255–267, 1994.
[11] J. Maue and P. Sanders. Engineering algorithms for approximate weighted matching. InProceedings of the 6th

International Workshop on Experimental Algorithms, pages 242–255, 2007.
[12] A. McGregor. Finding graph matchings in data streams. InProceedings of the 8th International Workshop on Ap-

proximation Algorithms for Combinatorial Optimization Problems, pages 170–181, 2005.
[13] M. Müller-Hannemann and A. Schwartz. Implementing weighted b-matching algorithms: Towards a flexible soft-

ware design.ACM Journal on Experimental Algorithmics, 4:7, 1999.
[14] S. Muthukrishnan.Data Streams: Algorithms and Applications. Foundations and Trends in Theoretical Computer

Science. Now Publishers Inc, 2005.
[15] G. Reinelt. TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
[16] A. Schrijver.Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
[17] M. Zelke. Weighted matching in the semi-streaming model. InProceedings of the 25th Annual Symposium on

Theoretical Aspects of Computer Science, pages 669–680, 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.




