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ABSTRACT. We present a method for reducing the treewidth of a graph while preserving all the
minimal s — ¢ separators. This technique turns out to be very useful for establishing the fixed-
parameter tractability of constrained separation and bipartization problems. To demonstrate the power
of this technique, we prove the fixed-parameter tractability of a number of well-known separation and
bipartization problems with various additional restrictions (e.g., the vertices being removed from the
graph form an independent set). These results answer a number of open questions in the area of
parameterized complexity.

1. Introduction

Finding cuts and separators is a classical topic of combinatorial optimization and in recent
years there has been an increase in interest in the fixed-parameter tractability of such problems
[19, 11, 15, 28, 16, 13, 5, 20]. Recall that a problenfixed-parameter tractabléor FPT) with
respect to a parameterif it can be solved in timef (k) - n°() for some functionf (k) depending
only onk [10, 12, 21]. In typical parameterized separation problems, the parametdhe size
of the separator we are looking for, thus fixed-parameter tractability with respect to this parameter
means that the combinatorial explosion is restricted to the size of the separator, but otherwise the
running time depends polynomially on the size of the graph.

The main technical contribution of the present paper is a theorem stating that given @graph
two terminal vertices andt, and a parametét, we can compute in BPT-time a graphG™* having
its treewidth bounded by a function sfwhile (roughly speaking) preserving all the minimal- ¢
separators of size at mokt Combining this theorem with the well-known Courcelle’s Theorem,
we obtain a powerful tool for proving the fixed parameter tractability of constrained separation and
bipartization problems. We demonstrate the power of the methodology with the following results.

e \We prove that the/INIMUM STABLE s — ¢ CUT problem (Is there an independent Sebf
size at mosk whose removal separateandt?) is fixed-parameter tractable. This problem
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received some attention in the community. Our techniques allow us to prove various gen-
eralizations of this result very easily. First, instead of requiring that independent, we

can require that it induces a graph that belongs to a hereditary&léss problem remains

FPT. Second, in thequLTICUT problem a list of pairs of terminals are givésy, ¢), ...,

(s¢, ty) and the solutiort has to be a set of at moktvertices that induces a graph fragn

and separates; from ¢; for everyi. We show that this problem &PT parameterized by

and/, which is a very strong generalization of previous results [19, 28]. Third, the results
generalize to themuLTICUT-UNCUT problem, where two sets;, T, of pairs of terminals

are given, and has to separate every pair’Bf andshould notseparate any pair @f;.

e We prove that theEXACT STABLE BIPARTIZATION problem (Is there an independent set
of sizeexactlyk whose removal makes the graph bipartite?) is fixed-parameter tractable
(FPT) answering an open question posed in 2001 by Diaz et al. [9]. We establish this result
by proving that thesTABLE BIPARTIZATION problem (Is there an independent set of size
at mostk whose removal makes the graph bipartite?fRS, answering an open question
posed by Fernau [7].

e We show that th&DGE-INDUCED VERTEX CUT (Are there at mosk edges such that the
removal of their endpoints separates two given terminasd¢?) isFPT, answering an
open problem posed in 2007 by Samer [7]. The motivation behind this problem is described
in [27].

We believe that the above results nicely demonstrate the message of the paper. Slightly chang-
ing the definition of a well-understood cut problem usually makes the problem NP-hard and deter-
mining the parameterized complexity of such variants directly is by no means obvious. On the other
hand, using our techniques, the fixed-parameter tractability of many such problems can be shown
with very little effort. Let us mention (without proofs) three more variants that can be treated in a
similar way: (1) separate and¢ by the deletion of at most edges and at mostvertices, (2) in a
2-colored graph, separateandt by the deletion of at mogt black and at most white vertices, (3)
in a k-colored graph, separateandt by the deletion of one vertex from each color class.

As the examples above show, our method leads to the solution of several independent problems;
it seems that the same combinatorial difficulty lies at the heart of these problems. Our technique
manages to overcome this difficulty and it is expected to be of use for further problems of similar
flavor. Note that while designingpT-time algorithms for bounded-treewidth graphs and in particu-
lar the use of Courcelle’s Theorem is a fairly standard technique, we use this technique for problems
where there is no bound on the treewidth of the graph appearing in the input.

(Multiterminal) cut problems [19, 16, 13, 5] play a mysterious, and not yet fully understood,
role in the fixed-parameter tractability of certain problems. ProvingBI=tRTIZATION [25], DI-

RECTED FEEDBACK VERTEX SET[6], and ALMOST 2-SAT [23] are FPT answered longstanding

open questions, and in each case the algorithm relies on a non-obvious use of separators. Fur-
thermore,EDGE MULTICUT has been observed to be equivalenFt@zy CLUSTER EDITING, a
correlation clustering problem [3, 8, 1]. Thus aiming for a better understanding of separators in
a parameterized setting seems to be a fruitful direction of research. Our results extend our under-
standing of separators by showing that various additional constraints can be accommodated. It is
important to point out that our algorithm is very different from previous parameterized algorithms
for separation problems [19, 16, 13, 5]. Those algorithms in the literature exploit certain nice prop-
erties of separators, and hence it seems impossible to generalize them for the problems we consider
here. On the other hand, our approach is very robust and, as demonstrated by our examples, it is
able to handle many variants.
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The paper assumes the knowledge of the definition of treewidth and its algorithmic use, includ-
ing Courcelle’s Theorem (see the surveys [2, 14]).

2. Treewidth Reduction

The main combinatorial result of the paper is presented in this section. We start with some
preliminary definitions. Two slightly different notions of separation will be used in the paper:

Definition 2.1. We say that a sef of verticesseparatesets of verticesA and B if no component
of G\ S contains vertices from botdd \ S andB \ S. If s andt are two distinct vertices of,
then ans — ¢ separatoris a setS of vertices disjoint from{s, ¢} such thats and¢ are in different
components of7 \ S.

In particular, ifS separatest andB, thenAN B C S. Furthermore, given a sét’ of vertices,
we say that a sef of vertices is dalanced separatoof W if |IWNC| < |IW|/2 for every connected
componentC of G \ S. A k-separatoris a separatof with |S| = k. The treewidth of a graph is
closely connected with the existence of balanced separators:

Lemma 2.2([24], [12, Section 11.2])

(1) If G(V, E) has treewidth greater thadk, then there is a séf” C V of size2k + 1 having
no balanced-separator.
(2) If G(V, E) has treewidth at mogt, then every/” C V has a balancedk + 1)-separator.

Note that the contrapositive of (1) in Lemma 2.2 says that if everyigatf vertices has a
balancedk-separator, then the treewidth is at mdkt This observation, and the following simple
extension, will be convenient tools for showing that a certain graph has low treewidth.

Lemma 2.3. LetG be agraph(1,.. ., C, subsets of vertices, and let:= | J;_, C;. Suppose that
everyW; C C; has a balanced separat®#; C C; of size at mostv. Then every)/ C C has a
balanced separatof C C of sizewr.

If we are interested in separators of a gra@pltontained in a subsét of vertices, then each
component of \ C (or the neighborhood of each componentihcan be replaced by a clique,
since there is no way to disconnect these components with separaford ive notion of torso and
Proposition 2.5 formalize this concept.

Definition 2.4. Let G be a graph and’ C V(G). The graph tors@, C') has vertex se€ and
verticesa, b € C are connected by an edge{if,b} € E(G) or there is a patt® in G connectingz
andb whose internal vertices are notdn

Proposition 2.5. LetC; C 5 be two subsets of vertices@hand leta, b € C; be two vertices. A set
S C (4 separates: andb in torsa G, C4) if and only if S separates these verticestorsq G, Cs).
In particular, by setting’y = V(G), we get thatS C 4 separates: andb in torsd G, C1) if and
only if it separates them 6.

Analogously to Lemma 2.3, we can show that if we have a treewidth bound ori@Sp) for
everyi, then these bounds add up for the union ofdhis.

Lemma 2.6. Let G be a graph and’}.,. . ., C, be subsets df (G) such that for every < i < r,
the treewidth oforsq G, C;) is at mostw. Then the treewidth dbrsa G, C) for C' := (J;_, C; is
at most3r(w + 1).
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If the minimum size of ar — ¢ separator ig, then theexcesof ans — ¢ separatoS is |\S| — ¢
(which is always nonnegative). Note thasiandt¢ are adjacent, then no— ¢ separator exists, and
in this case we say that the minimum size ofsan ¢ separator io. The aim of this section is to
show that, for every, we can construct a sét’ covering all thes — ¢ separators of size at maist
such that tors@=, C’) has treewidth bounded by a function/af Equivalently, we can require that
C' covers every — t separator of excess at mast= k — ¢, where/ is the minimum size of an
s — t separator.

If X is a set of vertices, we denote byX) the set of those vertices Wi (G) \ X that are
adjacent to at least one vertex &f. The following result is folklore; it can be proved by a simple
application of the uncrossing technique (see the proof below) and it can be deduced also from the
observations of [22] on the strongly connected components of the residual graph after solving a flow
problem.

Lemma 2.7. Let s, t be two vertices in graplr such that the minimum size of an- ¢ separator is
¢. Then there is a collectio®’ = {X1,..., X, } of sets wherds} C X; C V(G) \ ({t} Ud({t}))
(1 <@ < q), such that

(1) XiCcXoC--- CXq,

(2) |0(X;)| = ¢ foreveryl <i < g, and

(3) everys — t separator of sizé is a subset of J7_; 4(X;).
Furthermore, such a collectioA’ can be found in polynomial time.

Proof. Let X = {X;,...,X,} be a collection of sets such that (2) and (3) holds. Let us choose
the collection such that is the minimum possible, and among such collectiong, , |X;|* is the
maximum possible. We show that for every, eitherX; C X, or X; C X; holds, thus the sets
can be ordered such that (1) holds.

Suppose that neithek; C X, nor X; C X; holds for some; andj. We show that after
replacingX; and X in X with the two setsX; N X; and X; U X}, properties (2) and (3) still hold,
and the resulting collectioA” contradicts the optimal choice &f. The functiond is well-known
to be submodular, i.e.,

0(Xa)| +[0(X5) = [6(X: N X)| + [0(Xi U X;)].

Both§(X; N X;) andd(X; U X;) ares —t separators (because bothN X; and.X; U X; contains)

and hence have size at leastThe left hand side i8¢, hence there is equality ané( X; N X;)| =

|0(X; U X;)| = ¢ follows. This means that property (2) holds after the replacement. Observe that
I(X; N X;)Uo(X; UX;) C6(X;) Ud(X;): any edge that leaveX; N X; or X; U X; leaves
either X; or X;. We show that there is equality here, implying that property (3) remains true after
the replacement. It is easy to see thaX; N X;) N d(X; U X;) C 6(X;) Nd(X;), hence we have

[8(XiNX))US(X,UX;)| = 20— [8(XiNX))NS(X,UX;)| = 20~ 18(X)NS(X;)| = [8(X,)US(X;)],

showing the required equality.

If X;NX;orX;UX;was already present i, then the replacement decreases the size of the
collection, contradicting the choice @f. Otherwise, we have thak;|? + | X;|* < |X; N X;|% +
| X;UX;|? (to verify this, simply representX;| as| X;N.X;|+|X;\ X;|, | X;| as| X;NX; |+ | X;\ X,
|X; U X, |as|X; N X;| +|X; \ X;| +|X; \ X;| and do direct calculation having in mind that both
|X; \ X;| and|X; \ X;| are greater thaf), again contradicting the choice &f. Thus an optimal
collection X’ satisfies (1) as well.

To constructX in polynomial time, we proceed as follows. It is easy to check in polynomial
time whether a vertex is in a minimums — ¢ separator, and if so to produce such a separgjor



TREEWIDTH REDUCTION 565

Let X, be the set of vertices reachable franm G \ S,. Itis clear thatX, satisfies (2) and if we

take the collectiont’ of all suchX,’s, then together they satisfy (3). If (1) is not satisfied, then we

start doing the replacements as above. Each replacement either decreases the size of the collection
or increaseiﬁz1 | X;|? (without increasing the collection size), thus the procedure terminates after

a polynomial number of steps. [

Lemma 2.7 shows that the unidghof all minimum s — ¢ separators can be covered by a chain
of minimum s — ¢ separators. It is not difficult to see that this chain can be used to define a tree
decomposition (in fact, a path decomposition) of t¢(soC'). This observation solves the problem
for e = 0. For the general case, we use inductioreon

Lemma 2.8. Let s, t be two vertices of grapty and let¢ be the minimum size of an- ¢ separator.
For somee > 0, let C be the union of all minima$ — ¢ separators havingxcessat moste (i.e. of
size at most = £ + ¢). Then, for some constadf there is anO(f (4, e) - |V (G)|?) time algorithm
that returns a se’ O C U {s, t} such that the treewidth abrsoG, C’) is at mosty(¢, e), where
functionsf andg depend only o ande .

Proof. We prove the lemma by induction @n Consider the collectiod’ of Lemma 2.7 and define
Si == (X;) for 1 <4 < ¢. For the sake of uniformity, we defing, := 0, X,.1 := V(G) \ {t},

So 1= {8}, Squl = {t} Forl <i<gq+1,letl; .= X; \ (Xifl USifl). Also, forl <i<g+1
and two disjointnon-emptysubsetsA, B of S; U S;_1, we defineG; 4 g to be the graph obtained
from G[L; U A U B] by contracting the sed to a vertexa and the seB to a vertexb. Taking into
account that it includes a vertex of somg; thene > 0, we prove the key observation that makes
it possible to use induction.

Claim 2.9. If a vertexv € L; is in C, then there are disjoint non-empty subséts3 of S; U S;_;
such that is part of a minimak — b separatois in G; 4 p of size at mosk (recall thatk = ¢+ ¢)
and excess at most— 1.

Proof. By definition of C, there is a minimak — ¢ separatotK’ of size at mosk that containg.
Let Ky := K\ L; andK, := K N L;. Partition(S; U.S;_1) \ K into the setA of vertices reachable
from sin G\ K and the seB3 of vertices non-reachable fromin G \ K. Let us observe that both
A and B are non-empty. Indeed, due to the minimality/of G' has a pathP from s to ¢ such that
V(P)n K = {v}. By selection ofv, S;_; separates from s and.S; separates from ¢. Therefore,
at least one vertex of S;_; occurs inP beforev and at least one vertex of .S; occurs inP afterwv.
The prefix of P ending atu and the suffix ofP starting atw are both subpaths i@ \ K. It follows
thatw is reachable from in G\ K, i.e. belongs tod and thatw is reachable fromin G\ K, hence
non-reachable from and thus belongs t&.

To see that{, is ana — b separator irG; 4 g, suppose that there is a pathconnectingz and
bin G; 4 p avoiding K. Then there is a corresponding pdthin G connecting a vertex ol and a
vertex of B. PathP’ is disjoint from K (since it contains vertices df; and(.S; U S;—1) \ K only)
and fromK (by construction). Thus a vertex &f is reachable frons in G \ K, a contradiction.

To see thati, is a minimala — b separator, suppose that there is a vettex K> such that
Ky \ {u} is also ana — b separator in; 4 g. SinceK is minimal, there is a — t path P in
G\ (K \ u), which has to pass through Arguing as when we proved thdtand B are non-empty,
we observe thaP includes vertices of botll and B, hence we can consider a minimal subpath
P’ of P between a vertex’ € A and a vertex’ € B. We claim that all the internal vertices of
P’ belong toL;. Indeed, due to the minimality aP’, an internal vertex of”’ can belong either
toL;ortoV(G)\ (Ky UL;US;—1US;). If all the internal vertices of”’ are from the latter set
then there is a path fromf to b’ in G \ (K; U L;) and hence irG \ (K7 U K3) in contradiction to
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b’ € B. If P’ contains internal vertices of both sets ti@as an edgéu, w} whereu € L; while
w e V(G)\ (K1 UL;US;—1US;). But this is impossible sincg;_; U S; separated.; from the rest
of the graph. Thus it follows that indeed all the internal vertice®obelong toL;. Consequently,
P’ corresponds to a path ii; 4 5 from a to b that avoidsK> \ v, a contradiction that proves the
minimality of K.

Finally, we show thatXy has excess at most— 1. Let K’ be a minimuma — b separator
in G; 4,5. Observe that<; U K/, is ans — ¢ separator inG. Indeed, consider a path from s
totin G\ (K7 U K}). It necessarily contains a vertexe K-, hence arguing as in the previous
paragraph we notice thdt includes vertices of botd and B. Considering a minimal subpat®’
of P between a vertex’ € A andl’ € B we observe, analogously to the previous paragraph that all
the internal vertices of this path belong&g. Hence this path corresponds to a path betweend
bin G; a p. It follows that P/, and henceP, includes a vertex ofC’, a contradiction showing that
K, U K} is indeed ars — ¢ separator irG. Due to the minimality ofKs, K/, # (. ThusK; U K}
contains at least one vertex frah, implying thatK; U K, is not a minimums — ¢ separator irG.
Thus|Ks| — | K| = (|K1| + |K2]) — (|K1| + |K}|) < k — ¢ = e, as required. This completes the
proof of Claim 2.9. [

Now we defineC’. Let Cy := U} Si. Fore = 0, ¢/ = Cy. Assume thae > 0. For
1 < i < g+ 1 and disjoint non-empty subsets B of S; U S;_1. LetC; 4 p be such a superset
of the union of all minimak — b separators of7; 4 g Of size most and excess at most— 1 that
C;,4,8U{a, b} satisfies the induction assumption with respeaffoy g (if the minimum size of an
a — b separator of7; 4 p is greater thark then we set; 4 p = (). We defineC’ as the union of
Cy and all set’; 4 p as above. Observe thét is defined correctly in the sense that any veriex
participating in ans — ¢t minimal separator of size at mastindeed belongs t6¢”. Fore = 0, the
correctness of” follows from the definition of set$;. Fore > 0, the correctness follows from the
above Claim if we take into account that sir[géjll L; UCy =V (G), v belongs to somé,;.

We shall show that the treewidth of to(€é, C’) is at mostg(¢, e), a function recursively de-
fined as follows:g(¢,0) := 6¢ andg(¢,e) := 3 - (20 + 3% - (g(¢,e — 1) + 1)) for e > 0. We do
this by showing that in grapty’, every sef’” C C’ has a balanced separator of size at n2égfor
e = 0) and at mose/ + 3% - (g(¢,e — 1) + 1) (for e > 0). By Proposition 2.5, this will imply
that in tors@dG, C’), W has a balanced separator with the same upper bound. By Lemma 2.2(1), the
desired upper bound on the treewidth will immediately follow.

LetW C C’ be an arbitrary set. Lat < i < ¢ + 1 be the smallest value such tH&it N X;| >
|W|/2. Consider the separatét U S;_; (whose size is at mo&¥). In G\ (S; U S;_1), the sets
Xi—1, Lj, andV(G) \ (S; U S;—1 U X,;_1 U L;) are pairwise separated from each other. By the
selection ofi, the first and the third sets do not contain more than hal#oflf e = 0, thenC’ is
disjoint from L;, hence the treewidth upper bound follows for= 0. We assume that > 0 and,
using the induction assumption, will show tH&t N L; has a balanced separat®of size at most
32 (g(¢,e — 1) +1). This willimmediately imply thatS U S; U S;_; is a balanced separator @f
of size at mos®/ + 3% - (g(¢,e — 1) 4 1), which, in turn, will imply the desired upper bound on
the treewidth of tors@, C”).

By the induction assumption, the treewidth of tdiS9 4 5, C; 4 ) is at mostg(¢,e — 1) for
any pair of disjoint subsetd, B of S; U S;_; such thatG; 4 g has arm — b separator of size at most
k. By the combination of Lemma 2.2(2) and Proposition 2.5, gr@gias a balanced separator of
size at mosy(¢,e — 1) + 1 for any setW; 4 g C C; 4, 5. Let C* be the union oiC; 4 g for all
suchA and B. Taking into account that the number of choicesdoéind B is at most3?, for any



TREEWIDTH REDUCTION 567

W* C C*, G has a balanced separator of size at ést(g(¢,e— 1)+ 1) according to Lemma 2.3.
By definition of C’, W N L; C C*, hence the existence of the desired separéitotlows.

We conclude the proof by showing that the above(¥atan be constructed in tim@(f (¢, e) -
[V(G)|4). In particular, we present an algorithm whose running timé{g(¢,e) - (|[V(G)| —
2)?) (we assume that’ has more than 2 vertices), whef¢/, e) is recursively defined as follows:
f(,0)=1andf(l,e) = f(l,e—1) -3 +1fore > 0.

The setX; can be computed as shown in the proof of Lemma 2.7. Then th§;s=n be
obtained as in the first paragraph of the proof of the present lemma. Their union restifs in
which is ¢’ for e = 0. Thus fore = 0, C’ can be computed in tim@(|V (G)| — 2)¢) (instead
of considerings andt, we may consider their sets of neighbors). Since the computation involves
computing a minimum cut, we may assume ttiat 1. Now assume that > 0. For eachi such
thatl <i < ¢+ 1and|L;| > 0, we explore all possible disjoint subsetsand B of S; U S;_;. For
the given choice, we check if the size of a minimum b separator of7; 4 g is at most; (observe
that it can be done i®(|Z;|%)) and if yes, compute the sét; 4 . By the induction assumption,
the computation take9(f(¢,e — 1) - |L;|%). So, exploring all possible choices dfand B takes
O(f(l,e—1)-3%.|L;|%). The overall complexity of computing” is

q+1
O((IV(G)| =2)" + f(t,e— 1) - 3% Y [ Li*).
=1
Since allL; are disjoint and J7*| L; € V(G)\{s,t}, >4 |Li| < |V(G)|-2, hencey 1] (|Li])?¢ <
(|V(@)| — 2)¢. Taking into account the recursive expression féf, ), the desired runtime fol-
lows. L]

Remark 2.10. The recursiony(¢,e) := 3 - (20 + 3% - g(¢,e — 1)) implies thatg(¢, ) is 200,
i.e., the treewidth bound is exponentialfiande. It is an obvious question whether it is possible to
improve this dependence to polynomial. However, a simple example (gftapthen-dimensional
hypercubek = (n — 1)n, s andt are opposite vertices) shows that the functigh, ¢) has to be
exponential. The size of the minimum- ¢ separator i€ := n. We claim that every vertex of the
hypercube (other thanandt) is part of a minimak — ¢ separator of size at mostn — 1). To see
this, let P be a shortest path connectingndv. Let P’ = P — v be the subpath aP connectings
with a neighbon’ of v. Let .S be the neighborhood d?’; clearly S is ans — ¢ separator and € S.
However,S \ v is not ans — t separator: the path is not blocked byS \ v asS'\ v does not contain
any vertex farther froms thanv. SinceP’ has at most: — 1 vertices and every vertex has degree
n, we havelS| < n(n — 1). Thuswv (and every other vertex) is part of a minimal separator of size
at mostn(n — 1). Hence if we set := n ande := n(n — 1), thenC' contains every vertex of the
hypercube. The treewidth of andimensional hypercube &(2"/\/n) [4], which is also a lower
bound ong(¢, e).

The following theorem states our main combinatorial tool in a form that will be very convenient
to use.

Theorem 2.11(The Treewidth Reduction Theorem). LetG be a graph,S C V(G), and letk be
an integer. LeC be the set of all vertices @¥ participating in a minimals — ¢ cut of size at most
k for somes, t € S. Then there is ampPT algorithm, parameterized bl and | S|, that computes a
graph G* having the following properties:
1) cuscv(a")
(2) Foreverys,t € S, asetK C V(G*) with |[K| < k is a minimals — ¢t separator ofG* if
and only if K C C'U S and K is a minimals — ¢ separator ofG.
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(3) The treewidth of7* is at mosth(k, | S|) for some functiorh.
(4) Forany K C C, G*[K] is isomorphic toG[K].

Proof. For everys,t € S that can be separated by the removal of at nkostrtices, the algorithm
of Lemma 2.8 computes a sét,, containing all the minimak — ¢ separators of size at mokt

By Lemma 2.6, ifC" is the union of these at moéﬁj‘) sets, ther’ = torsq G, C’) has treewidth
bounded by a function df and|S|. Note thatG’ satisfies all the requirements of the theorem except
the last one: two vertices @f’ non-adjacent iz may become adjacent i@’ (see Definition 2.4).

To fix this problem we subdivide each edfe v} of G’ such that{u,v} ¢ E(G) into two edges
with a vertex between them, and, to avoid selecting this vertex into a cut, we splititintaopies.

In other words, for each edde, v} € E(G’)\ E(G) we introducek+ 1 new verticesuy, . . . , w11

and replacqu, v} by the set of edge§{u, w: }, ..., {u, wri1}, {wi,v}, ..., {wgs1,v}}. LetG*

be the resulting graph. It is not hard to check thét satisfies all the properties of the present
theorem. n

Remark 2.12. The treewidth ofG* may be larger than the treewidth 6f. We use the phrase
“treewidth reduction” in the sense that the treewidthGfis bounded by a function df and|S|,
while the treewidth of7 is unbounded.

3. Constrained Separation Problems

Let G be a class of graphs. Given a graghverticess andt, and parametek, theG-MINCUT
problem asks if7 has ans — ¢ separatoiC' of size at mosk such thatG[C] € G. The following
theorem is the central result of this section.

Theorem 3.1. Assume thatj is decidableand hereditary(i.e. whenevelG € G then for any
V' CV,G[V'] € G). Then thej-MINCUT problem isFPT.

Proof. (Sketch) LetG* be a graph satisfying the requirements of Theorem 2.115fer {s,t}.
According to Theorem 2.1%7* can be computed irpTtime. We claim thatG, s, t, k) is a ‘YES’
instance of th&-mINcUT problem if and only if(G*, s, ¢, k) is a ‘“YES’ instance of this problem.
Indeed, letK be ans — t separator irG such thal K| < k andG(K) € G. Sinceg is hereditary,
we may assume thdt is minimal (otherwise we may consider a minimal subsekceparating
from t). By the second and fourth properties@f (see Theorem 2.11J separates from ¢ in G*
andG*[K]| € G. The opposite direction can be proved similarly.

Thus we have established apT-time reduction from an instance of themINCUT problem to
another instance of this problem where the treewidth is bounded by a function of paraniétsv,
letGy = (V(G*), E(G*),ST) be a labeled graph whef&l" = {s,t}. We present an algorithm for
constructing a monadic second-ordeisQ) formula whose atomic predicates (besides equality)
areFE(z1, z2) (showing thatr; andx, are adjacent i-*) and predicates of the fordd (v) (showing
thatv is contained inX C V'), whose size is bounded by a functionkofandG; = ¢ if and only if
(G*,s,t,k) is a "YES’ instance of th&-mMINCUT problem. According to a restricted version of the
well-known Courcelle’s Theorem (see the survey article of Grohe [14], Remarks@hiiSB.20), it
will follow that the G-mMINCUT problem isFPT. The part ofp describing the separation efandt is
based on the ideas from [13].

1AIthough the branchwidth af/, appears in the parameter, it can be replaced by the treewidth sihce the former
is bounded by a function df if and only if the latter is [26].
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We construct the formula as
¢ = JC(AtMost, (C) A Separateg”) A Induceg (C)),

where AtMos}, (C) is true if and only if|C| < k, Separatgg”) is true if and only ifC' separates the
vertices ofST in G*, and Induceg(C) is true if and onlyC' induces a graph df.
In particular, AtMost (C') states tha€' does not havé + 1 mutually non-equal elements: this
can be implemented as
VCl,...,vck_H \/ (Ci = Cj).
1<i,j<k+1
Formula Separaté€’) is a slightly modified formula uvn{cX) from [13], that looks as follows:

VsVIVZ (ST (s)AST (t)A—(s = t)A=C(s)A-C(t)AConnectsZ, s, t)) — (Fv(C(v)AZ(v)))),

where Connect¥, s, t) is true if and only if in the modeling graph there is a path froand¢
all vertices of which belong t&. For the definition of the predicate Connects, see Definition 3.1 in
[13].

To construct InducegC'), we explore all possible graphs having at mbstertices and for
each of these graphs we check whether it belong§.t&ince the number of graphs being ex-
plored depends oh andg is a decidable class, iFPT time we can compile the s¢G),..., G}
of all graphs of at mosk vertices that belong tg. Let kq, ...k, be the respective numbers of
vertices ofG’, ... G... Then Induceg(C') = Induces(C) V - - - V Induces(C'), where InducegC)
states that” inducesG’,. To define Inducesletvy, ..., v;, be the set of vertices @, and define
Adj;(c1, ..., cx,) as the conjunction of alE(c;, ¢,) such that, andv, are adjacent iri¥; and of
all ~E(cs, ¢y) such that, andv, are not adjacent igr;. Then

Induces(C') = AtMost, (C)AJe; ... Elcki< N Clen N e # eynAdig(en, ... ,cki)>.
1<5<k; 1<z,y<k;
Itis not hard to verify that indee@’; |= ¢ if and only if (G*, s, t, k) is a “YES’ instance of the
G-MINCUT problem. [

In particular, letG° be the class of all graphs without edges. TBEAVINCUT is theMINIMUM
STABLE s — t CUT problem whose fixed-parameter tractability has been posed as an open question
by Kanj [17]. Clearly,G" is hereditary and hence tig&-mMINCUT is FPT.

Theorem 3.1 can be used to decide if there is-am separator of sizat mostk having a certain
property, but cannot be used if we are looking §or ¢ separators of sizexactlyk. We show (with
a very easy argument) that some of these problems actually become hard if the size is required to
be exactlyk. Let graphG’ be obtained from grapt by introducing two isolated verticesand.
Now there is an independent set of size exakttiiat is ans — ¢ separator irGG’ if and only if there
is an independent set of sizén G, implying that finding such a separator is W[1]-hard.

Theorem 3.2. It is W[1]-hard to decide if{G has ans — t separator that is an independent set of
size exactlyk.

Samer and Szeider [27] introduced the notioedde-induced vertex-cand the corresponding
computational problem: given a graghand two vertices andt, the task is to decide if there are
k edges such that deleting tieadpointsof these edges separatesndt¢. It remained an open
guestion in [27] whether this problem #®T. Samer reposted this problem as an open question in
[7]. Using Theorem 3.1, we answer this question positively. For this purpose, we intrgguce
the class of graphs where the number of vertices minus the size of the maximum matching is at
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most k, observe that this class is hereditary, and show t6at, ¢, k) is a “YES'-instance of the
edge-induced vertex-cproblem if and only if(G, s,t,2k) is a ‘YES’ instance of th&j,-mincut
problem. Then we apply Theorem 3.1 to get the following corollary.

Corollary 3.3. TheEDGE-INDUCED VERTEX-CUT problem isFPT.

MULTICUT is the generalization afiiINCUT where, instead of andt¢, the input contains a set
(s1,t1), ---, (sg,tg) Of terminal pairs. The task is to find a seof at mostk nonterminal vertices
that separate; andt; for everyl < ¢ < . MULTICUT is known to berpT [19, 28] parameterized
by k£ and /. In the G-mULTICUT problem, we additionally require th&t induces a graph from
G. Itis not difficult to generalize Theorem 3.1 fg-MuULTICUT: all we need to do is to change
the construction ofp such that it requires the separation of each pairt;). We state this here in
an even more general form. In teMuULTICUT-UNCUT problem the input contains an additional
integer?’ < ¢, and we change the problem by requiring for evéry. i < ¢ thatS does noseparate
s; andt;.

Theorem 3.4. If G is decidableand hereditarythenG-MULTICUT-UNCUT is FPT parameterized by
k and/.

Theorem 3.4 helps clarify a theoretical issue. In Section 2, we defiresithe set of all vertices
appearing in minima$ — ¢ separators of size at mast There is no obvious way of finding this set
in FPT-time and Lemma 2.6 produces only a supetsedf C. However, Theorem 3.4 can be used
to find C: a vertexv is in C' if and only if there is a se$ of size at moskt — 1 and two neighbors
v1, vg Of v such thatS separates andt¢ in G \ v, but.S does not separatefrom v; andt from vs in
G \ v (including the possibility that; = s or vy = t).

4. Constrained Bipartization Problems

Reed et al. [25] solved a longstanding open question by proving the fixed-parameter tractability
of the BIPARTIZATION problem: given a grapty and an integek, find a setS of at mostk vertices
such thaiG \ S is bipartite (see also [18] for a somewhat simpler presentation of the algorithm). In
fact, they showed that th®PARTIZATION problem can be solved by at ma#t applications of a
procedure solvingniNCcUT. The key result that allows to transfommPARTIZATION to a separation
problem is the following lemma.

Lemma 4.1. LetG be a bipartite graph and letB’, W') be a 2-coloring of the vertices. L&t and
W be two subsets df (G). Then for anyS, G'\ S has a 2-coloring wherd3 \ S is black andiV \ S
is white if and only ifS separatesX := (BN B ) U (W NnW')andY := (BNW’')U (W N B’).

In this section we consider tlieBIPARTIZATION problem: a generalization of tlB2PARTIZA-
TION problem where, in addition t&' \ S being bipartite, it is also required th&tinduces a graph
belonging to a clas§.

Theorem 4.2. G-BIPARTIZATION is FPTIf G is hereditary and decidable.

Proof. Using the algorithm of [25], we first try to find a s8¢ of size at mosk such thatz \ Sy is
bipartite. If no such set exists, then clearly there is naSsgaitisfying the requirements. Otherwise,
we branch i3/l directions: each vertex df, is removed or colored black or colored white. For
a particular branch, leR = {v1,...,v,} be the vertices ob, to be removed and leB, (resp.,
W) be the vertices oby having color black (resp., white) in a 2-coloring of the resulting bipartite
graph. Letus call a s&t such thatSN Sy = R, andG \ S is bipartite and having a 2-coloring where
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By and W), are colored black and white, respectively, as®npatiblewith (R, By, Wy). Clearly,
(G, k) is a ‘YES’ instance of th&/-BIPARTIZATION problem if and only if for at least one branch
corresponding to partitiofRR, By, Wy) of Sy, there is a set compatible wittR, By, W) having
size at mosk and such tha7[S] € G. Clearly, we need to check only those branches whigi,]
andG[Wj] are both independent sets.

We transform the problem of finding a set compatible wih By, W) into a separation prob-
lem. Let(B’, W') be a 2-coloring of7 \ Sy. Let B = N(Wy) \ Sp andW = N(By) \ Sp. Letus
defineX andY asinLemma4.1,i.eX := (BNB ) UWnNW'),andY := (BNW')U(WnNB).
We construct a grapf’ that is obtained frond: by deleting the seB, U W, adding a new vertex
adjacent taX U R, and adding a new vertebadjacent witht” U R. Note that every — ¢ separator
in G’ containsR. By Lemma 4.1, a sef is compatible with R, By, W) if and only if S'is ans — ¢
separator irG’. Thus what we have to decide is whether there is art separatolS of size at most
k such thatG'[S] = G[S] isin G. That is, we have to solve thg-MINCUT instance(G', s, t, k).
The fixed-parameter tractability of tl{eBIPARTIZATION problem now immediately follows from
Theorem 3.1. [

Theorem 4.2 immediately implies that teeABLE BIPARTIZATION problem isFPT. just setG
to be the class of all graphs without edges. This answers an open question of Fernau [7]. Next, we
show that th&aXACT STABLE BIPARTIZATION problem isFPT, answering a question posed by Diaz
et al. [9]. This result may seem surprising because the corresponding exact separation problem is
WI[1]-hard by Theorem 3.2 and hence the approach of Theorem 4.2 is unlikely to work. Instead,
we argue that under appropriate conditions, any solution of size at/mzest be extended to an
independent set of size exaclly

Theorem 4.3. Given a graphz and an integetk, deciding whethe& can be made bipartite by the
deletion of an independent set of size exaktiy fixed-parameter tractable.

Proof. (Sketch) It is more convenient to consider an annotated version of the problem where the
independent set being deleted has to be a subset of & setV (G) given as part of the input.
Without the annotation) is initially set toV (G). If G is not bipartite, then the algorithm starts by
finding an odd cycl€’ of minimum length (which can be done in polynomial time). Itis not difficult
to see that the minimality af’ implies that eitheC' is a triangle oiC' is chordless. Moreover, in the
latter case, every vertex not @ is adjacent to at most 2 vertices of the cycle.

If [V(C)nD| =0, then clearly no subset @ is a solution. Ift < |V(C)NnD| < 3k+1,then
we branch on the selection of each vertex V(C) N D into the setS of vertices being removed
and apply the algorithm recursively with the paramétdeing decreased blyand the seD being
updated by the removal efand N (v) N D. If |[V(C) N D| > 3k + 1, then we apply the approach
of Theorem 4.2 to find an independent SeC D of size at most whose removal makes the graph
bipartite, and then argue th&tcan be extended to an independent set of size exactlp ensure
thatS C D, we may, for example split all verticese V(G) \ D into k + 1 independent copies
with the same neighborhood as If |[S| = k, we are done. OtherwiséS| = k' < k. In this
case we observe that by the minimality @f each vertex o5 (either inC' or outsideC’) forbids
the selection of at most vertices ofV(C') N D including itself. Thus the number of vertices of
V(C)N D allowed for selection is at lea8k + 1 — 3k’ = 3(k— k') + 1. Since the cycle is chordless,
we can seleck — &’ independent vertices among them and thus comple\émbe of size exactly
k.

The above algorithm has a number of stopping conditions, the only non-trivial of them occurs
if G is bipartite butc > 0. In this case we check &|D] hask independent vertices, which can be
done in a polynomial time. [
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