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ONLINE CORRELATION CLUSTERING
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Abstract. We study the online clustering problem where data items arrive in an online
fashion. The algorithm maintains a clustering of data items into similarity classes. Upon
arrival of v, the relation between v and previously arrived items is revealed, so that for
each u we are told whether v is similar to u. The algorithm can create a new cluster for v
and merge existing clusters.

When the objective is to minimize disagreements between the clustering and the input,
we prove that a natural greedy algorithm is O(n)-competitive, and this is optimal.

When the objective is to maximize agreements between the clustering and the input, we
prove that the greedy algorithm is .5-competitive; that no online algorithm can be better
than .834-competitive; we prove that it is possible to get better than 1/2, by exhibiting a
randomized algorithm with competitive ratio .5+c for a small positive fixed constant c.

1. Introduction

We study online correlation clustering. In correlation clustering [2, 15], the input is
a complete graph whose edges are labeled either positive, meaning similar, or negative,
meaning dissimilar. The goal is to produce a clustering that agrees as much as possible
with the edge labels. More precisely, the output is a clustering that maximizes the number
of agreements, i.e., the sum of positive edges within clusters and the negative edges between
clusters. Equivalently, this clustering minimizes the disagreements. This has applications
in information retrieval, e.g. [8, 10].

In the online setting, vertices arrive one at a time and the total number of vertices is
unknown to the algorithm a priori. Upon the arrival of a vertex, the labels of the edges that
connect this new vertex to the previously discovered vertices are revealed. The algorithm
updates the clustering while preserving the clusters already identified (it is not permitted to
split any pre-existing cluster). Motivated by information retrieval applications, this online
model was proposed by Charikar, Chekuri, Feder and Motwani [5] (for another clustering
problem). As in [5], our algorithms maintain Hierarchical Agglomerative Clusterings at all
times; this is well suited for the applications of interest.
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The problem of correlation clustering was introduced by Ben-Dor et al. [3] to cluster
gene expression patterns. Unfortunately, it was shown that even the offline version of
correlation clustering is NP-hard [15, 2]. The following are the two approximation problems
that have been studied [2, 7, 1]: Given a complete graph whose edges are labeled positive
or negative, find a clustering that minimizes the number of disagreements, or maximizes
the number of agreements. We will call these problems MinDisAgree and MaxAgree

respectively. Bansal et al. [2] studied approximation algorithms both for minimization
and maximization problems, giving a constant factor algorithm for MinDisAgree, and
a Polynomial Time Approximation Scheme (PTAS) for MaxAgree. Charikar et al. [7]
proved that MinDisAgree is APX-hard and gave a factor 4 approximation. Ailon et al.
[1] presented a randomized factor 2.5 approximation for MinDisAgree, which is currently
the best known factor. The problem has attracted significant attention, with further work
on several variants [9, 6, 11, 13, 3, 12, 14].

In this paper, we study online algorithms for MinDisAgree and MaxAgree. We
prove that MinDisAgree is essentially hopeless in the online setting: the natural greedy
algorithm is O(n)-competitive, and this is optimal up to a constant factor, even with ran-
domization (Theorem 3.4). The situation is better for MaxAgree: we prove that the
greedy algorithm is a .5-competitive (Theorem 2.1), but that no algorithm can be better
than 0.803 competitive (0.834 for randomized algorithms, see Theorem 2.2). What is the
optimal competitive ratio? We prove that it is better than .5 by exhibiting an algorithm
with competitive ratio 0.5 + ǫ0 where ǫ0 is a small absolute constant (Theorem 2.6). Thus
Greedy is not always the best choice!

More formally, let v1, . . . , vn denote the sequence of vertices of the input graph, where
n is not known in advance. Between any two vertices, vi and vj for i 6= j, there is an
edge labeled positive or negative. In MinDisAgree (resp. MaxAgree), the goal is to
find a clustering C, i.e. a partition of the nodes, that minimizes the number of disagree-
ments cost(C): the number of negative edges within clusters plus the number of positive
edges between clusters (resp. maximizes the number of agreements profit(C): the number
of positive edges within clusters plus the number of negative edges between clusters). Al-
though these problems are equivalent in terms of optimality, they differ from the point of
view of approximation. Let OPT denote the optimum solution of MinDisAgree and of
MaxAgree.

In the online setting, upon the arrival of a new vertex, the algorithm updates the
current clustering: it may either create a new singleton cluster or add the new vertex to a
pre-existing cluster, and may decide to merge some pre-existing clusters. It is not allowed
to split pre-existing clusters.

A c-competitive algorithm for MinDisAgree outputs, on any input σ, a clustering C(σ)
such that cost(C(σ)) ≤ c · cost(OPT(σ)). For MaxAgree, we must have profit(C(σ)) ≥
c · profit(OPT(σ)). (When the algorithm is randomized, this must hold in expectation).

2. Maximizing Agreements Online

2.1. Competitiveness of Greedy

For subsets of vertices S and T we define Γ(S, T ) as the set of edges between S and T .
We write Γ+(S, T ) (resp. Γ−(S, T )) for the set of positive (resp. negative) edges of Γ(S, T ).



ONLINE CORRELATION CLUSTERING 575

We define the gain of merging S with T as the change in the profit when clusters S and T
are merged:

gain(S, T ) = |Γ+(S, T )| − |Γ−(S, T )| = 2|Γ+(S, T )| − |S||T |.
We present the following greedy algorithm for online correlation clustering.

Algorithm 1 Algorithm Greedy

1: Upon the arrival of vertex v do

2: Put v in a new cluster consisting of {v}.
3: while there are two clusters C, C ′ such that gain(C,C ′) > 0 do

4: Merge C and C ′

5: end while

6: end for

Theorem 2.1. Let OPT denote the offline optimum.

• For every instance, profit(Greedy) ≥ 0.5 profit(OPT).
• There are instances with profit(Greedy) ≤ (0.5 + o(1))profit(OPT).

2.2. Bounding the optimal competitive ratio

Theorem 2.2. The competitive ratio of any randomized online algorithm for MaxAgree is
at most 0.834. The competitive ratio of any deterministic online algorithm for MaxAgree

is at most 0.803.

The proof uses Yao’s Min-Max Theorem [4] (maximization version).

Theorem 2.3 (Yao’s Min-Max Theorem). Fix a distribution D over a set of inputs (Iσ)σ.
The competitive ratio of any randomized online algorithm is at most

max{ EI [profit(A(I))]

EI [profit(OPT(I))]
: A deterministic online algorithm},

where the expectations are over a random input I drawn from distribution D.

To prove Theorem 2.2, we first define two generic inputs that we will use to apply
Theorem 2.3. The first input is a graph G1 with 2m vertices and all positive edges between
them The second input is a graph with 6m vertices defined as follows. The first 2m vertices
have all positive edges between them, the next 2m vertices have all positive edges between
them, and the last 2m vertices also have all positive edges between them. In each of these
three sets G1, G2, G3 of 2m vertices, half are labelled “left side” vertices and the other half
are labelled ”right side” vertices. All edges between left vertices are positive, but edges
between a vertex u on the left side of Gi and a vertex v on the right side of Gj , j 6= i, are
all negative.

The online algorithm cannot distinguish between the two inputs until time 2m + 1, so
it must hedge against two very different possible optimal structures.
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2.3. Beating Greedy

2.3.1. Designing the algorithm. Our algorithm is based on the observation that Algorithm
Greedy always satisfies at least half of the edges. Thus, if profit(OPT) is less than (1 −
α/2)|E| for some constant α, then the profit of Greedy is better than half of optimal.
We design an algorithm called Dense, parameterized by constants α and τ , such that if
profit(OPT) is greater than (1−α/2)|E|, then the approximation factor is at least 0.5+η for
some positive constant η. We use both algorithms Greedy and Dense to define Algorithm
2.

Theorem 2.4. Let α ∈ (0, 1), τ > 1 and η ∈ (0, 1
2 ) be such that

η ≤ 1.5 − τ2 − ((2
√

3 + 9/2)α1/4 +
α1/4

1 − α1/4
+ α/2)2

2τ − 1

(τ − 1)
. (2.1)

Then, for every instance such that OPT ≥ (1 − α/2)E, Algorithm Denseα,τ has profit at
least (1/2 + η)OPT.

Using Theorem 2.4 we can bound the competitive ratio of Algorithm 2.

Corollary 2.5. Let α, τ and η be as above, and let p = α/(2 + 2η(2 − α)). Then Algorithm

2 has competitive ratio at least 1
2 + αη/2

1+2η(1−α/2) .

Corollary 2.6. For α = 10−12, τ = 1.0946, η = 0.0555 and p = 4, 5 · 10−13, Algorithm 2 is
1
2 + 2 · 10−14-competitive.

Algorithm 2 A 1
2 + ǫ0-competitive algorithm

Given p, α, τ ,
With probability 1 − p, run Greedy,
With probability p, run Denseα,τ .

Algorithm 3 Algorithm Denseα,τ

1: Let C = ÔPT1 and for every cluster D ∈ C, let repr1(D) := D ∈ ÔPT1 .
2: Upon the arrival of a vertex v at time t do

3: Put v in a new cluster {v}.
4: if t = ti for some i then

5: for every cluster D in ÔPTi do

6: Define a cluster D′′ obtained by merging the restriction of D to {ti−1, . . . , ti}
with every cluster C ∈ C in {1, . . . , ti−1} such that repri−1(C) is defined and is
half-contained in D.

7: If D′′ is not empty, set repri(D
′′) := D ∈ ÔPTi.

8: end for

9: end if

10: end for

How do we define algorithm Dense? Using the PTAS of [2], one can compute offline a
factor (1−α/2) approximative solution OPT′ of any instance of MaxAgree in polynomial
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time. We will design algorithm Dense so that it guarantees an approximation factor of
0.5+η whenever profit(OPT′) ≥ (1−α)|E|. Since profit(OPT) ≥ (1−α/2)|E| implies that
profit(OPT′) ≥ (1 − α)|E|, Theorem 2.4 will follow.

We say that OPT′
t is large if profit(OPT′

t) ≥ (1 − α)|E|. We define a sequence (ti)i
of update times inductively as follows: By convention t0 = 0. Time t1 is the earliest time
t ≥ 100 such that OPT′

t is large. Assume ti is already defined, and let j be such that
τ j−1 ≤ ti < τ j. If OPT′

τ j is large, then ti+1 = τ j, else ti+1 is the earliest time t ≥ τ j such
that OPT′

t is large. Let t1, t2, . . . , tK be the resulting sequence. We will note, with an abuse
of notation, OPT′

i instead of OPT′
ti for 1 ≤ i ≤ K.

We say that a cluster A is half-contained in B if |A ∩ B| > |A|/2. Let ǫ = α1/4. For
each ti, we inductively define a near optimal clustering of the nodes [1, ti]. For the base

case, let ÔPT1 be the clustering obtained from OPT′
1 by keeping the 1/ǫ2 largest clusters

and splitting the other clusters into singletons. For the general case, to define ÔPTi given

ÔPTi−1, mark the clusters of OPT′
i as follows. For any D in OPT′

i, mark D if either one

of the 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1 is half-contained in D, or D is one of the 1/ǫ

largest clusters OPT′
i. Then ÔPTi contains all the marked clusters of OPT′

i and the rest

of the vertices in [1, ti] as singleton clusters. (Note that, by definition, any ÔPTi contains
at most 1/ǫ2 non-singleton clusters; this will be useful in the analysis.)

Note that Dense only depends on parameters α and τ indirectly via the definition of

update times and of ÔPT.

2.3.2. Analysis: Proof of Theorem 2.4. The analysis is by induction on i, assuming that we

start from clustering ÔPTi at time ti, then apply the above algorithm from time ti to the

final time t. If i = 1 this is exactly our algorithm, and if i = K then this is simply ÔPTK ;
in general it is a mixture of the two constructions.

More formally, define a forest F (at time t) with one node for each ti ≤ t and cluster of

ÔPTi. The node associated to a cluster A of ÔPTi−1 is a child of the node associated to a

cluster B of ÔPTi if and only if A is half-contained in B. With a slight abuse of notation,
we define the following clustering F associated to the forest. There is one cluster T for each

tree of the forest: for each node A of the tree, if i is such that A ∈ ÔPTi, then cluster T
contains A ∩ (ti−1, ti]. This defines T .

One interpretation of Dense is that at all times t, there is an associated forest and
clustering F ; and our algorithm Dense simply maintains it. See Figure 1 for an example.

Lemma 2.7. Algorithm 3 is an online algorithm that outputs clustering F at time t.

Let Fi be the forest obtained from F by erasing every node associated to clusters of

ÔPTj for every j < i. With a slight abuse of notation, we define the following clustering
Fi associated to that forest: there is one cluster C for each tree of the forest defined as

follows. For each node A of the tree, let k ≥ i be such that A ∈ ÔPTk: then C contains
A∩ (tk−1, tk] if k > i, and C contains A if k = i. This defines a sequence of clusterings such

that F1 = F is the output of the algorithm, and FK = ÔPTK .

Lemma 2.8 (Main lemma). For any 2 ≤ i ≤ K,

cost(Fi−1) − cost(Fi) ≤
(

(4 + 2
√

3)ǫ +
ǫ

1 − ǫ

)

titK .
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Figure 1: An example of a forest F given in left, and the corresponding clustering given in

right. Here, we have ÔPTi = {B1, B2} and ÔPTi−1 = {A1, . . . , A5}.

We defer the proof of Lemma 2.8 to next section. Assuming Lemma 2.8, we upper-
bound the cost of clustering F .

Lemma 2.9 (Lemma 14, [2]). For any 0 < c < 1 and clustering C, let C′ be the clustering
obtained from C by splitting all clusters of C of size less than cn, where n is the number of
vertices. Then cost(C′) ≤ cost(C) + cn2/2.

Lemma 2.10. cost(F) ≤ ((2
√

3 + 9/2)ǫ + ǫ
1−ǫ + ǫ4/2)2τ−1

τ−1 t2K .

Proof. We write: cost(F) = cost(ÔPTK) +
∑K

i=2(cost(Fi−1) − cost(Fi)).By definition,

ÔPTK contains the 1/ǫ largest clusters of OPT′
K . Then the remaining clusters of OPT′

K

are of size at most ǫtK . By Lemma 2.9, the cost of ÔPTK is at most cost(OPT′
K)+ǫt2K/2 ≤

(α + ǫ)t2K/2. Applying Lemma 2.8, and summing over 2 ≤ i ≤ K, we get

cost(F) ≤ (α + ǫ)t2K/2 +

(

(4 + 2
√

3)ǫ +
ǫ

1 − ǫ

)

∑

i

titK .

By definition of the update times (ti)i, for any j > 0 there exists at most one ti such that
τ j ≤ ti < τ j+1. Let L be such that τL ≤ tK < τL+1. Then

∑

1≤i≤K

ti ≤
∑

1≤i≤K−1

ti + tK ≤
∑

1≤j≤L

τ j + tK ≤ τL+1

τ − 1
+ tK ≤ 2τ − 1

τ − 1
tK .

Hence the desired bound on cost(F).
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Proof of Theorem 2.4. Fix an input graph of size n, such that profit(OPT) ≥ (1−α/2)
(n
2

)

.

By Lemma 2.10, at time tK , Algorithm 3 has clustering F with cost(F) ≤ O(ǫ)2τ−1
τ−1 t2K .

By definition of the update times, n < τtK . To guarantee a competitive ratio of 0.5+η,
for some η, the cost must not exceed (0.5− η)

(

n
2

)

at time n, when all vertices tK + 1, . . . , n
are added as singleton clusters. The number of new edges added to the graph between times
tK and n is

(n−tK
2

)

+ tK(n − tK). We must have

2τ − 1

τ − 1
O(ǫ)t2K +

(

n − tK
2

)

+ tK(n − tK) ≤ (0.5 − η)

(

n

2

)

, (2.2)

for some 0 < η < 0.5. Using the fact that n − tK ≤ (τ − 1)tK and tK ≤ n − 1, to satisfy
(2.2), it suffices to have

2τ − 1

τ − 1
O(ǫ)t2K + t2K(τ − 1)2/2 + (τ − 1)t2K ≤ (0.5 − η)t2K/2,

which is equivalent to (2.1). Moreover we have the following natural constraints on constants
η, ǫ and τ : 0 < η < 0.5, 0 < ǫ < 1, and τ > 1. Then, for any set of values of constants η, ǫ,
τ verifying those constraints, Algorithm Dense is 0.5 + η-competitive.

2.3.3. The core of the analysis: proof of Lemma 2.8.

Lemma 2.11. Let Si be the set of vertices of the non-singleton clusters that are not among

the 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1. Then |Si| ≤ ǫ
1−ǫti−1.

Proof. Let C be a cluster of ÔPTi−1, such that C ⊆ Si. Then |C| ≤ (1/ǫ2 − 1/ǫ)−1ti−1.
Since there are at most 1/ǫ such clusters, the number of vertices of these are at most
1/ǫ(1/ǫ2 − 1/ǫ)−1ti−1.

Notation 2.12. For any i 6= j, and a cluster B of OPT′
i, we denote by γi,j

B the square root
of the number of edges of [1, tmin(i,j)]× [1, tmin(i,j)], adjacent to at least one node of B, and

which are classified differently in OPT′
i and in OPT′

j.

We refer to non singleton clusters as large clusters.

Lemma 2.13. Let T i be the set of vertices of those 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1

that are not half-contained in any cluster of OPT′
i. Then |T i| ≤

√
6
∑

large C∈ ̂OPTi−1

γi,i−1
C .

Let B be a cluster of ÔPTi. For any j ≤ i, we define Cj(B) as the cluster associated

with the tree of Fj that contains B. For any B ∈ ÔPTi, we call Ci−1(B) the extension of
Ci(B) to Fi−1. By definition of Fi, the following lemma is easy.

Lemma 2.14. For any B ∈ ÔPTi, the restriction of Ci−1(B) to (ti−1, tK ] is equal to the
restriction of Ci(B) to (ti−1, tK ].

Let (Aj)j denote the clusters of ÔPTi−1 that are half-contained in B. We define δi(B)
as the symmetric difference of the restriction of B to [1, ti−1] and ∪jAj :

δi(B) = (B ∩ [1, ti−1])∆ ∪j Aj.



580 C. MATHIEU, O. SANKUR, AND W. SCHUDY

Lemma 2.15. For any cluster Ci of Fi, let C ′
i denote the extension of Ci to Fi−1. Then

⋃

Ci∈Fi

Ci \ C ′
i ⊆ Si ∪ T i ∪

⋃

large B∈ÔPTi

δi(B)

Proof. By Lemma 2.14, the partition of the vertices (ti−1, tK ] is the same for Ci as for C ′
i.

So Ci and C ′
i only differ in the vertices of [1, ti−1):

⋃

Ci∈Fi

Ci \ C ′
i ⊆

⋃

B∈ÔPTi

δi(B).

We will show that for a singleton cluster B of ÔPTi, δi(B) is included in Si ∪
T i
⋃

large B∈ÔPTi
δi(B), which yields the lemma.

Let B = {v} be a singleton cluster of ÔPTi such that δi(B) 6= {}. A non-singleton
cluster cannot be half-contained in a singleton cluster so we conclude no clusters are half-
contained in B and hence δi(B) = {v}. By definition of δi(B), v ∈ [1, ti−1]. So there exists

a cluster A of ÔPTi−1 that contains v. Clearly A is not a singleton since otherwise δi(B)
would be {}. There are two cases.

First, if A is half-contained in a cluster B′ 6= B of ÔPTi then cluster B′ is necessarily
large since it contains more than one vertex of A. Then we have v ∈ δi(B′).

Second, if A is not half-contained in any cluster of ÔPTi then A ⊆ Si ∪ T i. In fact, if

A is half-contained in a cluster of OPT′
i which is split into singletons in ÔPTi, then A is

not one of the 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1, and A ⊆ Si. If A is not half-contained

in any cluster of OPT′
i, then A ⊆ T i if A is one of the 1/ǫ2 − 1/ǫ largest clusters of ÔPTi−1

and A ⊆ Si otherwise.

Lemma 2.16. For any large cluster B of ÔPTi, |δi(B)| ≤ 2
√

2γi,i−1
B .

Proof. Let B′ denote the restriction of B to [1, ti−1]. We first show that

1/2(| ∪j Aj \ B′|)2 ≤ (γi,i−1
B )2.

Observe that (γi,i−1
B )2 includes all edges uv such that one of the following two cases occurs.

First, if u ∈ Aj \B and v ∈ Aj∩B: such edges are internal in the clustering OPT′
i−1 but

external in the clustering OPT′
i. The number of edges of this type is

∑

j |Aj \B| · |Aj ∩B|.
Since Aj is half-contained in B, this is at least

∑

j |Aj \ B|2.
Second, if u ∈ Aj ∩ B and v ∈ Ak ∩ B with j 6= k: such edges are external in the

clustering OPT′
i−1 but internal in the clustering OPT′

i. The number of edges of this type
is
∑

j<k |Aj ∩ B| · |Ak ∩ B| ≥∑j<k |Aj \ B| · |Ak \ B|.
Summing, it is easy to infer that (γi,i−1

B )2 ≥ (1/2)
(

∑

j |Aj \ B|
)2

= (1/2)| ∪j Aj \B′|2.
Let (A′

j)j denote the clusters of ÔPTi−1 that are not half-contained in B, but have non-
empty intersections with B. We now show that

1/2(|B′ \ ∪jA
′
j|)2 ≤ (γi,i−1

B )2.

We have B′ \∪jAj = ∪j(A
′
j ∩ B). Observe that any A′

j is a large cluster of ÔPTi−1, thus a

cluster of OPT′
i−1. Then (γi,i−1

B )2 includes all edges uv such that one of the following two
cases occurs



ONLINE CORRELATION CLUSTERING 581

First, if u ∈ A′
j \B and v ∈ A′

j∩B: such edges are internal in the clustering OPT′
i−1 but

external in the clustering OPT′
i. The number of edges of this type is

∑

j |A′
j \B| · |A′

j ∩B|.
Since A′

j is not half-contained in B, this is at least
∑

j |A′
j ∩ B|2.

Second, if u ∈ A′
j ∩ B and v ∈ A′

k ∩ B with j 6= k: such edges are external in the

clustering OPT′
i−1 but internal in the clustering OPT′

i. The number of edges of this type
is
∑

j<k |A′
j ∩ B| · |A′

k ∩ B|.
Summing, we get

(γi,i−1
B )2 ≥ (1/2)





∑

j

|A′
j ∩ B|





2

= (1/2)|B′ \ ∪jA
′
j|2.

Lemma 2.17. For any i ≥ 1, ÔPTi has at most 1/ǫ2 non singleton clusters, all of which
are clusters of OPT′

i

Proof. By definition, ÔPT1 has at most 1/ǫ2 non singleton clusters. For any i > 1, a cluster

of ÔPTi−1 can only be half-contained in one cluster of OPT′
i. Therefore given ÔPTi−1, at

most 1/ǫ2 clusters of OPT′
i are marked. Thus ÔPTi has at most 1/ǫ2 clusters.

We can now prove Lemma 2.8.

Proof of Lemma 2.8. By Lemma 2.14, clusterings Fi and Fi−1 only differ in their partition
of [1, ti−1]. Then the set of the vertices that are classified differently in Fi and Fi−1 is
∪iCi \ Ci−1. Each of these vertices creates at most tK disagreements:

cost(Fi−1) − cost(Fi) ≤
∑

Ci∈Fi

|Ci \ Ci−1|tK (2.3)

By Lemmas 2.15 and 2.16,

∑

Ci∈Fi

|Ci \ Ci−1|tK ≤



2
√

2

(

∑

large B∈ÔPTi

γi,i−1
B

)

+ |Si| + |T i|



 tK . (2.4)

By Lemmas 2.11 and 2.13,

|Si| ≤ ǫ

1 − ǫ
ti−1 and |T i| ≤

√
6

∑

large B∈ ̂OPTi−1

γi−1,i
B (2.5)

The term
∑

large B∈ ̂OPTi−1

γi−1,i
B can be seen as the ℓ1 norm of the vector (γi−1,i

B )large B. Since

ÔPTi−1 has at most 1/ǫ2 large clusters by Lemma 2.17, we can use Hölder’s inequality:
∑

large B∈ ̂OPTi−1

γi−1,i
B = ‖(γi−1,i

B )large B‖1 ≤ 1/ǫ‖(γi−1,i
B )large B‖2.

By definition we have ‖(γi−1,i
B )large B‖2 ≤

√

2(cost(OPT′
i−1) + cost(OPT′

i)). Thus

∑

large B∈ ̂OPTi−1

γi−1,i
B ≤ 1/ǫ

√

2(αt2i−1/2 + αt2i /2) ≤
√

2α

ǫ
ti. (2.6)
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Similarly, we have
∑

large B∈ÔPTi

γi,i−1
B ≤

√
2α

ǫ
ti. (2.7)

Combining equations (2.3) through (2.7) and α = ǫ4 yields

cost(Fi−1) − cost(Fi) ≤
(

(4 + 2
√

3)ǫ +
ǫ

1 − ǫ

)

titK

3. Minimizing Disagreements Online

Theorem 3.1. Algorithm Greedy is (2n + 1)-competitive for MinDisAgree.

To prove Theorem 3.1, we need to compare the cost of the optimal clustering to the
cost of the clustering constructed by the algorithm. The following lemma reduces this to,
roughly, analyzing the number of vertices classified differently.

Lemma 3.2. Let W and W ′ be two clusterings such that there is an injection W ′
i ∈ W ′ →

Wi ∈ W. Then cost(W ′) − cost(W) ≤ n
∑

i |W ′
i \ Wi|.

For subsets of vertices S1, . . . , Sm, we will write, with a slight abuse of notation,
Γ+(S1, . . . , Sm) for the set of edges in Γ+(Si, Sj) for any i 6= j: Γ+(S1, . . . , Sm) =
∪i6=jΓ

+(Si, Sj).

Lemma 3.3. Let C be a cluster created by Greedy, and W = {W1, . . . ,WK} denote
the clusters of OPT. Then |C| ≤ maxi |C ∩ Wi| + 2|Γ+(C ∩ W1, . . . , C ∩ WK)|.. We call
i0 = arg max

i
|C ∩ Wi| the leader of C.

Proof of Theorem 3.1. Let C denote the clustering given by Greedy. For every cluster
Wi of OPT, merge all the clusters of C that have i as their leaders. Let C′ = (W ′

i ) be
this new clustering. By definition of the greedy algorithm, this operation can only in-
crease the cost since every pair of clusters have a negative-majority cut at the end of the
algorithm:cost(C) ≤ cost(C′). We apply Lemma 3.2 to W =OPT and W ′ = C′, and ob-
tain: cost(C′) ≤ cost(OPT) + n

∑

i |W ′
i \ Wi|. By definition of C′ we have |W ′

i \ Wi| =
∑

C∈C:leader(C)=i

∑

j 6=i |C ∩ Wj |, hence
∑

i

|W ′
i \ Wi| =

∑

C∈C

∑

j 6=leader(C)

|C ∩ Wj|.

By Lemma 3.3,
∑

j 6=leader(C) |C ∩ Wj| ≤ 2|Γ+(C∩W1, . . . , C∩WK)|. Finally, to bound OPT

from below, we observe that, for any two clusterings C and W, it holds that the sum over
C ∈ C of |Γ+(C ∩ W1, . . . , C ∩ WK)| is less than cost(W). Combining these inequalities
yields the theorem.
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Theorem 3.4. Let ALG be a randomized algorithm for MinDisAgree. Then there exists
an instance on which ALG has cost at least n − 1 − cost(OPT) where OPT is the offline
optimum. If OPT is constant then cost(ALG) = Ω(n)cost(OPT).

Proof. Consider two cliques A and B, each of size m, where all the internal edges of A and
B are positive. Choose a vertex a in A, and a set of vertices b1, . . . , bk in B. Define the
edge labels of abi as positive, for all 1 ≤ i ≤ k and the rest of the edges between A and B
as negative. Define an input sequence starting with a, b1, . . . , bk, followed by the rest of the
vertices in any order.
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