
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 585-596
www.stacs-conf.org

THE RECOGNITION OF TOLERANCE

AND BOUNDED TOLERANCE GRAPHS

GEORGE B. MERTZIOS 1 AND IGNASI SAU 2 AND SHMUEL ZAKS 3

1 Department of Computer Science, RWTH Aachen University, Aachen, Germany
E-mail address: mertzios@cs.rwth-aachen.de

2 Department of Computer Science, Technion, Haifa, Israel
E-mail address: ignasi.sau@gmail.com

3 Department of Computer Science, Technion, Haifa, Israel
E-mail address: zaks@cs.technion.ac.il

Abstract. Tolerance graphs model interval relations in such a way that intervals can
tolerate a certain degree of overlap without being in conflict. This subclass of perfect
graphs has been extensively studied, due to both its interesting structure and its numerous
applications. Several efficient algorithms for optimization problems that are NP-hard on
general graphs have been designed for tolerance graphs. In spite of this, the recognition of
tolerance graphs – namely, the problem of deciding whether a given graph is a tolerance
graph – as well as the recognition of their main subclass of bounded tolerance graphs,
have been the most fundamental open problems on this class of graphs (cf. the book on
tolerance graphs [14]) since their introduction in 1982 [11]. In this article we prove that
both recognition problems are NP-complete, even in the case where the input graph is
a trapezoid graph. The presented results are surprising because, on the one hand, most
subclasses of perfect graphs admit polynomial recognition algorithms and, on the other
hand, bounded tolerance graphs were believed to be efficiently recognizable as they are a
natural special case of trapezoid graphs (which can be recognized in polynomial time) and
share a very similar structure with them. For our reduction we extend the notion of an
acyclic orientation of permutation and trapezoid graphs. Our main tool is a new algorithm
that uses vertex splitting to transform a given trapezoid graph into a permutation graph,
while preserving this new acyclic orientation property. This method of vertex splitting is
of independent interest; very recently, it has been proved a powerful tool also in the design
of efficient recognition algorithms for other classes of graphs [21].

1. Introduction

1.1. Tolerance graphs and related graph classes

A simple undirected graph G = (V,E) on n vertices is a tolerance graph if there
exists a collection I = {Ii | i = 1, 2, . . . , n} of closed intervals on the real line and a set

1998 ACM Subject Classification: F.2.2 Computations on discrete structures, G.2.2 Graph algorithms.
Key words and phrases: Tolerance graphs, bounded tolerance graphs, recognition, vertex splitting, NP-

complete, trapezoid graphs, permutation graphs.

c© G.B. Mertzios, I. Sau, and S. Zaks
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2487

586 G.B. MERTZIOS, I. SAU, AND S. ZAKS

t = {ti | i = 1, 2, . . . , n} of positive numbers, such that for any two vertices vi, vj ∈ V ,
vivj ∈ E if and only if |Ii ∩ Ij | ≥ min{ti, tj}. The pair 〈I, t〉 is called a tolerance repre-
sentation of G. If G has a tolerance representation 〈I, t〉, such that ti ≤ |Ii| for every
i = 1, 2, . . . , n, then G is called a bounded tolerance graph and 〈I, t〉 a bounded tolerance
representation of G.

Tolerance graphs were introduced in [11], in order to generalize some of the well known
applications of interval graphs. The main motivation was in the context of resource alloca-
tion and scheduling problems, in which resources, such as rooms and vehicles, can tolerate
sharing among users [14]. If we replace in the definition of tolerance graphs the operator
min by the operator max, we obtain the class of max-tolerance graphs. Both tolerance and
max-tolerance graphs find in a natural way applications in biology and bioinformatics, as in
the comparison of DNA sequences from different organisms or individuals [17], by making
use of a software tool like BLAST [1]. Tolerance graphs find numerous other applications
in constrained-based temporal reasoning, data transmission through networks to efficiently
scheduling aircraft and crews, as well as contributing to genetic analysis and studies of the
brain [13,14]. This class of graphs has attracted many research efforts [2,4,8,12–15,18,22,24],
as it generalizes in a natural way both interval graphs (when all tolerances are equal) and
permutation graphs (when ti = |Ii| for every i = 1, 2, . . . , n) [11]. For a detailed survey on
tolerance graphs we refer to [14].

A comparability graph is a graph which can be transitively oriented. A co-comparability
graph is a graph whose complement is a comparability graph. A trapezoid (resp. parallelo-
gram and permutation) graph is the intersection graph of trapezoids (resp. parallelograms
and line segments) between two parallel lines L1 and L2 [10]. Such a representation with
trapezoids (resp. parallelograms and line segments) is called a trapezoid (resp. parallelo-
gram and permutation) representation of this graph. A graph is bounded tolerance if and
only if it is a parallelogram graph [2, 19]. Permutation graphs are a strict subset of par-
allelogram graphs [3]. Furthermore, parallelogram graphs are a strict subset of trapezoid
graphs [25], and both are subsets of co-comparability graphs [10,14]. On the contrary, tol-
erance graphs are not even co-comparability graphs [10, 14]. Recently, we have presented
in [22] a natural intersection model for general tolerance graphs, given by parallelepipeds
in the three-dimensional space. This representation generalizes the parallelogram represen-
tation of bounded tolerance graphs, and has been used to improve the time complexity of
minimum coloring, maximum clique, and weighted independent set algorithms on tolerance
graphs [22].

Although tolerance and bounded tolerance graphs have been studied extensively, the
recognition problems for both these classes have been the most fundamental open problems
since their introduction in 1982 [5, 10, 14]. Therefore, all existing algorithms assume that,
along with the input tolerance graph, a tolerance representation of it is given. The only re-
sult about the complexity of recognizing tolerance and bounded tolerance graphs is that they
have a (non-trivial) polynomial sized tolerance representation, hence the problems of recog-
nizing tolerance and bounded tolerance graphs are in the class NP [15]. Recently, a linear
time recognition algorithm for the subclass of bipartite tolerance graphs has been presented
in [5]. Furthermore, the class of trapezoid graphs (which strictly contains parallelogram,
i.e. bounded tolerance, graphs [25]) can be also recognized in polynomial time [20,21,26]. On
the other hand, the recognition of max-tolerance graphs is known to be NP-hard [17]. Un-
fortunately, the structure of max-tolerance graphs differs significantly from that of tolerance

THE RECOGNITION OF TOLERANCE AND BOUNDED TOLERANCE GRAPHS 587

graphs (max-tolerance graphs are not even perfect, as they can contain induced C5’s [17]),
so the technique used in [17] does not carry over to tolerance graphs.

Since very few subclasses of perfect graphs are known to be NP-hard to recognize, it
was believed that the recognition of tolerance graphs was in P. Furthermore, as bounded
tolerance graphs are equivalent to parallelogram graphs [2, 19], which constitute a natural
subclass of trapezoid graphs and have a very similar structure, it was plausible that their
recognition was also in P.

1.2. Our contribution

In this article, we establish the complexity of recognizing tolerance and bounded tol-
erance graphs. Namely, we prove that both problems are surprisingly NP-complete, by
providing a reduction from the monotone-Not-All-Equal-3-SAT (monotone-NAE-3-SAT)
problem. Consider a boolean formula φ in conjunctive normal form with three literals in
every clause (3-CNF), which is monotone, i.e. no variable is negated. The formula φ is
called NAE-satisfiable if there exists a truth assignment of the variables of φ, such that
every clause has at least one true variable and one false variable. Given a monotone 3-
CNF formula φ, we construct a trapezoid graph Hφ, which is parallelogram, i.e. bounded
tolerance, if and only if φ is NAE-satisfiable. Moreover, we prove that the constructed
graph Hφ is tolerance if and only if it is bounded tolerance. Thus, since the recognition
of tolerance and of bounded tolerance graphs are in the class NP [15], it follows that these
problems are both NP-complete. Actually, our results imply that the recognition problems
remain NP-complete even if the given graph is trapezoid, since the constructed graph Hφ

is trapezoid.
For our reduction we extend the notion of an acyclic orientation of permutation and

trapezoid graphs. Our main tool is a new algorithm that transforms a given trapezoid graph
into a permutation graph by splitting some specific vertices, while preserving this new acyclic
orientation property. One of the main advantages of this algorithm is its robustness, in the
sense that the constructed permutation graph does not depend on any particular trapezoid
representation of the input graph G. Moreover, besides its use in the present paper, this
approach based on splitting vertices has been recently proved a powerful tool also in the
design of efficient recognition algorithms for other classes of graphs [21].

Organization of the paper. We first present in Section 2 several properties of
permutation and trapezoid graphs, as well as the algorithm Split-U , which constructs a
permutation graph from a trapezoid graph. In Section 3 we present the reduction of the
monotone-NAE-3-SAT problem to the recognition of bounded tolerance graphs. In Section 4
we prove that this reduction can be extended to the recognition of general tolerance graphs.
Finally, we discuss the presented results and further research directions in Section 5. Some
proofs have been omitted due to space limitations; a full version can be found in [23].

2. Trapezoid graphs and representations

In this section we first introduce (in Section 2.1) the notion of an acyclic representation
of permutation and of trapezoid graphs. This is followed (in Section 2.2) by some structural
properties of trapezoid graphs, which will be used in the sequel for the splitting algorithm
Split-U . Given a trapezoid graph G and a vertex subset U of G with certain properties, this

588 G.B. MERTZIOS, I. SAU, AND S. ZAKS

algorithm constructs a permutation graph G#(U) with 2|U | vertices, which is independent
on any particular trapezoid representation of the input graph G.

Notation. We consider in this article simple undirected and directed graphs with no
loops or multiple edges. In an undirected graph G, the edge between vertices u and v is
denoted by uv, and in this case u and v are said to be adjacent in G. If the graph G is
directed, we denote by uv the arc from u to v. Given a graph G = (V,E) and a subset
S ⊆ V , G[S] denotes the induced subgraph of G on the vertices in S, and we use E[S]
to denote E(G[S]). Whenever we deal with a trapezoid (resp. permutation and bounded
tolerance, i.e. parallelogram) graph, we will consider w.l.o.g. a trapezoid (resp. permuta-
tion and parallelogram) representation, in which all endpoints of the trapezoids (resp. line
segments and parallelograms) are distinct [9, 14, 16]. Given a permutation graph P along
with a permutation representation R, we may not distinguish in the following between a
vertex of P and the corresponding line segment in R, whenever it is clear from the con-
text. Furthermore, with a slight abuse of notation, we will refer to the line segments of a
permutation representation just as lines.

2.1. Acyclic permutation and trapezoid representations

Let P = (V,E) be a permutation graph and R be a permutation representation of P .
For a vertex u ∈ V , denote by θR(u) the angle of the line of u with L2 in R. The class of
permutation graphs is the intersection of comparability and co-comparability graphs [10].
Thus, given a permutation representation R of P , we can define two partial orders (V,<R)
and (V,≪R) on the vertices of P [10]. Namely, for two vertices u and v of G, u <R v if
and only if uv ∈ E and θR(u) < θR(v), while u ≪R v if and only if uv /∈ E and u lies to
the left of v in R. The partial order (V,<R) implies a transitive orientation ΦR of P , such
that uv ∈ ΦR whenever u <R v.

Let G = (V,E) be a trapezoid graph, and R be a trapezoid representation of G, where
for any vertex u ∈ V , the trapezoid corresponding to u in R is denoted by Tu. Since
trapezoid graphs are also co-comparability graphs [10], we can similarly define the partial
order (V,≪R) on the vertices of G, such that u ≪R v if and only if uv /∈ E and Tu lies
completely to the left of Tv in R. In this case, we may denote also Tu ≪R Tv.

In a given trapezoid representation R of a trapezoid graph G, we denote by l(Tu)
and r(Tu) the left and the right line of Tu in R, respectively. Similarly to the case of per-
mutation graphs, we use the relation ≪R for the lines l(Tu) and r(Tu), e.g. l(Tu)≪R r(Tv)
means that the line l(Tu) lies to the left of the line r(Tv) in R. Moreover, if the trapezoids
of all vertices of a subset S ⊆ V lie completely to the left (resp. right) of the trapezoid Tu

in R, we write R(S) ≪R Tu (resp. Tu ≪R R(S)). Note that there are several trapezoid
representations of a particular trapezoid graph G. Given one such representation R, we
can obtain another one R′ by vertical axis flipping of R, i.e. R′ is the mirror image of R
along an imaginary line perpendicular to L1 and L2. Moreover, we can obtain another
representation R′′ of G by horizontal axis flipping of R, i.e. R′′ is the mirror image of R
along an imaginary line parallel to L1 and L2. We will extensively use these two operations
throughout the article.

Definition 2.1. Let P be a permutation graph with 2n vertices {u1
1, u

2
1, u

1
2, u

2
2, . . . , u

1
n, u2

n}.
Let R be a permutation representation and ΦR be the corresponding transitive orientation
of P . The simple directed graph FR is obtained by merging u1

i and u2
i into a single vertex ui,

THE RECOGNITION OF TOLERANCE AND BOUNDED TOLERANCE GRAPHS 589

for every i = 1, 2, . . . , n, where the arc directions of FR are implied by the corresponding
directions in ΦR. Then,

(1) R is an acyclic permutation representation with respect to {u1
i , u

2
i }

n
i=1

∗, if FR has no
directed cycle,

(2) P is an acyclic permutation graph with respect to {u1
i , u

2
i }

n
i=1, if P has an acyclic

representation R with respect to {u1
i , u

2
i }

n
i=1.

Definition 2.2. Let G be a trapezoid graph with n vertices and R be a trapezoid represen-
tation of G. Let P be the permutation graph with 2n vertices corresponding to the left and
right lines of the trapezoids in R, RP be the permutation representation of P induced by R,
and {u1

i , u
2
i } be the vertices of P that correspond to the same vertex ui of G, i = 1, 2, . . . , n.

Then,

(1) R is an acyclic trapezoid representation, if RP is an acyclic permutation represen-
tation with respect to {u1

i , u
2
i }

n
i=1,

(2) G is an acyclic trapezoid graph, if it has an acyclic representation R.

The following lemma follows easily from Definitions 2.1 and 2.2.

Lemma 2.3. Any parallelogram graph is an acyclic trapezoid graph.

2.2. Structural properties of trapezoid graphs

In the following, we state some definitions concerning an arbitrary simple undirected
graph G = (V,E), which are useful for our analysis. Although these definitions apply to
any graph, we will use them only for trapezoid graphs. Similar definitions, for the restricted
case where the graph G is connected, were studied in [6]. For u ∈ V and U ⊆ V , N(u) =
{v ∈ V | uv ∈ E} is the set of adjacent vertices of u in G, N [u] = N(u) ∪ {u}, and
N(U) =

⋃
u∈U N(u) \ U . If N(U) ⊆ N(W) for two vertex subsets U and W , then U is said

to be neighborhood dominated by W . Clearly, the relationship of neighborhood domination
is transitive.

Let C1, C2, . . . , Cω, ω ≥ 1, be the connected components of G \N [u] and Vi = V (Ci),
i = 1, 2, . . . , ω. For simplicity of the presentation, we will identify in the sequel the compo-
nent Ci and its vertex set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω, the neighborhood domination
closure of Vi with respect to u is the set Du(Vi) = {Vp | N(Vp) ⊆ N(Vi), p = 1, 2, . . . , ω} of
connected components of G \N [u]. A component Vi is called a master component of u if
|Du(Vi)| ≥ |Du(Vj)| for all j = 1, 2, . . . , ω. The closure complement of the neighborhood
domination closure Du(Vi) is the set D∗

u(Vi) = {V1, V2, . . . , Vω} \Du(Vi). Finally, for a
subset S ⊆ {V1, V2, . . . , Vω}, a component Vj ∈ S is called maximal if there is no com-
ponent Vk ∈ S such that N(Vj) $ N(Vk).

For example, consider the trapezoid graph G with vertex set {u, u1, u2, u3, v1, v2, v3, v4},
which is given by the trapezoid representation R of Figure 1. The connected compo-
nents of G \N [u] = {v1, v2, v3, v4} are V1 = {v1}, V2 = {v2}, V3 = {v3}, and V4 = {v4}.
Then, N(V1) = {u1}, N(V2) = {u1, u3}, N(V3) = {u2, u3}, and N(V4) = {u3}. Hence,
Du(V1) = {V1}, Du(V2) = {V1, V2, V4}, Du(V3) = {V3, V4}, and Du(V4) = {V4}; thus, V2

is the only master component of u. Furthermore, D∗
u(V1) = {V2, V3, V4}, D∗

u(V2) = {V3},
D∗

u(V3) = {V1, V2}, and D∗
u(V4) = {V1, V2, V3}.

∗To simplify the presentation, we use throughout the paper {u1

i , u2

i }
n
i=1 to denote the set of n unordered

pairs {u1

1, u
2

1}, {u
1

2, u
2

2}, . . . , {u
1

n, u2

n}.

590 G.B. MERTZIOS, I. SAU, AND S. ZAKS

L1

L2

Tv1

Tv2

Tv3
Tv4

Tu

Tu2Tu1

Tu3

R :

Figure 1: A trapezoid representation R of a trapezoid graph G.

Lemma 2.4. Let G be a simple graph, u be a vertex of G, and let V1, V2, . . . , Vω, ω ≥ 1,
be the connected components of G \N [u]. If Vi is a master component of u, such that
D∗

u(Vi) 6= ∅, then D∗
u(Vj) 6= ∅ for every component Vj of G \N [u].

In the following we investigate several properties of trapezoid graphs, in order to derive
the vertex-splitting algorithm Split-U in Section 2.3.

Remark 2.5. Similar properties of trapezoid graphs have been studied in [6], leading to
another vertex-splitting algorithm, called Split-All. However, the algorithm proposed in [6]
is incorrect, since it is based on an incorrect property†, as was also verified by [7]. In the
sequel of this section, we present new definitions and properties. In the cases where a
similarity arises with those of [6], we refer to it specifically.

Lemma 2.6. Let R be a trapezoid representation of a trapezoid graph G, and Vi be a
master component of a vertex u of G, such that R(Vi)≪RTu. Then, Tu≪RR(Vj) for every
component Vj ∈ D∗

u(Vi).

Definition 2.7. Let G be a trapezoid graph, u be a vertex of G, and Vi be an arbitrarily
chosen master component of u. Then, δu = Vi and

(1) if D∗
u(Vi) = ∅, then δ∗u = ∅.

(2) if D∗
u(Vi) 6= ∅, then δ∗u = Vj , for an arbitrarily chosen maximal component Vj ∈

D∗
u(Vi).

Actually, as we will show in Lemma 2.10, the arbitrary choice of the components Vi

and Vj in Definition 2.7 does not affect essentially the structural properties of G that we
will investigate in the sequel. From now on, whenever we speak about δu and δ∗u, we assume
that these arbitrary choices of Vi and Vj have been already made.

Definition 2.8. Let G be a trapezoid graph and u be a vertex of G. The vertices of N(u)
are partitioned into four possibly empty sets:

(1) N0(u): vertices not adjacent to either δu or δ∗u.
(2) N1(u): vertices adjacent to δu but not to δ∗u.
(3) N2(u): vertices adjacent to δ∗u but not to δu.
(4) N12(u): vertices adjacent to both δu and δ∗u.

†In Observation 3.1(5) of [6], it is claimed that for an arbitrary trapezoid representation R of a connected
trapezoid graph G, where Vi is a master component of u such that D∗

u(Vi) 6= ∅ and R(Vi) ≪R Tu, it holds
R(Du(Vi)) ≪R Tu ≪R R(D∗

u(Vi)). However, the first part of the latter inequality is not true. For instance, in
the trapezoid graph G of Figure 1, V2 = {v2} is a master component of u, where D∗

u(V2) = {V3} = {{v3}}6= ∅
and R(V2) ≪R Tu. However, V4 = {v4} ∈ Du(V2) and Tu ≪RTv4

, and thus, R(Du(V2)) 6≪R T
u
.

THE RECOGNITION OF TOLERANCE AND BOUNDED TOLERANCE GRAPHS 591

In the following definition we partition the neighbors of a vertex of a trapezoid graph G
into four possibly empty sets. Note that these sets depend on a given trapezoid representa-
tion R of G, in contrast to the four sets of Definition 2.8 that depend only on the graph G
itself.

Definition 2.9. Let G be a trapezoid graph, R be a representation of G, and u be a vertex
of G. Denote by D1(u,R) and D2(u,R) the sets of trapezoids of R that lie completely to
the left and to the right of Tu in R, respectively. Then, the vertices of N(u) are partitioned
into four possibly empty sets:

(1) N0(u,R): vertices not adjacent to either D1(u,R) or D2(u,R).
(2) N1(u,R): vertices adjacent to D1(u,R) but not to D2(u,R).
(3) N2(u,R): vertices adjacent to D2(u,R) but not to D1(u,R).
(4) N12(u,R): vertices adjacent to both D1(u,R) and D2(u,R).

Suppose now that δ∗u 6= ∅, and let Vi be the master component of u that corresponds
to δu, cf. Definition 2.7. Then, given any trapezoid representation R of G, we may assume
w.l.o.g. that R(Vi)≪RTu, by possibly performing a vertical axis flipping of R. The following
lemma connects Definitions 2.8 and 2.9; in particular, it states that, if R(Vi) ≪R Tu, then
the partitions of the set N(u) defined in these definitions coincide. This lemma will enable
us to use in the vertex splitting (cf. Definition 2.11) the partition of the set N(u) defined
in Definition 2.8, independently of any trapezoid representation R of G, and regardless of
any particular connected components Vi and Vj of G \N [u].

Lemma 2.10. Let G be a trapezoid graph, R be a representation of G, and u be a vertex of G
with δ∗u 6= ∅. Let Vi be the master component of u that corresponds to δu. If R(Vi)≪RTu,
then NX(u) = NX(u,R) for every X ∈ {0, 1, 2, 12}.

2.3. A splitting algorithm

We define now the splitting of a vertex u of a trapezoid graph G, where δ∗u 6= ∅. Note that
this splitting operation does not depend on any trapezoid representation of G. Intuitively,
if the graph G was given along with a specific trapezoid representation R, this would have
meant that we replace the trapezoid Tu in R by its two lines l(Tu) and r(Tu).

Definition 2.11. Let G be a trapezoid graph and u be a vertex of G, where δ∗u 6= ∅. The
graph G#(u) obtained by the vertex splitting of u is defined as follows:

(1) V (G#(u)) = V (G) \ {u} ∪ {u1, u2}, where u1 and u2 are the two new vertices.
(2) E(G#(u)) = E[V (G)\{u}]∪{u1x | x ∈ N1(u)}∪{u2x | x ∈ N2(u)}∪{u1x, u2x | x ∈

N12(u)}.

The vertices u1 and u2 are the derivatives of vertex u.

We state now the notion of a standard trapezoid representation with respect to a
particular vertex.

Definition 2.12. Let G be a trapezoid graph and u be a vertex of G, where δ∗u 6= ∅. A
trapezoid representation R of G is standard with respect to u, if the following properties are
satisfied:

(1) l(Tu)≪R R(N0(u) ∪N2(u)).
(2) R(N0(u) ∪N1(u))≪R r(Tu).

592 G.B. MERTZIOS, I. SAU, AND S. ZAKS

Algorithm 1 Split-U

Input: A trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that δ∗ui
6= ∅

for all i = 1, 2, . . . , k
Output: The permutation graph G#(U)

U ← V (G) \ U ; H0 ← G

for i = 1 to k do

Hi ← H#
i−1(ui) {Hi is obtained by the vertex splitting of ui in Hi−1}

G#(U)← Hk[V (Hk) \ U] {remove from Hk all unsplitted vertices}

return G#(U)

Now, given a trapezoid graph G and a vertex subset U = {u1, u2, . . . , uk}, such that
δ∗ui
6= ∅ for every i = 1, 2, . . . , k, Algorithm Split-U returns a graph G#(U) by splitting

every vertex of U exactly once. At every step, Algorithm Split-U splits a vertex of U , and
finally, it removes all vertices of the set V (G) \ U , which have not been split.

Remark 2.13. As mentioned in Remark 2.5, a similar algorithm, called Split-All, was
presented in [6]. We would like to emphasize here the following four differences between the
two algorithms. First, that Split-All gets as input a sibling-free graph G (two vertices u, v
of a graph G are called siblings, if N [u] = N [v]; G is called sibling-free if G has no pair of
sibling vertices), while our Algorithm Split-U gets as an input any graph (though, we will
use it only for trapezoid graphs), which may contain also pairs of sibling vertices. Second,
Split-All splits all the vertices of the input graph, while Split-U splits only a subset of
them, which satisfy a special property. Third, the order of vertices that are split by Split-
All depends on a certain property (inclusion-minimal neighbor set), while Split-U splits the
vertices in an arbitrary order. Last, the main difference between these two algorithms is
that they perform a different vertex splitting operation at every step, since Definitions 2.7
and 2.8 do not comply with the corresponding Definitions 4.1 and 4.2 of [6].

Theorem 2.14. Let G be a trapezoid graph and U = {u1, u2, . . . , uk} be a vertex subset
of G, such that δ∗ui

6= ∅ for every i = 1, 2, . . . , k. Then, the graph G#(U) obtained by
Algorithm Split-U , is a permutation graph with 2k vertices. Furthermore, if G is acyclic,
then G#(U) is acyclic with respect to {u1

i , u
2
i }

k
i=1, where u1

i and u2
i are the derivatives of ui,

i = 1, 2, . . . , k.

3. The recognition of bounded tolerance graphs

In this section we provide a reduction from the monotone-Not-All-Equal-3-SAT
(monotone-NAE-3-SAT) problem to the problem of recognizing whether a given graph
is a bounded tolerance graph. The problem of deciding whether a given monotone 3-CNF
formula φ is NAE-satisfiable is known to be NP-complete. We can assume w.l.o.g. that
each clause has three distinct literals, i.e. variables. Given a monotone 3-CNF formula φ,
we construct in polynomial time a trapezoid graph Hφ, such that Hφ is a bounded toler-
ance graph if and only if φ is NAE-satisfiable. To this end, we construct first a permutation
graph Pφ and a trapezoid graph Gφ.

THE RECOGNITION OF TOLERANCE AND BOUNDED TOLERANCE GRAPHS 593

3.1. The permutation graph Pφ

Consider a monotone 3-CNF formula φ = α1 ∧ α2 ∧ . . . ∧ αk with k clauses and n
boolean variables x1, x2, . . . , xn, such that αi = (xri,1

∨ xri,2
∨ xri,3

) for i = 1, 2, . . . , k, where
1 ≤ ri,1 < ri,2 < ri,3 ≤ n. We construct the permutation graph Pφ, along with a permuta-
tion representation RP of Pφ, as follows. Let L1 and L2 be two parallel lines and let θ(ℓ)
denote the angle of the line ℓ with L2 in RP . For every clause αi, i = 1, 2, . . . , k, we corre-
spond to each of the literals, i.e. variables, xri,1

, xri,2
, and xri,3

a pair of intersecting lines
with endpoints on L1 and L2. Namely, we correspond to the variable xri,1

the pair {ai, ci},
to xri,2

the pair {ei, bi} and to xri,3
the pair {di, fi}, respectively, such that θ(ai) > θ(ci),

θ(ei) > θ(bi), θ(di) > θ(fi), and such that the lines ai, ci lie completely to the left of ei, bi

in RP , and ei, bi lie completely to the left of di, fi in RP , as it is illustrated in Figure 2.
Denote the lines that correspond to the variable xri,j

, j = 1, 2, 3, by ℓ1
i,j and ℓ2

i,j, respec-

tively, such that θ(ℓ1
i,j) > θ(ℓ2

i,j). That is, (ℓ1
i,1, ℓ

2
i,1) = (ai, ci), (ℓ1

i,2, ℓ
2
i,2) = (ei, bi), and

(ℓ1
i,3, ℓ

2
i,3) = (di, fi). Note that no line of a pair {ℓ1

i,j , ℓ
2
i,j} intersects with a line of another

pair {ℓ1
i′,j′, ℓ

2
i′,j′}.

L1

L2

ℓ1
i,1

= ai
ℓ2
i,1

= ci ℓ1
i,2

= ei ℓ2
i,2

= bi ℓ1
i,3

= di ℓ2
i,3

= fi

xri,1
xri,2

xri,3

θ(ai)

Figure 2: The six lines of the permutation graph Pφ, which correspond to the clause
αi = (xri,1

∨ xri,2
∨ xri,3

) of the boolean formula φ.

Denote by Sp, p = 1, 2, . . . , n, the set of pairs {ℓ1
i,j, ℓ

2
i,j} that correspond to the vari-

able xp, i.e. ri,j = p. We order the pairs {ℓ1
i,j, ℓ

2
i,j} such that any pair of Sp1

lies com-
pletely to the left of any pair of Sp2

, whenever p1 < p2, while the pairs that belong to the
same set Sp are ordered arbitrarily. For two consecutive pairs {ℓ1

i,j, ℓ
2
i,j} and {ℓ1

i′,j′, ℓ
2
i′,j′}

in Sp, where {ℓ1
i,j , ℓ

2
i,j} lies to the left of {ℓ1

i′,j′, ℓ
2
i′,j′}, we add a pair {ui′,j′

i,j , vi′,j′

i,j } of parallel

lines that intersect both ℓ1
i,j and ℓ1

i′,j′ , but no other line. Note that θ(ℓ1
i,j) > θ(ui′,j′

i,j) and

θ(ℓ1
i′,j′) > θ(ui′,j′

i,j), while θ(ui′,j′

i,j) = θ(vi′,j′

i,j). This completes the construction. Denote the
resulting permutation graph by Pφ, and the corresponding permutation representation of Pφ

by RP . Observe that Pφ has n connected components, which are called blocks, one for each
variable x1, x2, . . . , xn.

An example of the construction of Pφ and RP from φ with k = 3 clauses and n = 4

variables is illustrated in Figure 3. In this figure, the lines ui′,j′

i,j and vi′,j′

i,j are drawn in bold.

The formula φ has 3k literals, and thus the permutation graph Pφ has 6k lines ℓ1
i,j, ℓ

2
i,j

in RP , one pair for each literal. Furthermore, two lines ui′,j′

i,j , vi′,j′

i,j correspond to each pair of

consecutive pairs {ℓ1
i,j , ℓ

2
i,j} and {ℓ1

i′,j′, ℓ
2
i′,j′} in RP , except for the case where these pairs of

lines belong to different variables, i.e. when ri,j 6= ri′,j′. Therefore, since φ has n variables,

there are 2(3k − n) = 6k − 2n lines ui′,j′

i,j , vi′,j′

i,j in RP . Thus, RP has in total 12k − 2n lines,
i.e. Pφ has 12k− 2n vertices. In the example of Figure 3, k = 3, n = 4, and thus, Pφ has 28
vertices.

594 G.B. MERTZIOS, I. SAU, AND S. ZAKS

a1 d1 d3a3 a2 d2e3 b3c1 f1c2 b2 f2 f3c3 e2

x1 x2 x3 x4

b1e1

RP :

Figure 3: The permutation representation RP of the permutation graph Pφ for φ = α1 ∧
α2 ∧ α3 = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4).

Let m = 6k − n, where 2m is the number of vertices in Pφ. We group the lines of RP ,
i.e. the vertices of Pφ, into pairs {u1

i , u
2
i }

m
i=1, as follows. For every clause αi, i = 1, 2, . . . , k,

we group the lines ai, bi, ci, di, ei, fi into the three pairs {ai, bi}, {ci, di}, and {ei, fi}. The
remaining lines are grouped naturally according to the construction; namely, every two lines

{ui′,j′

i,j , vi′,j′

i,j } constitute a pair.

Lemma 3.1. If the permutation graph Pφ is acyclic with respect to {u1
i , u

2
i }

m
i=1 then the

formula φ is NAE-satisfiable.

The truth assignment (x1, x2, x3, x4) = (1, 1, 0, 0) is NAE-satisfying for the formula φ
of Figure 3. The acyclic permutation representation R0 of Pφ with respect to {u1

i , u
2
i }

m
i=1,

which corresponds to this assignment, can be obtained from RP by performing a horizontal
axis flipping of the two blocks that correspond to the variables x3 and x4, respectively.

3.2. The trapezoid graphs Gφ and Hφ

Let {u1
i , u

2
i }

m
i=1 be the pairs of vertices in the permutation graph Pφ and RP be its

permutation representation. We construct now from Pφ the trapezoid graph Gφ with m
vertices {u1, u2, . . . , um}, as follows. We replace in the permutation representation RP for
every i = 1, 2, . . . ,m the lines u1

i and u2
i by the trapezoid Tui

, which has u1
i and u2

i as its
left and right lines, respectively. Let RG be the resulting trapezoid representation of Gφ.

Finally, we construct from Gφ the trapezoid graph Hφ with 7m vertices, by adding to
every trapezoid Tui

, i = 1, 2, . . . ,m, six parallelograms Tui,1
, Tui,2

, . . . , Tui,6
in the trapezoid

representation RG, as follows. Let ε be the smallest distance in RG between two different
endpoints on L1, or on L2. The right (resp. left) line of Tu1,1

lies to the right (resp. left)

of u1
1, and it is parallel to it at distance ε

2
. The right (resp. left) line of Tu1,2

lies to the

left of u1
1, and it is parallel to it at distance ε

4
(resp. 3ε

4
). Moreover, the right (resp. left)

line of Tu1,3
lies to the left of u1

1, and it is parallel to it at distance 3ε
8

(resp. 7ε
8

). Similarly,

the left (resp. right) line of Tu1,4
lies to the left (resp. right) of u2

1, and it is parallel to it

at distance ε
2
. The left (resp. right) line of Tu1,5

lies to the right of u2
1, and it is parallel to

it at distance ε
4

(resp. 3ε
4

). Finally, the right (resp. left) line of Tu1,6
lies to the right of u2

1,

and it is parallel to it at distance 3ε
8

(resp. 7ε
8

), as illustrated in Figure 4.
After adding the parallelograms Tu1,1

, Tu1,2
, . . . , Tu1,6

to a trapezoid Tu1
, we update the

smallest distance ε between two different endpoints on L1, or on L2 in the resulting repre-
sentation, and we continue the construction iteratively for all i = 2, . . . ,m. Denote by Hφ

the resulting trapezoid graph with 7m vertices, and by RH the corresponding trapezoid
representation. Note that in RH , between the endpoints of the parallelograms Tui,1

, Tui,2
,

THE RECOGNITION OF TOLERANCE AND BOUNDED TOLERANCE GRAPHS 595

L1

L2

u2

i
u1

i

Tui

Tui,2
Tui,1

Tui,3
Tui,4 Tui,5

Tui,6

Figure 4: The addition of the six parallelograms Tui,1
, Tui,2

, . . . , Tui,6
to the trapezoid Tui

,
i = 1, 2, . . . ,m, in the construction of the trapezoid graph Hφ from Gφ.

and Tui,3
(resp. Tui,4

, Tui,5
, and Tui,6

) on L1 and L2, there are no other endpoints of Hφ, ex-

cept those of u1
i (resp. u2

i), for every i = 1, 2, . . . ,m. Furthermore, note that RH is standard
with respect to ui, for every i = 1, 2, . . . ,m.

Theorem 3.2. The formula φ is NAE-satisfiable if and only if the trapezoid graph Hφ is a
bounded tolerance graph.

For the sufficiency part of the proof of Theorem 3.2, the algorithm Split-All plays a
crucial role. Namely, given the parallelogram graph Hφ (which is acyclic trapezoid by
Lemma 2.3), we construct with this algorithm the acyclic permutation graph Pφ and then a
NAE-satisfying assignment of the formula φ. Since monotone-NAE-3-SAT is NP-complete,
the problem of recognizing bounded tolerance graphs is NP-hard by Theorem 3.2. Moreover,
since this problem lies in NP [15], we summarize our results as follows.

Theorem 3.3. Given a graph G, it is NP-complete to decide whether it is a bounded
tolerance graph.

4. The recognition of tolerance graphs

In this section we show that the reduction from the monotone-NAE-3-SAT problem
to the problem of recognizing bounded tolerance graphs presented in Section 3, can be
extended to the problem of recognizing general tolerance graphs. In particular, we prove
that the constructed trapezoid graph Hφ is a tolerance graph if and only if it is a bounded
tolerance graph. Then, the main result of this section follows.

Theorem 4.1. Given a graph G, it is NP-complete to decide whether it is a tolerance
graph. The problem remains NP-complete even if the given graph G is known to be a
trapezoid graph.

5. Concluding remarks

In this article we proved that both tolerance and bounded tolerance graph recognition
problems are NP-complete, by providing a reduction from the monotone-NAE-3-SAT prob-
lem, thus answering a longstanding open question. The recognition of unit and of proper
tolerance graphs, as well as of any other subclass of tolerance graphs, except bounded
tolerance and bipartite tolerance graphs [5], remain interesting open problems [14].

596 G.B. MERTZIOS, I. SAU, AND S. ZAKS

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool.
Journal of molecular biology, 215(3):403–410, 1990.

[2] K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete
Applied Mathematics, 60(1-3):99–117, 1995.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. SIAM Monographs on Discrete
Mathematics and Applications, 1999.

[4] A. H. Busch. A characterization of triangle-free tolerance graphs. Discrete Applied Mathematics,
154(3):471–477, 2006.

[5] A. H. Busch and G. Isaak. Recognizing bipartite tolerance graphs in linear time. In Proceedings of the
33rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 12–20,
2007.

[6] F. Cheah and D. G. Corneil. On the structure of trapezoid graphs. Discrete Applied Mathematics,
66(2):109–133, 1996.

[7] F. Cheah and D. G. Corneil, 2009. Personal communication.
[8] S. Felsner. Tolerance graphs and orders. Journal of Graph Theory, 28:129–140, 1998.
[9] P. C. Fishburn and W. Trotter. Split semiorders. Discrete Mathematics, 195:111–126, 1999.

[10] M. C. Golumbic. Algorithmic graph theory and perfect graphs (Annals of Discrete Mathematics, Vol.
57). North-Holland Publishing Co., 2nd edition, 2004.

[11] M. C. Golumbic and C. L. Monma. A generalization of interval graphs with tolerances. In Proceedings
of the 13th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus
Numerantium 35, pages 321–331, 1982.

[12] M. C. Golumbic, C. L. Monma, and W. T. Trotter. Tolerance graphs. Discrete Applied Mathematics,
9(2):157–170, 1984.

[13] M. C. Golumbic and A. Siani. Coloring algorithms for tolerance graphs: reasoning and scheduling with
interval constraints. In Proceedings of the Joint International Conferences on Artificial Intelligence,
Automated Reasoning, and Symbolic Computation (AISC/Calculemus), pages 196–207, 2002.

[14] M. C. Golumbic and A. N. Trenk. Tolerance graphs. Cambridge Studies in Advanced Mathematics,
2004.

[15] R. B. Hayward and R. Shamir. A note on tolerance graph recognition. Discrete Applied Mathematics,
143(1-3):307–311, 2004.

[16] G. Isaak, K. L. Nyman, and A. N. Trenk. A hierarchy of classes of bounded bitolerance orders. Ars
Combinatoria, 69, 2003.

[17] M. Kaufmann, J. Kratochv́ıl, K. A. Lehmann, and A. R. Subramanian. Max-tolerance graphs as intersec-
tion graphs: cliques, cycles, and recognition. In Proceedings of the 17th annual ACM-SIAM symposium
on Discrete Algorithms (SODA), pages 832–841, 2006.

[18] J. M. Keil and P. Belleville. Dominating the complements of bounded tolerance graphs and the com-
plements of trapezoid graphs. Discrete Applied Mathematics, 140(1-3):73–89, 2004.

[19] L. Langley. Interval tolerance orders and dimension. PhD thesis, Dartmouth College, 1993.
[20] T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of Algorithms,

17(2):251–268, 1994.
[21] G. B. Mertzios and D. G. Corneil. Vertex splitting and the recognition of trapezoid graphs. Technical

Report AIB-2009-16, Department of Computer Science, RWTH Aachen University, September 2009.
[22] G. B. Mertzios, I. Sau, and S. Zaks. A new intersection model and improved algorithms for tolerance

graphs. SIAM Journal on Discrete Mathematics, 23(4):1800–1813, 2009.
[23] G. B. Mertzios, I. Sau, and S. Zaks. The recognition of tolerance and bounded tolerance graphs is NP-

complete. Technical Report AIB-2009-06, Department of Computer Science, RWTH Aachen University,
April 2009.

[24] G. Narasimhan and R. Manber. Stability and chromatic number of tolerance graphs. Discrete Applied
Mathematics, 36:47–56, 1992.

[25] S. P. Ryan. Trapezoid order classification. Order, 15:341–354, 1998.
[26] J. P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs. American

Mathematical Society, 2003.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

