
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 669-680
www.stacs-conf.org

ALTERNATION-TRADING PROOFS, LINEAR PROGRAMMING, AND

LOWER BOUNDS

(EXTENDED ABSTRACT)

RYAN WILLIAMS 1

1 IBM Almaden Research Center
650 Harry Road, San Jose, CA, USA 95120

E-mail address: ryanwill@us.ibm.com

URL: http://www.cs.cmu.edu/ ryanw/

Abstract. A fertile area of recent research has demonstrated concrete polynomial time
lower bounds for solving natural hard problems on restricted computational models. Among
these problems are Satisfiability, Vertex Cover, Hamilton Path, MOD6-SAT, Majority-of-
Majority-SAT, and Tautologies, to name a few. The proofs of these lower bounds follow
a certain proof-by-contradiction strategy that we call alternation-trading. An important
open problem is to determine how powerful such proofs can possibly be.

We propose a methodology for studying these proofs that makes them amenable to both
formal analysis and automated theorem proving. We prove that the search for better lower
bounds can often be turned into a problem of solving a large series of linear programming
instances. Implementing a small-scale theorem prover based on this result, we extract new
human-readable time lower bounds for several problems. This framework can also be used
to prove concrete limitations on the current techniques.

1. Introduction

Many known lower bounds for natural problems follow a type of algorithmic argument
that we call a resource-trading proof. Such a proof assumes that a hard problem can be
solved by a “good” algorithm, and tries to derive a contradiction by combining two essential
components. One is a speedup lemma, which simulates all good algorithms super-efficiently
on some “interesting” computational model, trading time for some resource. The second
component is a slowdown lemma, which uses the assumed good algorithm for the hard
problem to simulate computations from the “interesting” model by good algorithms, thereby
trading the “interesting” resource for more time. Clever combinations of speedup and
slowdown lemmas are used to contradict a known result, in particular some complexity

1998 ACM Subject Classification: F.2.3, I.2.3.
Key words and phrases: time-space tradeoffs, lower bounds, alternation, linear programming.
This material is based on work supported in part by NSF grant CCR-0122581 while the author was a

student at Carnegie Mellon University, and NSF grant CCF-0832797 while the author was a member of the
Institute for Advanced Study.

c© R. R. Williams
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010 
Editors: Jean-Yves Marion, Thomas Schwentick 
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany 
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2494



670 R. R. WILLIAMS

hierarchy theorem. That is, by assuming a “good” algorithm for a hard problem, we derive
something like TIME[n2] ⊆ TIME[n], a contradiction.

As an example, one can prove a time-space tradeoff for satisfiability (SAT) as follows.
Assume SAT has an algorithm running in nc time and poly(log n) space, for some c > 1.
One speedup lemma is that computations running in na time and poly(log n) space can
be simulated by an alternating machine that switches from co-nondeterministic mode to
nondeterministic mode once (i.e., a Π2 machine), and runs in na/2+o(1) time. This speedup
lemma trades time for alternations. The relevant slowdown lemma is: if SAT has an nc

time, poly(log n) space algorithm, then (by a strengthening of the Cook-Levin theorem)

every language in NTIME[t] has tc+o(1) time, poly(log t) space algorithms. Consequently,

an alternating machine running in t time and making k − 1 alternations has tc
k+o(1) time,

poly(log t) space algorithms. Combining these speedup and slowdown lemmas, we derive

Σ2TIME[t] ⊆ DTISP[tc
2+o(1),poly(log t)] ⊆ Π2TIME[tc

2/2],

where the first inclusion holds by slowdown and the second holds by speedup. Now observe

that the alternating time hierarchy is contradicted when c2 < 2. This proof is the n
√

2−ε

time lower bound of Lipton and Viglas [LV99].

Some of the best known separations in complexity theory use resource-trading proofs.
Hopcroft, Paul, and Valiant [HPV77] showed that SPACE[n] * DTIME[o(n log n)] for mul-
titape Turing machines, by proving the “speedup lemma” that DTIME[t] ⊆ SPACE[t/ log t]
and invoking diagonalization. Their result was later extended to general models [PR81,
HLMW86]. Paul, Pippenger, Szemeredi, and Trotter [PPST83] proved that NTIME[n] 6=
DTIME[n] for multitape Turing machines. The key component in the proof is the “speedup
lemma” DTIME[t] ⊆ Σ4TIME[t/ log∗ t] for multitape TMs. Despite their age, the above sep-
arations still constitute the best known progress on P vs PSPACE and P vs NP, respectively.

In more recent years, resource-trading proofs have established time-space lower bounds
for NP-complete problems and problems higher in the polynomial hierarchy [Kan84, For97,
LV99, FvM00, FLvMV05, Wil06, Wil08]. For instance, the best known time lower bound for

solving SAT with no(1)-space algorithms is n2 cos(π/7)−o(1) ≥ n1.801, obtained with a resource-
trading proof [Wil08]. (Note if one could improve the 1.801 exponent to arbitrary constants,

one would separate LOGSPACE from NP.) For nondeterministic algorithms using no(1) space,
the best known time lower bound for solving the coNP-complete Tautology problem

was n
√

2−o(1) for several years [FvM00]. Certain time-space lower bounds for probabilistic
and quantum computations also follow the resource-trading paradigm [AKRRV01, DvM06,
Vio09, vMW07]. Resource-trading proofs are also abound in the multidimensional “hybrid”

Turing machine model, which has read-only random access to its input and an no(1) read-
write store, as well as read-write two-way access to a d-dimensional tape for some d ≥ 1.
This is the most powerful (and physically realistic) model known where we still know non-
trivial time lower bounds for problems such as SAT. Multidimensional TMs have a long
history; e.g., [Lou80, PR81, Kan83, MS87, vMR05, Wil06] proved lower bounds for them.
(For a more complete literature review, please see the full version of the paper.)

1.1. Main Results

We introduce a methodology for reasoning about resource-trading proofs that is also
practically implementable for finding short proofs. Informally, the “hard work” in these



ALTERNATION-TRADING PROOFS, LINEAR PROGRAMMING, AND LOWER BOUNDS 671

proofs can be replaced by solving a series of linear programming problems. This perspective
not only aids us practically in the search for new lower bounds, but also allows us to show
non-trivial limitations on what can be proved.

This methodology is applied to several lower bound problems. In all cases considered
here, the resource being “traded” is alternations, so we call the proofs alternation-trading.

Deterministic Time-Space Lower Bounds. Aided by results of a computer program, we show
that any SAT algorithm running in t(n) time and s(n) space satisfies t·s ≥ Ω(n2 cos(π/7)−o(1)).
Previously, the best known result was t · s ≥ Ω(n1.573) [FLvMV05]. It has been conjectured

that the current framework sufficed to prove a n2−o(1) time lower bound for SAT, against
algorithms using no(1) space. We prove that it is not possible to obtain n2 with the frame-
work, formalizing a conjecture of [FLvMV05].∗ A computer search over proofs of short
length suggests that the best known n2 cos(π/7)−o(1) lower bound [Wil08] is already optimal
for the framework. We also prove lower bounds on QBFk (quantified Boolean formulas with

at most k quantifier blocks), showing that the problem requires Ω(nk+1−δk) time for no(1)

space algorithms, where δk < 0.2 and limk→∞ δk = 0.†

Nondeterministic Time-Space Lower Bounds. Adapting our ideas to proving lower bounds
for Tautologies, a computer program found a very short proof improving upon Fortnow
and Van Melkebeek’s lower bound. Longer proofs suggested an interesting pattern. Joint

work with Diehl and Van Melkebeek on this observation resulted in an n41/3−o(1) ≥ n1.587

time lower bound [DvMW09]. Computer search suggests that this lower bound is best
possible for the framework. We prove that it is not possible to obtain an nφ time lower
bound, where φ = 1.618 . . . is the golden ratio. This is surprising since we have known for
some time that an nφ lower bound is provable for deterministic algorithms [FvM00].

Multidimensional Turing Machine Lower Bounds. Here our method uncovers peculiar be-
havior in the best lower bound proofs, regardless of the dimension. Studying computer
search results, we extract an Ω(nrd) time lower bound for the d-dimensional case, where
rd ≥ 1 is the root of a particular quintic pd(x) with coefficients depending on d. For ex-
ample, r1 ≈ 1.3009, r2 ≈ 1.1887, and r3 ≈ 1.1372. Again, our search suggests this is best
possible, and we can prove it is not possible to improve the bound for d-dimensional TMs
to n1+1/(d+1) with the current tools.

These limitations also hold for other NP and coNP-hard problems; the only property
required is that all languages in NTIME[n] (respectively, coNTIME[n]) have sufficiently ef-
ficient reductions to the problem. Also our linear programming approach is not limited to
the above, and can be applied to the league of lower bounds discussed in Van Melkebeek’s
surveys [vM04, vM07].

1.2. Some Remarks on the Reduction to Linear Programming

The key to our formulation is to separate the discrete choices in an alternation-trading
proof from the real-valued choices. The discrete choices consist of the sequence of lemmas
to apply in each step, and what sort of hierarchy theorem to use in the contradiction. We
present several simplifications that greatly reduce the number of discrete choices, without
loss of generality. The real-valued choices are the running time exponents that arise from

∗That is, we formalize the statement: “...some complexity theorists feel that improving the golden ratio
exponent beyond 2 would require a breakthrough” in Section 8 of [FLvMV05].

†Note the QBFk results appeared in the author’s PhD thesis in 2007 but have been unpublished to date.



672 R. R. WILLIAMS

the choices of time bounds and rule applications. We prove that once the discrete choices
are made, the remaining real-valued problem can be expressed as an instance of linear
programming. This makes it possible to search for new proofs via computer, and it also
gives us a formal handle on the limitations of these proofs.

One cannot easily search over all possible proofs, as the number of discrete choices is still
about 2n/n3/2 for proofs of n lines (proportional to the nth Catalan number). Nevertheless
it is still feasible to try all 24+ line proofs. These proof searches reveal patterns, indicating
that certain strategies will be most successful in proving lower bounds; in each case we
study, the resulting strategies differ. Following the strategies, we establish new lower bound
proofs. The patterns also suggest how to show limitations on the proof systems.

Note: Due to space limitations, we can only describe how our methods apply to SAT time-

space lower bounds. Please see the full version of the paper for proofs and more details.

2. Preliminaries

We assume familiarity with Complexity Theory, especially the notion of alternationWe
use big-Ω notation in the infinitely often sense, so statements like “SAT is not in O(nc) time”
are equivalent to “SAT requires Ω(nc) time.” All functions are assumed constructible within
the appropriate bounds. Our default computational model is the random access machine,
broadly construed: particular variants do not affect the results. DTISP[t(n), s(n)] is the
class of languages accepted by a RAM running in t(n) time and s(n) space, simultaneously.

For convenience, we set DTS[t(n)] := DTISP[t(n)1+o(1), no(1)] to omit negligible o(1) factors.

In order to properly formalize alternation-trading proofs, we introduce notation for alter-
nating complexity classes that include input constraints between alternations. Let us start
with an example of the notation, then give a general definition. Define (∃ f(n))bDTS[na] to
be the class of languages recognized by a machine which, on an input x of length n, writes
a f(n)1+o(1) bit string y nondeterministically, copies at most nb+o(1) bits z from the pair

〈x, y〉 (in O(nb+o(1)) time), then feeds z as input to a machine M running in na+o(1) time
and no(1) space. Note the runtime of M is measured with respect to the initial input length
n, not the latter input length nb+o(1) of z.

We generalize this definition as follows. Let C be a complexity class. For i = 1, . . . , k, let
Qi ∈ {∃,∀} and ai, bi ≥ 0. Define

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1C
to be the class of languages recognized by a machine M that, on input x of length n, has
the following general behavior on input x:

Set z0 := x.
For i = 1, . . . , k,

If Qi = ∃, switch to existential mode.
If Qi = ∀, switch to universal mode.

Guess an nai+o(1) bit string y (universally or existentially).

Copy at most nbi+1+o(1) bits zi from the pair 〈zi−1, y〉.
End for
Run a machine recognizing a language in class C on the input zk.



ALTERNATION-TRADING PROOFS, LINEAR PROGRAMMING, AND LOWER BOUNDS 673

When an input constraint bi is unspecified, its default value is max{ai, 1}. We say that
the existential and universal modes of an alternating computation are quantifier blocks, to
reflect the complexity class notation. It is crucial to observe that the time bound in the ith
quantifier block is measured with respect to n, the input to the first quantifier block.

Notice that by simple properties of nondeterminism and conondeterminism, we can com-
bine adjacent quantifier blocks that are of the same type, e.g., (∃na)a(∃nb)bDTS[nc] =

(∃nmax{a,b})bDTS[nc]. This useful property is exploited in alternation-trading proofs.

2.1. A Short Introduction to Alternation-Trading Proofs

Here we give a brief overview of the tools used in alternation-trading proofs. In this ex-
tended abstract we focus on deterministic time lower bounds for satisfiability for algorithms
using no(1) workspace; the other lower bound problems use similar tools.

It is known that satisfiability of Boolean formulas in conjunctive normal form (SAT) is
a complete problem under tight reductions for a small nondeterministic complexity class.
The class NQL, called nondeterministic quasilinear time, is defined as

NQL :=
⋃

c≥0

NTIME[n · (log n)c] = NTIME[n · poly(log n)].

Theorem 2.1 ([Coo88, Sch78, Tou01, FLvMV05]). SAT is NQL-complete under quasilin-

ear time O(log n) space reductions, for both multitape and random access machine models.

Moreover, each bit of the reduction can be computed in O(poly(log n)) time and O(log n)
space in both machine models.‡

Let C[t(n)] represent a time t(n) complexity class under one of the three models:

• deterministic RAM using time t and to(1) space,
• co-nondeterministic RAM using time t and to(1) space,
• d-dimensional Turing machine using time t.

Theorem 2.1 implies that if NTIME[n] * C[t], then SAT /∈ C[t/poly(log t)].

Corollary 2.2. If NTIME[n] * C[t(n)], then SAT /∈ C[t(n)/ logk t(n)] for some k > 0.

Hence we wish to prove NTIME[n] * C[nc] for large c > 1. To prove time-space lower

bounds, we work with C[nc] = DTS[nc] = DTISP[nc, no(1)]. Van Melkebeek and Raz [vMR05]
observed that a similar corollary holds for any problem Π such that SAT reduces to Π under
highly efficient reductions, e.g. Vertex Cover, Hamilton Path, 3-SAT, and Max-2-

Sat. Therefore similar time lower bounds hold for these problems as well.

Speedups, Slowdowns, and Contradictions. Now that our goal is to prove NTIME[n] *
DTS[nc], how can we do this? In an alternation-trading proof, we attempt to establish a
contradiction from assuming NTIME[n] ⊆ DTS[nc], by applying two lemmas which comple-
ment one another. A speedup lemma takes a DTS[t] class and places it in an alternating
class with runtime o(t). A slowdown lemma takes an alternating class with runtime t and
places it in a class with one less alternation and runtime O(tc). The Speedup Lemma dates
back to Nepomnjascii [Nep70] and Kannan [Kan84].

‡In the multitape Turing machine model we assume that the tape heads are already oriented on the
appropriate cells, otherwise it may take linear time to find the appropriate cells on a tape.



674 R. R. WILLIAMS

Lemma 2.3 (Speedup Lemma). Let a ≥ 1, e ≥ 0 and 0 ≤ x ≤ a. Then

DTISP[na, ne] ⊆ (Q1 nx+e)max{1,x+e}(Q2 log n)max{1,e}DTISP[na−x, ne],

for Qi ∈ {∃,∀} where Q1 6= Q2. In particular,

DTS[na] ⊆ (Q1 nx)max{1,x}(Q2 log n)1DTS[na−x].

Proof. Let M use na time and ne space. Let y be an input of length n. A complete
description (i.e. configuration) of M(y) at any step can be described in O(ne +log n) space.

To simulate M in (∃ nx+e)max{1,x+e}(∀ log n)max{1,e}DTISP[na−x, ne], the algorithm N(y)
existentially guesses a sequence of configurations C1, . . . , Cnx of M(x). Then N(y) appends
the initial configuration C0 of M(y) to the beginning of the sequence, and an accepting
configuration Cnx+1 to the end. N(y) universally guesses a i ∈ {0, . . . , nx}, erases all
configurations except Ci and Ci+1, then simulates M(y) starting from Ci, accepting if and
only if Ci+1 is reached within na−x steps. It is easy to see the simulation is correct. The
input constraints on the quantifier blocks are satisfied since after the universal guess, the
input is only y, Ci, and Ci+1, which is of size n + 2ne+o(1) ≤ nmax{1,e}+o(1).

Observe in the above alternating simulation, the input to the final DTISP computation
is linear in n + ne, regardless of the choice of x. This is a subtle property that is exploited
heavily in alternation-trading proofs. The Slowdown Lemma is the following simple result:

Lemma 2.4 (Slowdown Lemma). Let a ≥ 1, e ≥ 0, a′ ≥ 0, and b ≥ 1. If NTIME[n] ⊆
DTISP[nc, ne], then for both Q ∈ {∃,∀},

(Q na′
)bDTIME[na] ⊆ DTISP[nc·max{a,a′,b}, ne·max{a,a′,b}].

In particular, if NTIME[n] ⊆ DTS[nc], then

(Q na′
)bDTIME[na] ⊆ DTS[nc·max{a,a′,b}].

Proof. Let L be a problem in (Q na′
)bDTIME[na], and let A be an algorithm recognizing

L. On an input x of length n, A guesses a string y of length na′+o(1) and feeds an nb+o(1)

bit string z to A′(z), where A′ is a deterministic algorithm that runs in na time. Since
NTIME[n] ⊆ DTISP[nc, ne] and DTISP is closed under complement, by padding we have
NTIME[p(n)] ∪ coNTIME[p(n)] ⊆ DTISP[p(n)c, p(n)e] for polynomials p(n) ≥ n. Therefore

A can be simulated with a deterministic algorithm B. Since the runtime of A is na′+o(1) +
nb+o(1) + na, the runtime of B is nc·max{a,a′,b}+o(1) and the space usage is similar.

The final component of an alternation-trading proof is a time hierarchy theorem, the most
general of which is the following, provable by a simple diagonalization.

Theorem 2.5 (Alternating Time Hierarchy). For k ≥ 0, for all Qi ∈ {∃,∀}, 1 ≤ a′i < ai,

and 1 ≤ b′i ≤ bi,

(Q1 na1)b2 · · ·bk (Qk nak)bk+1DTS[nak+1] * (R1 na′
1)b

′
2 · · ·b′k (Rk na′

k)b
′
k+1DTS[na′

k+1],

where Ri ∈ {∃,∀} and Ri 6= Qi for all i = 2, . . . , k + 1.

Two Examples. Let us give a couple of examples of alternation-trading proofs. To simplify
the presentation we do not specify the input constraints to quantifiers in the below.



ALTERNATION-TRADING PROOFS, LINEAR PROGRAMMING, AND LOWER BOUNDS 675

(1) In FOCS’99, Lipton and Viglas proved that SAT cannot be solved by algorithms

running in n
√

2−ε time and no(1) space, for all ε > 0. By Theorem 2.1, if SAT is in n
√

2−ε

time and no(1) space then NTIME[n] ⊆ DTS[nc] with c2 < 2. We have

(∃ n2/c2)(∀ n2/c2)DTS[n2/c2 ] ⊆ (∃ n2/c2)DTS[n2/c] (Slowdown Lemma)
⊆ DTS[n2] (Slowdown Lemma)
⊆ (∀ n)(∃ log n)DTS[n]. (Speedup Lemma, with x = 1)

But (∃ n2/c2)(∀ n2/c2)DTS[n2/c2] ⊆ (∀ n)(∃ log n)DTS[n] contradicts Theorem 2.5. In
fact, one can show that if c2 = 2, we still have a contradiction with NTIME[n] ⊆ DTS[nc],
so the ε can be removed from the previous statement and state that SAT cannot be solved

in n
√

2 time and no(1) exactly.§

(2) Improving on the previous example, one can show SAT /∈ DTS[n1.6004]. If NTIME[n] ⊆
DTS[nc] and

√
2 ≤ c < 2, then applying the Speedup and Slowdown Lemmas one can derive:

DTS[nc2/2+2] ⊆ (∃ nc2/2)(∀ log n)DTS[n2] (Speedup)

⊆ (∃ nc2/2)(∀ log n)(∀ n)(∃ log n)DTS[n] (Speedup)

= (∃ nc2/2)(∀ n)(∃ log n)DTS[n] (Combining ∀ Quantifiers)

⊆ (∃ nc2/2)(∀ n)DTS[nc] (Slowdown)

⊆ (∃ nc2/2)DTS[nc2 ] (Slowdown)

⊆ (∃ nc2/2)(∃ nc2/2)(∀ log n)DTS[nc2/2] (Speedup)

= (∃ nc2/2)(∀ log n)DTS[nc2/2] (Combining ∃ Quantifiers)

⊆ (∃ nc2/2)DTS[nc3/2] (Slowdown)

⊆ DTS[nc4/2] (Slowdown)

When c2/2 + 2 > c4/2 (which happens if c < 1.6004), we have DTS[na] ⊆ DTS[na′
] for

some a > a′. One can show by a translation argument (similar to the footnote) that either

DTS[na] * DTS[na′
] or NTIME[n] * DTS[nc], concluding the proof.

Example (2) was discovered by a computer program. By “discovered”, we mean that the
program applied speedups and slowdowns in precisely the same way, having only minimum
knowledge of the lemmas. Furthermore, the program verified that above is the best possible

alternation-trading proof that applies the Speedup and Slowdown Lemmas at most 7 times.
A more formal definition of “alternation-trading proof” is given in the next section.

3. Formalizing Alternation-Trading Proofs

We formalize alternation-trading proofs of lower bounds on DTS classes as follows:¶

Definition 3.1. Let c > 1. An alternation-trading proof for c is a list of complexity classes
of the form:

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1 ], (3.1)

§Suppose NTIME[n] ⊆ DTS[nc] and Σ2TIME[n] ⊆ Π2TIME[n1+o(1)]. The first assumption, along with the
Speedup and Slowdown Lemmas, implies that for every k there’s a K satisfying Σ2TIME[nk] ⊆ NTIME[nkc] ⊆

ΣKTIME[n]. But the second assumption implies that ΣKTIME[n] = Σ2TIME[n1+o(1)]. Hence Σ2TIME[nk] ⊆

Σ2TIME[n1+o(1)], which contradicts the time hierarchy for Σ2TIME.
¶This formalization has implicitly appeared in several prior works, but not to the degree that we investigate

in this paper.



676 R. R. WILLIAMS

where k ≥ 0, Qi ∈ {∃,∀}, Qi 6= Qi+1, ai > 0, and bi ≥ 1, for all i. (When k = 0, the class
is deterministic.) The items of the list are called lines of the proof. Each line is obtained
from the previous line by applying either a speedup rule or a slowdown rule. More precisely,
if the ith line is

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1 ],

then the (i + 1)st line has one of four possible forms:

Speedup Rule 0: For k = 0 and any x ∈ (0, a1), (Q0 nx)max{x,1}(Q1 n0)1DTS[na1−x].‖

Speedup Rule 1: For k > 0 and any x ∈ (0, ak+1),

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{x,bk+1}(Qk+1 n0)bk+1DTS[nak+1−x].

Speedup Rule 2: For k > 0 and any x ∈ (0, ak+1),

(Q1 na1)b2 · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n0)bk+1DTS[nak+1−x].

Slowdown Rule: For k > 0,

(Q1 na1)b2(Q2 na2) · · ·bk−1 (Qk−1 nak−1)bkDTS[nc·max{ak+1,ak,bk,bk+1}].

An alternation-trading proof shows (NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2) if its first line is
A1 and its last line is A2.

The above definition comes directly from the Speedup Lemma (Lemma 2.3) and Slowdown
Lemma (Lemma 2.4). The rules are easily verified to be syntactic formulations of the
corresponding lemmas. For instance, Speedup Rule 1 holds, as

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1DTS[nak+1]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk nx)max{bk+1,x}(Qk+1 n0)bk+1DTS[nak+1]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak ,x})max{bk+1,x}(Qk+1 n0)bk+1DTS[nak+1 ].

Rule 2 is akin to Rule 1, except that it uses opposite quantifiers in its invocation of the
Speedup Lemma. The Slowdown Rule works analogously to Lemma 2.4. It follows that
alternation-trading proofs are sound.

Note Speedup Rules 0 and 2 add two quantifier blocks, Speedup Rule 1 adds one quantifier,
and all three rules introduce a parameter x. By considering “normal form” proofs (defined in
the following paragraphs), we can prove that Rule 2 can always be replaced by applications
of Rule 1. (A proof is in the full version of the paper.) For this reason we just refer to the

Speedup Rule, depending on which of Rule 0 or Rule 1 applies.

Define a class of the form (3.1) to be simple. Define classes A1 and A2 to be complementary

if A1 is the class of complements of languages in A2. Every known (model-independent)
time-space lower bound for SAT shows “NTIME[n] ⊆ DTS[nc] implies A1 ⊆ A2”, for some
complementary simple classes A1 and A2, contradicting a time hierarchy (cf. Theorem 2.5).
A similar claim holds for nondeterministic time-space lower bounds against tautologies
(which prove “NTIME[n] ⊆ coNTS[nc] implies A1 ⊆ A2”), for d-dimensional TM lower
bounds (which prove “NTIME[n] ⊆ DTIMEd[n

c] implies A1 ⊆ A2”), and other problems.

Normal Form. It will be very convenient to introduce a normal form for alternation-
trading proofs. We show that any lower bound provable with complementary simple classes
can also be established with a normal form proof. This greatly reduces the degrees of
freedom in a proof, as we no longer need to worry about which time hierarchy to contradict.

‖Please note that the (k + 1)th quantifier is n
0 in order to account for the O(log n) size of the quantifier.



ALTERNATION-TRADING PROOFS, LINEAR PROGRAMMING, AND LOWER BOUNDS 677

Definition 3.2. Let c ≥ 1. An alternation-trading proof for c is in normal form if (a) the

first and last lines are DTS[na] and DTS[na′
] respectively, for some a ≥ a′, and (b) no other

lines are DTS classes.

We show that a normal form proof for c implies that NTIME[n] * DTS[nc].

Lemma 3.3. Let c ≥ 1. If there is an alternation-trading proof for c in normal form having

at least two lines, then NTIME[n] * DTS[nc].

Theorem 3.4. Let A1 and A2 be complementary. If there is an alternation-trading proof

P for c that shows (NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof

for c, of length at most that of P .

Proofs of Lemma 3.3 and Theorem 3.4 are in the full version. The upshot of these results
is that we may focus our proof search on normal form proofs. For the remainder of this
section, we assume all alternation-trading proofs are in normal form.

Proof Annotations. Different lower bound proofs can result in quite different sequences
of speedups and slowdowns. A proof annotation represents such a sequence.

Definition 3.5. A proof annotation for an alternation-trading proof of ℓ lines is the (ℓ−1)-
bit vector A where for all i = 1, . . . , ℓ − 1, A[i] = 1 (respectively, A[i] = 0) if the ith line
applies a Speedup Rule (respectively, a Slowdown Rule).

An (ℓ − 1)-bit proof annotation corresponds to a “strategy” for an ℓ-line proof. For a
normal form proof of ℓ lines, it is not hard to show that its annotation A must have A[1] = 1,
A[ℓ − 2] = 0, and A[ℓ − 1] = 0.

Note that an annotation does not determine a proof entirely, as other parameters need
optimizing. (The problem of optimizing them is tackled in the next section.) To illustrate
the annotation concept, we give four examples.

• The n
√

2 lower bound of Lipton and Viglas has the annotation [1, 0, 0].
• The n1.6004 bound from Section 2.1 corresponds to [1, 1, 0, 0, 1, 0, 0].
• The nφ bound of Fortnow and Van Melkebeek [FvM00] is an inductive proof, cor-

responding to an infinite sequence of annotations. In normal form, the sequence is
[1, 0, 0], [1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0], . . .

• The n2 cos(π/7) bound [Wil08] has two inductive stages. Let A = 1, 0, 1, 0, . . . , 1, 0, 0,
where the ‘. . .’ contain any number of repetitions. The sequence is

[A], [1, A,A], [1, 1, A,A,A], [1, 1, 1, A,A, A,A], . . .
That is, the proof performs many speedups, then a sequence of many slowdown-

speedup alternations, then two consecutive slowdowns, repeating this until all the
quantifiers have been removed.

3.1. Translation To Linear Programming

Given a (normal form) proof annotation, how can we determine the best proof possible
with it? We need to optimally set the runtimes of the first and last DTS classes in the proof,
as well as the xi parameters that arise from each application of a Speedup Rule. It turns
out that an annotation A and c > 1 can be reduced to a polynomial size linear program
that is feasible if and only if there is an alternation-trading proof of NTIME[n] * DTS[nc]



678 R. R. WILLIAMS

with annotation A. More precisely, the problem of optimizing parameters can be viewed as
an arithmetic circuit evaluation, where the circuit has max gates, addition gates, and input
gates that may multiply their input by c. Such circuits can be evaluated using a linear
program that minimizes the sum of the gate values (cf. [Der72]).

Let A be an annotation of ℓ − 1 bits, and let m be the maximum number of quantifier
blocks in any line of A (note m is easily computed in linear time). The target LP has
variables ai,j , bi,j, and xi, for all i = 0, . . . , ℓ − 1 and j = 1, . . . ,m. The variables ai,j

represent the runtime exponent of the jth quantifier block in the class on the ith line, bi,j is
the input exponent to the jth quantifier block of the class on the ith line, and for all lines
i that use a Speedup Rule, xi is the choice of x in the Speedup Rule. For example:

• If the kth line of a proof is DTS[na], the corresponding constraints are
ak,1 = a, bk,1 = 1, (∀k > 0) ak,i = bk,i = 0.

• If the kth line of a proof is (∃ na′
)bDTS[na], then the constraints are

ak,0 = a, bk,1 = b, ak,1 = a′, bk,1 = 1, (∀k > 1) ak,i = bk,i = 0.

The objective is to minimize
∑

i,j(ai,j + bi,j) +
∑

i xi. The LP constraints depend on the
lines of the annotation, as follows.

Initial Constraints. For the 0th and (ℓ − 1)th lines we have a0,1 ≥ aℓ−1,1, and

a0,1 ≥ 1, b0,1 = 1, (∀ k > 1) a0,k = b0,k = 0, and aℓ,1 ≥ 1, bℓ,1 = 1, (∀k > 1) aℓ,k = bℓ,k = 0,

representing DTS[na0,1 ] and DTS[naℓ−1,0 ], respectively. The 1st line of a proof always applies

Speedup Rule 1, having the form (Q1n
x)max{x,1}(Q2 n0)1DTS[na−x]. So the constraints for

the 1st line are:

a1,1 = a0,1 − x1, b1,1 = 1, a1,2 = 0, b1,2 ≥ x1, b1,2 ≥ 1, a1,3 = x3, b1,3 = 1,
(∀ k : 4 ≤ k ≤ m) a1,k = b1,k = 0.

The below constraint sets simulate the Speedup and Slowdown Rules:

Speedup Rule Constraints. For the ith line where i > 1 and A[i] = 1, we have

ai,1 ≥ 1, ai,1 ≥ ai−1,1 − xi, bi,1 = bi−1,1, ai,2 = 0, bi,2 ≥ xi, bi,2 ≥ bi−1,1, ai,3 ≥ ai−1,2,
ai,3 ≥ xi, bi,3 ≥ bi−1,2, (∀ k : 4 ≤ k ≤ m) ai,k = ai−1,k−1, bi,k = bi−1,k−1.

The constraints express that · · · b2(Q2 na2)b1DTS[na1 ] in the (i − 1)th line is replaced by

· · · b2(Q2 nmax{a2,x})max{x,b1}(Q1 n0)b1DTS[nmax{a1−x,1}]

in the ith line, where Q1 is opposite to Q2.

Slowdown Rule Constraints. For the ith line where A[i] = 0, the constraints are

ai,1 ≥ c · ai−1,1, ai,1 ≥ c · ai−1,2, ai,1 ≥ c · bi−1,1, ai,1 ≥ c · bi−1,2, bi,1 = bi−1,2

(∀ k : 2 ≤ k ≤ m − 1) ai,k = ai−1,k+1, bi,k = bi−1,k+1, ai,m = bi,m = 0.

These express the replacement of · · · b2(Q1n
a2)b1DTS[na1 ] in the (i − 1)th line with

· · · b2DTS[nc·max{a1,a2,b1,b2}]

in the ith line.

This concludes the description of the linear program. To find the largest c that still yields
a feasible LP, we can simply binary search for it. The following summarizes this section.

Theorem 3.6. Given an annotation of n lines, the best possible alternation-trading proof

following the annotation can be determined up to n digits of precision, in poly(n) time.



ALTERNATION-TRADING PROOFS, LINEAR PROGRAMMING, AND LOWER BOUNDS 679

3.2. Results

Following the above formulation, we wrote proof search routines in Maple. Many millions
of proof annotations were tried, including all those corresponding to prior work, with no
success beyond the 2 cos(π/7) exponent. The best lower bounds followed a highly regular
pattern; see the full version for more on this. We are led to:

Conjecture 3.7. There is no alternation-trading proof that NTIME[n] * DTS[nc] for all

c > 2 cos(π/7).

Proving the conjecture seems currently out of reach. However, we can show:

Theorem 3.8. There is no alternation-trading proof that NTIME[n] * DTS[n2].

A proof is in the full version. At a high level, the proof argues that any minimum length
proof of a quadratic lower bound could be shortened, giving a contradiction.

Despite this bad news, the theorem prover did provide enough insight to aid in a new
lower bound of n2 cos(π/7)−o(1) on the time-space product of any SAT algorithm.

Theorem 3.9. Let t(n) and s(n) be bounded above by polynomials. Any algorithm solving

SAT in time t and space s requires t · s = Ω(n2 cos(π/7)−ε) for all ε > 0.

These lower bounds have also been generalized to the QBF problem:

Theorem 3.10. For all k ≥ 1, QBFk requires Ω(nc) time on no(1) space RAMs, where

c3/k − c2 − 2c + k < 0.

4. Discussion

We introduced a methodology for reasoning about alternation-trading proofs of lower
bounds. It provides a generic means for computers to help us attack lower bound problems,
and lets us establish limitations on known techniques. We now have a better understanding
of what these techniques can and cannot do, and a tool for addressing future problems.
Previously, the problem of setting parameters to achieve a good lower bound was a highly
technical exercise. Our work should facilitate further research: once a new speedup or slow-
down lemma is found, one only needs to find the relevant linear programming formulation
to begin understanding its power. We conclude with two open-ended problems.

(1) Establish tight limitations for alternation-trading proofs. That is, show that the best
possible alternation-trading proofs match those we have provided. Our computer
search results have been met with healthy skepticism. It is critical to verify these
perceived limitations with formal proof. We have managed to prove non-trivial
limitations; it is possible that the ideas in those can be extended.

(2) Discover new ingredients to add to the framework. One possibility is to find new
separation results that lead to new contradictions. Another is to find improved
Speedup and/or Slowdown Lemmas. The Slowdown Lemmas are the “blandest” of
the ingredients, in that they are the most elementary (and they relativize).

Acknowledgements. I am grateful to my thesis committee for their invaluable feedback on my

PhD thesis, which included preliminary results on this work. Thanks to Scott Aaronson for useful

discussions about irrelativization, and thanks to the STACS referees for very thoughtful comments.



680 R. R. WILLIAMS

References

[AKRRV01] E. Allender, M. Koucky, D. Ronneburger, S. Roy, and V. Vinay. Time-space tradeoffs in the
counting hierarchy. In Proc. IEEE Conference on Computational Complexity (CCC), 295–302, 2001.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. JACM 28(1):114–133, 1981.
[Coo88] S. A. Cook. Short propositional formulas represent nondeterministic computations. IPL 26(5): 269-

270, 1988.
[Der72] C. Derman. Finite state Markov decision processes. Academic Press, 1972.
[DvM06] S. Diehl and D. van Melkebeek. Time-space lower bounds for the polynomial-time hierarchy on

randomized machines. SIAM J. Computing 36: 563-594, 2006.
[DvMW09] S. Diehl, D. van Melkebeek, and R. Williams. An improved time-space lower bound for tautolo-

gies. In Proc. of Computing and Combinatorics (COCOON), Springer LNCS 5609, 429–438, 2009.
[For97] L. Fortnow. Nondeterministic polynomial time versus nondeterministic logarithmic space. In Proc.

IEEE Conference on Computational Complexity (CCC), 52–60, 1997.
[FvM00] L. Fortnow and D. van Melkebeek. Time-Space Tradeoffs for Nondeterministic Computation. In

Proc. IEEE Conference on Computational Complexity (CCC), 2–13, 2000.
[FLvMV05] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-Space Lower Bounds for Satis-

fiability. JACM 52(6):835–865, 2005.
[HLMW86] J. Y. Halpern, M. C. Loui, A. R. Meyer, and D. Weise. On Time versus Space III. Mathematical

Systems Theory 19(1):13–28, 1986.
[HPV77] J. Hopcroft, W. Paul, and L. Valiant. On time versus space. JACM 24(2):332–337, 1977.
[Kan83] R. Kannan. Alternation and the power of nondeterminism. In Proc. ACM STOC, 344–346, 1983.
[Kan84] R. Kannan. Towards separating nondeterminism from determinism. Mathematical Systems Theory

17(1):29–45, 1984.
[LV99] R. J. Lipton and A. Viglas. On the complexity of SAT. In Proc. IEEE FOCS, 459–464, 1999.
[Lou80] M. C. Loui. Simulations among multidimensional Turing machines. Ph.D. Thesis, Massachusetts

Institute of Technology TR-242, 1980.
[MS87] W. Maass and A. Schorr. Speed-up of Turing machines with one work tape and a two-way input

tape. SIAM J. Computing 16(1):195–202, 1987.
[vM04] D. van Melkebeek. Time-space lower bounds for NP-complete problems. In Current Trends in The-

oretical Computer Science 265–291, World Scientific, 2004.
[vM07] D. van Melkebeek. A survey of lower bounds for satisfiability and related problems. Foundations and

Trends in Theoretical Computer Science 2(3):197–303, 2007.
[vMR05] D. van Melkebeek and R. Raz. A time lower bound for satisfiability. TCS 348(2-3):311–320, 2005.
[vMW07] D. van Melkebeek and T. Watson. A quantum time-space lower bound for the counting hierarchy.

Technical Report 1600, Department of Computer Sciences, University of Wisconsin-Madison, 2007.
[Nep70] V. Nepomnjascii. Rudimentary predicates and Turing calculations. Soviet Math. Doklady 11:1462–

1465, 1970.
[PR81] W. Paul and R. Reischuk. On time versus space II. JCSS 22:312–327, 1981.
[PPST83] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter. On determinism versus nondeterminism

and related problems. In Proc. IEEE FOCS, 429–438, 1983.
[Sch78] C. Schnorr. Satisfiability is quasilinear complete in NQL. JACM 25(1):136–145, 1978.
[Tou01] I. Tourlakis. Time-space tradeoffs for SAT on nonuniform machines. JCSS 63(2):268–287, 2001.
[Vio09] E. Viola. On approximate majority and probabilistic time. Computational Complexity 18(3):337–375,

2009.
[Wil06] R. Williams. Inductive time-space lower bounds for SAT and related problems. Computational Com-

plexity 15:433–470, 2006.
[Wil07] R. Williams. Algorithms and resource requirements for fundamental problems. Ph.D. Thesis,

Carnegie Mellon University, CMU-CS-07-147, August 2007.
[Wil08] R. Williams. Time-space tradeoffs for counting NP solutions modulo integers. Computational Com-

plexity 17(2):179–219, 2008.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.




