
Towards Model Validation and Verification

with SAT Techniques

Martin Gogolla

Universität Bremen, Informatik, AG Datenbanksysteme, D-28334 Bremen

Abstract. After sketching how system development and the UML (Uni-
fied Modeling Language) and the OCL (Object Constraint Language) are
related, validation and verification with the tool USE (UML-based Spec-
ification Environment) is demonstrated. As a more efficient alternative
for verification tasks, two approaches using SAT-based techniques are
put forward: First, a direct encoding of UML and OCL with Boolean
variables and propositional formulas, and second, an encoding employ-
ing an intermediate, higher-level language (Kodkod, stongly connected to
Alloy). A number of further, presently not realized verification and vali-
dation tasks and the transformation of higher-level modeling concepts
into simple UML/OCL models, which are checkable with SAT-based
techniques, are shortly discussed. Finally, the potential of SAT-based
techniques for model development is again emphasized.1

1 Introduction

We assume system development is done in an object-oriented way by using a
modeling language like UML [RBJ05]. In the first sections of this paper, we
restrict ourselves to a very small, but precise subset of UML, namely class dia-
grams and OCL [WK03] invariants and OCL pre- and postconditions. In a later
section, we will explain how other UML diagrams like statechart or use case
diagrams can be integrated into the approach.

In the early phases of system development, the model under development will
be explored by and worked out on the basis of so-called scenarios as pictured
in Fig. 1. The class diagram together with the invariants determines the system
states, also called snapshots or, in UML terms, object diagrams. A system state
encloses objects, connections to other objects (in UML terms links) and object
properties (attribute values). The state transitions are determined by the oper-
ations which are described by pre- and postconditions. Operations are realized
by so-called command sequences which may create or delete objects or links and
may modify attribute values. A scenario is manifested by a collection of system
states and state transitions.

1 Partially joint work with Rolf Drechsler, Mirco Kuhlmann, Mathias Soeken, and
Robert Wille from the University of Bremen.

1

Dagstuhl Seminar Proceedings 09461 
Algorithms and Applications for Next Generation SAT Solvers 
http://drops.dagstuhl.de/opus/volltexte/2010/2507



Fig. 1. General Components of a Scenario

2 Validation and Verification with USE

Let us consider an example. The class diagram in Fig. 2 describes persons and
their civil status. The class diagram will be extended below by OCL invariants
and the operations will be detailed with OCL pre- and postconditions. Such a
model can be validated and animated with the UML-based Specification Envi-

Fig. 2. Example Class Diagram

ronment USE [GBR05,GBR07]. Figure 3 shows two screenshot from USE and
illustrates the model with one scenario: The upper part of Fig. 3 represents the
beginning of the scenario with five operation calls and the lower part of Fig. 3
adds another operation call. Both stages of the scenario are portayed with five
USE windows providing different functionality.

2



Fig. 3. Example Scenario Marriage-Divorce-Marriage

3



Sequence diagram: The objects together with their lifelines and the operation
calls detailed with the actual parameter values are displayed.

Object diagram: The objects with their attribute values and their links are
shown in the state that is reached after the last operation from the sequence
diagram has been completed.

Class extent: The objects and the object attribute values are represented in a
relation-like form.

Class invariants: The current state of the five defined class invariants is stated.
An invariant can evaluate to false, true or not-applicable. This can happen,
if the actual multiplicities in the object diagram do not meet the required
multiplicities from the class diagram.

Evaluate OCL expression: The current state can be inspected with OCL ex-
pressions. The OCL expression is evaluated in the current system state.

The five invariants state that all attributes are different from undefined, that
strings for names have a particular format, that names are unique, that females
do not have a wife and that males do not have a husband.2

constraints

context self:Person

inv attributesDefined: name.isDefined and civstat.isDefined and

gender.isDefined and alive.isDefined

inv nameCapitalThenSmallLetters:

let small:Set(String)=Set{’a’,’b’,’c’,...,’x’,’y’,’z’} in

let capital:Set(String)=Set{’A’,’B’,’C’,...,’X’,’Y’,’Z’} in

capital->includes(name.substring(1,1)) and

Set{2..name.size}->forAll(i |

small->includes(name.substring(i,i)))

inv nameIsUnique: Person.allInstances->forAll(self2|

self<>self2 implies self.name<>self2.name)

inv femaleHasNoWife: gender=#female implies wife.isUndefined

inv maleHasNoHusband: gender=#male implies husband.isUndefined

Regarding pre- and postconditions, we only show these for the operation marry.
The other pre- and postconditions look similar.

marry(aSpouse:Person)

pre aSpouseDefined: aSpouse.isDefined

pre isAlive: alive

pre aSpouseAlive: aSpouse.alive

pre isUnmarried: civstat<>#married

pre aSpouseUnmarried: aSpouse.civstat<>#married

pre differentGenders: gender<>aSpouse.gender

post isMarried: civstat=#married

post femaleHasMarriedHusband: gender=#female implies

2 This conservative view on marriages originates from the payer of the development
and does not represent the view of the developer.

4



husband=aSpouse and husband.civstat=#married

post maleHasMarriedWife: gender=#male implies

wife=aSpouse and wife.civstat=#married

The realization of an operation call can be done in USE in different ways: It can
be done in an interactive way on the graphical user interface, it can be done with
a command sequence on the command line interface or it can be done with the
script language ASSL (A Snapshot Sequence Language) [GBR05]. Below you see
the realization of the operation marry as a command sequence and as an ASSL
procedure.

-- cmd file ------------------------------------------------------------

-- Person::marry(aSpouse:Person) to be called with self:Person ---------

!set self.civstat:=#married

!set aSpouse.civstat:=#married

!insert

(if self.gender=#female then self else aSpouse endif,

if self.gender=#female then aSpouse else self endif) into Marriage

-- ASSL procedure ------------------------------------------------------

procedure Person_marry(self:Person,aSpouse:Person)

begin

[self].civstat:=[#married]; [aSpouse].civstat:=[#married];

if [self.gender=#female] then

begin Insert(Marriage,[self],[aSpouse]); end

else -- [self.gender=#male]

begin Insert(Marriage,[aSpouse],[self]); end;

end;

The original purpose of ASSL was however to search through a class of object di-
agrams and to check whether an object diagram satisfyling particular properties
can be found. Consider the following ASSL procedure which tries to construct
an object diagram where a single person is married twice taking the role of
the husband in the first marriage and taking the role of the wife in the second
marriage.

procedure attemptBigamy()

var p: Person, w: Person, h:Person, thePersons: Sequence(Person);

begin

thePersons:=CreateN(Person,[3]);

for i:Integer in [Sequence{1..3}]

begin [thePersons->at(i)].name:=Try([Sequence{’A’,’B’,’C’}]);

[thePersons->at(i)].civstat:=

Try([Sequence{#single,#married,#divorced,#widowed}]);

[thePersons->at(i)].gender:=Try([Sequence{#female,#male}]);

[thePersons->at(i)].alive:=Try([Sequence{false,true}]); end;

p:=Try([thePersons]);

w:=Try([thePersons->excluding(p)]);

h:=Try([thePersons->excluding(p)->excluding(w)]);

5



Insert(Marriage,[w],[p]); Insert(Marriage,[p],[h]);

end;

The above ASSL procedure is used within a context where the following addi-
tional invariant bigamy is known.

context Person inv bigamy: Person.allInstances->exists(p|

p.wife.isDefined and p.husband.isDefined)

The following command line protocol shows that the additional invariant is
added to the model and that the attemptBigamy procedure is called without
success. The procedure searches all system states with three persons where all
possibilities for attributes and links are tried, but does not succeed. This proves
that in the considered search space the model is bigamy free.

use> gen load bigamy.invs

Added invariants: Person::bigamy

use> gen start civstat.assl attemptBigamy()

use> gen result

Random number generator was initialized with 5649.

Checked 663552 snapshots. Result: No valid state found.

3 Validation and Verification Approaches using

SAT-based Techniques

We are currently working on two approaches in which we apply SAT-based tech-
niques for model validation and verification tasks. One approach uses a direct
encoding of models and model properties into a language which can be fed into
a SAT solver directly. Some details of this work can be found in [SWK+10].
The other approach employs an intermediate language for the representation
of models and model properties and is based on Kodkod [TJ07], an API for
Alloy [Jac06].

3.1 Direct Encoding

In Fig. 4 we see an example model from [SWK+10]. The model is represented
directly with boolean variables and is handed then to an off-the-shelf SAT solver.
In Fig. 5 we identify the representation of a system state with three register
objects and one processor object. The model attributes are given as boolean
vectors of appropriate length named α for attribute. The model links are also
given as boolean vectors named λ for link. Details of this approach can be found
in [SWK+10].

6



Fig. 4. Example Model for Direct SAT Representation

Fig. 5. Example System State for Direct SAT Representation

7



3.2 Encoding using an Intermediate Language

Our encoding of UML and OCL in Kodkod, an API for Alloy, first defines a so-
called universe of constants over which formulas may be quantified. The universe
has to take into account that a particular system state is going to be explored.
For our civil status example, let assume we want to construct a system state
with three Person objects and three String values for the name attribute. Then
we define three constants P1, P2, P3 and three constants for the different names.
Furthermore, constants for the enumerations and for the datatype Boolean have
to be provided. Note that the universe is partly determined by the system state
and partly by the features from the class diagram.

{P1, P2, P3,

S_Ada, S_Bob, S_Cyd,

C_single, C_married, C_divorced, C_widowed,

G_female, G_male,

B_true, B_false}

Kodkod as well as Alloy is based on relations and a relational logic. Therefore
we define a unary relation Person expressing the typing information. Kodkod
allows a relation to be defined with a lower bound and an upper bound for the
set of tuples included in the relation. For Person, lower and upper bound coincide.
This is not the case for the binary relation name expressing with the lower bound
that no name information is allowed and expressing with the upper bound each
Person can take any name in principle. Analogously the binary relation marriage
expresses that no marriages are allowed as the lower bound and that any person
can be married to anybody else as the upper bound. Analogous definitions must
be given for the other attributes from the class diagram.

Person :1 [{<P1>,<P2>,<P3>},

{<P1>,<P2>,<P3>}]

String :1 [{<S_Ada>,<S_Bob>,<S_Cyd>},

{<S_Ada>,<S_Bob>,<S_Cyd>}]

name :2 [{},{<P1,S_Ada>,<P1,S_Bob>,<P1,S_Cyd>,

<P2,S_Ada>,<P2,S_Bob>,<P2,S_Cyd>,

<P3,S_Ada>,<P3,S_Bob>,<P3,S_Cyd>}]

marriage :2 [{},{<P1,P1>,<P1,P2>,<P1,P3>,

<P2,P1>,<P2,P2>,<P2,P3>,

<P3,P1>,<P3,P2>,<P3,P3>}]

An essential and elegant feature of the relational logic of Kodkod and Alloy is
the use of the relational join operator to express the access to a relation. For
example, if we have a Person variable p then we write in OCL p.husband or
p.wife to access the marriage association. In Kodkod we would express this as

8



p.marriage or marriage.p assuming that the first parameter in the relation is
used for wife and the second parameter for the husband.

Typing information, multiplicities and constraints must be expressed in the re-
lational logic. Below we show some examples for the civil status class diagram.
The description is not complete. More formulas are needed. The last formula
expresses the bigamy constraint. Thus our expectation would be that Kodkod
replies with the answer that the formula is not satisfiable.

-- name defined on Person, yields String and total function

(all u:Universe |

name.u in Person and u.name in String and

lone u.name and u in Person equiv one u.name)

-- marriage reflexive association on Person with 0..1 multiplicities

(all u:Universe |

u.marriage in Person and marriage.u in Person and

lone u.marriage and lone marriage.u)

-- nameIsUnique

(all p1:Person | (all p2:Person |

p1<>p2 implies p1.name<>p2.name))

-- femaleHasNoWife

(all p:Person |

p.gender=G_female implies no marriage.p)

-- bigamy

(some p:Person | one p.marriage and one marriage.p)

4 Verification and Validation Tasks

Below we indicate a collection of questions which one can pass over to a UML
and OCL verification system on the basis of given set of invariants and a given
set of pre- and postconditions.

The first set of questions relates to logical deductions.

– Are the invariants consistent?
– Are the invariants independent?
– Is a given constraint deducible from the invariants?
– Is an operation precondition consistent to the invariants?
– Is an operation precondition deducible from the invariants?
– Is an operation precondition independent from the invariants?
– Is a given constraint deducible from an operation precondition?
– Are there operations which exclude each other w.r.t. preconditions?
– Is an operation postcondition consistent to the invariants?
– Is an operation postcondition deducible from the invariants?

9



– Is an operation postcondition independent from the invariants?
– Is a given constraint deducible from an operation postcondition?
– Are the invariants respected by the operations?

The second set of questions relates to scenarios.

– Are the constraints too strong or too weak?
– Are there scenarios which should be accepted but are not?
– Are there scenarios which are accepted but should not?
– Is there a scenario with a finite number of states?
– Is there a scenario with an infinite number of states?
– Are there states from which no transition can be made?
– Is there a scenario leading from stateBegin to stateEnd where states are

explicitly given?
– Is there a scenario leading from stateBegin to stateEnd in which

OCLexpressionBegin and OCLexpressionEnd are valid
– Is there a scenario with non-empty class populations?
– Is there a scenario with all classes/attributes/roles/operations involved?
– Starting from the empty state and executing operations whose pre- and

postconditions are satisfied, does one reach only states satisfying the
invariants?

– Starting from a given state satisfying the invariants and executing
operations whose pre- and postconditions are satisfied, does one reach only
states satisfying the invariants?

5 Transforming UML Concepts into Object Models and

OCL

The approach presented so far covers class diagrams and object diagrams which
are detailed by OCL constraints. However, other UML or SysML diagrams can
be integrated.

– One can encode statechart diagrams as OCL pre- and postconditions as it
has been discussed in [GR02].

– One can understand sequence diagrams and communication diagrams as
representations of scenarios. This is already partly reflected in USE in form
of sequence diagrams. The representation with communication diagrams is
under development.

– Activity diagrams may represent operation implementations.
– Use cases and use case diagrams can be understood as system operations,

i.e., an arrangement of calls to objects with parameters.

10



6 Conclusion

The proposed approach formally describes system structure and behavior
based on concepts currently used in UML, but these concepts can used for
DSM (Domain-Specific Modeling) as well. We discussed here only questions on
the model level, but analogous questions could also be asked on the meta-model
level. System quality assurance has been put forward through verification and
validation tasks with a mixture of proof- and scenario-based quality checks. Ver-
ification tasks are expected to be performed very efficiently with SAT tools even
for large scenarios.

References

[GBR05] Martin Gogolla, Jörn Bohling, and Mark Richters. Validating UML and
OCL Models in USE by Automatic Snapshot Generation. Journal on Soft-
ware and System Modeling, 4(4):386–398, 2005.

[GBR07] Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-Based
Specification Environment for Validating UML and OCL. Science of Com-
puter Programming, 69:27–34, 2007.

[GR02] Martin Gogolla and Mark Richters. Development of UML Descrip-
tions with USE. In Hassan Shafazand and A Min Tjoa, editors, Proc.
1st Eurasian Conf. Information and Communication Technology (EURA-
SIA’2002), pages 228–238. Springer, Berlin, LNCS 2510, 2002.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006.

[RBJ05] J. Rumbaugh, G. Booch, and I. Jacobson. The Unified Modeling Language
Reference Manual, Second Edition. Addison-Wesley, Reading, 2005.

[SWK+10] Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and
Rolf Drechsler. Verifying UML/OCL Models Using Boolean Satisfiabil-
ity. In WolfgangMüller, editor, Proc. Design, Automation and Test in Eu-
rope (DATE’2010). IEEE, 2010.

[TJ07] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
Orna Grumberg and Michael Huth, editors, TACAS, LNCS 4424, pages
632–647. Springer, 2007.

[WK03] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Mod-
eling with UML. Addison-Wesley, 2003. 2nd Edition.

11




