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Abstract

We study the design of optimal mechanisms in a setting where a service provider needs to
schedule a set of non-preemptive jobs, one job at a time. Jobs need to be compensated for
waiting, and waiting cost is private information. In this setting, an optimal mechanism is one
that induces jobs to report truthfully their waiting cost, while minimizing the total expected
compensation cost of the service provider. Here, truthful refers to Bayes-Nash implementability,
and assumes that private information is independently drawn from known distributions. We
derive closed formulae for the optimal mechanism, and show that it is a modification of Smith’s
ratio rule. We also show that it can be implemented in dominant strategies. Our analysis relies
on a graph-theoretic interpretation of the incentive compatibility constraints. It parallels the
analysis known for auctions with single parameter agents, yet it exhibits some subtle differences.
We also consider the multi-dimensional case where also the service times of jobs are private
information. We show that for this problem the optimal mechanism generally does not satisfy
an independence condition known as IIA, and thus known approaches are doomed to fail.

Keywords. Auction/bidding, Scheduling, Economics, Combinatorial Optimization

1 Introduction

The design of optimal auctions is recognized as an intriguing issue in auction theory; first studied
by (Myerson 1981) for the case of single object auctions. In that setting, the goal is to maximize
the seller’s revenue subject to Bayes-Nash incentive compatibility and individual rationality. We
study the design of optimal auctions in a setting where job-agents compete for being processed by a
service provider that can only handle one job at a time. No job can be interrupted once started, and
each job is characterized by service time and weight, the latter representing his disutility for waiting
per unit time. Jobs need to be compensated for waiting. It is well known that the total disutility of
the jobs is minimized by a scheduling policy known as Smith’s ratio rule: schedule jobs in order of
non-increasing ratios of weight over service time (Smith 1956). We aim to find Bayes-Nash incentive
compatible mechanisms that minimize the expected expenses of the service provider. Given jobs’
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reports about their private information, a mechanism determines both an order in which jobs are
served and for each job a payment that the job receives.

1.1 Our Contribution

We consider two distinct cases. In the one-dimensional (1-d) case, service times of jobs are public
information and a job’s weight is only known to the job itself. In the two-dimensional (2-d) case,
both weight and service time are private information of the jobs. In either case, we assume the
type space of agents to be discrete. Though this is a departure from the traditional literature
on auctions (Myerson 1981), it is not entirely uncommon to work with discrete type spaces. For
example, some recent progress in deriving optimal auctions for multi-dimensional settings assume
the type space to be discrete (Armstrong 2000; Malakhov and Vohra 2007; Pai and Vohra 2008). In
particular, with discrete type spaces the computation of the maximum total revenue (or minimum
total expenses, respectively) can be cast as a linear programming program. We find this useful in
deriving impossibility results.

By a graph theoretic interpretation of the incentive compatibility constraints - as used e.g. by
Rochet (1987), Malakhov and Vohra (2007), Müller, Perea, and Wolf (2007), Heydenreich, Müller,
Uetz, and Vohra (2009), and many others - we derive optimal mechanisms in a very simple way. For
the 1-d case, the result is that serving the jobs in the order of non-increasing ratios of ‘virtual’ job
weights over service times is optimal for the service provider. We also show that this mechanism can
be implemented in dominant strategies. It turns out that the optimal mechanism is not necessarily
efficient, so in general it does not maximize total utility. But it does so if jobs are symmetric,
i.e., have same distribution of weights and equal processing times. Yet, it is worth noting that the
optimal mechanism differs from the generalized VCG mechanism, in contrast to auctions even in
the symmetric case. For asymmetric jobs, we also show by example that the difference in expenses
between an optimal mechanism and an efficient mechanism can be arbitrarily bad.

For the 2-d case, our main result is that the optimal mechanism does not satisfy an independence
condition which is known as ‘independence of irrelevant alternatives (IIA)’ condition. From that we
conclude that the optimal mechanism cannot be expressed in terms of modified weights along the
lines of the 1-d case. In fact, any kind of priority based scheduling algorithm (e.g., scheduling using
Smith’s rule with modified weights), where the priorities of a job depend only on the characteristics
of that job itself, cannot be an optimal mechanism in general. We conclude that optimal mechanism
design for the two-dimensional case at hand is substantially more involved than two-dimensional
mechanism design for auction settings, as studied by Malakhov and Vohra (2007) for example. We
also show that the optimal mechanism for the 2-d case is not efficient even for symmetric jobs.

1.2 Related Work

Optimal mechanism design goes back to Myerson (1981). He studies optimal mechanism design
for single item auctions and continuous, 1-dimensional type spaces. The optimal auction in his
setup is to award the object to a bidder who has the highest virtual valuation, provided this virtual
valuation is non-negative. In the symmetric case, this turns out to be the Vickrey auction with
a reserve price. More generally, for single parameter agents the optimal auction is the one that
maximizes the total virtual surplus (Hartline and Karlin 2007).

In fact, our work can be seen as analyzing how far the scheduling problem parallels the auction
case. In that sense we exactly follow Myerson’s approach, but with discrete type spaces, and using a
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graph-theoretic approach to obtain our results. We observe several close similarities to the auction
case, but also some subtle differences. For example, the optimal mechanism for the scheduling
problem turns out to be the one that maximizes total virtual surplus, just like for auctions. Yet,
for the scheduling problem this result does not fall out of the analysis of the auction case, as the
latter builds on revenue equivalence, which does not hold here.

Malakhov and Vohra (2007) derive optimal mechanisms for an auction setting with discrete
2-dimensional type spaces. They consider a multi-unit model where every bidder has a capacity
constraint, and the marginal value per unit and capacity are the private type of the bidder. The
derived optimal mechanisms also employs the efficient allocation rule with respect to modified
(virtual) types. Contrasting their work, we show that for 2-d type spaces, the same graph-theoretic
approach must fail to determine an optimal mechanism for the scheduling problem. This because
an optimal mechanism is not the efficient mechanism with respect to modified types, no matter how
these types are defined. This follows from the fact that an optimal mechanism is in general not IIA.

The fact that optimal mechanism design with multi-dimensional type spaces is harder than with
1-dimensional types is well-known. For example, Armstrong (2000) studies a multi-object auction
model where valuations are additive and drawn from a binary distribution (i.e., high or low). He
gives optimal auctions under specific conditions that allow to reduce the type graph. It becomes
evident from his work that optimal mechanism design with multi-dimensional discrete types is
difficult. For our model, we formalize this difficulty by showing that known approaches inevitably
yield mechanisms that satisfy the IIA condition, and that in general none of these is optimal.

Scheduling models have been looked at from different perspectives, both in the Economic and
Operations Research literature. There are some papers which are closely related to ours with respect
to the model considered, but each with a different flavor when it comes to the game theoretic
models. For example, Mitra (2001) analyzes efficient and budget balanced mechanism design in a
1-dimensional queueing model, and Kittsteiner and Moldovanu (2005) consider a model in which
jobs arrive stochastically, and service time is private information. Moulin (2007) derives mechanisms
that prevent merging and splitting of jobs. Suijs (1996) discusses the same sequencing model as ours,
and derives results on the existence of payment schemes that are required to be budget balanced.
The same problem is discussed from the perspective of cost sharing by Curiel, Pederzoli, and Tijs
(1989), and later for m machines by Hamers, Klijn, and Suijs (1999). Yet, none of these papers
addresses optimal mechanism design in the sense discussed here.

Organization. In Section 2, we study the 1-d discrete case and derive closed formulae for the
optimal mechanism. We compare the optimal to the efficient mechanism in Section 3. In Section 4,
we study the 2-d discrete case and show that the known approaches are doomed to fail here.

2 Optimal Mechanisms for the 1-Dimensional Setting

Consider a single machine which can handle one job at a time. Let J = {1, . . . , n} denote the set
of jobs. We regard jobs as selfish agents that act strategically. Each job j has a service time pj

and a weight wj. While pj is publicly known, the actual wj is private information (type) of job j.
Jobs share common beliefs about other jobs’ types in terms of probability distributions. We assume
discrete distribution of weights, that is, agent j’s weight wj follows a probability distribution over
the discrete set Wj = {w1

j , . . . , w
mj

j } ⊂ R, where w1
j < · · · < w

mj

j . Let ϕj be the probability

distribution of wj , that is, ϕj(w
i
j) denotes the probability associated with wi

j for i = 1, . . . ,mj . Let
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Φj(w
i
j) =

∑i
k=1 ϕj(w

k
j ) be the cumulative probability up to wi

j. Probability distributions {ϕj}j∈J

and type spaces {Wj}j∈J are public information. We assume that jobs’ weights are independently
distributed. Let us denote by W = Πj∈JWj the set of all type profiles. For any job j, let W−j =

Πk 6=jWk. Let ϕ be the joint probability distribution of w = (w1, . . . , wn). Then ϕ(w) = Πn
j=1ϕj(w

ij
j )

for w = (wi1
1 , . . . , win

n ) ∈ W . Let w−j and ϕ−j be defined analogously. For wi
j ∈ Wj and w−j ∈ W−j,

we denote by (wi
j , w−j) the type profile where job j has type wi

j and types of other jobs are w−j.

2.1 Preliminaries

A direct revelation mechanism consists of an allocation rule f and a payment scheme π. Jobs have
to report their weights, and depending on those reports, the allocation rule selects a schedule, i.e.
an order in which jobs are processed on the machine. The payment scheme assigns a payment that
is made to jobs in order to reimburse thfooem for their waiting cost. By the revelation principle,
we can restrict attention to such direct mechanisms.

Let S = {σ |σ is a permutation of (1, . . . , n)} denote the set of all feasible schedules. Then
the allocation rule is a mapping f : W → S 4. For any schedule σ ∈ S, let σj be the position
of job j in the ordering of jobs in σ. Then, by Sj(σ) =

∑

σk<σj
pk, we denote the start time or

waiting time of job j in σ. If job j has waiting time Sj and actual weight wi
j , it encounters a

valuation of −wi
jSj. If j additionally receives payment πj , his total utility is πj − wi

jSj, i.e., we

assume quasi-linear utilities. Let us denote by ESj(f,wi
j) :=

∑

w−j∈W−j
Sj(f(wi

j , w−j))ϕ−j(w−j)

the expected waiting time of job j if it reports weight wi
j and allocation rule f is applied. Denote

by Eπj(w
i
j) :=

∑

w−j∈W−j
πj(w

i
j , w−j)ϕ−j(w−j) the expected payment to j.

Definition 1 A mechanism (f, π) is Bayes-Nash incentive compatible (BIC) if for every agent j
and every two types wi

j ,w
k
j ∈ Wj

Eπj(w
i
j) − wi

jESj(f,wi
j) ≥ Eπj(w

k
j ) − wi

jESj(f,wk
j ), (1)

where the expectation is done under the assumption that all agents apart from j report truthfully. If

for allocation rule f there exists a payment scheme π such that (f, π) is BIC, then f is called Bayes-
Nash implementable. The payment scheme π is referred to as an incentive compatible payment

scheme.

Definition 2 A mechanism (f, π) is individually rational (IR) if for every agent j and every type

wi
j ∈ Wj

Eπj(w
i
j) − wi

jESj(f,wi
j) ≥ 0. (2)

We say an allocation rule f is individually rational if there exists a payment scheme π such that

(f, π) is IR.

IR guarantees non-negative expected utilities for all agents that report their true weight. It will
be convenient to ensure IR by introducing a so-called dummy weight w

mj+1
j , which we add to the

type space Wj for every agent j and give it probability 0. We assume ESj(f,w
mj+1
j ) = 0 and

4If a randomized allocation rule is used, expectations have to be taken according to the randomization of the
allocation rule as well. Our results hold as well for such randomized rules.
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Eπj(w
mj+1
j ) = 0 for all j ∈ J . Furthermore, we impose the BIC constraints (1) also for k =

mj+1 which implies (2). Therefore, the dummy weights together with the mentioned assumptions
guarantee that IR is satisfied along with the BIC constraints. The dummy weight can be interpreted
as an option for any job not to take part in the mechanism.

We next define the notion of monotonicity w.r.t. weights, which is easily shown to be a necessary
condition for Bayes-Nash implementability. In our setting, it is even a sufficient condition.

Definition 3 An allocation rule f satisfies monotonicity with respect to weights or short mono-
tonicity if for every agent j ∈ J , wi

j < wk
j implies that ESj(f,wi

j) ≥ ESj(f,wk
j ).

Theorem 1 An allocation rule f is Bayes-Nash incentive compatible if and only if it satisfies

monotonicity with respect to weights.

The proof of the theorem is standard, and is given in the Appendix. However, we introduce
some basic concepts underlying the proof that are needed later. In particular, we introduce the type
graph for the Bayes-Nash setting. Type graph T f

j has node set Wj and contains an arc (directed

edge) from any node wi
j to any other node wk

j of length

ℓik = wi
j [ESj(f,wk

j ) − ESj(f,wi
j)].

Here, ℓik represents the gain in expected valuation for agent j by truthfully reporting type wi
j

instead of lying type wk
j , which could be both positive or negative. The incentive constraints for a

BIC mechanism (f, π) and job j can be read as

Eπj(w
k
j ) ≤ Eπj(w

i
j) + wi

j[ESj(f,wk
j ) − ESj(f,wi

j)] = Eπj(w
i
j) + ℓik.

That is, the expected payments Eπj(·) constitute a node potential in T f
j , and therefore Bayes-Nash

implementability of an allocation rule f is equivalent to the non-negative cycle property of the
type graph T f

j for any agent j; see for example Müller, Perea, and Wolf (2007). Monotonicity is

equivalent to the fact that there is no negative cycle consisting of only two arcs in T f
j . We call this

property the non-negative two-cycle property. It follows from

ℓik + ℓki = wi
j[ESj(f,wk

j ) − ESj(f,wi
j)] + wk

j [ESj(f,wi
j) − ESj(f,wk

j )]

= (wi
j − wk

j )[ESj(f,wk
j ) − ESj(f,wi

j)].

The last term is non-negative for all jobs j and any two types wi
j and wk

j if and only if monotonicity
holds. The proof of Theorem 1 now boils down to proving that non-negative 2-cycles in the type
graph implies non-negative cycles.

2.2 Optimal Mechanisms

Let us start by investigating the efficient allocation rule for the given setting, i.e., the allocation
rule that minimizes the total waiting costs of agents. It is well known that scheduling in order
of non-increasing weight over processing time ratios minimizes the sum of weighted start times
∑n

j=1 wjSj(f(w)) for any type profile w ∈ W , and therefore maximizes the total valuation of all
agents. This allocation rule is known as Smith’s ratio rule (Smith 1956).
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Our goal is to set up a mechanism that is BIC and IR, and among all such mechanisms minimizes
the expected total payment that has to be made to the jobs. Given any BIC mechanism (f, π), one
can obviously substitute the payment scheme by its expected payment scheme yielding (f,Eπ(·))
without loosing Bayes-Nash incentive compatibility. Moreover, the expected total payment to the
agents remains unchanged under the substitution. Therefore, we may restrict focus to mechanisms
in which agents always receive a payment which is independent of the specific report of the other
agents and of the actual allocation. We discuss later how to turn this mechanism into a dominant
strategy incentive compatible mechanism.

Note that, unlike e.g. in (Myerson 1981; Hartline and Karlin 2007), in the discrete setting
considered here revenue equivalence does not hold. Therefore, there are possibly multiple payment
schemes that make an allocation rule incentive compatible. Hence, the payment scheme is not
uniquely determined by the allocation rule, and we first need to determine the minimum payment
for any given allocation rule f .

Let f be any (implementble) allocation rule and let πf (·) be a payment scheme that minimizes
expected expenses for the machine among all payment schemes that make f BIC. More specifically,
πf

j (wi
j) denotes the payment to agent j declaring weight wi

j under this payment scheme. Then

Pmin(f) =
∑

j∈J

∑

wi
j∈Wj

ϕj(w
i
j)π

f
j (wi

j) is the minimum expected total expenses for allocation rule

f . The following lemma specifies πf .

Lemma 1 For a Bayes-Nash implementable allocation rule f , the payment scheme defined by

πf
j (w

mj+1
j ) = 0, πf

j (wi
j) =

mj
∑

k=i

wk
j [ESj(f,wk

j ) − ESj(f,wk+1
j )] for i = 1, . . . ,mj

is incentive compatible, individually rational and minimizes the expected total payment made to

agents. The corresponding expected total payment is given by

Pmin(f) =
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)

mj
∑

k=i

wk
k

[

ESj(f,wk
j ) − ESj(f,wk+1

j )
]

=
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)w

i
jESj(f,wi

j),

where the virtual weights wj are defined as follows

w1
j = w1

j , wi
j = wi

j + (wi
j − wi−1

j )
Φj(w

i−1
j )

ϕj(w
i
j)

for i = 2, . . . ,mj.

The proof of this lemma is in the appendix. The payment πf
j (wi

j) for type wi
j is found by taking

the negative of the shortest path length from node wi
j to dummy node w

mj+1
j in the type graph T f

j .

It crucially uses the fact that shortest paths in the type graph T f
j are independent of the allocation

rule f , which follows from the so-called decomposition monotonicity of the type graph; we refer to
the appendix for details.

Given the minimum payments for every allocation rule, we want to specify the allocation rule f
which minimizes Pmin(f) among all Bayes-Nash implementable (and IR) allocation rules.
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Definition 4 If f ∈ arg min{Pmin(f) | f : W → S, f Bayes-Nash implementable and IR}, then

we call the mechanism (f, πf ) an optimal mechanism.

For the time being, let us impose the following regularity condition that ensures Bayes-Nash
implementability of the allocation rule in our candidate mechanism. We will get rid of it afterwards,
by using standard arguments.

Definition 5 We say that regularity is satisfied if for every agent j and i = 1, . . . ,mj −1 wi
j < wk

j

whenever wi
j < wk

j .

Note that regularity is satisfied e.g. if the differences wi
j − wi−1

j are constant and the distribution

has a non-increasing reverse hazard rate5.

Theorem 2 Let the virtual weights wj, j ∈ J , and payments πf be defined as in Lemma 1. Let f
be the allocation rule that schedules jobs in non-increasing order of ratios wj/pj. If regularity holds,

then (f, πf ) is an optimal mechanism.

Proof. We show that f is Bayes-Nash implementable and minimizes Pmin(f) among all Bayes-Nash
implementable allocation rules. For any allocation rule f , we can rewrite Pmin(f) as follows, using

independence of weight distributions. Let W ′
j = Wj \ {w

mj+1
j } and W ′ = Πj∈JW ′

j .

Pmin(f) =
∑

j∈J

∑

wi
j∈W ′

j

ϕj(w
i
j)w

i
jESj(f,wi

j)

=
∑

j∈J

∑

wi
j∈W ′

j

ϕj(w
i
j)w

i
j

∑

w−j∈W−j

Sj(f(wi
j, w−j))ϕ−j(w−j)

=
∑

j∈J

∑

(wi
j ,w−j)∈W ′

ϕ(wi
j , w−j)w

i
jSj(f(wi

j, w−j))

=
∑

w∈W ′

ϕ(w)
∑

j∈J

wjSj(f(w)).

Thus, Pmin(f) can be minimized by minimizing
∑

j∈J wjSj(f(w)) for every reported type profile
w. This is achieved by using Smith’s rule with respect to modified weights, i.e., scheduling in order
of non-increasing ratios wj/pj . Under Smith’s rule, the expected start time ESj(wj) is clearly non-
increasing in the modified weight wj. The regularity condition ensures that it is non-increasing in
the original weights wj . Therefore, Smith’s rule with respect to virtual weights satisfies monotonicity
and is hence Bayes-Nash implementable by Theorem 1. This completes the proof. �

2.3 The Non-Regular Case

We need the regularity condition only because we require the mechanism to be monotone. In order
to extend the optimal mechanism to the non-regular case, we introduce randomization. Indeed,
we can apply a standard procedure known as ‘ironing’ which was already proposed by Myerson

5The reverse hazard rate of the distribution with pdf ϕ and cdf Φ is defined as ϕ(x)/Φ(x), see e.g. Krishna (2002).
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(1981). Applied to the scheduling problem it works as follows. We virtually ‘iron’ the possibly non-
monotone mapping wj 7→ wj at any interval of non-monotonicity. This is achieved by ‘flattening’
the mapping by adapting some of the virtual weights wj. This is exemplified in the following.

Assume that there is a subsequence of virtual weights Iqr
j := {wq

j , . . . , w
r
j} such that virtual

weights wi
j are monotone for i < q and i > r. Let πi

j := ϕj(w
i
j) and let wqr

j = (
∑r

i=q πi
jw

i
j)/
∑r

i=q πi
j

be the expected virtual weight, conditional on the virtual weight being from Iqr
j , and assume further

that wq−1
j ≤ wqr

j ≤ wr+1
j . In this particular case, the randomized allocation rule will assign to job

j with a report wi
j , q ≤ i ≤ r, virtual weight wl

j , q ≤ l ≤ r, with probability πl
j/
∑r

i=q πi
j . For

i < q or i > r, report wi
j yields virtual weight wi

j, as before. Note that this does not change the
expected start time for all other jobs, while the expected start time of job j is now monotone (in
fact, constant in interval Iqr

j ). Thus we obtain a monotone randomized allocation rule. It is a bit
cumbersome, though not difficult to show that the payments from Lemma 1 are optimal incentive
compatible payments for the randomized rule f , and that the formula for Pmin(f) in the proof
of Theorem 2 remains valid after randomization. Thereby, scheduling along Smith’s rule based on
randomized virtual weights yields again the optimal mechanism.

The complete construction requires to construct a (finest) partition of agents’ weights into
subsequences, such that conditional expected virtual weights on the subsequences become monotone.
Obviously, in the regular case such a sequence consists of subsequence of size 1. We do not go into
further technical details, but rather state the corresponding result somewhat informally, noting that
expectations have now to be taken over the possible types of jobs and over the random choices of
the mechanism that follow from the ironing procedure.

Theorem 3 Let the virtual weights wj, j ∈ J , and payments πf be as defined in Lemma 1. Let f
be the (randomized )allocation rule that first randomizes the mappings wj 7→ wj as suggested by the

ironing procedure described above, and then schedules jobs in non-increasing order of ratios wj/pj .

Then (f, πf ) is an optimal mechanism.

Notice that the optimal mechanism in the non-regular case crucially uses randomization; we are not
aware of how to get rid of this.

2.4 Implementation in Dominant Strategies

So far, we have discussed Bayes-Nash implementability according to Definition 1, and outcome as
well as payment are expected values, the expectation taken over truthful reports of the other jobs.
It is a standard question to ask if the optimal mechanism can also be implemented with respect to
the much stronger, dominant strategy equilibrium. See for example Manelli and Vincent (2008).

Definition 6 A mechanism (f, π) is dominant strategy incentive compatible (DSIC) if for every

agent j and every two types wi
j ,w

k
j ∈ Wj, and any report w−j of other jobs,

πj(w
i
j) − wi

jSj(f, (wi
j , w−j)) ≥ πj(w

k
j ) − wi

jSj(f, (wk
j , w−j)) . (3)

If for allocation rule f there exists a payment scheme π such that (f, π) is DSIC, then f is called

dominant strategy implementable. Mechanism (f, π) is individual rational if

πj(w
i
j) − wi

jSj(f, (wi
j , w−j)) ≥ 0

for any report w−j of other jobs.
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Clearly, dominant strategy implementability implies Bayes-Nash implementability. The definition
of monotonicity, and the fact that implementability is equivalent with monotonicity, translate cor-
respondingly, only replacing the expected waiting time ESj(f,wj) by the point-wise waiting time
Sj(f, (wj , w−j)), for all w−j . We have the following theorem, which we can easily prove directly by
giving the corresponding optimal payment.

Theorem 4 There exists a mechanism that is dominant strategy incentive compatible and individual

rational, and achieves the same total expected payment as the optimal mechanism from Theorems 2

and 3.

Proof. For any implementable f , a candidate for the optimal DSIC payment can be found in exactly
the same way as in the Bayes-Nash case, namely as (negative of) shortest paths in the type graphs

T f
j , only that we now have |W−j| many type graphs for each job j, one for each possible report w−j

of the other jobs. The edge lengths in these type graphs are

ℓik = wi
j

[

Sj(f, (wk
j , w−j)) − Sj(f, (wi

j , w−j))
]

.

The resulting payments, for any w−j , are

πj(w
i
j , w−j) =

∑mj

k=i
wk

j

[

Sj(f, (wk
j , w−j)) − Sj(f, (wk+1

j , w−j))
]

.

It is an easy exercise to verify incentive compatibility and individual rationality of these payments.
If we now compute the total expected payment P (f) of the resulting mechanism (f, π), we get

P (f) =
∑

j

∑

w−j

ϕ(w−j)
∑

i

ϕj(w
i
j)

mj
∑

k=i

wk
j

[

Sj(f, (wk
j , w−j)) − Sj(f, (wk+1

j , w−j))
]

=
∑

j

∑

i

ϕj(w
i
j)

mj
∑

k=i

wk
k





∑

w−j

ϕ(w−j)Sj(f, (wk
j , w−j)) −

∑

w−j

ϕ(w−j)Sj(f, (wk+1
j , w−j))





=
∑

j

∑

i

ϕj(w
i
j)

mj
∑

k=i

wk
k

[

ESj(f,wk
j ) − ESj(f,wk+1

j )
]

= Pmin(f)

That is, the minimal payments for dominant strategy incentive compatibility are, in expectation,
identical to the optimal payments that we computed before for Bayes-Nash implementability. Fi-
nally, note that the allocation rule as defined in Theorems 2 and 3 is indeed monotone in wj for
any report w−j .

�

3 Optimality versus Efficiency

In this section, we compare the efficient allocation rule with the optimal allocation rule. First,
we generalize the symmetry condition in (Myerson 1981) to our setting, and show that under this
condition, the efficient allocation rule is optimal.

9



Definition 7 Agents are symmetric if W1 = . . . = Wn, ϕ1 = . . . = ϕn and p1 = . . . = pn = 1
(w.l.o.g., pj = 1 for all j ∈ J).

So, when we say symmetric agents, we require symmetry with respect to private and public
information.

Corollary 1 If agents are symmetric and regularity holds, then the optimal mechanism is efficient.

Proof. If W1 = · · · = Wn = {w1, . . . , wm} and ϕ1 = · · · = ϕn, then for any two agents j and k,
and i = 1, . . . ,m, the modified weights are equal, i.e. wi

j = wi
k. In the case of regularity, modified

weights are non-decreasing in the original weights, and as all pj = 1, scheduling jobs in order of
their non-increasing ratios wj/pj is equivalent to scheduling them in order of non-increasing ratios
wj/pj. That is, the efficient allocation rule and the allocation rule from the optimal mechanism in
Theorem 2 coincide. �

Notice that this is no longer true in the non-regular case, as there is positive probability that
the optimal mechanism does not schedule the jobs in order of non-increasing ratios wj/pj . If weight
distributions may differ among agents or if agents have different processing times, then the optimal
mechanism is in general not efficient either. In fact, when restricting to efficient mechanisms, the
total expected payment can be arbitrarily bad in comparison to the optimal one. This is illustrated
by the following two examples.

Example 1 Let there be two jobs 1 and 2 with W1 = {M +1} and W2 = {1,M} for some constant

M > 2. Let ϕ2(1) = 1 − 1/M , ϕ2(M) = 1/M and p1 = p2 = 1. Let Eff be the efficient and Opt
be the optimal allocation rule. Then the ratio Pmin(Eff)/Pmin(Opt) goes to infinity as M goes to

infinity.

Proof. The efficient allocation rule, Smith’s rule, always allocates job 1 first. So the optimal payment
for Smith’s rule is to pay 0 to job 1 and to pay M to job 2, irrespective of its type. The minimum
expected total payment is hence Pmin(Eff) = M . For the optimal allocation, we compute modified
weights after Lemma 1: w1

1 = w1
1 = M +1, w1

2 = w1
2 = 1 and w2

2 = M +(M −1)(1−1/M)/(1/M) =
M2 − M + 1. The latter is larger than M + 1 if M > 2. Therefore, job 2 is scheduled in front of
job 1 if he has weight M and behind if he has weight 1. The expected start times for job 2 are
ES2(Opt, 1) = 1 and ES2(Opt,M) = 0, respectively. Optimal payments according to Lemma 1 are
πOpt

2 (1) = 1 and πOpt
2 (M) = 0. For job 1, the expected start time is ES1(Opt,M + 1) = 1/M and

the expected payment πOpt
1 (M + 1) = 1 + 1/M . Hence, Pmin(Opt) = 1 + 1/M + 1 · (1− 1/M) = 2.

Consequently, Pmin(Eff)/Pmin(Opt) = M/2 → ∞ for M → ∞. �

Example 2 Let there be two jobs 1 and 2 with the same weight distribution W1 = W2 = {1,M},
ϕj(1) = 1 − 1/M , ϕj(M) = 1/M for j = 1, 2. Let p1 = 1/2 and p2 = M/2 + 1 for some M > 2.
Let Eff be the efficient and Opt be the optimal allocation rule. Then the ratio Pmin(Eff)/Pmin(Opt)
goes to infinity as M goes to infinity.

Proof. The efficient allocation rule always schedules job 1 first, since 1/(1/2) = 2 > 2M/(M + 2) =
M/(M/2 + 1). Therefore, the expected start time of job 1 is 0 and that of job 2 is 1/2. Optimal

payments according to Lemma 1 are πEff
1 (1) = πEff

1 (M) = 0 and πEff
2 (1) = πEff

2 (1) = M/2.
Hence, Pmin(Eff) = M/2.
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For the optimal mechanism, we compute modified weights as w1
1 = w1

2 = 1 and w2
1 = w2

2 =
M2−M +1. Job 1 is scheduled first, whenever both jobs have the same weight or job 1 has a larger
weight than job 2. In the case where job 1 has (modified) weight 1 and job 2 has modified weight
M2 − M + 1, job 2 is scheduled first for M > 2, since 1/(1/2) < (M2 − M + 1)/(M/2 + 1). The
resulting expected start times and payments are given below:

ES1(Opt, 1) = 1/2 + 1/M

ES1(Opt,M) = 0

ES2(Opt, 1) = 1/2

ES2(Opt,M) = 1/(2M)

πOpt
1 (1) = 1/2 + 1/M

πOpt
1 (M) = 0

πOpt
2 (1) = 1 − 1/(2M)

πOpt
2 (M) = 1/2.

Hence,

Pmin(Opt) = (
1

2
+

1

M
)(1 −

1

M
) + (1 −

1

2M
)(1 −

1

M
) +

1

2
·

1

M

= (1 −
1

M
)(

3

2
+

1

2M
) +

1

2
·

1

M
.

Thus, the ratio Pmin(Eff)/Pmin(Opt) tends to infinity if M tends to infinity. �

Comparison to Myerson’s result. For the single item auction and continuous type spaces,
Myerson (1981) has made similar observations: in his setting, the Vickrey auction is an efficient
auction. The optimal auction can be seen as a Vickrey auction with a reserve price. In our setting
also, the allocation in the optimal mechanism is equivalent to the efficient allocation rule with
respect to modified data. Nevertheless, in Myerson (1981) the optimal and the efficient mechanism
may differ. For the single item auction this can be due to the seller keeping the item (even in the
symmetric case) or because a bidder that has not submitted the highest bid can get the item in the
asymmetric case. In our setting, the optimal and the efficient mechanism can only differ if agents
are asymmetric, see Corollary 1 and Examples 1 and 2.

On the generalized VCG Mechanism. The VCG mechanism is due to Vickrey (1961),
Clarke (1971) and Groves (1973). The allocation rule is the efficient one. In our setting this means
scheduling in order of non-increasing ratios wj/pj . The payment scheme pays to agent j an amount
that is equal to an appropriate constant (possibly depending on other agents’ types, but not on j’s
type) minus the total loss in valuation of the other agents due to j’s presence. For agent j with
processing time pj , the total loss in valuation of the other agents is equal to the product of pj and
the total weight of all agents processed after j. In order to ensure individual rationality, we have
to add pj times the total weight of all agents except j. Therefore, the resulting payment to j for
reported type profile w and efficient schedule σ is equal to

πV CG
j (w) = pj

∑

k∈J
σk<σj

wk.

As illustrated by Examples 1 and 2, the allocation of the VCG mechanism can differ from the
allocation of the optimal mechanism if agents are not symmetric. Moreover, if agents are symmetric,
the VCG mechanism still can be non-optimal in terms of payments. This is illustrated by the
following example.
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Example 3 There are two symmetric agents with W1 = W2 = {w1, w2}, w1 < w2, and ϕj(w
1) =

ϕj(w
2) = 1/2 for j = 1, 2. Processing times are equal and without loss of generality p1 = p2 = 1.

Then the expected expenses of the VCG mechanism are strictly higher than those of the optimal

mechanism.

Proof. Regularity is trivially satisfied and therefore the allocation of the optimal mechanism from
Section 2 is efficient. There are four possible type profiles, each occurring with probability 1/4:
(w1, w1), (w1, w2), (w2, w1), (w2, w2). The resulting schedules are the same for the VCG and the
optimal mechanism and schedule the job with the higher weight first and break ties arbitrarily
in the case of equal weights, respectively. Let us first compute the expected total payment for
the VCG mechanism. The VCG mechanism pays to the job that is scheduled last the weight of
the job that is scheduled before him. Thus, the VCG mechanism has to spend w1 in the first
case, and w2 in the second, third and fourth case, respectively. The total expected payment of
the VCG mechanism is hence (3w2 + w1)/4. Let (f, πf ) denote the optimal mechanism from
Section 2. In the optimal mechanism, the expected payment to a job with weight w1 is equal to
Eπf

j (w1) = w1[ESj(f,w1)−ESj(f,w2)]+ w2ESj(f,w2) = w1[3/4− 1/4]+ w2[1/4] = w1/2+ w2/4.

The expected payment to a job with weight w2 is Eπf
j (w2) = w2ESj(f,w2) = w2/4. The total

expected payment for the optimal mechanism is thus 2 · 1/2 · (w1/2 + w2/4 + w2/4) = (w1 + w2)/2.
Since w2 > w1, the expected expenses of the VCG mechanism are strictly higher than those of the
optimal mechanism. Therefore, the VCG mechanism is not optimal. �

4 The 2-Dimensional Setting

4.1 Setting and Notation

In contrast to the 1-dimensional setting, both weight and processing time of a job are now private
information of the job. Hence j’s type is the tuple (wj , pj). As before, we restrict attention to
discrete type spaces, i.e., (wj , pj) ∈ Wj × Pj , where Wj = {w1

j , . . . , w
mj

j } with w1
j < · · · < w

mj

j

and Pj = {p1
j , . . . , p

qj

j } with p1
j < · · · < p

qj

j . Let ϕj be the probability distribution of j’s type,

that is, ϕj(w
i
j , p

k
j ) denotes the probability associated with the type (wi

j , p
k
j ) for i = 1, . . . ,mj and

k = 1, . . . , qj . Probability distributions {ϕj}j∈J and type space {Wj × Pj}j∈J are publicly known.
Distributions are independent between agents. Denote by T = Πj∈J(Wj × Pj) the set of all type
profiles. For any job j, let T−j = Πr 6=j(Wr × Pr) be the set of type profiles of all jobs except
j. Let ϕ be the joint probability distribution of (w1, p1, . . . , wn, pn). Then for type profile t =

(wi1
1 , pk1

1 , . . . , win
n , pkn

n ) ∈ T , ϕ(t) = Πn
j=1ϕj(w

ij
j , p

kj

j ). Let t−j and ϕ−j be defined analogously. For

(wi
j , p

k
j ) ∈ Wj ×Pj and t−j ∈ T−j , we denote by ((wi

j , p
k
j ), t−j) the type profile where job j has type

(wi
j , p

k
j ) and the types of the other jobs are represented by t−j. Denote by

ESj(f,wi
j , p

k
j ) :=

∑

t−j∈T−j

Sj(f((wi
j , p

k
j ), t−j))ϕ−j(t−j)

the expected waiting time of job j if he reports type (wi
j , p

k
j ) and allocation rule f is applied. Denote

by

Eπj(w
i
j , p

k
j ) :=

∑

t−j∈T−j

πj((w
i
j , p

k
j ), t−j)ϕ−j(t−j)
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the expected payment to j.
We assume that an agent can only report a processing time that is not lower than his true

processing time and that a job is processed for his reported processing time. We believe this is a
natural assumption, as reporting a shorter processing time can be easily punished by preempting
the job after the declared processing time, before it is actually finished.

4.2 Bayes-Nash Implementability and the Type Graph

Definition 8 A mechanism (f, π) is called Bayes-Nash incentive compatible (BIC ) if for every

agent j and every two types (wi1
j , pk1

j ) and (wi2
j , pk2

j ) with i1, i2 ∈ {1, . . . ,mj}, k1, k2 ∈ {1, . . . , qj},
k1 ≤ k2,

Eπj(w
i1
j , pk1

j ) − wi1
j ESj(f,wi1

j , pk1

j ) ≥ Eπj(w
i2
j , pk2

j ) − wi1

j ESj(f,wi2
j , pk2

j ), (4)

where the expectations are taken under the assumption that all agents apart from j report truthfully.

Note that by defining the incentive constraints only for k1 ≤ k2, we account for the fact that agents
can only overstate their processing time, but cannot understate it.

In order to ensure individual rationality, again add a dummy type tdj to the type space for every

agent j, and let ESj(f, tdj ) = 0 and Eπj(t
d
j ) = 0 for all j ∈ J . As in the 1-dimensional case, the

dummy types together with the mentioned extra incentive constraints guarantee that individual
rationality is satisfied along with the incentive constraints. Sometimes, it will be convenient to
write (w

mj+1
j , pk

j ) for some k ∈ {1, . . . , qj} instead of tdj .

In the 2-dimensional setting, the type graph T f
j of agent j has node set Wj ×Pj , where we add

w
mj+1
j ∈ Wj for IR, and contains an arc from any node (wi1

j , pk1

j ) to every other node (wi2
j , pk2

j )
with i ∈ {1, . . . ,mj}, i2 ∈ {1, . . . ,mj + 1}, k ∈ {1, . . . , qj}, k1 ≤ k2 of length

ℓ(i1k1)(i2k2) = wi1
j [ESj(f,wi2

j , pk2

j ) − ESj(f,wi1
j , pk1

j )].

Note that we have arcs only in direction of increasing processing times, since agents can only
overstate their processing time. Furthermore, every node has an arc to the dummy type, but there
are no outgoing arcs from the dummy type.

Similar as in Malakhov and Vohra (2007), one can show that for monotonic allocation rules
some arcs in the type graph are not necessary, since the corresponding incentive constraints are
implied by others. We first give the definition of monotonicity in the 2-dimensional setting and
then formulate a lemma which reduces the set of necessary incentive constraints.

Definition 9 An allocation rule f satisfies monotonicity with respect to weights if for every agent

j ∈ J and fixed pk
j ∈ Pj, wi1

j < wi2
j implies that ESj(f,wi1

j , pk
j ) ≥ ESj(f,wi2

j , pk
j ).

Lemma 2 Let f be an allocation rule satisfying monotonicity with respect to weights. For any
agent j, the following constraints imply all other incentive constraints:

Eπj(w
i
j , p

k
j ) − wi

jESj(f, wi
j , p

k
j ) ≥ Eπj(w

i+1

j , pk
j ) − wi

jESj(f, wi+1

j , pk
j ) (5)

for i ∈ {1, . . . , mj}, k ∈ {1, . . . , qj}

Eπj(w
i+1

j , pk
j ) − wi+1

j ESj(f, wi+1

j , pk
j ) ≥ Eπj(w

i
j , p

k
j ) − wi+1

j ESj(f, wi
j , p

k
j ) (6)

for i ∈ {1, . . . , mj − 1}, k ∈ {1, . . . , qj}

Eπj(w
i
j , p

k
j ) − wi

jESj(f, wi
j , p

k
j ) ≥ Eπj(w

i
j , p

k+1

j ) − wi
jESj(f, wi

j , p
k+1

j ) (7)

for i ∈ {1, . . . , mj}, k ∈ {1, . . . , qj − 1}
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The proof is given in the Appendix. Lemma 2 is in fact a generalization of decomposition mono-

tonicity as discussed for the 1-dimensional case in the proof of Theorem 1. We can now define the
reduced type graph of agent j, which contains only arcs that are necessary in the sense of Lemma 2.
These arcs are:

• an arc from type (wi
j , p

k
j ) to (wi+1

j , pk
j ) for all i ∈ {1, . . . ,mj} and k ∈ {1, . . . , qj}

• an arc from type (wi+1
j , pk

j ) to (wi
j , p

k
j ) for all i ∈ {1, . . . ,mj − 1} and k ∈ {1, . . . , qj}

• an arc from type (wi
j , p

k
j ) to (wi

j , p
k+1
j ) for all i ∈ {1, . . . ,mj} and k ∈ {1, . . . , qj − 1}.

A sketch of the reduced type graph is given in Figure 1. Expected payments correspond to negative
of shortest paths in the reduced type graph. Whenever we refer to the type graph for a monotonic
allocation rule in the following, we mean the reduced type graph. The reduced type graph comes
handy particularly when considering our (counter) examples in the next subsection.

w1
j , p

1
j

w
mj
j , p1

j

w
mj
j , p

qj
j

w1
j , p

qj
j

tdj

Figure 1: Reduced type graph

We finally give the characterization of BIC allocation rules for the 2-dimensional setting, which
is a consequence of our restriction of the strategy space for each job (i.e., the assumption that no
job can understate its required service time).

Theorem 5 An allocation rule f is BIC in the 2-dimensional setting if and only if it satisfies

monotonicity with respect to weights.

Proof. Implementability implies monotonicity as before. The claim reduces to showing that in
the type graph of any agent j the non-negative cycle property is equivalent to the non-negative
two-cycle property. After the reduction, every cycle in T f

j consists of a finite number of two-cycles.
Hence the non-negative cycle property is equivalent to the non-negative two-cycle property. �

4.3 On Optimal Mechanisms

Given the successful and elegant approach by Malakhov and Vohra (2007) for an auction setting
with 2-dimensional type spaces, it is tempting to try and use the network approach also in the
2-dimensional setting for the scheduling problem. In this section, we show that this won’t work.

A first problem is that, in contrast to the 1-dimensional case, the shortest paths in the type
graph may now depend on the allocation rule f , which was not the case before. Hence, we cannot
express minimum payments in a closed formula. Exactly this problem is ruled out by Malakhov
and Vohra (2007) in their 2-dimensional auction problem. But it turns out that the situation here
is worse.
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Definition 10 We say that an allocation rule f satisfies independence of irrelevant alternatives
(IIA) if the relative order of any two jobs j1 and j2 is the same in the schedules f(s) and f(t) for

any two type profiles s, t ∈ T that differ only in the types of agents from J \ {j1, j2}.

Note that the IIA axiom has no bite if number of jobs is two. Another way to state the IIA axiom
is that the relative order of two jobs is independent of all other jobs. For the 2-d setting, this is not
necessarily the case for optimal mechanisms.

Theorem 6 The optimal allocation rule for the 2-dimensional setting does not satisfy IIA.

Proof. Consider the following instance with three jobs. Job 1 has type space {(1, 1)}, job 2 has
type space {(2, 2)} and job 3 has type space {1.9, 2} × {1, 2}. The probabilities for job 3’s types
are ϕ3(1.9, 1) = 0.8, ϕ3(2, 2) = 0.2 and ϕ3(1.9, 2) = ϕ3(2, 1) = 0 respectively. The following
argumentation would still work if we assumed small positive probabilities for types (1.9, 2) and (2, 1)
as well, but everything would become much more technical. We will show that the best allocation
rule that satisfies IIA achieves a minimum expected total payment of at least 5.6, whereas there
exists an allocation rule – violating IIA – with an expected total payment of 4.88.

There are six possible schedules for three jobs, where we denote e.g. by 312 the schedule where
job 3 comes first and job 2 last. There are only two cases that occur with positive probability:
job 3 has type (1.9, 1), which we refer to as case a, and job 3 has type (2, 2), which we refer to as
case b. An allocation rule that satisfies IIA must schedule job 1 and 2 in the same relative order in
case a and b. Therefore, any such rule must either choose a schedule from {123, 132, 312} or from
{213, 231, 321} in both cases.

As an example, we compute a lower bound on the optimal payment Pmin(f) for the case where
f chooses schedule 123 in case a and schedule 132 in case b. Since there is only one possible type for
job 1 and 2, only individual rationality matters for the optimal payments to those jobs and hence
πf

1 (1, 1) = 0 and πf
2 (2, 2) = 2(0.8·1+0.2·(1+2)) = 2.8. For job 3, we take individual rationality into

account as well as the incentive constraint πf
3 (1.9, 1) − 1.9 · ES3(1.9, 1) ≥ πf

3 (2, 2) − 1.9 · ES3(2, 2).

While individual rationality requires πf
3 (1.9, 1) ≥ 1.9 · 3 = 5.7 and πf

3 (2, 2) ≥ 2, the latter is

equivalent to πf
3 (1.9, 1) ≥ πf

3 (2, 2) + 3.8. Therefore, πf
3 (2, 2) ≥ 2 and πf

3 (1.9, 1) ≥ 5.8. Hence
Pmin(f) ≥ 2.8 + 0.8 · 5.8 + 0.2 · 2 = 7.84. Note that this is only a lower bound, since for the exact
value of Pmin(f), we must additionally consider the incentive constraints that result from the two
types (1.9, 2) and (2, 1), which have zero probability, but are in the type space of job 3.

In total, there are 18 allocation rules that satisfy IIA. We list the corresponding lower bounds
(LB) on Pmin(f) in Table 1.

Hence, 5.6 is a lower bound for the expected total payment made by any IIA mechanism. On
the other hand, consider the allocation rule that chooses schedule 132 in case a and schedule 231
in case b. We extend the allocation rule to the zero probability type such that it chooses schedule
132 for type (2, 1) and schedule 231 for type (1.9, 2). Clearly, this allocation rule violates IIA. The

optimal payments to job 1 and 2 are πf
1 (1, 1) = 0.8 and πf

2 (2, 2) = 1.6 respectively. For the optimal
payment to job 3, we depict the type graph with associated arc lengths in Figure 2. The shortest
path lengths from (1.9, 1) and (2, 2) to the dummy node are −2.1 and −4, respectively. Hence,

πf
3 (1.9, 1) = 2.1 and πf

3 (2, 2) = 4. Consequently, Pmin(f) = 0.8+1.6+0.8 ·2.1+0.2 · 4 = 4.88. This
proves the claim. �

Theorem 6 shows that any priority based algorithm where the priority of a job is computed
from the characteristics of the job itself cannot be optimal in general. We can conclude that the
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f(a) f(b) πf
1 πf

2 LB πf
3 (1.9, 1) LB πf

3 (2, 2) LB Pmin(f)

123 123 0 2 6 6 8
123 132 0 2.8 5.8 2 7.84
123 312 0.4 2.8 5.7 0 7.76
132 123 0 3.6 2.2 6 6.56
132 132 0 4.4 2 2 6.4
132 312 0.4 4.4 1.9 0 6.32
312 123 0.8 3.6 0.3 6 5.84
312 132 0.8 4.4 0.1 2 5.68
312 312 1.2 4.4 0 0 5.6
213 213 2 0 6 6 8
213 231 2.4 0 5.9 4 7.92
213 321 2.4 0.8 5.7 0 7.76
231 213 2.8 0 4.1 6 7.28
231 231 3.2 0 4 4 7.2
231 321 3.2 0.8 3.8 0 7.04
321 213 2.8 1.6 0.3 6 5.84
321 231 3.2 1.6 0.2 4 5.76
321 321 3.2 2.4 0 0 5.6

Table 1: Lower bounds for payments of different schedules

0

0

0

0

1.9 2

−2

−4

1.9, 1 2, 1

1.9, 2 2, 2

td3

Figure 2: type graph job 3

network approach which we used for the 1-dimensional case, and which is used also by Malakhov
and Vohra (2007), is doomed to fail in the 2-dimensional case we consider here. This because the
network approach will inevitably lead to an allocation rule f that is IIA6. But in general f is not
of that form; see Theorem 6.

One explanation for this complication may lie in the fact that the 2-d setting considered here in
fact entails informational externalities, as opposed to the auction setting of Malakhov and Vohra
(2007). On the other hand, the informational externalities introduced by private processing times
are not the only cause for complications in the 2-dimensional setting: Consider the 1-dimensional
setting, where only the processing times are private, but the weights are public information. It
turns out that all allocation rules are implementable, even when we allow that jobs understate

6The type graph T f
j for job j is defined on the basis of the data of this job only. For any given f , minimum

payments correspond to (the negative of) shortest path lengths in T f
j . Now the total expected payment P min(f) is a

linear function in the values ESj(f, wi
j), and the coefficients of any ESj(f, wi

j) will depend on the data of job j only,
by construction. Hence, the term P min(f) is minimized only if f equals Smith’s ratio rule, for some virtual weights
wj , j ∈ J (even if we fail to express these wj in closed form).
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Figure 3: Type graphs for the w-rule for jobs 1 and 2

their processing times. The optimal payment to a job j that reports processing time pk
j is equal to

wjESj(f, pk
j ), and therefore the total payment to jobs for allocation rule f is equal to Pmin(f) =

∑

j∈J

∑qj

k=1 ϕj(p
k
j )wjESj(f, pk

j ). This is minimized by Smith’s ratio rule.
When there are only two agents present, then IIA is trivially satisfied. Recall that in the 1-

dimensional case the optimal mechanism is efficient for symmetric agents and regular distributions
and that the uniform distribution is regular. This is contrasted by the following theorem for the
2-dimensional case.

Theorem 7 Even for two symmetric agents, 2×2-type spaces and uniform probability distributions,

the optimal mechanism is not efficient.

Proof. Consider the following example with two jobs, W1 = W2 = {1, 2} and P1 = P2 = {1, 2}. We
assume that ϕ1(i, k) = ϕ2(i, k) = 1

4 for i, k ∈ {1, 2}. On one hand, consider the efficient allocation
rule fe, which schedules the job with higher weight over processing time ratio first. On the other
hand, regard the so-called w-rule, fw, that schedules the job with the higher weight first. In case
of ties, both rules schedule job 1 first. The expected start times are listed below.

ES1(fw, 1, 1) = ES1(fw, 1, 2) = 3/4

ES1(fw, 2, 1) = ES1(fw, 2, 2) = 0

ES1(fe, 1, 1) = ES1(fe, 2, 2) = 1/4,

ES1(fe, 1, 2) = 1,

ES1(fe, 2, 1) = 0,

ES2(fw, 1, 1) = ES2(fw, 1, 2) = 3/2

ES2(fw, 2, 1) = ES2(fw, 2, 2) = 3/4

ES2(fe, 1, 1) = ES2(fe, 2, 2) = 1,

ES2(fe, 1, 2) = 3/2,

ES2(fe, 2, 1) = 1/4.

The type graphs corresponding to fw for job 1 and 2 respectively are shown in Figure 3. From this,
the optimal payments can be computed as:

πfw

1 (2, 1) = πfw

1 (2, 2) = 0,

πfw

1 (1, 1) = πfw

1 (1, 2) = 3/4,

πfw

2 (2, 1) = πfw

2 (2, 2) = 3/2,

πfw

2 (1, 1) = πfw

2 (1, 2) = 9/4.

Hence the (minimum) total expected payment for the w-rule is:

Pmin(fw) =
1

4

∑

j

∑

(i,k)

πfw

j (i, k) = 9/4.
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Figure 4: Type graphs for the efficient rule for job 1 and 2

The type graphs corresponding to fe for agent 1 and 2 respectively are shown in Figure 4.
From this, the optimal payments can be computed as:

πfe

1 (1, 1) = πfe

1 (2, 2) = 1/2,

πfe

1 (2, 1) = 0

πfe

1 (1, 2) = 5/4,

πfe

2 (1, 1) = πfe

2 (2, 2) = 2,

πfe

2 (1, 2) = 5/2,

πfe

2 (2, 1) = 1/2.

Hence the (minimum) total expected payment in the efficient rule is:

Pmin(fe) =
1

4

∑

j

∑

(i,k)

πj(i, k) = 37/16.

Hence, Pmin(fe) > Pmin(fw). Thus, the efficient allocation is dominated by the w-rule, and conse-
quently does not correspond to the optimal mechanism. �

5 Discussion

We have seen that the graph theoretic approach is an intuitive tool for optimal mechanism design
and yields a closed formula for the optimal mechanism in the 1-dimensional case. The results
parallel Myerson’s results for single item auctions; although there are some subtle differences.

Moreover, we have seen that in the two-dimensional case the canonical (network) approach does
not work and that optimal mechanism design seems to be considerably more complicated than in
some auction models. We leave it as an open problem to identify (closed formulae for) optimal
mechanisms for the 2-d case. It is conceivable, however, that closed formulae do not exist, and the
problem may be provably harder than the one-dimensional problem.
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Appendix

Proof of Theorem 1. All that remains to show is that the non-negative two-cycle property
implies the non-negative cycle property. We first show that the arc lengths satisfy a property called
decomposition monotonicity, i.e., whenever i < k < l then ℓik + ℓkl ≤ ℓil and ℓlk + ℓki ≤ ℓli.

Decomposition monotonicity follows from

ℓik + ℓkl = wi
j[ESj(f,wk

j ) − ESj(f,wi
j)] + wk

j [ESj(f,wl
j) − ESj(f,wk

j )]

≤ wi
j[ESj(f,wk

j ) − ESj(f,wi
j)] + wi

j[ESj(f,wl
j) − ESj(f,wk

j )]

= wi
j[ESj(f,wl

j) − ESj(f,wi
j)] = ℓil,

where the inequality follows from monotonicity. Note that everything remains true if the dummy
type is involved, i.e., if l = mj + 1. The inequality ℓlk + ℓki ≤ ℓli follows similarly.

Because of decomposition monotonicity, length of any edge (wi
j , w

k
j ) with i − k > 1 can be

lower bounded by edges (wi
j , w

i+1
j ), (wi+1

j , wi+2
j ), . . . , (wk−1

j , wk
j ) (call such edges neighboring edges).

Similarly, length of any edge (wi
j , w

k
j ) with k − 1 > 1 can be lower bounded by neighboring edges.

Hence, any cycle can be lower bounded by the lengths of a finite number of two cycles, which proves
the theorem. �

Proof of Lemma 1. Let p = (wi
j = a0, a1, . . . , am = w

mj+1
j ) denote a path from wi

j to w
mj+1
j

in the type graph T f
j for agent j. Denote by length(p) the sum of its arc lengths. Let (f, π) be a

Bayes-Nash incentive compatible mechanism. Adding up the incentive constraints

Eπj(ai) ≤ Eπj(ai−1) + ai−1[ESj(f, ai) − ESj(f, ai−1)] = Eπj(ai−1) + ℓai−1ai

for i = 1, . . . ,m yields
Eπj(w

mj+1
j ) ≤ Eπj(w

i
j) + length(p).

Assuming Eπj(w
mj+1
j ) = 0, this is equivalent to −length(p) ≤ Eπj(w

i
j). As f is Bayes-Nash

implementable, T f
j satisfies the non-negative cycle property. Consequently, we can compute shortest

paths in T f
j . With dist(wi

j , w
mj+1
j ) being the length of a shortest path from wi

j to w
mj+1
j , the above

yields −dist(wi
j , w

mj+1
j ) ≤ Eπj(w

i
j). Therefore, −dist(wi

j , w
mj+1
j ) is a lower bound on the expected

payment for reporting wi
j . On the other hand, since we have

dist(wi
j , w

mj+1
j ) ≤ ℓik + dist(wk

j , w
mj+1
j )

for any two types wi
j and wk

j , it follows that

−dist(wk
j , w

mj+1
j ) ≤ −dist(wi

j, w
mj+1
j ) + ℓik.

Consequently, setting πf
j (wi

j) = −dist(wi
j , w

mj+1
j ) yields an incentive compatible payment scheme

that minimizes the expected payment to every agent for any reported type of the agent. Recall that
individual rationality is satisfied along with the incentive constraints.

Since arc lengths in T f
j satisfy decomposition monotonicity, a shortest path from wi

j to w
mj+1
j is

the path that includes all intermediate nodes wi+1
j , . . . , wmj . Observing that −dist(w

mj+1
j , w

mj+1
j ) =
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0 and −dist(wi
j , w

mj+1
j ) =

∑mj

k=i w
k
j [ESj(f,wk

j )−ESj(f,wk+1
j )]∀wi

j ∈ Wj \{w
mj+1
j } proves the first

claim.
Next, we compute the minimum expected total payment for allocation rule f .

Pmin(f) =
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)π

f
j (wi

j)

=
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)

mj
∑

k=i

wk
j [ESj(f,wk

j ) − ESj(f,wk+1
j )]

=
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)

(mj
∑

k=i

wk
j ESj(f,wk

j ) −

mj
∑

k=i+1

wk−1
j ESj(f,wk

j )

)

=
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)

(

wi
jESj(f,wi

j) +

mj
∑

k=i+1

ESj(f,wk
j )(wk

j − wk−1
j )

)

=
∑

j∈J

ESj(f,w1
j )w

1
j ϕj(w

1
j )

+
∑

j∈J

mj
∑

i=2

ESj(f,wi
j)

(

ϕj(w
i
j)w

i
j + (wi

j − wi−1
j )

i−1
∑

k=1

ϕj(w
k
j )

)

=
∑

j∈J

ESj(f,w1
j )w

1
j ϕj(w

1
j )

+
∑

j∈J

mj
∑

i=2

ESj(f,wi
j)
(

Φj(w
i
j)w

i
j − Φj(w

i−1
j )wi−1

j

)

Let us define modified weights wj by setting w1
j = w1

j and for i = 2, . . . ,mj

wi
j =

wi
jΦj(w

i
j) − wi−1

j Φj(w
i−1
j )

ϕj(wi
j)

=
wi

jϕj(w
i
j) + wi

jΦj(w
i−1
j ) − wi−1

j Φj(w
i−1
j )

ϕj(wi
j)

= wi
j + (wi

j − wi−1
j )

Φj(w
i−1
j )

ϕj(w
i
j)

.

This yields

Pmin(f) =
∑

j∈J

mj
∑

i=1

ϕj(w
i
j)w

i
jESj(f,wi

j).

�

Proof of Lemma 2. For any i1, i2, i3 ∈ {1, . . . ,mj + 1},i1 < i2 < i3, and any k ∈ {1, . . . , qj} the
constraint

Eπj(w
i1
j , pk

j ) − wi1
j ESj(f,wi1

j , pk
j ) ≥ Eπj(w

i3
j , pk

j ) − wi1
j ESj(f,wi3

j , pk
j )
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is implied by

Eπj(w
i1
j , pk

j ) − wi1
j ESj(f,wi1

j , pk
j ) ≥ Eπj(w

i2
j , pk

j ) − wi1
j ESj(f,wi2

j , pk
j )

and
Eπj(w

i2
j , pk

j ) − wi2
j ESj(f,wi2

j , pk
j ) ≥ Eπj(w

i3
j , pk

j ) − wi2
j ESj(f,wi3

j , pk
j ).

In fact, adding up the latter two constraints yields

Eπj(w
i1
j , pk

j ) − wi1
j ESj(f,wi1

j , pk
j )

≥ Eπj(w
i3
j , pk

j ) + wi2
j (ESj(f,wi2

j , pk
j ) − ESj(f,wi3

j , pk
j )) − wi1

j ESj(f,wi2
j , pk

j )

≥ Eπj(w
i3
j , pk

j ) + wi1
j (ESj(f,wi2

j , pk
j ) − ESj(f,wi3

j , pk
j )) − wi1

j ESj(f,wi2
j , pk

j )

= Eπj(w
i3
j , pk

j ) − wi1
j ESj(f,wi3

j , pk
j ),

where the second inequality follows from monotonicity and wi1
j < wi2

j . Note that everything remains

true if the dummy type is involved, i.e., if (wi3
j , pk

j ) = (w
mj+1
j , pk

j ) = tdj . These arguments imply
that all constraints of the type

Eπj(w
i1
j , pk

j ) − wi1
j ESj(f,wi1

j , pk
j ) ≥ Eπj(w

i2
j , pk

j ) − wi1
j ESj(f,wi2

j , pk
j ) (8)

are implied by the subset of constraints where i2 = i1 + 1.
A similar effect can be shown for the “reverse” incentive constraints, i.e., the above constraints

for i3 < i2 < i1, where i1, i2, i3 ∈ {1, . . . ,mj}. Again, out of all constraints of the type

Eπj(w
i1
j , pk

j ) − wi1
j ESj(f,wi1

j , pk
j ) ≥ Eπj(w

i2
j , pk

j ) − wi1
j ESj(f,wi2

j , pk
j ), (9)

only those with i2 = i1 − 1 are necessary.
Similarly, out of all constraints of the type

Eπj(w
i
j , p

k1

j ) − wi
jESj(f,wi

j , p
k1

j ) ≥ Eπj(w
i
j , p

k2

j ) − wi
jESj(f,wi

j , p
k2

j ), (10)

for i ∈ {1, . . . ,mj}, k1, k2 ∈ {1, . . . , qj}, k1 < k2 only those with k2 = k1 + 1 are necessary.

For any types (wi1
j , pk1

j ),(wi2
j , pk2

j ) with i1 < i2 and k1 < k2 the corresponding “diagonal”
constraint

Eπj(w
i1
j , pk1

j ) − wi1
j ESj(f,wi1

j , pk1

j ) ≥ Eπj(w
i2
j , pk2

j ) − wi1
j ESj(f,wi2

j , pk2

j )

follows by adding up the corresponding constraints of type (10) and (8)

Eπj(w
i1
j , pk1

j ) − wi1
j ESj(f,wi1

j , pk1

j ) ≥ Eπj(w
i1
j , pk2

j ) − wi1
j ESj(f,wi1

j , pk2

j )

Eπj(w
i1
j , pk2

j ) − wi1
j ESj(f,wi1

j , pk2

j ) ≥ Eπj(w
i2
j , pk2

j ) − wi1
j ESj(f,wi2

j , pk2

j ).

For any (wi1
j , pk1

j ),(wi2
j , pk2

j ) with i2 < i1 and k1 < k2, the corresponding “diagonal” constraint
follows by adding up the appropriate constraints of type (10) and (9). �
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